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Abstract

A class of one-dimensional dynamic impact models is investigated with respect to non-
smooth velocities using variational inequalities and space-time finite element approxima-
tion. For the problem of collision of a rigid obstacle by an elastic bar in the gravitational
field, a benchmark based on particular solutions to the wave equation is constructed on a
partition of rectangle domains. The full discretization of the collision problem is carried out
over a uniform space-time triangulation and extended to distorted meshes. For the solution
of the corresponding variational inequality, a semi-smooth Newton-based primal-dual
active set algorithm is applied. Numerical experiments demonstrate advantages over time-
step approximation: a high-precision numerical solution is computed in a few iterations
without any spurious oscillations.

Keywords: impact contact dynamics; variational inequality; discontinuous velocity;
space-time finite element; primal-dual active set

1. Introduction
We study a class of dynamic contact and impact models with discontinuous velocities,

whose motion is described by the one-dimensional (1D) wave equation. The space-time
(ST) finite-element (FE) approximation provides us with a weak solution to evolutionary
problems in a variational setting [1–3]. For benchmarking, the collision of a rigid obstacle
by an initially undeformed elastic bar moving with an initial speed is considered in a
gravity field. A benchmark solution before rebound is constructed analytically along char-
acteristics of the wave equation, comprising piecewise quadratic functions. Approximate
iterative solutions after rebound are computed by the use of a space-time primal-dual
active set (PDAS) algorithm stemming from semi-smooth Newton (SSN) methods [4–6].
For implementation issues of the PDAS for contact dynamic models, we cite [7–9].

The general context of stationary and dynamic modeling in contact mechanics can be
found in [10–12]. We refer to the existence of solutions to hyperbolic variational inequalities
established in [13–15], in particular, to the boundary obstacle problem for a wave equation
considered in [16–19]. Relevant results for parabolic variational inequalities are given
in [20–22]. We cite optimization-based methods for evolutionary models [23–26], their
controllability [27,28], asymptotic analysis [29–31] and regularization framework [32–34].
The variational theory of constrained optimization problems describing non-smooth contact
of elastic bodies, in particular non-penetrating cracks, was developed in [35–37] and other
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works. Within the broader context of nonlinear dynamic modeling and vibration control in
complex mechanical systems, we mention some relationships between impact noise and
vibration acoustics, e.g., see the real-world application to underwater vehicles in [38].

For the Galerkin method and FE approximation of time-dependent problems, we refer
the readers to [39–41], in particular, to the 1D linear elastodynamic problem with unilateral
constraints [42]. Assuming smooth velocities, there was developed a Hilber–Hughes–Taylor
α-method, which generalizes the Newmark family of time-stepping schemes; see [43–45].
Within the theory of measure differential inclusions, a time-stepping concept is elaborated
when a discontinuous velocity is multiplied by the restitution coefficient. In this way,
the dynamic of an impacting bar was treated numerically in [46] in accordance with
experimental studies from [47].

In contact dynamics, even well-established time-stepping methods meet principal
difficulties encountering instability. On the one hand, a solution may start to oscillate in
contact nodes and rapidly collapse by decreasing step size. On the other hand, when spuri-
ous oscillations are suppressed by damping, mechanical energy may become dissipative
in time. For remedy, in [48–50] we suggested a new method of space-time approximation
accounting for non-smooth velocities, which is based on the PDAS iterative algorithm over
uniform ST-triangulations. The ST-PDAS solution is of high precision and free of spurious
oscillations, whereas the energy is non-dissipative.

For the benchmarks, in [48–50], there were derived in the closed form non-smooth
solutions to a 1D wave equation constrained by a boundary obstacle under different
initial and boundary data. Avoiding damping and conservative forces, the analytical
solution in the space-time domain was given by piecewise linear functions comprised along
characteristics of the wave equation within arbitrary times. In the current contribution, we
adapt the ST-PDAS algorithm for treatment of the 1D wave equation in a gravity field. In
this case, a nonlinear solution can comprise piecewise quadratic functions on a partition
of the space-time domain within some proper time bound. The non-linearity challenges
obtaining novel theoretical and numerical results. Namely, the main new elements are the
inclusion of a constant gravity force, the construction of a non-smooth analytical benchmark
solution (see Theorem 1), and the associated numerical tests. In the presence of gravity, we
can express the solution to the collision problem in the closed form only prior to rebound.

