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Abstract We investigate rate-independent stress paths under constant rate of strain within the hypoplasticity
theory of Kolymbas type. For a particular simplified hypoplastic constitutive model, the exact solution of the
corresponding system of nonlinear ordinary differential equations is obtained in analytical form. On its basis,
the behaviour of stress paths is examined in dependence of the direction of the proportional strain paths and
material parameters of the model.
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1 Introduction

The constitutive stress–strain relation for hypoplastic granular materials like cohesionless soil or broken rock
is under our consideration. The respective constitutive law is of the rate type, incrementally nonlinear, and it is
based on the hypoplastic concept proposed by Kolymbas [29]. Compared to incrementally linear constitutive
equations, e.g. for hyperelastic and hypoelastic material laws, the hypoplastic constitutive equations are not
differentiable at zero strain rate. This is due to different stiffnesses for loading and unloading typical for
inelastic materials. In contrast to the classical elastoplastic concept, the strain in the theory of hypoplasticity
is not decomposed into elastic and plastic parts. Detailed discussions about physical aspects of hypoplastic
models can be found, for instance, in [20,31,36]; their response to cycling loading is studied in [9,41], shear
localization in [7,10,16,23], critical states in [4,5,49], behaviour under undrained condition in [37], extension
to a micropolar continuum in [23,24], and thermodynamic aspects in [26,42,43].

Other typical representatives for incrementally nonlinear constitutive equations are, for instance, the
Armstrong–Frederick model [2], the endochronic model by Valanis [45], the octolinear model by Darve
[14,15], the CLoE model by Chambon et al. [12], and the barodesy model by Kolymbas [30]. For variational
approaches to modelling granular and multiphase media, we refer to [1,27,33].

Experiments with granularmaterials show a typical behaviour of the stress path obtained under amonotonic
proportional deformation path which was formulated in two rules by Goldscheider [18]. The first rule says that
a proportional deformation path starting from a nearly stress-free state results in a proportional stress path.
The second rule says that a proportional deformation path starting from an arbitrary stress state asymptotically
converges to the same proportional stress path as the one obtained for the initially stress-free state. These
asymptotic properties of granular materials can be interpreted by fading memory of the material [21]. This
feature is also confirmed by further experiments, e.g. [13,44], and numerical simulations by the discrete element
method, e.g. [25,34].

As the asymptotic behaviour of the stress path for proportional deformation is an intrinsic property of
granular materials, it has also great importance for constitutive models relevant to frictional granular materials.
It can be noted that in many constitutive models the asymptotic behaviour is only fulfilled for particular
deformation paths. The lack of this property can lead to large deviation of the prediction of stress paths not
used for calibration.

In constitutive modelling, the asymptotic property is the starting point for barodesy modelling in [38], and
it is also an intrinsic feature in hypoplasticity [20,22,28,35,36,40]. With respect to a particular hypoplastic
model by Kolymbas [28], stress paths were numerically investigated for initially axisymmetric stress states and
axisymmetric proportional deformations. However, no general requirements for the asymptotic behaviour were
formulated. A mathematical criterion providing a necessary condition for convergent asymptotic behaviour
in incremental models was given first by Niemunis [40]. It requires that the normal distance of the generated
stress path to the asymptote decreases with an increase in monotonic deformation, where the asymptote is
obtained for the corresponding fixed strain rate starting from the initially stress-free state. The criterion by
Niemunis is applicable to all rate-type models; however, it is restricted to proportional deformation paths with
contractant volume strain behaviour.

In the present paper, a different strategy is proposed to examine the asymptotic behaviour using the analytical
solution for the stress path, which depends on the direction of the proportional strain path, the initial stress state,
and the material parameters involved in the constitutive equation. The main challenge in developing proper
mathematical tools is the strongly nonlinear character of the underlying differential equations. Following the
rate-independent technique developed in [11], we gave a rigorous mathematical proof of the existence of
asymptotic states in [8,32]. This idea is further developed in the present work.

To this end, a simplified version of the hypoplastic model by Gudehus [19] and Bauer [3] is considered.
For the sake of simplicity, the pressure- and density-dependent properties of granular materials described in
[3,19] are omitted so that only two material parameters remain in the model. It can be noted that the same
simplified version can also be obtained from the hypoplastic model by von Wolffersdorff [46] as shown in [6].

For the simplified hypoplastic model, we construct the solution of the corresponding nonlinear problem in
a closed form. In this way, we make also a close link to barodesy models [30]. The exact solution allows us to
describe analytically various scenarios of the behaviour of stress paths obtained from monotonic compression,
extension, and isochoric deformations. The latter leads to stress limit states or the so-called critical stress
states, which can be represented by a conical surface in the space of principal stresses. In particular, we
identify the domain of the constitutive parameters which guarantee that for proportional deformation paths the
corresponding stress paths starting from an arbitrary initial stress state are asymptotically stable.
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2 The model

We first fix some basic tensor notation. By R3×3
sym , we denote the space of symmetric 3-by-3 tensors of second-

order {σ
˜

} = {σi j }3i, j=1 and {ε̇}̃ = {ε̇i j }3i, j=1, which are endowed with the usual double dot product, the
associated norm, and the trace, respectively:

σ
˜

: ε̇
˜

:=
3

∑

i, j=1

σi j ε̇i j , ‖ε̇‖̃ :=
√

ε̇
˜

: ε̇
˜

, tr(σ
˜

) := σ
˜

: I
˜

=
3

∑

i=1

σi i .

Here, {I }̃ := {δi j }3i, j=1 stands for the 3-by-3 identity matrix with the Kronecker symbol δi j = 1 for i = j , and
zero otherwise. In physical interpretation, σ

˜

corresponds to the Cauchy stress tensor, and ε̇
˜

is the strain rate
tensor. For time t ≥ 0, we interpret σ

˜

(t) and ε̇
˜

(t) as time-dependent tensor-valued functions.
With respect to the normalized stress tensor σ̂

˜

= σ
˜

/tr(σ
˜

), the general representation of the hypoplastic
constitutive equation of theKolymbas type can bewritten in the factorized form as the following tensor equation
for the objective stress rate:

◦
σ
˜

= c tr(σ
˜

)
( 4
L
˜

(σ̂
˜

) : ε̇
˜

+ N
˜

(σ̂
˜

)‖ε̇‖̃) (1.1)

where {N
˜

} = {Ni j }3i, j=1 is a symmetric second-order tensor, { 4L
˜

} = { 4Li jkl}3i, j,k,l=1 is a symmetric fourth-order
tensor, and the double dot product is to be interpreted as

{ 4L
˜

(σ̂
˜

) : ε̇}̃ =
⎧

⎨

⎩

3
∑

k,l=1

4
Li jkl ε̇kl

⎫

⎬

⎭

3

i, j=1

.

