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Abstract. The Boussinesq problem which describes quasi-static indentation of a rigid
punch into a deformable body is studied within the context of nonlinear constitutive equa-
tions. By this, the material response expresses the linearized strain in terms of the stress
and cannot be inverted in general. A contact area between the punch and the body is un-
known a-priori, whereas the total contact force is prescribed and yields a non-local integral
condition. Consequently, the unilateral indentation problem is stated as a quasi-variational
inequality for unknown variables of displacement, stress, and indentation depth. The La-
grange multiplier approach is applied in order to establish well-posedness to the underlying
physically and geometrically nonlinear problem based on augmented penalty regularization
and applying the minimax theorem of Ekeland-Temam. A sufficient solvability condition
implies response functions that are bounded, hemi-continuous, coercive and obey a convex
potential. A typical example is power-law hardening models for titanium alloys, Norton-Hoff
and Ramberg-Osgood materials.

1. Introduction

The indentation test is an experimental procedure of pressing a rigid punch (indenter) into
a solid body (which can be small under nano-indentation) in order to determine unknown
material properties of the body: elastic moduli as well as inelastic ones. Studying inelastic
properties is very important, for instance, for description of modern titanium and metal
alloys.

For a given shape of the punch and the amount of total contact force applied, the in-
dentation problem consists in finding simultaneously the indentation depth, displacement
and stress distributions over the body. Since the contact area is unknown a-priori, this im-
plies a free-boundary problem, which is referred to as Boussinesq’s problem. Compared to
Signorini’s contact problem for a prescribed obstacle, here the obstacle is unknown a-priori
and has to be determined by adding to the punch shape an indentation depth after solving
the problem. In the mechanical literature, the indentation problem is usually formulated in
the 3d setting for a semi-infinite body (foundation) and uses analytical formulas from the
classical theory of linear elasticity (see, e.g., Love [25]). A collection of analytical solutions
for indentation of isotropic foundations by punches of simple axisymmetric shapes: cylinder,
cone, sphere, paraboloid, etc. can be found in Argatov and Mishuris [2]. Typically, this
implies an explicit relation between the indentation depth and the total contact force which
is applied quasi-statically in time.
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From the viewpoint of constrained optimization, the unilateral indentation problem is
described by a quasi-variational inequality subject to a non-local constraint. Indeed, pre-
scribing the total contact force implies an integral constraint, which itself depends on the
contact stress unknown a-priori (see the relevant study of volume constraints by Aguilera
et al. [1]). The concept of quasi-variational inequalities due to a solution-dependent set
of admissible states was established by Bensoussan and Lions [3]. Various applications of
quasi-variational inequalities in mechanics were described in the book of Kravchuk and Neit-
taanmäki [22]. In particular, we refer to Itou et al. [15] for frictional contact under Coulomb
law, to Giuffré et al.[7] for unilateral problems with gradient constraints, and to Migórski et
al. [26] for quasi-variational inequalities for p-Laplace equation.

An abstract theory of pseudo-monotone, hemi-, quasi-, and conventional variational in-
equalities is outlined in the recent monograph by Gwinner et al. [8] and references therein.
Our particular methods of non-smooth analysis stem from the variational approach to non-
penetrating cracks in solids developed by Khludnev and Kovtunenko [17] and co-authors
(for example, see [16, 18, 20] and other works related to asymptotic analysis [5, 24, 27], and
numerical techniques [21]).

In the previous work by Itou et al. [14], the unilateral indentation problem was studied for
linear viscoelastic bodies with a non-invertible material response expressing the linearized
strain in terms of the stress by the Volterra convolution operator (see Itou et al. [12]). Based
on the Lagrange multiplier approach we proved well-posedness to the unilateral indentation
problem. In particular, semi-explicit formulas employing Sneddon’s integrals were obtained
for the viscoelastic half-space intended by cone when the contact area does not increase
during the loading. In Itou et al. [13], using the Fourier–Bessel transform and the Papkovich–
Neuber representation, the closed-form solution for a flat-ended cylindrical punch pressed
into the linear viscoelastic half-space was constructed under arbitrary loading process, since
the contact area does not change.

In the current contribution, we generalize the approach of quasi-variational inequalities to
nonlinear constitutive relations when the linearized strain ε is expressed with respect to the
Cauchy stress σ in the general form

(1.1) ε = F [σ]

with nonlinear functions F of material response. It is worth noting that a nonlinear ex-
pression (1.1) cannot in general be inverted in order to express the stress in terms of the
linearized strain. The linear response (1.1) implies classical Hooke’s law

(1.2) ε = Aσ

with the compliance tensor A. The reference structure for a nonlinear response function is
the power-law hardening model given by

(1.3) F [σ] =
1

2µ

σ

(1 + κ∥σ∥r) 2−p
r

, κ, r > 0, p > 1,

where µ > 0 is the shear modulus, ∥σ∥ =
√
σ : σ is the Frobenius norm, and double dot

stands for the scalar product of tensors. We note that, as κ→ 0 the limit (1.3) corresponds
to the isotropic linear elastic material, and as p → 1 it turns into the limiting small strain
model (see Itou et al. [11]).
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Using the decomposition of the stress into its volumetric σ∗ and deviatoric trσ parts in
the 3d Euclidean space with the identity tensor I as