To gain insight into the principal difficulty here, we consider an example model in one
variable describing the motion of a point mass with the gravity −g < 0 starting at t = 0
at the deep x = −H < 0; see the illustration in the left plot of Figure 1. After scaling by
mass, we will consider the unit of g to be velocity over time. Initiated by the speed v0 > 0,
the mass moves in time t > 0 upwards along the trajectory x = −H + v0t − gt2/2 until
colliding with the obstacle x = 0 at the time τ > 0 that solves the quadratic equation

−H + v0τ − g
2

τ2 = 0. (1)

The collision time justifying (1) is calculated as follows:

τ =
v0 −

√
v2

0 − 2gH

g
=

2H

v0 +
√

v2
0 − 2gH

for v0 ≥
√

2gH. (2)

The trajectory x = u(t) can be described by the following nonlinear Cauchy problem:utt(t) = −λ(t)− g, 0 ≥ u(t) ⊥ λ(t) ≤ 0 for t > 0,

u(0) = −H, ut(0) = v0.
(3)
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Here we use the subscript t on a variable, which is common shorthand for the time
derivative, and the subscript tt for the second time derivative. The contact conditions in (3)
are given in the complementarity form, where λ implies a non-tensile contact force. The
problem allows multiple solutions after collision,

u(t) = (t − τ)
(
v0 − g

2 (t + τ)
)
, λ(t) = 0 for t ∈ [0, τ),

u(t) = 0, λ(t) = −g for t ∈ [τ, r),

u(t) = (r − t)
(
v1 − g

2 (r − t)
)
, λ(t) = 0 for t ≥ r,

(4)

with an arbitrary rebound velocity v1 ≥ 0 at an arbitrary rebound time r ≥ τ. In the
derivation of expression (4) we have used the identity (1). The solution is non-smooth,
obeying discontinuous velocity and distributional acceleration. A non-unique trajectory
x = u(t) is drawn in the right plot of Figure 1. We extend the point-mass model to an
elastic 1D bar. We construct a solution analytically before rebound starts and use it as a
benchmark for computer simulation. After rebound, a numerical solution is computed.

x

0

−H

v0 g

x

0

−H

t
τ r

Figure 1. Collision of obstacle by mass in a gravity field (left); a trajectory x = u(t) (right).

The structure of the paper is the following: The dynamic contact problem for an
initially undeformed elastic bar, which moves with an initial speed in the gravitational field
and collides with a rigid half-space obstacle, is formulated in Section 2. The primal-dual
variational formulation of the collision problem is introduced in a 2D space-time rectangle.
We construct analytically its weak solution, allowing discontinuous velocity and mechanical
strain on a partition along characteristics of the equation of motion before rebound. This
provides us with a benchmark for computer simulations implemented by piecewise linear
FEM over uniform ST-triangulation in Section 3. We adapt an ST-PDAS algorithm for
iteration of the complementarity conditions. In Section 4, the displacement field on the
contact boundary and mechanical energy are examined with respect to the numerical error
under decreasing step size. From our experiments we conclude that the ST-PDAS solution
is of high precision and free of spurious oscillations. In Section 5, a globalization strategy
based on the use of finite differences is suggested for distorted meshes to preserve the
contact force balance.

2. Weak Solution to Collision Problem in Gravity Field
We consider a uniform linear elastic bar of length L > 0, unit mass and rigidity, which

allows either tension or compression strain. Let the bar in its undeformed state occupy the
space interval x ∈ [−H − L,−H] posed vertically at the deep −H < 0 below the origin. It
starts motion upwards with the prescribed initial speed v0 > 0 at t = 0 under the gravity
−g < 0 scaled by mass; see the illustration in Figure 2.
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Figure 2. Collision of obstacle at x = 0 by elastic bar moving with initial speed v0 in gravity field g.

In the ST-rectangle Q := (0, T)× (0, L) with the boundary ∂Q and some final time
T > 0, the bar displacement u(t, x) is described by the wave equation

utt(t, x)− uxx(t, x) = −g for (t, x) ∈ Q, (5)

and supported by initial conditions at t = 0,

u(0, x) = −H, ut(0, x) = v0 for x ∈ (0, L). (6)

Here and thereafter, the subscripts with respect to t and x stand for partial derivatives.
When t = 0 and x ∈ (0, L), the position of the elastic bar is x − L+ u(0, x) ∈ (−H − L,−H).
We assume that the bar is free at one end, x = 0, which is described by zero strain,

ux(t, 0) = 0 for t ∈ (0, T), (7)

and it collides with the rigid obstacle at the other end x = L. The non-penetration is
described by complementarity conditions at the contact boundary Γ := {t ∈ (0, T), x = L},