The dimensionless parameter c < 0 scales the incremental stiffness and can be calibrated, for instance, based
on an isotropic compression test. The right-hand side of (1.1) is a homogeneous function of degree one in σ

˜

.
Note that dry granular materials are cohesionless, so that only negative principal stresses are relevant to the
constitutive equation (1.1). Furthermore, we remark that particular representations of the tensor functions in
(1.1) are based on terms from the general representation theorem of isotropic tensor-valued functions [47].
Various explicit versions are proposed in the literature (e.g. [3,19,29,43,48,49]). In this paper, we consider a
particular version of (1.1) proposed by Bauer in [5] in a simplified manner:

4
L
˜

(σ̂
˜

) = a2
4
I
˜

+ σ̂
˜

⊗ σ̂
˜

, N
˜

(σ̂
˜

) = a(σ̂
˜

+ σ̂
˜

∗) (1.2)

with the normalized stress deviator σ̂
˜

∗ = σ̂
˜

− I
˜

/3, where the symbol
4
I
˜

stands for the fourth-order identity
tensor, the symbol ⊗ denotes the dyadic product of tensors, and the term in (1.1) which is linear in ε̇

˜

can also
be represented as:

4
L
˜

(σ̂
˜

) : ε̇
˜

= a2ε̇
˜

+ (σ̂
˜

: ε̇
˜

)σ̂
˜

. (1.3)

The constitutive constant a > 0 is called limit stress state parameter and characterizes the shape of the conical
limit stress surface or the so-called critical stress state surface in the principal stress space [5]. Critical states are
defined for a vanishing stress rate under continuous isochoric deformation. For critical stress states, parameter
a equals the norm of the normalized stress deviator, i.e. a = ‖σ̂

˜

∗‖, and it can be related to the so-called
critical friction angle [4]. While in the model by Gudehus [19] and Bauer [3] the value of a also depends on
the orientation of the stress deviator, parameter a is assumed to be a constant in the present paper. For the
granular friction angle φ ∈ (0, π/2) such that a = 2

√
2/3 sin φ/(3 − sin φ), we get the physical restriction

a < aphys = √
2/3 ≈ 0.8165 as sin φ < 1.
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3 Hypoplastic model under proportional deformation

Further we restrict ourselves to strain paths pointing in one fixed direction. Namely, we call a strain path
proportional if there exists a time-independent symmetric second-order tensor U

˜

∈ R
3×3
sym normalized by

‖U
˜

‖ = 1 and a scalar time-dependent function s(t) with s(0) = 0 and ṡ(t) > 0 such that it holds

ε
˜

(t) = s(t)U
˜

and ε̇
˜

= ṡ U
˜

. (2.1)

In (2.1),U
˜

determines a prescribed direction in the space of symmetric second-order tensors, and s represents
a monotonic increasing parameter. Moreover, we assume deformations for which the objective time derivative

and the material time derivative coincide, i.e.
◦
σ
˜

= σ̇
˜

, which, for example, holds for fixed directions of principal
stresses. As the material behaviour described by Eq. (1) is isotropic, the strain rate tensor with fixed principal
values, i.e. the strain increments are proportional and coaxial, corresponds to a stress rate tensor σ̇

˜

with zero
elements outside the diagonal. Thus, the relevant system of ordinary differential equations (ODE) reduces to
three.

In this case, inserting the chain rule d/dt = ṡd/ds and ‖ε̇‖̃ = ṡ according to (2.1) and dividing with ṡ 
= 0,
we can rewrite the rate-independent relations (1) with respect to s > 0 in the form:

dσ
˜

ds
= c tr(σ

˜

)
(

a2U
˜

+ (σ̂
˜

: U
˜

)σ̂
˜

+ a(σ̂
˜

+ σ̂
˜

∗)
)

(2.2)

or, equivalently, without factorization:

dσ
˜

ds
= c

{

aV
˜

tr(σ
˜

) +
(

2a + σ
˜

: U
˜

tr(σ
˜

)

)

σ
˜

}

(2.3)

where the formula σ̂
˜

+ σ̂
˜

∗ = 2σ̂
˜

− I
˜

/3 was used, and

V
˜

:= aU
˜

− 1

3
I
˜

, tr(V
˜

) = a tr(U
˜

) − 1, V̂
˜

= V
˜

tr(V
˜

)
. (2.4)

In the principal stress space, the representation of the normalized quantity V̂
˜

indicates the direction of the
asymptotic stress state for s → ∞. This observation will be specified below after the representation formula
(5.6). Indeed, formula (5.6.1) shows that the evolution of σ

˜

takes place in the 2D plane generated by constant
tensors V̂

˜

and σ
˜

(0). We shall see that the scalar coefficient of V̂
˜

is dominant and determines the asymptotic
convergence or divergence of the stress path as s → ∞.

In system (2.3) of ordinary differential equations (ODE) for σ
˜

(s) ∈ R
3×3
sym , the last term in the right-hand

side is nonlinear in σ
˜

. For (2.3), we prescribe the initial condition at s = 0:

σ
˜

(0) = σ
˜

0 (2.5)

where σ
˜

0 ∈ R
3×3
sym is a given initial stress tensor.

In the following, we study the behaviour as s → ∞ of solutions σ
˜

(s) to the nonlinear initial value problem
(2) in dependence of the directionU

˜

of proportional strain paths, the material parameter a, and the initial stress
σ
˜

0.

3.1 Motivating example: isotropic compression/extension

In this Section an assembly of grains with a grain skeleton is considered under compressive stresses. In
mathematical terms, it means that all principal stress components are negative. Here, by compression or
extension we mean the dynamics of the process defined by (2.1), where the strain rate can be, respectively,
negative or positive.