(1.4) σ = σ∗ +
1

3
(trσ)I, trσ∗ = 0,

the expression (1.3) can be modified to the following law

(1.5) F1[σ] =
1

2µ

σ∗

(1 + κ1∥σ∗∥r1)
2−p1
r1

+
1

9K

(trσ)I

(1 + κ2|trσ|r2)
2−p2
r2

,

where K > 0 is the bulk modulus, κ1, r1, κ2, r2 > 0 and p1, p2 > 1 are fitting parameters. A
special function (1.5) with r1 = r2 = 2 was used in Kulvait et al. [23] for fitting material
moduli of titanium alloys obtained in experiments. Another possible structure for the form
of the response function in (1.1) combining the linear part (1.2) and the decomposition (1.4)
is given by

(1.6) F2[σ] = Aσ + κ∥σ∗∥p−2σ∗, κ > 0, p > 2,

which describes Norton–Hoff and Ramberg–Osgood materials (see Knees [19]).
In Section 2 the unilateral indentation problem governing the nonlinear constitutive equa-

tion (1.1) is stated in the quasi-variational form. In Section 3 we introduce an augmented
Lagrangian (see Ito and Kunisch [10]) combined with a penalty approximation. Our penalty
method is exact in the sense that a prescribed value of the total contact force is fulfilled
exactly for finite penalty parameters δ > 0 rather than in the limit as δ → 0. We establish
well-posedness to the underlying nonlinear problem by applying the minimax theorem of
Ekeland–Temam [4]. A sufficient solvability condition is derived which implies a response
function F , which is bounded, hemi-continuous, coercive and obeys a convex potential. In
Section 4 we pass to the limit as δ → 0, thus proving well-posedness to the unilateral in-
dentation problem. Finally, in Section 5 we check these properties for the reference function
describing power-law hardening.

2. Unilateral indentation problem

Let the solid body occupy a domain Ω in the Euclidean space Rd (where d = 2 or d = 3)
with the Lipschitz continuous boundary ∂Ω carrying the outward unit normal vector n =
(n1, . . . , nd). We assume a disjoint union ∂Ω = Σ ∪ ΓN ∪ ΓD of three non-empty boundary
parts, such that the Neumann boundary ΓN separates the contact boundary Σ from the
Dirichlet boundary ΓD. An example geometry of the reference configuration is shown in
Fig. 1 in the left plot. For spacial points x = (x1, . . . , xd) ∈ Ω and times t ∈ (0, T ), T > 0,
the time-space sets will be marked by the upper index T , respectively ΩT = (0, T ) × Ω,
ΣT = (0, T )× Σ, and ΓT

i = (0, T )× Γi for i ∈ {N,D}.
Let the total contact force be given by a non-negative time-dependent function F ∈

L∞(0, T ), F (t) ≥ 0. We prescribe the punch shape ψ(x) that is bounded from above by a
non-negative constant h0 ≥ 0 such that

(2.1) ψ(x) ≤ max
x∈Σ

ψ(x) =: h0 a.e. x ∈ Σ.

In the following, the space of second order symmetric d-by-d tensors will be denoted by
Rd×d

sym. Let a response function F : Rd×d
sym 7→ Rd×d

sym be given. In the closed time-spacial

set (t,x) ∈ Ω
T
, we look for: the stress tensor σ(t,x) ∈ Rd×d

sym, the displacement vector
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ψ − h0

ΣΓN ΓN

ΓD

Ω

n

h+ ψ

Ω + u

F > 0

Figure 1. Example configuration of punch indentation: reference at F = 0
(left plot), and current at F > 0 (right plot).

u(t,x) ∈ Rd, which determines the linearized strain tensor ε(t,x) ∈ Rd×d
sym by the symmetric

part of the displacement gradient ∇u and its transposed ∇⊤u as

(2.2) ε(u) :=
1

2

(
∇u+∇⊤u

)
,

and the indentation depth h(t) satisfying together the relations

(2.3) − divσ = 0 in ΩT ,

(2.4) ε(u) = F [σ] in ΩT ,

(2.5) u = 0 on ΓT
D,

(2.6) σn = 0 on ΓT
N,

(2.7) σn− (σn · n)n = 0 on ΣT ,

(2.8) u · n+ h+ ψ ≤ 0, σn · n ≤ 0, (u · n+ h+ ψ)(σn · n) = 0 on ΣT ,

(2.9) F +

∫
Σ

σn · n dSx = 0 for t ∈ (0, T ).