0 ≥ u(t, L) ⊥ λ(t) ≤ 0 for t ∈ (0, T). (8)

In (8), λ stands for the normal contact force, which in case of smooth functions equals the
normal reaction

λ(t) = ux(t, L) for t ∈ (0, T). (9)

Next we derive a variational formulation to the boundary value problem (Equations (5)–(9)).
For smooth functions u, v in the closure Q := Q ∪ ∂Q, the following Green

formula holds∫
Q
(utt − uxx)v dxdt =

∫
Q
(−utvt + uxvx) dxdt +

∫ L

0
utv dx

∣∣T
t=0 −

∫ T

0
uxv dt

∣∣L
x=0.

Multiplying the wave Equation (5) with a smooth function v(t, x) in Q and integrating by parts
over Q, with the help of Green’s formula and conditions (Equations (6), (7) and (9)) we get

−
∫

Q
gv dxdt =

∫
Q
(−utvt + uxvx) dxdt −

∫ L

0
v0v

∣∣
t=0 dx −

∫ T

0
λv

∣∣
x=L dt (10)

for test functions such that
v(T, x) = 0 for x ∈ (0, L). (11)

Conditions prescribed either at initial time by Equation (6) or at final time by Equation (11)
distinguish the linear sub-spaces,

H1
0∗(0, T) := {v ∈ H1(0, T), v(0) = 0}, H1

∗0(0, T) := {v ∈ H1(0, T), v(T) = 0}.

Within the Petrov–Galerkin concept, we look for a weak solution in the trial space,
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V0∗ := L2(0, T; H1(0, L)) ∩ H1
0∗(0, T; L2(0, L)),

justifying Equation (10) for functions v from the test space,

V∗0 := L2(0, T; H1(0, L)) ∩ H1
∗0(0, T; L2(0, L)).

Namely, we find the pair (u + H, λ) ∈ V0∗ × L2(0, T) such that
u(t, L) ≤ 0, λ(t) ≤ 0 for t ∈ (0, T),

∫ T

0
λu

∣∣
x=L dt = 0,∫

Q
(−utvt + uxvx + gv) dxdt −

∫ L

0
v0v

∣∣
t=0 dx =

∫ T

0
λv

∣∣
x=L dt

(12)

for all test functions v ∈ V∗0. In the case of a smooth solution u ∈ H2(Q), variational
Equation (12) follows that Equations (5)–(9) hold pointwise.

It is worth noting that, if variational smoothness u ∈ H1(0, L) holds only, then strain
ux on the contact boundary at x = L associated in Equation (9) to λ is determined generally
as the H−1/2-distribution. In this case, reducing λ from the primal-dual formulation
(Equation (12)), we can relax it to the variational inequality. Find u + H ∈ V0∗ such that

u(t, L) ≤ 0 for t ∈ (0, T),∫
Q

(
−ut(vt − ut) + ux(vx − ux) + g(v − u)

)
dxdt −

∫ L

0
v0(v

∣∣
t=0 + H) dx ≥ 0

for all v − u ∈ V∗0 such that v(t, L) ≤ 0 for t ∈ (0, T).

(13)

The contact force λ can be recovered from Equation (10). For T ≤ τ + L before rebound
starts, we construct a weak solution to the boundary value problem (Equations (5)–(9)),
hence to variational problems (Equations (12) and (13)), in the closed form.

Theorem 1. For the collision time τ determined in Equations (1) and (2) and the final time
T = τ + L, let the gravitational force g and initial speed v0 satisfy the bilateral bounds

gL ≤ v0 − gτ ≤ 1. (14)

On the partition of the rectangle Q = I ∪ A along straight-line characteristics into two sets,I :=
{
(t, x) ∈ Q : x − L ≤ τ − t

}
,

A :=
{
(t, x) ∈ Q : x − L ≥ τ − t

}
,

(15)

solution to the collision problem (Equations (5)–(9)) is given by explicit formula

u(t, x) =

(t − τ)
(
v0 − g

2 (t + τ)
)

in I,

(L − x)
(
v0 − gt + g

2 (L − x)
)

in A,
(16)

with the contact force on the contact boundary,

λ(t) =

0 on Γ ∩ I,

−v0 + gt on Γ ∩ A.
(17)

Moreover, it not penetrates the obstacle over all space-time points,

u ≤ L − x for (t, x) ∈ Q (18)
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The mechanical energy of the bar defined by the time-dependent integral formula

E(t) :=
1
2

∫ L

0
(u2

t + u2
x) dx for t ∈ [0, T] (19)

is comprised by the following functions:

E(t) =


1
2 L(v0 − gt)2 for t ∈ [0, τ),
1
2 L(v0 − gt)2 + 1

2 g(v0 − gt)(t − τ)2 + 1
3 g2(t − τ)3 for t ∈ [τ, τ + L].