(i) Isotropic compression: Under a monotonic displacement controlled isotropic compression, we understand
the situation of Eq. (2.3) corresponding to the choice U

˜

− = −I
˜

/
√
3. Then tr(σ

˜

) can easily be found as the
solution of the linear scalar equation

d

ds
tr(σ

˜

) = cD−tr(σ
˜

), D− = −√
3a2 + a − 1√

3
= −

3a3 + 1√
3√

3a + 1
< 0, (3.1)
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−√
2σ11 = −√

2σ22

−σ33

σ
˜

0

(a)

−√
2σ11 = −√

2σ22

−σ33

σ
˜

0

(b) (c)

Fig. 1 Stress paths obtained under monotonic isotropic compression and for different values of the parameter a

that is,

tr(σ
˜

(s)) = tr(σ
˜

(0))ecD
−s . (3.2)

Since the model is valid only for compressive stresses, we necessarily have tr(σ
˜

(0)) < 0. Furthermore, c < 0
and D− < 0, so that the negative stress trace exponentially grows when the compression linearly increases
along the direction of −I

˜

for all a > 0. Equation (2.3) turns into the form

dσ
˜

ds
= c

(

D− − E−

3
tr(σ

˜

)I
˜

+ E−σ
˜

)

, E− = 2a − 1√
3
. (3.3)

In view of (3.2), the solution of (3.3) reads

σ
˜

(s) = σ
˜

∗(0)ecE−s + 1

3
tr(σ

˜

(0))ecD
−s I

˜

. (3.4)

If the deviator σ
˜

∗(0) of the initial stress is zero, that is, the initial stress is located on the isotropic axis generated
by I

˜

, then the whole stress path lies on the isotropic axis. Otherwise, if the initial stress deviator does not vanish,
there are three possible scenarios for the evolution of σ

˜

(s) depending onwhether E− > 0, E− < 0, or E− = 0.

Scenario (a) If E− > 0, then we have cE− < 0, and the stress path converges exponentially to the isotropic
trajectory with increasing time, so that the model is exponentially stable with respect to small perturbations of
the initial stress.

Scenario (b) The situation is totally different when E− < 0. Then cE− > 0, and small perturbations of the
initial stress produce exponentially large deviation of the stress path from the isotropic trajectory.

Scenario (c) In the limit case E− = 0, the distance of the solution trajectory from the isotropic axis remains
constant.

Thus, scenarios (b) and (c) do not fulfil the second law by Goldscheider. According to the sign of E−
in (3.3) we see that for the stability of the model with respect to variations of the initial stress (scenario (a))
it needs a > amin, and the critical parameter value is amin = 1/(2

√
3) ≈ 0.2887. For smaller values of a

(scenario (b)), we are in the classical philosophical situation1 described by Frank Brentano.
For illustration, in Fig. 1 we show the projection of the stress paths onto the so-called Rendulic plane for

particular values a = 0.1, a = amin, and a = 1, and an initial stress σ
˜

0 = −diag(0.2, 0.01, 0.2). We observe
that: for a = 1 > amin (solid curve) according to scenario (a) the stress paths tend towards the isotropic
axis (dot dashed line), which is, in this case, the asymptote; for a = 0.1 < amin (dashed curve), there is no
asymptotic behaviour implying scenario (b); and for a = amin (dotted curve), the stress path is parallel to the
isotropic axis implying scenario (c).

(ii) Isotropic extension: For an initially prestressed state of monotonic isotropic extension, we have U
˜

+ =
−U

˜

− = I
˜

/
√
3 resulting in the equations for tr(σ

˜

):

1 What is at first small is often extremely large in the end. And so it happens that whoever deviates only a little from truth in
the beginning is led farther and farther afield in the sequel, and to errors which are a thousand times as large (F. Brentano, On the
Several Senses of Being in Aristotle. Herder-Verlag, Freiburg, 1862).
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d

ds
tr(σ

˜

) = cD+tr(σ
˜

), D+ = √
3a2 + a + 1√

3
, (4.1)

and, respectively, for σ
˜

:

dσ
˜

ds
= c

(

D+ − E+

3
tr(σ

˜

)I
˜

+ E+σ
˜

)

, E+ = 2a + 1√
3
. (4.2)

As given above, its solution can be written in the form

σ
˜

(s) = σ
˜

∗(0)ecE+s + 1

3
tr(σ

˜

(0))ecD
+s I

˜

. (4.3)

In this case, we have D+ > 0 and E+ > 0, and the stress σ(s) in (4.3) decays exponentially to zero as s → ∞
independently of the choice of the initial condition.

We remark that according to the derived formulas (3) and (4) (as well as in the general case (2.3)) the
parameter c < 0 does affect neither the asymptotic states nor the shape of stress paths; rather, it influences
how quick a proportional stress path is approached.

Motivated by this special example, it is our aim to investigate in the following the stress path under general
proportional deformations.

3.2 Analytical solution of the hypoplastic equation for general proportional deformations

The principal difficulty of solving the ODE (2.3) in the general form is its non-linearity in the stress. Here, we
apply the following procedure consisting of three steps:

Step 1 We derive from (2.3) an ODE for the auxiliary scalar variable (σ
˜

: U
˜

)/tr(σ
˜

) and find its solution;
Step 2 Inserting the solution to Eq. (2.3) projected in the isotropic direction, we obtain a linear equation for

tr(σ
˜

) and solve it;
Step 3 Substituting this solution in the constitutive relation (2.3), we find an expression of σ

˜

in the closed
form.

A rigorous derivation of the analytical solution is given in the “Appendix.” Below we summarize the resulting
formulas and discuss similarities between hypoplasticity and barodesy models.

Let V
˜

be as in (2.4) and assume tr(V
˜

) 
= 0. To simplify the formulas, we introduce the constants (see
(17.1) and (17.6))

E := (2a2 − 1
3 )tr(U

˜

) − a

tr(V
˜

)
, D := (a3tr(U

˜

) − 1
3 )tr(U

˜

)

tr(V
˜

)
, (5.1)

and the function h(s) with h(0) = 0 and depending on the initial stress tensor σ
˜

0, defined by the formula (see
(16.4) and (17.3)):

h(s) := − C

a tr(V
˜

)

(

e−ca tr(V
˜

)s − 1
)

, C := σ
˜

0 : U
˜

tr(σ
˜

0)
− a − 1

3 tr(U
˜

)

tr(V
˜

)
. (5.2)

In (17.1), we prove that the differential equation (2.3) can be transformed into the following equation:

dσ
˜

ds
= c

{

aV
˜

tr(σ
˜

) + [

E + Ce−ca tr(V
˜

)s]σ
˜

}

. (5.3)

It is worth noting that (5.3) has the structure (up to a factorization) of a constitutive relation adopted in barodesy;
see, for example, [38]:

dσ
˜

ds
= c

(

fR
˜

tr(σ
˜

) + gσ
˜

)

