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STRESS-CONTROLLED HYSTERESIS
AND LONG-TIME DYNAMICS OF IMPLICIT DIFFERENTIAL

EQUATIONS ARISING IN HYPOPLASTICITY

Victor A. Kovtunenko, Ján Eliaš, Pavel Krejčí, Giselle A. Monteiro,
and Judita Runcziková

Abstract. A long-time dynamic for granular materials arising in the hypo-
plastic theory of Kolymbas type is investigated. It is assumed that the granular
hardness allows exponential degradation, which leads to the densification of
material states. The governing system for a rate-independent strain under
stress control is described by implicit differential equations. Its analytical
solution for arbitrary inhomogeneous coefficients is constructed in closed form.
Under cyclic loading by periodic pressure, finite ratcheting for the void ratio
is derived in explicit form, which converges to a limiting periodic process
(attractor) when the number of cycles tends to infinity.

1. Introduction

In this paper we study long-time dynamics of the constitutive stress-strain rela-
tion for granular materials like cohesionless soils or broken rocks. The constitutive
law is based on the hypoplastic concept proposed by Kolymbas [17], the model is of
the rate type and incrementally nonlinear. Compared to hyper- and hypoelastic ma-
terial laws, the hypoplastic responses are different for loading and unloading, that
is typical for inelastic materials. In contrast to the classical elastoplastic concept,
the strain is not decomposed into elastic and plastic parts. Physical aspects of
hypoplastic models can be found in [26,27]. For other representatives of incremen-
tally nonlinear constitutive equations, see the models by Armstrong–Frederick [2],
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endochronic [30], octolinear [10], and CLoE [9]. For mathematical modelling granu-
lar and multiphase media we cite [1, 11,12,13,22,23,24], while for well-posedness
analysis we refer to [8, 16,25].

In an earlier work [7], we have considered the strain-stress law as a nonlinear diffe-
rential equation for the stress under a given proportional strain (the strain-control).
The model therein is a simplified version of the hypoplastic model by Bauer [3] and
Gudehus [14], in which the pressure and density dependent properties of granular
materials were omitted. In this way we also make a close link to barodesy models
[18]. The existence of an exact solution made it possible to describe analytically va-
rious scenarios of the behavior of stress paths obtained from monotonic compression,
extension, and isochoric deformations [7, 19,20,21].

Our ultimate goal in the current work is to study the phenomenon of ratcheting,
that is, the shift of the hysteresis loops under periodic loading and unloading
cycles. The theoretical ratcheting is infinite when the influence of the void ratio
of the granular material is neglected, which is not consistent with experimental
observations. In the present paper, we consider a stress-controlled constitutive law
within the hypoplastic theory, which allows degradation of the granular hardness.
This results in inhomogeneous material parameters, and the granular body becomes
asymptotically rigid when the number of cycles tends to infinity. Since we are in
the stress-controlled case, the strain rate is the unknown of the problem and has
to be found as a solution of an implicit system of differential equations. Like in the
strain-controlled case, the solution is found in closed form. Moreover, we prove that
the void ratio subjected to periodic loading-unloading pressure cycles converges to
an equilibrium, independently of whether the proportional stress paths are isotropic
or not.

Within the nonlinear theory of rate-independent materials we consider a consti-
tutive response between the Cauchy stress σ, linearized strain ε, and its rates σ̇
and ε̇, which is expressed by an implicit function [15,28]:

f(σ, σ̇, ε, ε̇) = 0 .