(20)

For convenience, the partition in Equation (15) is drawn in Figure 3.

L
x

0 τ τ + L
t

x − L = τ − t

I
A

Figure 3. Partition of the rectangle Q with T = τ + L into sets I and A.

Before starting a proof, we give a physical interpretation to the bilateral bounds in

Equation (14). In virtue of Equation (2), v0 − gτ =
√

v2
0 − 2gH ≥ 0. From one side,

if v0 − gτ < gL, then the initial speed v0 is too low for the elastic wave to reach the
endpoint x = 0 at t = τ + L before the bar starts leaving contact. On the other side,
the upper threshold prevents too high initial speeds v0 − gτ > 1 such that the full bar
would be compressed into a point (that is, u(t, · ) = L − x in Equation (18)) at some time
t ∈ (τ, τ + L).

Proof. The composition defined in Equations (16) and (17) fulfills the following:

ut = v0 − gt, ux = 0, utt = −g, uxx = 0 in I;

u = −H, ut = v0 as t = 0, ux = 0 as x = 0, L on ∂I;

u = (t − τ)
(
v0 − g

2 (t + τ)
)
, ut − ux = v0 − gt on I ∩ A;

ut = −g(L − x), ux = −v0 + g(t − L + x), utt = 0, uxx = g in A;

u = 0, ux = −v0 + gt as x = L, ux = 0 as x = 0 on ∂A.

(21)

It comprises a continuous piecewise quadratic function with the continuous normal deriva-
tive ut − ux across the interface I ∩ A having the normal (1, 1)/

√
2. This function satisfies

the wave Equation (5), initial Equation (6) and boundary Equations (7) and (9).
We check the non-penetration condition (Equation (18)) and inequalities in Equation (8).

The tensile contact force in Equation (9) needs

ux(t, L) = −v0 + gt ≤ 0 for t ∈ (τ, τ + L). (22)

The linear function suffices to justify Equation (22) at the end points, that is,

−v0 + gτ ≤ 0, −v0 + g(τ + L) ≤ 0,

which is assumed within Equation (14). For all L − x ≥ 0 and t ≤ τ in I, from Equation (16)
we estimate

u = (t − τ)
(
v0 − gτ − g

2
(t − τ)

)
≤ (t − τ)(v0 − gτ) ≤ L − x for t ∈ (0, τ), (23)
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since it holds according to Equation (2),

0 ≤ v0 − gτ =
√

v2
0 − 2gH.

For t ≥ τ in I, the fulfillment of upper bound,

u = (t − τ)
(
v0 −

g
2
(t + τ)

)
≤ L − x for t − τ ≤ L − x (24)

at the end points t = τ and t = τ + L,

0 ≤ v0 − gτ ≤ 1, 0 ≤ v0 − gτ − g
2

L ≤ 1,

is guaranteed by Equation (14). Similarly, for t ≥ τ in A, we estimate the linear term

u = (L − x)
(
v0 − gt +

g
2
(L − x)

)
≤ L − x for t − τ ≥ L − x (25)

at the end points (t, x) = (τ, L) and (t, x) = (τ + L, 0):

0 ≤ v0 − gτ ≤ 1, 0 ≤ v0 − gτ − g
2

L ≤ 1,

which holds true in virtue of Equation (14). Equations (23)–(25) verify together the non-
penetration condition (Equation (18)) holding over the whole rectangle Q, in particular, at
the contact boundary Γ within the complementarity conditions (Equation (8)).

Let us denote for brevity the jumps of u over two faces of the interface,

[[u]] = u
∣∣
∂A∩I − u

∣∣
∂I∩A.

Green’s formula for piecewise-smooth functions u, v on the partition Q = I ∪ A gives∫
I∪A

(utt − uxx)v dtdx =
∫

I∪A
(−utvt + uxvx) dtdx

−
∫

I∩A

1√
2
[[(ut − ux)v]] dS +

∫ L

0
utv dx

∣∣T
t=0 −

∫ T

0
uxv dt

∣∣L
x=0.