, R
˜

= −1

3
eαU

˜

, α < 0 (5.4)
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where R
˜

is a given direction of the proportional stress path and f and g are model parameters. The exponential
expression of R

˜

is formal and admits the expansion in −α:

R
˜

= −1

3
I
˜

− α

3
U
˜

+ O(α2). (5.5)

Thefirst two linear asymptotic terms in (5.5)withα = −3a yield exactlyV
˜

in (2.4), and the nonlinear behaviour
of R

˜

with respect to U
˜

is substituted in the Kolymbas-type hypoplastic model by the norm ‖U
˜

‖ (which is
normalized to one here). In this context, it can be mentioned that with constant a Eq. (1) models the stress limit
condition by Drucker–Prager. For a refined modelling of the stress limit condition for granular materials, factor
a should depend on the orientation of the stress deviator, i.e. it should be a function of the so-called Lode angle,
which allows the adaptation of arbitrary conically shaped stress limit conditions in the principal stress space
as outlined in [3,4]. Taking into account the contribution O(α2) in Eq. (5.5), the barodesy model describes
a stress limit condition close to the one by Matsuoka–Nakai [39] as shown in [17,38]. In hypoplasticity, the
stress limit condition by Matsuoka–Nakai can be predefined as shown, for instance, in [4,46]. In both models
(barodesy and hypoplasticity), parameters α and a are related to the granular friction angle.

Based on the representation (5.3) which is linear in σ
˜

, the solution of the initial value problem (2) can be
found in the closed form (see (18.3)):

σ
˜

(s) = (

σ
˜

0 − tr(σ
˜

0)V̂
˜

)

ecEs+h(s) + tr(σ
˜

0)V̂
˜

ecDs+h(s), (5.6)

with E and D defined as in (5.1), h(s) as in (5.2), and V
˜

as in (2.4), whereas V̂
˜

= V
˜

/tr(V
˜

). For the special
case tr(V

˜

) = 0 , that is, tr(U
˜

) = 1/a for a 
= 0, see formulas (19). Due to tr(V̂
˜

) = 1, from (5.6) we compute
tr(σ

˜

)(s) = tr(σ
˜

0) exp(cDs + h(s)) and the normalized stress tensor

σ̂
˜

(s) = (σ̂
˜

0 − V̂
˜

)e−c(D−E)s + V̂
˜

. (5.7)

Therefore, D − E < 0 in (5.7) proves the asymptotic convergence

‖σ̂
˜

(s) − V̂
˜

‖ = ‖σ̂
˜

0 − V̂
˜

‖e−c(D−E)s → 0 (5.8)

exponentially as s → ∞.
Since only negative principal stresses are relevant for the underlying model, it is important to discuss their

feasibility. For this reason, we define the feasible cone:

Kf = {

kσ
˜

: k ≥ 0, σ1, σ2, σ3 ≤ 0
}

(6)

where σ1, σ2, and σ3 are eigenvalues of σ
˜

. Note that tr(V
˜

) = v1 + v2 + v3 ≤ 0. Therefore, if E ≥ D, then
exp(cEs) ≤ exp(cDs) (noting that c < 0), so that rearranging the terms in Eq. (5.6) equivalently as

σ
˜

(s) = ecEs+h(s)σ
˜

0 + (ecDs − ecEs)eh(s)tr(σ
˜

0)V̂
˜

(5.6.1)

the factors in front of σ
˜

0 and tr(σ
˜

0)V̂
˜

are positive. Assuming that V
˜

∈ Kf and choosing the initial stress
state σ

˜

0 ∈ Kf thus guarantee that the whole stress path σ
˜

(s) is contained in Kf for all s > 0. The detailed
investigation of necessary and sufficient conditions on a and U

˜

to ensure that V
˜

reached by (2.4) lies in Kf is
the subject of the forthcoming research.

In the next Sections, we investigate the asymptotic behaviour as s → ∞ of stress paths (5.6) in dependence
of specific deformations U

˜

.

4 Asymptotic behaviour of stress paths under various proportional deformations

Similarly to the motivation example, we should distinguish contractant (volume-decreasing) from dilatant
(volume-increasing) states. For this task, we call by contractant the compression corresponding to tr(U

˜

) < 0,
and by dilatant the extension when tr(U

˜

) > 0, while tr(U
˜

) = 0 corresponds to the volume-preserving
deformation.

To this end, we note that paths with tr(U
˜

) > 0 will eventually approach the origin as they are pro-
portional volume-increasing deformation paths. However, there are examples of axial loading paths, e.g.
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C± > 0

C± < 0

0 s

h±(s)

C±
atr(V ±)

C±
atr(V ±)

C+ > 0

C+ < 0

0 s

h+(s)

Fig. 2 Sketch of the asymptotic behaviour h(s) for tr(V±) < 0 (left) and tr(V+) > 0 (right)

U
˜

= diag(−1, 0.6, 0.6)/
√
1.72, with tr(U

˜

) > 0. Mašín [34] also observed with discrete element method
simulations the so-called asymptotic extension states, that are obtained by tr(U

˜

) > 0 with axial loading.
(i) Contractant straining: Let a tensor U

˜

− be prescribed such that tr(U
˜

−) < 0. Recalling V
˜

− = aU
˜

− − I
˜

/3,
we have tr(V

˜

−) = a tr(U
˜

−) − 1 < 0 for all a > 0. According to (5.2), it follows −ca tr(V
˜

−) < 0 and the
finite limit (see Fig. 2 the left plot):

h−(s) → C−

a tr(V
˜

−)

{

monotone increasing for C− < 0
monotone decreasing for C− > 0

as s → ∞. (7.1)

From (5.1), we infer D− < 0; hence, the second term in the right-hand side of (5.6) grows exponentially
along V

˜

−. The asymptotic behaviour of the first term depends on the sign of E−: it grows to plus or minus
infinity if E− < 0 and decays to a finite number if E− = 0 and to zero if E− > 0. The latter case corresponds
to the proportional contractant deformation such that:

tr(U
˜

−) < 0,

(

2a2 − 1

3

)

tr(U
˜

−) < a. (7.2)

This condition is equal to

tr(U
˜

−) < 0, a >
1 −

√

1 + 8
3 tr

2(U
˜

−)

4 tr(U
˜

−)

and describes the asymptotically stable stress path σ
˜

(s) in (5.6) attracting the direction of V
˜

− as s → ∞ by
the mean of descent distance:

∥

∥

∥

∥

σ
˜

(s) − σ
˜

(s) : V
˜

−

‖V
˜

−‖2 V
˜

−
∥

∥

∥

∥

=
∥

∥

∥

∥

σ
˜

0 − σ
˜

0 : V
˜

−

‖V
˜

−‖2 V
˜

−
∥

∥

∥

∥

ecE
−s+h−(s) → 0. (7.3)

We remark that the decay of the distance in (7.3) holds only for sufficiently large values of s. For instance,
the distance may increase in some interval s ∈ (0, s0) with s0 > 0 satisfying cE−s0 + h−(s0) = 0, when
cE− < 0 and h−(s0) > 0 for C− < 0 in (7.1).