For the function f positively homogeneous of degree one with respect to rates:

(1.1) f(σ, sσ̇, ε, sε̇) = sf(σ, σ̇, ε, ε̇) for s > 0,

the constitutive relation is rate-independent. As a special case of f, the hypoelastic
law linear with respect to both rates constitutes [29]:

(1.2) σ̇ − L4(σ)ε̇ = 0 ,

where L4 is a fourth-order symmetric tensor. To extend (1.2) for an inelastic
behavior such that

f(σ, σ̇, ε,−ε̇) 6= −f(σ, σ̇, ε, ε̇) ,
the nonlinearity in ε̇ in the function f can be expressed as

(1.3) σ̇ − L4(σ)ε̇−N(σ)‖ε̇‖ = 0 ,

with a second-order symmetric tensor N and the Frobenius norm ‖ε̇‖ =
√
ε̇ : ε̇.
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The hypoplastic law (1.3) satisfying (1.1) arises in engineering by description of
granular materials. For cohesionless grains only non-positive principal stresses

σ1 ≤ 0 , σ2 ≤ 0 , σ3 ≤ 0

are physically relevant, in that case, the non-negative mechanical pressure reads

(1.4) p = −1
3tr(σ) ≥ 0 , tr(σ) = σ1 + σ2 + σ3 ≤ 0 .

A deformable granular body consists of solid particles of volume Vs assumed
constant, and empty voids of variable volume Vv characterized by a void ratio

e = Vv

Vs
∈ (ed, ei) ,

whose bounds ed and ei depend on the pressure proportionally [4]. More precisely:

(1.5) ed = eminfp , ei = emaxfp , 0 < emin < emax

by means of the unified factor

(1.6) fp(p/hs) = exp
(
−
(3p
hs

)n)
∈ (0, exp(1)], n ≥ 0 .

with hs > 0 denoting the granular hardness. According to [5], hs allows degradation:

ḣs = 1
c

(
h∞s − hs

)
, c ≥ 0 ,

which is expressed for prescribed 0 < h∞s < h0
s by an exponential function

(1.7) hs(t) = h∞s +
(
h0

s − h∞s
)

exp
( t0 − t

c

)
for t > t0 ≥ 0.

We assume that the void ratio fulfills the following equation for rates [5]:

(1.8) ė = ne
(3p
hs

)n( ḣs

hs
− ṗ

p

)
.

For prescribed p0 ≥ 0 and e0 ∈ (emin, emax)fp(p0/h
0
s ), the solution to (1.8) is

expressed in the form akin to (1.5) and (1.6):

(1.9) e(p/hs) = e0

fp(p0/h0
s ) exp

(
−
(3p
hs

)n)
∈ (ed(p/hs), ei(p/hs)).

The degradation of granular hardness hs(t) is shown in the left plot of Figure 1,
for the example parameters h0

s = 120 (MPa), h∞s = 78.5 (MPa) and c = 4 (h). In
the right plot of Figure 1, the void ratio ed < e < ei versus p/hs is drawn, for the
example parameters emin = 0.1, e0 = 0.2, emax = 0.3 and n = 0.82.

The response relation (1.3) depends on the void ratio e as described next. We
will consider the specific model (1.3) due to Bauer [3] and Gudehus [14]:

(1.10) L4(σ) = fs

(
a2tr(σ)I4 + σ ⊗ σ

tr(σ)

)
, N(σ) = fsfda

(
2σ − 1

3tr(σ)I
)

using the dyadic product of the stress tensor, where a > 0 is the yield strength,
while I and I4 stand for the second-order and the forth-order identity tensors,
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Fig. 1: The granular hardness hs(t) degradation (left plot); ad-
missible area for void ratio ed < e < ei versus p/hs (right plot).

respectively. The density fd > 0 and stiffness fs < 0 factors depend on the void
ratio as follows [4]:

(1.11) fd(e) =
( e− ed

ec − ed

)α
, fs(e) = −b

(ei

e

)β
for the parameters α ∈ (0, 0.5), β > 1, b > 0, and the critical void ratio

(1.12) ec = ecrtfp(p/hs) , emin < ecrt < emax .

Thanks to the identity (1.9) and using the definitions of ed, ei in (1.5), one can
suppress the void ratio dependence of both functions defined in (1.11), more
precisely, the density as well as the stiffness are constants given by

(1.13) fd =
( e0
fp(p0/h0

s ) − emin

ecrt − emin

)α
, fs = −b

(emaxfp(p0/h
0
s )

e0

)β
.