The governing system includes the homogeneous equilibrium equation (2.3) and the consti-
tutive equation (2.4) subjected to the mixed: homogeneous Dirichlet (2.5) and homogeneous
Neumann (2.6) boundary conditions. At the contact boundary ΣT , (2.7) implies zero tan-
gential stresses, and the unilateral contact conditions (2.8) describe non-penetration of the
punch into the surface of the body in the normal direction. The integral condition (2.9)
prescribes the total contact force. Here σn implies the matrix-vector multiplication, the dot
stands for the scaler product of vectors. For a geometric example of the current configuration
Ω + u produced under indentation of the punch ψ with a nonzero force F > 0 see the right
plot in Fig. 1.
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For numerical computation of the unilateral problem, complementarity relations (2.8) can
be expressed with the help of nonlinear complementarity problem (NLCP) functions, e.g.,
by the min-based function as

(2.10) min
(
0,σn · n− c(u · n+ h+ ψ)

)
− σn · n = 0 on ΣT

for arbitrary constant c > 0. Indeed, the nonlinear equation (2.10) is point-wisely equivalent
to

(2.11) u · n+ h+ ψ = 0 on A = {x ∈ Σ|
(
σn · n− c(u · n+ h+ ψ)

)
(x) < 0}

over a strict coincidence set A, where the constraint is active (the active set), and

(2.12) σn · n = 0 on I = {x ∈ Σ|
(
σn · n− c(u · n+ h+ ψ)

)
(x) ≥ 0}

over its complement (the inactive set) I := Σ\A. Then the integral in (2.9) holds over A as

(2.13) F +

∫
A
σn · n dSx = 0 for t ∈ (0, T ).

The mixed formulation (2.11)–(2.13) is advantageous allowing to apply semi-smooth Newton
methods of numerical optimization (see Hintermüller et al. [9]).

For fixed t ∈ (0, T ) we endow the boundary-value problem (2.2)–(2.9) with a weak formu-
lation. Let the stress-stran response function be

(2.14) F : Lp(Ω;Rd×d
sym) 7→ Lq(Ω;Rd×d

sym),
1

p
+

1

q
= 1, p, q ∈ (1,∞).

For displacements we introduce the Sobolev space due to the Dirichlet boundary condition
(2.5):

W 1,q
ΓD

(Ω;Rd) = {v ∈ W 1,q(Ω;Rd)| v = 0 on ΓD},
and the function set due to the non-penetration condition in (2.8):

K(h) = {v ∈ W 1,q
ΓD

(Ω;Rd)| v · n+ h+ ψ ≤ 0 on Σ},
which depends on the indentation depth h.

Multiplying the equilibrium equation (2.3) by v − u for arbitrary v ∈ W 1,q
ΓD

(Ω;Rd) and
integrating it by parts over Ω, with the help of notation (2.2) for the linearized strain and
boundary conditions (2.5)–(2.7) it follows

(2.15) 0 = −
∫
Ω

divσ · (v − u) dx =

∫
Ω

σ : ε(v − u) dx−
∫
∂Ω

(σn) · (v − u) dSx

=

∫
Ω

σ : ε(v − u) dx−
∫
Σ

(σn · n)(v · n+ h+ ψ − u · n− h− ψ) dSx.

Inserting into (2.15) complementarity relations (2.8) we derive a quasi-variational inequality,
which together with (2.4) and (2.9) is given by the following mixed formulation: for every
t ∈ (0, T ) find a triple u ∈ K(h), σ ∈ Lp(Ω;Rd×d

sym), and h ≥ −h0 such that

(2.16)

∫
Ω

σ : ε(v − u) dx ≥ 0 for all v ∈ K(h),

(2.17) ε(u) = F [σ] in Ω,

(2.18) F + ⟨σn · n, η⟩Σ∪ΓN
= 0, η = 1 on Σ,
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(2.19) h = max{ξ ∈ R| u ∈ K(ξ)}.
In relation (2.18) generalizing the integral in (2.9), the brackets ⟨ · , · ⟩Σ∪ΓN

stand for the

duality pairing between the Lions–Magenes space of traces W
1/q,p
00 (Σ ∪ ΓN;R) continued by

zero on ΓD:

W
1/q,p
00 (Σ ∪ ΓN;R) = {η ∈ W 1/q,p(∂Ω;R)| η = 0 on ΓD}

and its dual space of linear continuous functionals W
1/q,p
00 (Σ ∪ ΓN;R)⋆ (see Geymonat and

Suquet [6]). In (2.18) the cut-off function η(x) ∈ W
1/q,p
00 (Σ ∪ ΓN;R) can be arbitrary on ΓN

since σn · n = 0 there.
It is worth noting that, if the non-penetration inequality u · n + h + ψ ≤ 0 holds, then

u · n + ξ + ψ < 0 and u ∈ K(ξ) for all ξ < h. When the strict inequality takes place, the
punch ξ + ψ loses contact with the body, which contradicts the prescribed contact force.
Taking the maximum over all possible ξ in (2.19) ensures that contact between the punch
and the solid body occurs.