(ii) Dilatant straining: Let U
˜

+ obey tr(U
˜

+) > 0. We consider first the case of tr(V
˜

+) = a tr(U
˜

+) − 1 < 0
and similarly to (7.1) (see Fig. 2 the left plot) obtain

h+(s) → C+

a tr(V
˜

+)
as s → ∞ for 0 < a <

1

tr(U
˜

+)
. (8.1)

Therefore, the stable asymptotic behaviour under the proportional dilatant deformation is guaranteed by D+ >
0 and E+ > 0, that is:

0 < a3tr(U
˜

+) <
1

3
,

(

2a2 − 1

3

)

tr(U
˜

+) < a, (8.2)

or, equivalently,

0 < tr(U
˜

+) <
1

3a3
, 0 < a <

1 +
√

1 + 8
3 tr

2(U
˜

+)

4 tr(U
˜

+)
,
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then the stress path σ
˜

(s) in (5.6) decays asymptotically to zero:

‖σ
˜

(s)‖ = O(e−s) → 0 as s → ∞ for a <
1

tr(U
˜

+)
. (8.3)

By this, if E+ > D+, then the stress path is closer to V
˜

+; otherwise, it is closer to σ
˜

0 − tr(σ
˜

0)V
˜

+/tr(V
˜

+)

when the opposite inequality E+ < D+ holds.
In the special case of tr(V

˜

+) = 0, that is, a = 1/tr(U
˜

+), from (19) we have

‖σ
˜

(s)‖ → 0 as s → ∞ for

{

either a > 1/
√
3, or

a = 1/
√
3 and σ

˜

0 : U
˜

/tr(σ
˜

0) > −2/
√
3.

(9)

The asymptotic stability should be considered separately.
If tr(V

˜

+) > 0, then −ca tr(V
˜

+) > 0 and follows the limit in (5.2) (see Fig. 2 the right plot):

h+(s) →

⎧

⎪

⎨

⎪

⎩

∞ if C+ < 0
0 if C+ = 0
−∞ if C+ > 0

monotone as s → ∞ for a >
1

tr(U
˜

+)
. (10.1)

In this case, exp(cE+s + h+(s)) and exp(cD+s + h+(s)) entering the stress path σ
˜

(s) in (5.6) may obey
various asymptotic behaviour in dependence of the sign of parameter C+ in (10.1) and the values of E+, D+
in (5.1). The asymptotically stable decay to zero of stress paths is described by the following two cases: either
C+ = 0 (hence, h+(s) ≡ 0) and E+ > 0, D+ > 0, that is:

σ
˜

0 : U
˜

+

tr(σ
˜

0)
= a − 1

3 tr(U
˜

+)

tr(V
˜

+)
, (2a2 − 1

3
)tr(U

˜

+) > a, a3tr(U
˜

+) >
1

3
, (10.2)

or h+(s) → −∞ provided by C+ > 0:

σ
˜

0 : U
˜

+

tr(σ
˜

0)
>

a − 1
3 tr(U

˜

+)

tr(V
˜

+)
. (10.3)

In the both cases (10.2) and (10.3), the exponential convergence holds:

‖σ
˜

(s)‖ = O(e−s) → 0 as s → ∞ for a >
1

tr(U
˜

+)
. (10.4)

The non-monotone behaviour of ‖σ
˜

(s)‖ is admissible for dilatant, too.

(iii) Volume-preserving deformation Consider a proportional deformationU
˜

∗ with tr(U
˜

∗) = 0; then, tr(V
˜

∗) =
−1, E = a, and D = 0 in (5.1); hence,

σ
˜

(s) = (σ
˜

0 + tr(σ
˜

0)V
˜

∗)ecas+h(s) − tr(σ
˜

0)V
˜

∗eh(s)

with h(s) = (

(σ
˜

0 : U
˜

∗)/(a tr(σ
˜

0)) + 1
)

(exp(cas) − 1), and the limit:

σ
˜

(s) → σ
˜

∞ := −tr(σ
˜

0)V
˜

∗ exp
(−1

a

σ
˜

0 : U
˜

∗

tr(σ
˜

0)
− 1

)

as s → ∞. (11.1)

We note that the limit states σ
˜

∞ in (11.1) for all admissible directionsU
˜

∗ with tr(U
˜

∗) = 0 and initial stresses
σ
˜

0 form the cone of the limit stress states with the apex in the origin of the space of principal stress axes. From
(11.1), we find that σ

˜

∗∞ = aU
˜

∗tr(σ
˜

∞); thus, the interaction of this cone with the deviator plane, i.e. the plane
with tr(σ̂

˜

) = 1 (see [4]), is represented by the circle of radius a:

‖σ̂
˜

∗∞‖ = a, σ̂
˜

∗∞ = σ
˜

∗∞
tr(σ

˜

∞)
. (11.2)

The analysis of asymptotic behaviour of stress paths under various proportional deformations from Sect. 4
in dependence of the parameters is summarized for convenience in Table 1.
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Table 1 Domain of parameters for asymptotically stable stress paths

Asymptotically stable growth/decay Attracting V
˜

−/V
˜

+

Contractant D− < 0, E− > 0
Dilatant tr(V

˜

+) < 0 D+ > 0, E+ > 0 E+ > D+
tr(V

˜

+) > 0 D+ > 0, E+ > 0 C+ = 0
C+ > 0

1

2 3

4 5 6

- 3 0 3
0

1/12

1.5

0

1/3

1.5

tr(U
˜
)

a

Fig. 3 Visualization of the domain of parameters

5 Discussion of the asymptotic results

In the following, we omit the superscripts −,+ and study how the parameters D and E defined in (5.1) are
connected with the choice of a andU

˜

. Indeed, from (2.4) we have V
˜

= aU
˜

− I
˜

/3; hence, tr(V
˜

) = atr(U
˜

)−1,
and we get that D and E are only dependent on a and tr(U

˜

). We note that the range of tr(U
˜

) is limited by
|tr(U

˜

)| ≤ √
3. To prove this, we considered ‖U

˜

‖ = 1; therefore, tr(U
˜

) becomes extreme if Ui j = 0, i 
= j ,
so only the entries on the diagonal of U

˜

are distinct from zero. With the arithmetic quadratic mean inequality,
we get:

|tr(U
˜

)|
3

= |U11 +U22 +U33|
3

≤
√

U 2
11 +U 2

22 +U 2
33

3
= ‖U

˜

‖√
3

= 1√
3
,

and equality holds for U11 = U22 = U33 = 1/
√
3.