Inserting (1.10) into (1.3) we write explicitly the differential equation

(1.14) σ̇ = fs

{
a2tr(σ)ε̇+ ε̇ : σ

tr(σ)σ + afd

(
2σ − 1

3tr(σ)I
)
‖ε̇‖
}
.

Spatial dependence is omitted from the consideration such that (1.14) implies a
coupled system of nonlinear dynamic equations.

2. Analysis of the model

In this study we focus on a modeling setup when the strain ε is fully controlled
by the stress σ. The stress-controlled proportional loading consists in choosing a
fixed second-order symmetric tensor T such that

(2.1) σ = sT, σ̇ = ṡT ,

where a loading parameter s(t) > 0 is a strictly monotone differentiable function
with respect to time t ∈ (t0, t1) for some 0 ≤ t0 < t1. This is what we call a
proportional loading if s is increasing by the mean of ṡ > 0, and proportional
unloading if s is decreasing, i.e., ṡ < 0.
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After the substitution of (2.1) into (1.14) we get the implicit system of the
first-order ordinary differential equations with respect to the strain rate ε̇(t) as

(2.2) ṡT = sfs

{
a2tr(T)ε̇+ ε̇ : T

tr(T)T + afd

(
2T− 1

3tr(T)I
)
‖ε̇‖
}
,

which is under our study. Using for brevity the notation

(2.3) X(t) := s(t)
ṡ(t)fsε̇ , T̂ := T

tr(T) , tr(T̂) = 1 ,

equation (2.2) after division by tr(T) turns into

(2.4) T̂ = a2X + (X : T̂)T̂∓ afd

(
2T̂− 1

3I
)
‖X‖ for ±ṡ > 0 ,

with two signs ∓‖X‖ corresponding to ±ṡ > 0 due to fs < 0.
Taking the scalar product of (2.4) with X and gathering like terms we calculate

X : T̂ = ‖T̂‖2

a2 + ‖T̂‖2
± afd

2‖T̂‖2 − 1
3

a2 + ‖T̂‖2
‖X‖ for ±ṡ > 0 .

Its substitution into (2.4) yields
a2

a2 + ‖T̂‖2
T̂ = a2X∓ afd

( 2a2 + 1
3

a2 + ‖T̂‖2
T̂− 1

3I
)
‖X‖ for ±ṡ > 0 .

Or, after division by a2 and using for brevity the notation

(2.5) A := T̂
a2 + ‖T̂‖2

, B := 1
a2

[(
2a2 + 1

3

)
A− 1

3I
]
,

an equivalent equation with respect to X follows:
(2.6) X = A± afd‖X‖B for ±ṡ > 0 .

Theorem 2.1 (Analytical solution). Under a solvability condition

(2.7) f2
d ≤

1
a2
(
‖B‖2 −

(A:B
‖A‖
)2) = 3a2‖T̂‖2

‖T̂‖2 − 1
3

=: fmax ,

a solution to the nonlinear system (2.6) is given in the closed form:

(2.8) X = A + afd‖A‖B
±
√
D − afd

A:B
‖A‖

for ±ṡ > 0 ,

or, explicitly in terms of T̂:

(2.9) X =
±‖T̂‖

√
DT̂− 1

3afd
(
‖T̂‖2I− T̂

)
±‖T̂‖(a2 + ‖T̂‖2)

√
D − afd(2‖T̂‖2 − 1

3 )
, D := 1− f2

d
fmax

.