If [[v]] = 0 such that [[(ut − ux)v]] = [[ut − ux]]v, then Equation (21) yields the variational
equation for test functions v ∈ V∗0,

−
∫

I∪A
gv dtdx =

∫
I∪A

(−utvt + uxvx) dtdx −
∫ L

0
v0v

∣∣
t=0 dx −

∫ T

0
uxv dt

∣∣
x=L. (26)

It follows Equation (10) with λ = ux at x = L, and variational Equations (12) and (13).
Inserting Equation (21) into Equation (19), straightforward calculation leads to

Equation (20) for the mechanical energy. The proof is completed.

Further we will use the explicit Equations (14)–(20) from Theorem 1 for an analytical
benchmark in computer simulation.

3. Full ST-FEM Discretiazation and ST-PDAS Algorithm
The full space-time discretization of the displacement u is realized over standard

piecewise linear functions on uniform triangular meshes Th building the FE-space,
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Vh :=
{

vh ∈ C0(Q), vh
∣∣
K ∈ P1(K) for all K ∈ Th, vh( · , 0) = 0

}
.

The respective trial and test function FE sub-spaces are

Vh
0∗ :=

{
vh ∈ Vh, vh(0, · ) = 0

}
, Vh

∗0 :=
{

vh ∈ Vh, vh(T, · ) = 0
}

.

Let Vh be spanned by a set of hat-shaped basis functions {ϕh} associated with nodes
(th, xh) ∈ Q and supported in patches composed of adjacent triangles K ∈ Th possessing
the vertex (th, xh). Next we discretize the contact force λ along the contact boundary Γ.

On Γ, the mesh Th is represented by equidistant time points tm := hm for
m = 0, . . . , M, with the time-step h := T/M prescribed by integer M. These points build
the partition [0, T] =

⋃M
m=1 Tm into intervals Tm := (tm−1, tm). Let the basis functions

ϕ0, . . . , ϕM correspond to the boundary nodes (t0, L), . . . , (tM, L), and other ϕh = 0 on Γ.
For discrete uh ∈ Vh, we approximate its discontinuous gradient by the piecewise constant
function uhx( · , L) over Tm. Inserting in Equation (26) u = uh and v = ϕh ∈ Vh

∗0, we have

∫
Q
(−uhtϕht + uhxϕhx + gϕh) dxdt −

∫ L

0
v0ϕh

∣∣
t=0 dx =

∫ T

0
uhxϕh

∣∣
x=L dt. (27)

For each of ϕh = ϕm having the support on (Tm ∪ Tm+1) ∩ Γ as m = 0, . . . , M − 1, where
T0 := ∅, the integral over the contact boundary reads

∫ T

0
uhxϕm dt

∣∣
x=L =

h
2
(
uhx( · , L)

∣∣
Tm∩Γ + uhx( · , L)

∣∣
Tm+1∩Γ

)
ϕm

∣∣
x=L. (28)

This determines the Lagrange multiplier λh = (λ1, . . . , λM) by piecewise constants

λm := uhx( · , L)
∣∣
Tm∩Γ, m = 1, . . . , M. (29)

Using Equationss (27)–(29) we discretize the primal-dual variational problem (Equation (12))
as follows: Find uh + H ∈ Vh

0∗ and λh ∈ RM such that for all basis functions ϕh ∈ Vh
∗0,

uh
∣∣
Tm

≤ 0, λm ≤ 0, m = 1, . . . , M,
M

∑
m=1

λm
(
uh(tm−1, L) + uh(tm, L)

)
= 0,∫

Q
(−uhtϕht + uhxϕhx + gϕh) dxdt −

∫ L

0
v0ϕh

∣∣
t=0 dx =

∫ T

0
λhϕh

∣∣
x=L dt.

(30)

Further we express Equation (30) in an algorithmic way.
It is useful to introduce the residuals on Γ:

r(ϕm) :=
∫

Q
(−uhtϕmt + uhxϕmx + gϕm) dxdt −

∫ L

0
v0ϕmδm0 dx, m = 0, . . . , M − 1, (31)

which allow to calculate the Lagrange multiplier recurrently according to Equation (28),

λ0 := 0, λm+1 =
2
h

r(ϕm)− λm for m = 0, . . . , M − 1. (32)

If uh(tm−1, L) and uh(tm, L) have the same sign on Tm for all m, then complementarity
conditions in Equation (30) can be rewritten as nonlinear equations

λm = min
(
0, λm − uh(tm−1, L) + uh(tm, L)

2
)
, m = 1, . . . , M. (33)
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In Equation (33), either uh(t, L) = 0 for t ∈ Tm ⊂ A(uh, λh), or λm = 0 for complementary
Tm ⊂ I(uh, λh), where we distinguish between active and inactive intervals Tm,

A(uh, λh) :=
{
∪Tm : λm − uh(tm−1, L) + uh(tm, L)

2
< 0

}
,

I(uh, λh) :=
{
∪Tm : λm − uh(tm−1, L) + uh(tm, L)

2
≥ 0

}
.