As we see in Table 1, the relations of D and E , one to each other and to zero, are crucial for the asymptotic
behaviour of σ

˜

(s) as s → ∞. Depending on tr(U
˜

) (x-axis) and a (y-axis), these relations are plotted in Fig. 3.
Here, we consider the formal description of the plot, which means the equations of the curves separating

the different greyscale areas, starting in the down left corner:

– between area 1 and area 2:

E = 0 ⇐⇒ a =
1 −

√

1 + 8
3 tr

2(U
˜

)

4tr(U
˜

)
, tr(U

˜

) ≤ 0;

– between area 2 and area 3:

D = 0 ⇐⇒ tr(U
˜

) = 0;
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– between area 3 and area 4:

D = 0 ⇐⇒ a = 1
3
√

3tr(U
˜

)
, tr(U

˜

) ≥ 0;

– between area 4 and area 5:

E = 0 ⇐⇒ a =
1 +

√

1 + 8
3 tr

2(U
˜

)

4tr(U
˜

)
, tr(U

˜

) ≥ 0;

– between area 5 and area 6:

D = E = tr(V
˜

) = 0 ⇐⇒ a = 1

tr(U
˜

)
, tr(U

˜

) ≥ 0.

The meaning of the corresponding areas is the following:

� in the light grey areas 2 and 4 (where parameters D < 0 < E), stress paths are going to infinity attracting
V
˜

;
� in the medium grey areas 1 and 5 (where D < E < 0), stress paths do not have any asymptote and diverge;
� in the dark grey area 3 (where 0 < D < E) stress paths go to zero attracting V

˜

;
� in the white area 6 (where 0 < E < D), the behaviour of the stress paths depends also on the initial stress

state σ
˜

0, while in the other areas the asymptotic behaviour is independent of the initial stress state.

Further we illustrate the usage of Table 1 for the cases of contractant, dilatant, and volume-preserving defor-
mations.

(i) Contractant straining
If tr(U

˜

) < 0, the stress path is asymptotically stable in area 2. We get the lower bound for tr(U
˜

) = −√
3,

which means isotropic compression, by

a > amin = 1

2
√
3

≈ 0, 2887.

For a > amin, we can be sure to have asymptotically stable behaviour for arbitrary proportional deformation
(see Fig. 1 from Sect. 3.1).

(ii) Dilatant straining
If tr(U

˜

) > 0, the stress path is asymptotically stable in areas 3 and 4: in area 3, the path tends to zero, while
in area 4, it tends to infinity. We get the upper bound for tr(U

˜

) = √
3, which means isotropic extension, by

a < amax = 1√
3

≈ 0, 5774.

For a < amax, we have asymptotically stable behaviour for arbitrary proportional extension; in this case, the
stress path will also tend to zero.

(iii) Volume-preserving deformation
For the limiting case of tr(U

˜

) = 0, the stress path will tend to a certain stress state at the critical cone. To
illustrate the matter, we plot few results of numerical simulation.

In the left plot of Fig. 4, the stress paths are projected in the plane spanned by −σ33 and the first median of
the−√

2σ11 = −√
2σ22-plane. The dot dashed line is the isotropic axis; the outer solid lines are the intersection

with the critical cone. In the right plot, the paths are projected onto the deviator stress plane σ̂
˜

∗ = σ
˜

/tr(σ
˜

)− I
˜

/3.
In the deviator plane, the cutting line with the critical cone forms a circle of radius a according to (11.2). In
Fig. 4, we see three example stress paths under volume-preserving deformation U

˜

= diag(1, 1,−2)/
√
6 with

the parameter a = 0.35 and three initial stress states

σ
˜

0
1 = −diag(0.8, 1.1, 0.4), σ

˜

0
2 = −diag(0.7, 1, 1.1), σ

˜

0
3 = −diag(0.4, 0.1, 1).

We can observe that for volume-preserving deformation all stress paths tend to the critical cone independent
of the choice of σ

˜

0.
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−√
2σ11 = −√

2σ22

−σ33

σ
˜

0
1

σ
˜

0
2σ

˜
0
3

σ̂∗
33

σ̂∗
11 σ̂∗

22

σ
˜

0
1

σ
˜

0
2

σ
˜

0
3

a

Fig. 4 Stress paths for different σ
˜

0 under volume-preserving deformation

−√
2σ11 = −√

2σ22

−σ33

σ
˜

0

U
˜

3

U
˜

1U
˜

2

σ̂∗
33

σ̂∗
11 σ̂∗

22

σ
˜

0

U
˜

3

U
˜

1

U
˜

2

a

Fig. 5 Stress paths for different U
˜

For comparison, in the similar coordinate axes as in Fig. 4, in Fig. 5 we see three stress paths starting at the
initial stress state σ

˜

0 = −diag(0.4, 0.16, 0.8)with the parameter a = 0.35 under three different deformations

U
˜

1 = 1√
3
diag(1, 1, 1), U

˜

2 = diag(0, 0, 1), U
˜

3 = 1√
14

diag(2, 1, −3).

We see that for different deformations U
˜

we get different behaviour of the stress paths. For U
˜

1 (solid curve),
we have isotropic compression, and the corresponding stress path tends to the isotropic axis. For U

˜

2 (dashed
curve), we have uniaxial compression, andwe can also observe an asymptotic behaviour. ForU

˜

3 (dotted curve),
we have volume-preserving deformation and the stress path goes to the critical cone.

6 Case studies

In this Section, we will discuss the case of isotropic deformation and uniaxial deformation in more detail.

6.1 Isotropic deformation

(i) Compression: We can now give a more detailed interpretation of the results of Sect. 3.1. The contractant
stress path (3.4) with D− = −(3a3 + 1/

√
3)/(

√
3a + 1), E− = 2a − 1/

√
3 is exponentially stable along

V
˜

− = −(
√
3a + 1)I

˜

/3 for a > 1/(2
√
3) ≈ 0.2887 and a < aphys, and its distance from the V

˜

−-axis grows
to infinity if a < 1/(2

√
3) and remains constant for a = 1/(2

√
3).