Moreover, (2.19) follows the lower bound h ≥ −h0. Indeed, if F = 0, then u = 0, σ = 0,
and h = −h0 solve (2.16)–(2.19), the trivial solution is feasible because u · n + h + ψ =
−h0 + ψ ≤ 0 according to (2.1), i.e. the punch touches the unstressed body. If F > 0,
then contact is geometrically possible for h > −h0, otherwise the active set A = ∅ in (2.13)
contradicts to (2.9).

In the following sections we provide sufficient conditions on response functions F and
establish existence, uniqueness, and continuity in time for a weak solution of the variational
problem (2.16)–(2.19) based on the augmented penalty method and minimax theorems.

3. Augmented penalty approximation

We start with assumptions on F . Let there exist constantM0(p),M3(p) ≥ 0 andM1(p),M4(p) >
0 such that an admissible response function in (2.14) is bounded :

(3.1) ∥F [σ]∥qLq(Ω) ≤M0(p) +M1(p)∥σ∥pLp(Ω),

hemi-continuous :

(3.2)

∫
Ω

F [σ + sσ̃] : σ dx →
∫
Ω

F [σ] : σ dx as s→ 0,

coercive (with respect to the Lebesgue vector norms):

(3.3)

∫
Ω

F [σ] : σ dx ≥M4(p)∥σ∥pLp(Ω) −M3(p),

and obeys a convex potential W : Lp(Ω;Rd×d
sym) 7→ R such that

(3.4) W ′[σ] = F [σ], W [σ]−W [σ] ≥ F [σ] : (σ − σ),

for all functions σ,σ, σ̃ ∈ Lp(Ω;Rd×d
sym). From (3.4) it follows that F is also monotone:

(3.5)

∫
Ω

(
F [σ]−F [σ]

)
: (σ − σ) dx ≥ 0.

For a small penalty parameter δ > 0, first we apply a penalization regularization to the
quasi-variational inequality, and then pass δ → 0. We introduce the space product

V (Ω) = W 1,q
ΓD

(Ω;Rd)× Lp(Ω;Rd×d
sym)× R
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and an augmented Lagrangian Lδ : V (Ω) 7→ R given by

(3.6) Lδ(u,σ, h) :=

∫
Ω

(
σ : ε(u)−W [σ]

)
dx+

1

qδ

∫
Σ

(
[u · n+ h+ ψ]+

)q
dSx − Fh

using (3.4) and decomposition into positive and negative parts

u · n+ h+ ψ = [u · n+ h+ ψ]+ − [u · n+ h+ ψ]−.

In the admissible set
M(Ω) = {(u,σ, h) ∈ V (Ω)| h ≥ −h0}

the following saddle-point problem is considered: find (uδ,σδ, hδ) ∈M(Ω) such that

(3.7) Lδ(u
δ,σδ, hδ) = inf

u,h
sup
σ

Lδ(u,σ, h) =: lδ over (u,σ, h) ∈M(Ω).

Before investigating well-posedness of the problem (3.7) we remind some preliminaries.
According to [6] there hold: the Korn–Friedrichs inequality with constant KKF(q) > 0:

(3.8) KKF(q)∥u∥qW 1,q(Ω) ≤ ∥ε(u)∥qLq(Ω) for u = 0 on ΓD,

the trace inequality with constant Ktr(q) > 0:

(3.9) ∥u · n∥Lq(Σ) ≤ ∥u · n∥W 1/p,q(Σ) ≤ Ktr(q)∥u∥W 1,q(Ω),

and the continuous embedding with constant Kemb(q) > 0:

(3.10) ∥u · n∥L1(Σ) ≤ Kemb(q)∥u · n∥Lq(Σ) for q > 1.

Theorem 3.1 (Well-posedness of δ-penalization). Under assumptions (3.1)–(3.4) on F there
exists a saddle point (uδ,σδ, hδ) ∈ M(Ω) solving the problem (3.7). The solution fulfills
optimality conditions:

(3.11)

∫
Ω

σδ : ε(u) dx+
1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
(u · n) dSx = 0

for all test functions u ∈ W 1,q
ΓD

(Ω;Rd), then

(3.12) ε(uδ) = F [σδ] in Ω,

(3.13) F − 1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
dSx = 0.

The uniform estimates hold for δ ≤ δ0 and δ0 > 0:

(3.14)
M4(p)

p
∥σδ∥pLp(Ω) +

1

pδ
∥[uδ · n+ hδ + ψ]+∥qLq(Σ) ≤M3(p) + 2Fh0 +

F

|Σ|
∥ψ∥L1(Σ)

+
δ0
p

( F

|Σ|
Kemb(q)

)p

+
M1(p)

pM4(p)KKF(q)

( F

|Σ|
Kemb(q)Ktr(q)

)p

+
M0(p)M4(p)

qM1(p)
=: Cσ,

(3.15) KKF(q)∥uδ∥qW 1,q(Ω) ≤M0(p) +
pM1(p)

M4(p)
Cσ,

(3.16) F |hδ| ≤ Cσ −M3(p)− Fh0 +
p

q
Cσ.