(34)

Using Equations (31)–(34), Equation (30) leads to the following implicit problem: Find
uh + H ∈ Vh

0∗ and λh ∈ RM such that
uh(tm−1, L) + uh(tm, L) = 0 on A(uh, λh), λm = 0 on I(uh, λh),

λm+1 =
2
h

r(ϕm)− λm for m = 0, . . . , M − 1, r(ϕh) = 0 for ϕh
∣∣
Γ = 0,∫

Q
(−uhtϕht + uhxϕhx + gϕh) dxdt −

∫ L

0
v0ϕh

∣∣
t=0 dx = r(ϕh)

(35)

for all basis functions ϕh ∈ Vh
∗0. The primal-dual active set algorithm iterates Equation (35)

over active sets (Equation (34)).
Based on our experiments, we support the initialization and iteration steps of

Algorithm 1 by the following implementation hints.

1a. Final time extension: Since basis functions ϕ1, . . . , ϕM in the trial space Vh
0∗ differ

from basis functions ϕ0, . . . , ϕM−1 in the test space Vh
∗0, it is useful to extend the

computational domain by two fictitious times tM+1, tM+2.
2a. Contact force balance: To keep the force balance in Equation (9), which might be
violated, we implement finite differences at the time before collision t∗ = τ − h and at
the extension

uk
h(t, L)− uk

h(t, L − h)
h

= 0 for t = t∗, tM+1, tM+2. (36)

Algorithm 1: (ST-PDAS.)
1. Initialization: Start with sets A0 = ∅ and I0 = [0, T], set iteration number k = 0.
2. Iteration: Find uk

h + H ∈ Vh
0∗ such that uk

h = 0 on Ak
h solving the linear equation:∫

Q
(−uk

htϕht + uk
hxϕhx + gϕh) dxdt −

∫ L

0
v0ϕh

∣∣
t=0 dx = 0 (37)

for all basis functions ϕh ∈ Vh
∗0 with ϕh = 0 on Ak

h.
3. Complementary: Compute the residual rk

h ∈ RM :

rk(ϕm) =
∫

Q
(−uk

htϕmt + uk
hxϕmx + gϕm) dxdt −

∫ L

0
v0ϕmδm0 dx (38)

and recurse the Lagrange multiplier λk
h ∈ RM :

λk
0 := 0, λk

m+1 =
2
h

rk(ϕm)− λk
m for m = 0, . . . , M − 1. (39)

4. Update: Reset active and inactive sets:
Ak+1 =

{
∪Tm : λk

m −
uk

h(tm−1, L) + uk
h(tm, L)

2
< 0

}
,

Ik+1 =
{
∪Tm : λk

m −
uk

h(tm−1, L) + uk
h(tm, L)

2
≥ 0

}
.

(40)

5. Termination: Exit if Ak+1 = Ak or cycling, else increase k = k + 1 and go to iteration step.

Further, we report on our computing tests of the ST-PDAS solution, and validate it for
the analytical benchmark from Theorem 1.
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4. Numerical Tests of Collision in Gravity Field
Let the parameters of the problems be the bar length L = 1, the initial depth H = 1,

the final time T = 6, and the gravity g = 0.01. We set the initial speed v0 = H/2+ g = 0.51,

such that
√

v2
0 − 2gH = |H/2 − g| = 0.49 yields the collision time τ = 2 in Equation (2),

and v0 − gτ =
√

v2
0 − 2gH satisfies the bilateral bounds (Equation (14)) in Theorem 1. The

uniform ST-triangulation Th of the rectangle Q = (0, 6)× (0, 1) is illustrated in Figure 4 in
the left plot (a) in its undeformed state, and in the right plot (b) after deformation. Here, the
mesh size h = 6/M = 0.125 yields M + 1 = 49 constrained points at the contact boundary
Γ, and the number of degrees of freedom DOF = (M + 1)(M/6 + 1) =441 in Q.