(ii) Extension: In the dilatant case (4.3) with D+ = √
3a2+a+1/

√
3, E+ = 2a+1/

√
3, V

˜

+ = (
√
3a−1)I

˜

/3,
the critical value is amax = 1/

√
3 ≈ 0.5774. Then V

˜

+ = 0 and similarly as in formulas (19.2) and (19.3) we
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Table 2 Stress path under coaxial deformation

a
(

0, 1
2
√
3

] ( 1
2
√
3
, 1√

3

) 1√
3

( 1√
3
, aphys

)

Compression Growth:
Unstable Monotone asymptotically stable attracting V

˜

−
Extension Monotone asymptotically stable decay:

Attracting V
˜

+ Attracting (σ
˜

0)∗

obtain the solution σ
˜

(s) = σ
˜

0 exp(c
√
3s), which agrees with (4.3) for D+ = E+ = √

3. This corresponds to
cases (8.2), (9), and (10.2), and from (4.3), we conclude unconditional asymptotic decay to zero:

‖σ
˜

(s)‖ = O(e−s) → 0 monotone as s → ∞ for all 0 < a < amax. (12)

By this, if E+ > D+, which holds for a < 1/
√
3, then σ

˜

(s) attracts closer the direction of V
˜

+. Otherwise,
(σ
˜

0)∗ is more attractive. The result in dependence on the parameter a is gathered for convenience in Table 2.
We remark that this particular case of isotropic compression/extension implies μ = D∓ being the single

eigenvalue and μ = E∓ the double eigenvalue for the following eigenvalue problem written with respect to
μ, respectively:

det
(

a(∓√
3a − 1)1

˜

+ (E∓ − μ)I
˜

) = 0 (13)

where 1
˜

stands for the 3-by-3 matrix of ones and V
˜

∓ is the eigenvector corresponding to D∓; see [32] for
details.

6.2 Uniaxial deformation

(i) Asymptotic compression: We consider a so-called oedometric test, which is a uniaxial deformation under
lateral zero strain, i.e. U

˜

− = −diag(1, 0, 0), then tr(U
˜

−) = −1, V
˜

− = −diag(a + 1/3, 1/3, 1/3), and
tr(V

˜

−) = −(a+1). Substituting it in (5.1) gives E− = (2a2+a−1/3)/(a+1), D− = −(a3+1/3)/(a+1) < 0,
and in (5.2) provides:

h−(s) := C−

a(a + 1)

(

eca(a+1)s − 1
)

, C− := − σ 0
11

tr(σ
˜

0)
+ a + 1

3

a + 1
. (14)

The condition (7.2) for E− > 0 implying 2a2+a−1/3 > 0 holds true if a > a0 := (
√
11/3−1)/4 ≈ 0.2287;

then, it provides the asymptotically stable stress path along the direction of V
˜

− as described in (7.3), which is
monotone if C− ≥ 0. Otherwise, if 0 < a ≤ a0, then the stress path grows to infinity.

(ii) Asymptotic extension: ForU
˜

+ = diag(1, 0, 0) and tr(U
˜

+) = 1 such thatV
˜

+ = diag(a−1/3,−1/3,−1/3),
and tr(V

˜

+) = a − 1, we calculate E+ = (−2a2 + a + 1/3)/(1 − a), D+ = (a3 − 1/3)/(1 − a), and

h+(s) := C+

a(1 − a)

(

eca(1−a)s − 1
)

, C+ := σ 0
11

tr(σ
˜

0)
+ a − 1

3

1 − a
. (15)

Both conditions (8.2) are valid for a < a1 := 1/ 3
√
3 ≈ 0.6934 providing a3 < 1/3, since a1 < a3 :=

(
√
11/3 + 1)/4 ≈ 0.7287 for 2a2 − a − 1/3 < 0. This guarantees the asymptotic decay of the stress path to

zero as described in (8.3). By this, E+ > D+ implying a3 + 2a2 − a − 2/3 < 0 holds for a < a2 ≈ 0.7131;
then, σ

˜

(s) attracts closer the direction of V
˜

+; otherwise, σ
˜

0 + tr(σ
˜

0)V
˜

+/(1 − a) is more attractive when
E+ < D+. For a = 1, the condition (9) is satisfied since a > 1/

√
3. For a > 1, the conditions (10.2) and

(10.3) for stable decay can be realized only for special initial states σ
˜

0. In all other cases, the stress path grows
to infinity. Since aphys < 1, we summarize the result in Table 3.
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Table 3 Stress path under uniaxial deformation

a (0, a0] (a0, a1) [a1, aphys)
Compression Unstable growth Asymptotically stable growth attracting V

˜

−
Extension Asymptotically stable decay attracting V

˜

+ Unstable growth

Conclusions

In the paper, for a constitutivemodel based on the concept of hypoplasticity of theKolymbas type the stress paths
obtained under proportional deformations are investigated. In particular, a simplified hypoplastic constitutive
equation is considered where the objective stress rate is a function of the current stress and strain rate. The
model is obtained by omitting the influence of the change in the pressure-dependent relative density in the
hypoplastic model originally proposed by Bauer and Gudehus. For arbitrary proportional deformations starting
from the stress-free state, the corresponding stress paths are linear which is in accordance with the first law by
Goldscheider and also an important property for constitutive models relevant to frictional granular materials.
From experiments, it is known that significant changes in the density of the granular material can lead to a
slightly curved stress pathwhich can also be influenced by grain crushing under higher stresses. Such properties
can be taken into account using more enhanced hypoplastic models, which are not considered in the present
paper.

The hypoplastic equation considered only includes two constitutive constants: a stiffness parameter and
a limit stress state parameter. The former can be related to an isotropic compression test and the latter to the
so-called critical friction angle defined in the steady state of a cohesionless granular material under triaxial
compression. Although the influence of the direction of the stress deviator on the limit stress state parameter is
neglected, it does not mean a restriction of the general results drawn. A relevant relation between the values for
the direction of the stress deviator of triaxial compression and the one for another direction can, for instance,
be obtained by interpolation.