Proof. We split the proof into three blocks: existence, optimality condition, and uniform
estimate.
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Existence. Due to assumption (3.4) the potential W is convex, continuous and Gâteaux
differentiable, hence sequentially weakly lower semi-continuous (w.l.s.c.) (see [17, Theo-
rem 1.7]). The penalty term 1/(qδ)

∫
Σ

(
[u ·n+h+ψ]+

)q
dSx in (3.6) is also convex for q > 1,

continuous and Gâteaux differentiable. Since involving −W [σ] the Lagrange functional Lδ

from (3.6) obeys the properties:

(3.17) (u, h) 7→ Lδ(u,σ, h) is convex, differentiable, w.l.s.c., and

(3.18)
σ 7→ Lδ(u,σ, h) is concave, differentiable, weakly upper semi-continuous (w.u.s.c.).

By the mean value theorem for integrals, due to assumptions (3.2) on continuity and (3.4)
on differentiability, there exists s ∈ (0, 1) such that

−
∫
Ω

W [σ] dx = −
∫
Ω

(
W [0] + F [sσ] : σ

)
dx ≤ −|Ω|W [0]−M4(p)s

p−1∥σ∥pLp(Ω) +
M3(p)

s
,

using the coercivity (3.3), where s = 0 and s = 1 are impossible because would lead to
identically constant F . Therefore, for u = 0 and fixed h we have the coercivity

(3.19) Lδ(0,σ, h) → −∞ as ∥σ∥Lp(Ω) → ∞.

At arbitrary fixed σ it follows straightforwardly that

(3.20) Lδ(u,σ, h) → +∞ either as ∥u∥W 1,q(Ω) → ∞ or h→ +∞.

Since the admissible setM(Ω) is evidently convex and closed, conditions (3.17)–(3.20) in the
minimax theorem of Ekeland–Temam [4, Proposition 2.2] guarantee a saddle point to (3.7).
Optimality condition. The unconstrained minimum of Lδ over test functions u ∈ W 1,q

ΓD
(Ω;Rd)

implies the variational equation
〈
∂Lδ

∂u
(uδ,σδ, hδ),u

〉
= 0, which can be easily calculated as

(3.11). Similarly, the unconstrained maximum over test functions σ ∈ Lp(Ω;Rd×d
sym) implies

0 =
〈∂Lδ

∂σ
(uδ,σδ, hδ),σ

〉
=

∫
Ω

(
ε(u)δ −F [σδ]

)
: σ dx

using the Gâteaux derivative of W from (3.4), and leads to the constitutive equation (3.12).
If hδ > −h0, then small s > 0 provides admissible h = hδ ± s ≥ −h0 in M(Ω). Since Lδ

is convex with respect to h, the optimality condition over h implies a variational inequality

0 ≤
〈∂Lδ

∂h
(uδ,σδ, hδ), h− hδ

〉
= ±s

(1
δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
dSx − F

)
,

thus following the total contact force (3.13). If hδ = −h0, then the trivial solution uδ =
σδ = 0 and F = 0 would satisfy the optimality system (3.11)–(3.13) due to condition (2.1).
Uniform estimate. The substitution of u = uδ into (3.11) leads to the equation

(3.21)

∫
Ω

σδ : ε(uδ) dx+
1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
(uδ · n) dSx = 0.

After insertion in the penalty term the following identity:(
[uδ · n+ hδ + ψ]+

)q−1
(uδ · n) =

(
[uδ · n+ hδ + ψ]+

)q − (
[uδ · n+ hδ + ψ]+

)q−1
(hδ + ψ),
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using the upper bound (2.1) for the punch shape ψ, and because of the total contact force
(3.13):

1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
(hδ + h0) dSx = F (hδ + h0),

from (3.21) we infer the inequality∫
Ω

σδ : ε(uδ) dx+
1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q
dSx ≤ F (hδ + h0).

We the help of equation ε(uδ) = F [σδ] and the assumption of coercivity (3.3) it follows

(3.22) M4(p)∥σδ∥pLp(Ω) +
1

δ
∥[uδ · n+ hδ + ψ]+∥qLq(Σ) ≤M3(p) + F (|hδ|+ h0).

According to the boundedness assumption (3.1) and the Korn–Friedrichs inequality (3.8),
from the constitutive equation (3.12) we estimate the displacement as

(3.23) KKF(q)∥uδ∥qW 1,q(Ω) ≤ ∥ε(uδ)∥qLq(Ω) ≤M0(p) +M1(p)∥σδ∥pLp(Ω).

To evaluate the indentation depth, avoiding the negative part −[uδ ·n+hδ +ψ]− ≤ 0 we get

(3.24) − h0 ≤ hδ ≤ [uδ · n+ hδ + ψ]+ − uδ · n− ψ.