0 2 4 6
0

0.5

1

t

x

(a) undeformed

0 2 4 6
−2

−1.5

−1

−0.5

0

t

x−
L

+
u

(t
,x

)

(b) after deformation

Figure 4. The uniform triangle mesh for h = 0.125 before deformation (a), and x − L + uh(t, x) after
deformation (b).

We computed the collision problem in the primal-dual variational formulation
(Equations (34) and (35)) iteratively using Algorithm 1. For h = 0.125, the history of dis-
placement iterates u0

h(th, xh), u1
h(th, xh), and u2

h(th, xh) over the rectangle is depicted in
Figure 5. It is worth noting here that the small value prescribed for g reduces nonlinear
phenomena; otherwise, large g may cause oscillation.

0

3

6
0

0.5

1

−1

0

1

t

iterate 0

x

u
h

0

3

6
0

0.5

1

−1

−0.5

0

t

iterate 1

x

u
h

0

3

6
0

0.5

1

−1

−0.5

0

t

iterate 2

x

u
h

Figure 5. ST-PDAS iterates k = 0, 1, 2 of displacement uk
h(th, xh) in Q for h = 0.125.

For all mesh sizes tested in the range h = 0.02, . . . , 0.5, which corresponds to M =

13, . . . , 301 constrained points, and the DOF = 39, . . . , 15964, the algorithm terminated
without cycling after three iteration steps. For the fine mesh as h = 0.02, the ST-PDAS
iterates are presented in Figure 6 at M = 301 time points on the contact boundary as
x = 1. There are depicted in the left plot (a): the three iterates of displacement u0

h(th, 1) ≥
u1

h(th, 1) ≥ u2
h(th, 1); in the center plot (b): the three iterates of Lagrange multiplier λ0

h(th) =

0, λ1
h(th), λ2

h(th); and in the right plot (c): the iterates k = 0, . . . , 3 of active set A0
h = ∅,

A1
h ⊃ A2

h = A3
h. In Figure 6 one can observe a typical for PDAS monotone behavior

of displacements for k ≥ 0 and active sets for k ≥ 1, whereas there is no monotony for
Lagrange multipliers.
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0 2 4 6
−1

−0.5

0

0.5

1

1.5

2
(a) displacement

 

iterate 0
iterate 1
iterate 2

0 2 4 6
−0.5

0

0.5
(b) multiplier

0 2 4 6
0

1

2

3

(c) active set

Figure 6. ST-PDAS iterates: displacement uk
h(th, 1) (a); multiplier λk

h(th) (b); active set Ak
h (c).

To test the accuracy of the ST-PDAS solution, we compare it with the exact solution
given in the rectangle [0, 3]× [0, 1] according to Equations (15)–(20). The numerical tests
are computed for decreasing mesh sizes h = 0.1, 0.05, 0.03̄, 0.025, 0.02. In the left plot (a)
of Figure 7 there are presented at the contact boundary Γ: the five curves of displacement
uh(th, 1) at mesh nodes for th ∈ [0, 6], and the curve u(t, 1) for t ∈ [0, 3]. Here one cannot
visually distinguish between the curves even on coarse meshes. The right plot (b) draws the
maximum over th ∈ [0, 3] of the absolute error |uh(th, 1)− u(th, 1)| versus decreasing h. The
curve shows a linear convergence of numerical order 0.96 for displacements under the mesh
refinement. The convergence rates are computed using least squares fit in the log-log plot.
The linear rate matches a theoretical expectation for piecewise linear space-time elements.

0 2 4 6
−1

−0.8

−0.6

−0.4

−0.2

0

time t

(a) displacement u(t,1)

 

h=0.1
h=0.05
h=0.033
h=0.025
h=0.02
exact

0 0.02 0.04 0.06 0.08 0.1
0

1

2

3

4

5

x 10
−3

time step h

(b) maximum error

 

h=0.1
h=0.05
h=0.033
h=0.025
h=0.02

Figure 7. Discrete displacement uh(th, 1) (a), and absolute displacement error to exact solution u(t, 1)
when step-size h decreases (b).