For the hypoplastic constitutive equation considered, the analytical solution of the stress paths depending
on monotonous linear deformation paths is obtained in a closed form. On its basis, the course of the stress
paths is examined in dependence of the material parameters and prescribed proportional contractant, dilatant,
and volume-preserving deformations. It is shown that stress paths starting from arbitrary initial stress states
are usually nonlinear, and their convergence to a proportional stress path (second law by Goldscheider) is
asymptotically stable only for a certain domain of the limit stress state parameter, which is related to the
critical friction angle.
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Appendix

We start with the following consequences of formula (2.3).
Step 1: The double dot product of (2.3) with U

˜

and recalling V
˜

:= aU
˜

− I
˜

/3 leads to:

d

ds
(σ
˜

: U
˜

) = c

{

a(V
˜

: U
˜

)tr(σ
˜

) +
(

2a + σ
˜

: U
˜

tr(σ
˜

)

)

σ
˜

: U
˜

}

. (16.1)

The double dot product of (2.3) with I
˜

and using tr(V
˜

) = a tr(U
˜

) − 1 leads to:

dσ
˜

ds
: I
˜

= d

ds
tr(σ

˜

) = c
(

a(a tr(U
˜

) + 1)tr(σ
˜

) + σ
˜

: U
˜

)

. (16.2)

http://creativecommons.org/licenses/by/4.0/
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For tr(σ
˜

) 
= 0 and tr(σ
˜

0) 
= 0, subsequently dividing (16.1) with tr(σ
˜

), multiplying (16.2) with (σ
˜

: U
˜

)/tr2(σ
˜

),
subtracting them and using U

˜

: U
˜

= 1, this results in the linear differential equation:

d

ds

(

σ
˜

: U
˜

tr(σ
˜

)

)

= ca

(

a − 1

3
tr(U

˜

) − tr(V
˜

)
σ
˜

: U
˜

tr(σ
˜

)

)

, (16.3)

which admits the exact solution expressed in the following analytical form:

σ
˜

(s) : U
˜

tr(σ
˜

(s))
= B + Ce−ca tr(V

˜

)s, B := V
˜

: U
˜

tr(V
˜

)
, C := σ

˜

0 : U
˜

tr(σ
˜

0)
− B. (16.4)

Step 2: We insert (16.4) in (2.3) such that it becomes linear in σ
˜

:

dσ
˜

ds
= c

{

aV
˜

tr(σ
˜

) + [

E + Ce−ca tr(V
˜

)s]σ
˜

}

, E := 2a + B. (17.1)

In the sequel, it will be useful to introduce an auxiliary function such that

dg

ds
= c

[

E + Ce−ca tr(V
˜

)s], g(0) = 0, (17.2)

that is:

g(s) := cEs + h(s), h(s) := − C

a tr(V
˜

)

(

e−ca tr(V
˜

)s − 1
)

. (17.3)

Then (17.1) can be rewritten equivalently as

dσ
˜

ds
= ca V

˜

tr(σ
˜

) + σ
˜

dg

ds
. (17.4)

The double dot product of (17.4) with I
˜

leads to a linear differential equation for tr(σ
˜

):

d

ds
tr(σ

˜

) =
(

ca tr(V
˜

) + dg

ds

)

tr(σ
˜

), (17.5)

which admits the exact integral depending on parameter s:

tr(σ
˜

(s)) = tr(σ
˜

0)eca tr(V
˜

)s+g(s) = tr(σ
˜

0)ecDs+h(s), D := a tr(V
˜

) + E . (17.6)

Step 3: We plug (17.2), (17.4), and (17.6) in the following differential quotient:

d

ds
(e−gσ

˜

) = e−g
(

dσ
˜

ds
− σ

˜

dg

ds

)

= caV
˜

tr(σ
˜

0)eca tr(V
˜

)s, (18.1)

and after its integration, we derive the solution in the closed form:

σ
˜

(s) =
{

σ
˜

0 + tr(σ
˜

0)

(

eca tr(V
˜

)s − 1

)

V
˜

tr(V
˜

)

}

eg(s), (18.2)

or, equivalently, as the sum of two exponential functions:

σ
˜

(s) =
(

σ
˜

0 − tr(σ
˜

0)
V
˜

tr(V
˜

)

)

ecEs+h(s) + tr(σ
˜

0)
V
˜

tr(V
˜

)
ecDs+h(s). (18.3)

The above consideration holds true for tr(V
˜

) 
= 0. Otherwise, if tr(V
˜

) = 0 implying a tr(U
˜

) = 1 for a 
= 0,
then (16.3) follows the solution:

σ
˜

(s) : U
˜

tr(σ
˜

(s))
= σ

˜

0 : U
˜

tr(σ
˜

0)
+ c

(

a2 − 1

3

)

s. (19.1)

Consequently, with the function

g0(s) := c

{(

σ
˜

0 : U
˜

tr(σ
˜

0)
+ 2a

)

s + c(a2 − 1

3
)
s2

2

}

, (19.2)

from (16.2) we find tr(σ
˜

(s)) = tr(σ
˜

0) exp(g0(s)), and similarly to (18.1), this follows the linear equation
d(exp(−g0)σ

˜

)/ds = caV
˜

tr(σ
˜

0) and its solution:

σ
˜

(s) = (

σ
˜

0 + caV
˜

tr(σ
˜

0)s
)

eg0(s). (19.3)
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8. Bauer, E., Kovtunenko, V.A., Krejčí, P., Krenn, N., Siváková, L., Zubkova, A.V.:Modifiedmodel for proportional loading and
unloading of hypoplastic materials. In: Korobeinikov, A., Caubergh, M., Lazaro, T., Sardanyes, J. (eds.) Extended Abstracts
Spring 2018, Series Trends in Mathematics, vol. 11, pp. 201–210. Birkhäuser, Ham (2019)

9. Bauer, E., Wu, W.: A hypoplastic model for granular soils under cyclic loading. In: Kolymbas, D. (ed.) Proceedings Interna-
tional Workshop Modern Approaches to Plasticity, pp. 247–258. Elsevier (2010)

10. Bauer, E.,Wu,W., Huang,W.: Influence of initially transverse isotropy on shear banding in granular materials. In: Labuz, J.F.,
Drescher,A. (eds.) Proceedings of the InternationalWorkshop onBifurcation and Instabilities inGeomechanics.Minneapolis,
Minnesota, 2002, pp. 161–172. Balkema Press (2003)
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32. Kovtunenko, V.A., Krejčí, P., Bauer, E., Siváková, L., Zubkova, A.V.: On Lyapunov stability in hypoplasticity. In: Mikula,
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