After integration of (3.24) over Σ it follows that∫
Σ

|hδ| dSx ≤
∫
Σ

(
h0 +

∣∣[uδ · n+ hδ + ψ]+ − uδ · n− ψ
∣∣) dSx,

then with the help of trace inequality (3.9) and continuous embedding (3.10) this leads to

|hδ| ≤ h0 +
Kemb(q)

|Σ|

(
∥[uδ · n+ hδ + ψ]+∥Lq(Σ) +Ktr(q)∥uδ∥W 1,q(Ω)

)
+

1

|Σ|
∥ψ∥L1(Σ).

Applying here Young’s inequality with suitable weights we can derive the upper bound:

(3.25) F |hδ| ≤ Fh0 +
δ

p

( F

|Σ|
Kemb(q)

)p

+
1

qδ
|[uδ · n+ hδ + ψ]+∥qLq(Σ) +

F

|Σ|
∥ψ∥L1(Σ)

+
M1(p)

pM4(p)KKF(q)

( F

|Σ|
Kemb(q)Ktr(q)

)p

+
M4(p)

qM1(p)
KKF(q)∥uδ∥qW 1,q(Ω).

For δ ≤ δ0, subsequently inserting the estimate (3.23) of KKF(q)∥uδ∥qW 1,q(Ω) into (3.25),

then the estimate (3.25) of F |hδ| into (3.22) and gathering the like terms, we obtain the
uniform estimate (3.14) for the stress and the penalty. When substituting (3.14) with the
constant Cσ back into (3.23) gives the uniform estimate (3.15) for the displacement, and the
substitution into (3.25) provides the uniform estimate (3.16) for the indentation depth. We
note that Cσ −M3(p)− Fh0 > 0 here. The proof is completed. □

We make few remarks to Theorem 3.1. After integration by parts the weak solution
(uδ,σδ) ∈ W 1,q

ΓD
(Ω;Rd)×Lp(Ω;Rd×d

sym) to the variational equation (3.11) satisfies the boundary-
value problem (compare to (2.3)–(2.8)):

(3.26) − divσδ = 0 in Ω,

(3.27) uδ = 0 on ΓD, σδn = 0 on ΓN,
9



(3.28) σδn− (σδn · n)n = 0, σδn · n = −1

δ

(
[uδ · n+ hδ + ψ]+

)q−1
on Σ,

where the penalty term −1/δ([uδ · n + hδ + ψ]+)q−1 ∈ W 1/p,q(Σ;R) according to the trace
theorem (see (3.9)). Thus, the boundary condition (3.28) follows the total contact force
(3.13)

(3.29) F +

∫
Σ

σδn · n dSx = 0

in the form akin to (2.9). That is: F is attained exactly by the penalty approximation at
δ > 0.

In the weak form, the bulk term over Ω in equation (3.11) determines a linear continuous
functional in W 1,q

ΓD
(Ω;Rd). Therefore, inserting there the normal stress from (3.28) and using

the continuity of trace extension operator we get the upper bound with constant Kext(q) > 0:∣∣⟨σδn · n,u · n⟩Σ∪ΓN

∣∣ = ∣∣∣∫
Ω

σδ : ε(u) dx
∣∣∣≤ Kext(q)∥σδ∥Lp(Ω)∥u · n∥

W
1/q,p
00 (Σ∪ΓN)

.

Together with (3.14) this provides the uniform estimate for the normal stress in the dual
norm:

(3.30) ∥σδn · n∥
W

1/q,p
00 (Σ∪ΓN)⋆

≤ Kext(q)
( p

M4(p)
Cσ

)1/p

,

which is helpful for the following use.

4. Well-posedness of the quasi-variational inequality

Based on Theorem 3.1 we pass to the limit as δ → 0.

Theorem 4.1 (Well-posedness of the quasi-variational inequality). Under assumptions (3.1)–
(3.4) on F there exists a solution u ∈ K(h), σ ∈ Lp(Ω;Rd×d

sym), and h ≥ −h0 to the unilateral
indentation problem (2.16)–(2.19). It satisfies the a-priori estimates with the constant Cσ > 0
from (3.14):

(4.1)
M4(p)

p
∥σ∥pLp(Ω) ≤ Cσ,

(4.2) KKF(q)∥u∥qW 1,q(Ω) ≤M0(p) +
pM1(p)

M4(p)
Cσ,

(4.3) F |h| ≤ Cσ −M3(p)− Fh0 +
p

q
Cσ.

If the monotone property of F in (3.5) is strict, then the solution is unique.
Let additionally the following assumptions hold: F is strong-to-strong continuous and

strongly monotone, i.e., there exists constant M2(p) > 0 such that

(4.4)

∫
Ω

(
F [σ]−F [σ]

)
: (σ − σ) dx ≥M2(p)∥σ − σ∥pLp(Ω).

If the total contact force F (t) is continuous, then the solution (u,σ, h)(t,x) is also continuous
in time.