The discrete energy Eh is defined according to the integral formula

Eh(t) :=
1
2

∫ L

0
(u2

ht + u2
hx) dx for t ∈ [0, T] (41)

for the FEM-solution uh(t, · ). The values Eh(th) computed at th ∈ [0, 6] are depicted
in the left plot (a) of Figure 8 together with the exact energy E(t) given by analytical
Equation (20) as t ∈ [0, 3]. The five curves of discrete energy by varied mesh size h in
the range 0.1, 0.05, 0.03̄, 0.025, 0.02 show a discontinuous piecewise smooth behavior. No
spurious oscillations are observed. The right plot (b) draws the maximum of the relative
error |Eh(th)− E(th)|/|E(th)| · 100% over th ∈ [0, 3], which is below 1.34%, and we observe
a super-linear convergence rate of numerical order 1.45 for the energy approximation as h
drops. The energy convergence rate corresponds to the square of the H1-norm for a weak
solution to the non-smooth problem.
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1.2
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h=0.1
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h=0.033

h=0.025
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Figure 8. Discrete energy Eh(th) (a), and relative energy error with respect to exact E(t) when time
step h decreases (b).

In the recent work [50], comparative benchmarks are presented for multiple impacts
of a rigid obstacle by an initially deformed bar when neglecting gravity. The comparison
with three of the most efficient methods in the literature is reported: the Nitsche-based
Verlet time integration scheme proposed in [51], the restitution coefficient method from [46],
and the mass redistribution method from [52]. Test cases highlight ST-FEM advantages in
accuracy, iteration count, and energy conservation metrics. For relevant methods we refer
also to the recently suggested Nitsche-based BEM-FEM coupling approach [53].

Finally, we validate the globalization strategy for the extension of the ST-FEM algorithm.

5. Globalization Strategy
We start with a cycling test case when the contact force balance is violated and the

finite difference Equation (36) is dropped. The cycling is documented in Figure 9 depicting
four iterates of displacement uk

h(th, 1), Lagrange multiplier λk
h(th), and active set Ak

h. In
the right plot (c), one can observe that A4

h = A2
h happens; hence, the termination step of

Algorithm 1 cannot be attained.

0 2 4 6
−1

−0.5

0

0.5

1

1.5

2
(a) displacement

 

iterate k=0
iterate k=1
iterate k=2
iterate k=3

0 2 4 6
−0.5

0

0.5
(b) multiplier

0 2 4 6
0

1

2

3

4

(c) active set

Figure 9. ST-PDAS cycling: displacement uk
h(th, 1) (a); multiplier λk

h(th) (b); active set Ak
h (c).

Therefore, we will apply finite differences (Equation (36)) for all inactive nodes when
extending numerical tests to distorted meshes. However, in this case we may lose accuracy
of the discrete solution. The uniform triangle mesh as h = 0.125 drawn in the Figure 4a is
distorted with random shifts in interior points (th, xh) ∈ Q within intervals (−0.05h, 0.05h)
in both the t and x directions. The distorted mesh is depicted in Figure 10a. Applying
Algorithm 1 on this nonuniform mesh, iteration diverges as shown in the center plot (b)
for the first four iterates. The iteration, implemented by the finite-difference Equation (36)
on all nodes within inactive sets Ik+1 in Equation (40), remedies the convergence after 4
iteration steps A0

h = ∅, A1
h ⊃ A2

h ⊃ A3
h = A4

h as drawn in the Figure 10c.
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Figure 10. Distorted mesh (a); active set Ak
h for divergent iterates (b) and convergent iterates (c).

6. Conclusions
We develop a space-time primal-dual active set algorithm, stated in a primal-dual

variational form, for the solution of nonlinear collision problems with non-smooth velocities
accounting for a gravity g. The ST-PDAS solution is tested for the benchmark problem
of a 1D elastic bar colliding with a rigid obstacle, which allows an analytical solution
before rebound. Numerical tests validate convergence of the ST-PDAS iteration, as well as
the high accuracy and non-dissipative behavior that is free of spurious oscillations under
mesh refinement. A globalization strategy for further extension of numerical experiments
is suggested based on preserving the contact force balance within inactive sets by using
finite differences.

Compared to the previous works on the ST-PDAS algorithm, the main advantage
concerns non-linearity phenomena. The closed-form solution stated in Theorem 1 is
novel and merely extends classical d’Alembert methods with a gravitational term. It
extends known prior works on longitudinal waves in bars and transverse waves in beams
(see, e.g., [13]). However, analytical derivation in the presence of gravity is limited for
postrebound dynamics. Extension of the analytical solution, when expressed by convergent
series, to times after starting rebound could be the next task.

Whereas the algorithm aligns P1 finite elements for small g, increasing the gravity g
may becomes approximation unstable. The discretization can be improved by the use of P2
polynomials in FE. The other issue concerns the fact that exceeding the bilateral bounds
stated in Equation (14) for the problem data might lead to violation of the non-penetration
condition (Equation (18)) inside the space-time rectangle. This needs further development
of the ST-PDAS theory and computation.
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