Proof. Taking the norm of the expression (2.6) we get

‖X‖2 =
∥∥A± afd‖X‖B

∥∥2 = ‖A‖2 ± 2afd(A : B)‖X‖+ a2f2
d‖B‖2‖X‖2,

which turns into the quadratic equation with respect to λ = ‖X‖:
(2.10)

(
1− a2f2

d‖B‖2)λ2 ∓ 2afd(A : B)λ− ‖A‖2 = 0 for ±ṡ > 0 ,
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where according to (2.5)

(2.11) ‖A‖ = ‖T̂‖
a2 + ‖T̂‖2

, tr(A) = 1
a2 + ‖T̂‖2

,

and the coefficients are

(2.12) A : B =
(

2 + 1
3a2

)
‖A‖2 − tr(A)

3a2 =
2‖T̂‖2 − 1

3

(a2 + ‖T̂‖2)2
,

‖B‖2 =
(

2+ 1
3a2

)(
A : B− tr(A)

3a2

)
+ 1

3a4 =
(

2+ 1
3a2

) (2− 1
3a2 )‖T̂‖2 − 2

3

(a2 + ‖T̂‖2)2
+ 1

3a4 .

The discriminant for this equation

(2.13) Disc = ‖A‖2
(

1− a2f2
d

[
‖B‖2 −

(A : B
‖A‖

)2])
=
‖T̂‖2 − 1

3a2 f
2
d(‖T̂‖2 − 1

3 )
(a2 + ‖T̂‖2)2

is non-negative when the solvability condition (2.7) holds, provided by the lower
bound ‖T̂‖2 ≥ 1/3 since tr(T̂) = 1. Then the roots of (2.10) are

(2.14) λ = ±afd(A : B) +
√

Disc
1− a2f2

d‖B‖2 , λ = ±afd(A : B)−
√

Disc
1− a2f2

d‖B‖2

for ±ṡ > 0. Since ‖X‖ has a sense only for positive values of λ, noting that
A : B > 0 in (2.12) and using (2.13) to write

1− a2f2
d‖B‖2 = (

√
Disc)2 − (afd(A : B))2

‖A‖2 ,

from (2.14) we deduce

(2.15) ‖X‖ = ‖A‖2
√

Disc∓ afd(A : B)
> 0 for ±ṡ > 0 .

The substitution of (2.15) into (2.6) gives the analytical formulas (2.8) and (2.9)
for the solution, where D = Disc/‖A‖2 from (2.13). This finishes the proof. �

Note that the expressions obtained in Theorem 2.1 show no dependence in time
resulting in a constant value for X implicitly related to the loading parameter. The
formulas above together with (2.3) allow us to derive the strain rate in terms of X
provided f2

d ≤ fmax, in other words, equation (2.3) gives

(2.16) ε̇ = ṡ

sfs
X ,

and from (2.9) we infer the scalar expression

(2.17) tr(ε̇) =
( ṡ

sfs

) ±‖T̂‖
√

1− f2
d

fmax
− 1

afd
(
‖T̂‖2 − 1

3
)

±‖T̂‖(a2 + ‖T̂‖2)
√

1− f2
d

fmax
− afd

(
2‖T̂‖2 − 1

3
)

for ±ṡ > 0, which we use for numerical simulation tests below.
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2.1. Isotropic loading. In particular, for the isotropic case

(2.18) T = −I , tr(T) = −3 , T̂ = 1
3I , ‖T̂‖ = 1√

3
,

then fmax =∞ and D = 1, thus (2.7) always holds. From (2.9) we have

(2.19) X = 1
3a2 + 1∓

√
3afd

I for ±ṡ > 0 ,

and from (2.17) get respectively

(2.20) tr(X) = 3
3a2 + 1∓

√
3afd

for ±ṡ > 0 .

2.2. Example of shear stress. Let us consider the shear stress matrix

(2.21) T =

−0.5 0.5 0
0.5 −0.5 0
0 0 0

 , tr(T) = −1 , T̂ = −T , ‖T̂‖ = 1

such that the principal stresses σ1 = −1, σ2 = σ3 = 0, and fmax = 4.5a2 in (2.7).
Let us consider the functions in (1.11) rescaled as follows

(2.22) fd(e/fp) =
(
e/fp − emin

ecrt − emin

)α
, fs(e/fp) = −b

(emax

e/fp

)β
.