10



Proof. Again we split the proof into three blocks: limit passage, uniqueness, and time-
continuity.
Limit passage. From the uniform estimates (3.14)–(3.16) and (3.30), by the compactness
principle we infer a convergent sub-sequence δk → 0 such that

(4.5) (uδk ,σδk)⇀ (u,σ) weakly in W 1,q(Ω;Rd)× Lp(Ω;Rd×d
sym), hδk → h,

[uδk · n+ hδk + ψ]+ → [u · n+ h+ ψ]+ = 0 strongly in Lq(Σ;R),

σδkn · n⇀ σn · n ∗-weakly in W
1/q,p
00 (Σ ∪ ΓN)

⋆

for an accumulation point (u,σ, h) ∈M(Ω), and u ∈ K(h).
We test the penalty equation (3.11) with u = v − uδ for arbitrary v ∈ K(h) such that

(4.6)

∫
Ω

σδ : ε(v − uδ) dx =
1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
(uδ − v) · n dSx.

After decomposition in the penalty term as

(uδ − v) · n = (uδ · n+ hδ + ψ)− (v · n+ h+ ψ) + (h− hδ),

using well-known monotonicity of the penalty operator and ([v · n + h + ψ]+)q−1 = 0 such
that

1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1(
(uδ · n+ hδ + ψ)− (v · n+ h+ ψ)

)
dSx ≥ 0,

and the following identity due to the total contact force (3.13):

1

δ

∫
Σ

(
[uδ · n+ hδ + ψ]+

)q−1
(h− hδ) dSx = F (h− hδ),

from (4.6) it follows the inequality

(4.7)

∫
Ω

(
σδ : ε(v)− σδ : ε(uδ)

)
dx ≥ F (h− hδ).

With the help of the constitutive equation ε(uδ) = F [σδ] and convexity of of the potential
W in (3.4), the second term in the left-hand side of (4.7) allows the upper bound

−F [σδ] : σδ ≤ −F [σδ] : σ +W [σ]−W [σδ] = −σ : ε(uδ) +W [σ]−W [σδ].

Since −W is sequentially w.u.s.c. (see (3.18)), then − lim supW [σδk ] ≤ −W [σ] as δk → 0
due to convergences (4.5), and in the limit of (4.7) we get the variational inequality (2.16).

In order to deduce the constitutive equation (2.17) we apply Minty’s trick. Using ε(uδ) =
F [σδ], the monotonicity of F in (3.5), and the inequality (4.7) with v = u it follows

0 =

∫
Ω

(
F [σδ]− ε(uδ)

)
: (σδ − σ) dx ≥

∫
Ω

(
F [σ]− ε(uδ)

)
: (σδ − σ) dx

≥
∫
Ω

(
F [σ] : (σδ − σ)− ε(u) : σδ + ε(uδ) : σ

)
dx+ F (h− hδ),

and, after taking the limit as δk → 0 due to convergences (4.5) we get

(4.8) 0 ≥
∫
Ω

(
F [σ] : (σ − σ)− ε(u) : σ + ε(u) : σ

)
dx.

11



The assignment of σ = σ ± sσ̃ in (4.8) after dividing by s > 0 leads to

0 ≥ ±
∫
Ω

(
−F [σ ± sσ̃] + ε(u)

)
: σ̃ dx,

which limit as s→ 0 due to the assumption of hemi-continuity (3.2) results in (2.17).
The integral in (3.29) can be expressed as the duality

F + ⟨σδn · n, η⟩Σ∪ΓN
= 0

with the cut-off function η(x) ∈ W
1/q,p
00 (Σ ∪ ΓN;R) such that η = 1 on Σ. Passing here to

the limit due to the last convergence in (4.5) follows directly the total contact force (2.18).
To prove the maximum indentation depth (2.19), we assume ξ > h exists such that

u ∈ K(ξ). Because the contact condition (u · n+ ξ + ψ)(x) ≤ 0 holds for all x ∈ Σ, then

max
x∈Σ

(u · n+ h+ ψ)(x) < 0,

and by continuity maxx∈Σ(u
δ ·n+hδ+ψ)(x) < 0 holds for sufficiently small δ. Consequently,

[uδ · n + hδ + ψ]+ = 0 follows the total contact force F = 0 in (3.13) implying the trivial
solution uδ = 0, σδ = 0, and hδ = −h0. Thus, uδ ·n+hδ+ψ = −h0+ψ < 0 that contradicts
to (2.1).
Uniqueness. Let the monotone property of F in (3.5) be strict. We assume there exist two
different solutions (u1,σ1, h1) ̸= (u2,σ2, h2) satisfying for i = 1, 2 the relations:

(4.9) ui ∈ K(hi),

∫
Ω

σi : ε(vi − ui) dx ≥ 0 for all vi ∈ K(hi), ε(ui) = F [σi],

(4.10) F i + ⟨σin · n, η⟩Σ∪ΓN
= 0 (η = 1 on Σ), −h0 ≤ hi = max{ξ ∈ R| ui ∈ K(ξ)}

for same F 1 = F 2. An auxiliary function w ∈ W 1,q
ΓD

(Ω;Rd) can be constricted such that

(4.11) w · n = h1 − h2 on Σ,

e.g. by solving
∫
Ω
ε(w) : ε(v − w) dx ≥ 0 for all v ∈ W 1,q

ΓD
(Ω;Rd), v · n = h1 − h2 on Σ.

Then we can test (4.9) with v1 = u2 −w ∈ K(h1) and v2 = u1 +w ∈ K(h2) because of

(u2 −w) · n+ h1 + ψ = u1 · n+ h1 + ψ ≤ 0, (u1 +w) · n+ h2 + ψ = u2 · n+ h2 + ψ ≤ 0,

which after summation yields the inequality

(4.12)

∫
Ω

(σ1 − σ2) : ε(u1 − u2) dx ≤
∫
Ω

(σ2 − σ1) : ε(w) dx.

We apply to the right-hand side of (4.12) Green’s formula and the condition (4.10) on F
providing

(4.13)

∫
Ω

(σ2 − σ1) : ε(w) dx = ⟨(σ2 − σ1)n · n,w · n⟩Σ∪ΓN

= (h1 − h2)⟨(σ2 − σ1)n · n, η⟩Σ∪ΓN
= (h1 − h2)(F 1 − F 2) = 0.

The strict monotonicity and constitutive equations imply positive left-hand side of (4.12):

(4.14) 0 <

∫
Ω

(
F [σ1]−F [σ2]

)
: (σ1 − σ2) dx =

∫
Ω

(σ1 − σ2) : ε(u1 − u2) dx

12



that contradicts to zero in (4.12). Therefore, σ1 = σ2, which follows ε(u1) = ε(u2) and
u1 = u2. Then the maximum indentation depth guarantees h1 = h2, thus uniqueness.
Time-continuity. For the total contact force F (ti), i = 1, 2, at two times t1 ̸= t2 let us set:

ui = u(ti), σi = σ(ti), hi = h(ti), F i = F (ti).

Repeating arguments (4.9)–(4.14) with F 1 ̸= F 2, due to the strong monotonicity (4.4) we
derive

(4.15) M2(p)∥σ1 − σ2∥pLp(Ω) ≤
∫
Ω

(σ1 − σ2) : ε(u1 − u2) dx ≤ (h1 − h2)(F 1 − F 2)

following σ1 → σ2 if F 1 → F 2. Subsequently, u1 → u2 when F is strong-to-strong continu-
ous, and h1 → h2 by the uniqueness. This finishes the proof. □

As a corollary of Theorem 4.1 we consider the response function for power-law hardening.

5. Power-law hardening

We start the example with noting that the function F in (1.3) obeys the potential

(5.1) W [σ] =
1

4µ

∫ ∥σ∥2

0

dξ

(1 + κξ
r
2 )

2−p
r

,

which is convex when F = W ′ in (1.3) is monotone.

Corollary 5.1 (Indentation of power-law hardening material). For a given total contact
force 0 ≤ F (t) ∈ L∞(0, T ), there exists a unique solution

u(t) ∈ W 1,q
ΓD

(Ω;Rd), σ(t) ∈ Lp(Ω;Rd×d
sym), h(t) ≥ −h0

to the quasi-static unilateral indentation problem (2.2)–(2.9) fulfilled in the weak form (2.16)–
(2.19) a.e. t ∈ (0, T ), with the response function F from (1.3) describing a power-law
hardening material.

Proof. Assumptions (3.1)–(3.3) of Theorem 4.1 and the strict inequality (3.5) (hence (3.4) for
W in (5.1)) were proved in Itou et al. [12, Appendix A] with the constants found explicitly
as follows:{

M0(p) = 0, M1(p) =
1
2µ
d2pκ

p−2
r for 1 < p ≤ 2,

M0(p) =
(p−q)d2

p(2µ)q
C r

p−q
|Ω|, M1(p) =

1
(2µ)q

(
q
p
+ d2pκ

p−q
r

)
C r

p−q
for p > 2,

where C r
p−q

= 2
p−q
r

−1 for r
p−q

< 1, and C r
p−q

= 1 for r
p−q

≥ 1, M3(p) =
κ− 2

r

2µp

(
(2− p)C r

p

) p−2
p |Ω|, M4(p) =

κ
p−2
r

2µd2p

(
(2− p)C r

p

) p−2
p for 1 < p < 2,

M3(p) = 0, M4(p) =
κ

p−2
r

2µd2
for p ≥ 2,

where C r
p
= 2

p
r
−1 for r

p
< 1, and C r

p
= 1 for r

p
≥ 1. This proves the assertion. □

It is worth noting that the same properties as for F in (1.3) evidently hold for the gener-
alized function F1 from (1.5). Properties of the function F2 in (1.6) were studied by Knees
[19].
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6. Concluding remarks

In conclusion, the quasi-static indentation problem consists in solving the nonlinear rela-
tions (2.2)–(2.9) for every fixed time t ∈ (0, T ). We remark that the load prescribed by a
function F (t) may be non-monotone, which would correspond to both increasing as well as
decreasing the contact area. The obtained results are valid in the case of a non-rigid punch,
when given by a time-dependent shape function ψ(t,x).
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