From (2.17) and (2.22) we find

(2.23) 1
fs

tr(X) = 1
fs

±
√

1− 2f2
d

9a2 − 2
3afd

±(a2 + 1)
√

1− 2f2
d

9a2 − 5a
3 fd

for ±ṡ > 0

as a function of two variables a and e/fp ∈ [emin, emax].

e_min e_blow e_max

tr(X)/f
s
 versus e/f

p

 

 
ds>0
ds<0

a_crt a_blow

tr(X)/f
s
 versus a

 

 
ds>0
ds<0

Fig. 2: Example tr(X)/fs for ±ṡ > 0 versus parameter e/fp
entering fd and fs (left plot); versus yield strength a (right plot).
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For the parameters used in Figure 1 and α = 0.18, β = 1.05, b = 1, two graphs
of tr(X)/fs for ṡ > 0 and ṡ < 0 versus e/fp and fixed a = 0.6 are depicted in the
window |tr(X)/fs| ≤ 10 in the left plot of Figure 2. They coincide at e/fp = emin
because fd = 0 and X = A in (2.8) is unique in this case. The graph as ṡ < 0 is
continuous, whereas as ṡ > 0 it blows up when the denominator in (2.23), that is,

(2.24) ‖T̂‖(a2 + ‖T̂‖2)

√
1− f2

d
fmax

− afd

(
2‖T̂‖2 − 1

3

)
,

tends to zero at eblow ≈ 0.19.
In the right plot of Figure 2, two graphs of tr(X)/fs for ±ṡ > 0 are depicted

versus the yield strength a ≥ acrt in the window |tr(X)/fs| ≤ 10 and a ≤ 1.2 for
fixed e/fp = e0/fp(p0/h

0
s ) ≈ 0.2278 used in Figure 1. There acrt ≈ 0.4638 can be

found from the solvability condition (2.7) such that

(2.25) acrt =

√
‖T̂‖2 − 1

3√
3‖T̂‖

fd .

When (2.25) holds, the corresponding discriminant D = 0 and the solution X =
A + ‖A‖2B/(A : B) in (2.8) is unique for both ±ṡ > 0. As ṡ > 0 the denominator
in (2.24) tends to zero and causes the blow up at ablow ≈ 0.7398.

3. Hysteresis under cyclic loading

Let us consider a time discretization based on equidistant points tk = kτ for
k = 0, 1, 2, . . . and a fixed period τ > 0. For prescribed 0 < seven ≤ s(t0) < sodd,
we introduce cyclic loading by a continuous periodic function s(t) in (2.1) such
that

(3.1)
{
ṡ > 0 for t ∈ (t2j , t2j+1) ,
ṡ < 0 for t ∈ (t2j+1, t2j+2) ,

j = 0, 1, 2, . . .

where the node values for the loading parameter are set
(3.2) s(t2) = s(t4) = . . . = seven, s(t1) = s(t3) = . . . = sodd.

For example, solving the equation ṡ = s with s(t0) = seven we get

(3.3)
{
s(t) = s(t2j) exp(t− t2j) for t ∈ (t2j , t2j+1) ,
s(t) = s(t2j+1) exp(t2j+1 − t) for t ∈ (t2j+1, t2j+2) ,

which is continuous when sodd = seven exp(τ) and is illustrated in Figure 3. Having
in mind the identities in (2.1) with the cyclic loading described by (3.1) and (3.2),
the corresponding equation for the mechanical pressure (1.4) becomes

(3.4) p(t) = −s(t) tr(T)
3 for t ∈ (t2j , t2j+1) ∪ (t2j+1, t2j+2) ,

therefore, it is continuous and periodic with

(3.5) p(t2j+2) = −seven
tr(T)

3 =: peven, p(t2j+1) = −sodd
tr(T)

3 =: podd,
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t
t0

s

sodd

seven

t1 t2 t3 t4 t5

Fig. 3: Example cyclic loading s(t).

where 0 < peven ≤ p(t0) < podd because of tr(T) ≤ 0 in (1.4). The granular
hardness in (1.7) after discretization implies a monotonically decaying sequence

(3.6) hs(tk) = h∞s +
(
h0

s − h∞s
)

exp
( t0 − tk

c

)
↘ h∞s as k →∞.

For the pressure and granular hardness-dependent function fp(p/hs) defined in
(1.6), let the initial void ratio be prescribed at t = t0:

e(t0) ∈ (emin, emax)fp
(
p(t0)/hs(t0)

)
.

The void ratio in (1.9) yields a time-dependent relation as k = 0, 1, 2, . . .

(3.7) e(t) = e(tk)
fp(p(tk)/hs(tk))fp(p(t)/hs(t)) for t ∈ (tk, tk+1).

The function in (3.7) is continuous at t = tk+1. The factors in (1.13) are determined
by e0 = e(t0), p0 = p(t0), and h0

s = hs(t0).
Assuming that f2

d ≤ fmax according to (2.7) in Theorem 2.1, from (2.8) and
(2.16) we get the strain rate for j = 0, 1, 2, . . .

(3.8)


ε̇(t) = ṡ(t)

s(t)fs

(
A + afd‖A‖B√

1− f2
d

fmax
− afd

A:B
‖A‖

)
for t ∈ (t2j , t2j+1),

ε̇(t) = ṡ(t)
s(t)fs

(
−A + afd‖A‖B√

1− f2
d

fmax
+ afd

A:B
‖A‖

)
for t ∈ (t2j+1, t2j+2).

Theorem 3.1 (Attractor). Under the stress control (2.1) by cyclic loading (3.1)
and (3.2) the void ratio is found in the closed form:

(3.9) e(t) = e(t0) exp
((
−tr(T)

)n[( s(t0)
hs(t0)

)n
−
( s(t)
hs(t)

)n])
for t ≥ t0.

As t→∞ it tends exponentially to an attractor with end-points

(3.10) e∞i = e(t0) exp
((
−tr(T)

)n[( s(t0)
hs(t0)

)n
−
( si
h∞s

)n])
for i ∈ {even, odd}.
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Proof. From (3.7), the following formula can be justified by induction:

(3.11) e(tk) = e(t0)
fp(p(t0)/hs(t0))fp

(
p(tk)/hs(tk)

)
for k = 0, 1, 2, . . .

Inserting here (1.6), (3.5) and (3.6) we calculate the void ratio (3.9). Based on the
periodicity (3.2) and convergence (3.6), the assertion follows. �

3.1. Example of densification. Under the cyclic loading given by (3.3) for
seven = 1, τ = 1, and s(t0) = sodd = exp(1) ≈ 2.7183, we put tr(T) = −1
from the example stress (2.21) such that the pressure bounds peven ≈ 0.3333 and
p(t0) = podd ≈ 0.9061 in (3.5). The graph of the void ratio e(t) computed by formula
(3.9) is drawn versus p(t) in Figure 4 after 10 cycles implying j = 0, 1, . . . , 9 in
(3.1) with t0, t1, . . . , t19 time points. The consequential cycles of e(t) are visually
indistinguishable and approach the attractor according to Theorem 3.1.

p_even p_odd

e_0

void ratio versus pressure

Fig. 4: Void ratio e(t) versus pressure p(t) under cyclic loading.

4. Conclusion

We conclude with some principal findings of our theoretical and numerical study.
• An implicit system of 1st-order ordinary differential equations is studied to mo-

del a granular media within the hypoplastic theory, which allows degradation
of

• Under stress control, an analytical formula for the strain rate is constructed
for arbitrary inhomogeneous coefficients in the governing equations.

• Under loading-unloading cycles, the void ratio exhibits ratcheting of hysteresis
loops towards densification of the granular media.

• The ratcheting phenomenon is finite, pressure-void ratio states generate an
attractor with respect to time.
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