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A B S T R A C T

A new class of unilaterally constrained problems for fully coupled poroelastic models stemming from hydraulic
fracturing is introduced and studied with respect to its well-posedness. The poroelastic medium contains a fluid-
driven crack, which is subjected to non-penetration conditions and cohesion forces between the crack faces.
Existence of solution for the governing elliptic–parabolic variational inequality under the unilateral constraint
with a small cohesion is established using the incremental approximation based on Rothe’s semi-discretization
in time.
1. Introduction

Our physical motivation stems from hydrofracking technologies for
extracting oil and natural gas from the earth by pumping a fluid
through a wellbore into a fracture. The hydraulic fracture is treated
mechanically as a single crack separated by two opposite faces and
filled with the pumped fluid. The corresponding mathematical model
is governed by a time-dependent system of coupled poroelastic equa-
tions given in the solid phase and pore space. We introduce and
study well-posedness for a class of variational inequalities describ-
ing the poroelastic body with a crack, which are subjected to non-
penetration conditions and cohesive forces imposed between the crack
faces (fracture walls).

The classical theory of poroelasticity was developed in Biot (1956),
Coussy (2004), Terzaghi (1943). The implicit model for describing the
small strain response of porous elastic solids whose material moduli
are dependent on the density was developed in Rajagopal (2021).
Unlike Biot’s model the above model stems from rigorous represen-
tation theorems. For development of a related multi-scale analysis
we cite Meirmanov (2014), Sazhenkov et al. (2021). In the formula-
tion (Baykin and Golovin, 2016; Shelukhin et al., 2014; Skopintsev
et al., 2020) governing poroelastic equations are coupled with Reynolds
lubrication equations for the fluid pressure to a single model. Model-
ing of the fluid pressure by a Darcy–Forchheimer law was suggested
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in Kovtunenko (2023), and by a Darcy law in Mikelić et al. (2015),
where a phase-field variable was used to represent the crack. In the
current modeling, the fluid pressure in the fracture is prescribed by
boundary data, which can be achieved either theoretically, or from
geomechanical measurement. For physical consistency we allow non-
penetration conditions imposed on a crack, that admit a compressive
pressure at which the crack might close. The well-posedness for non-
penetrating fluid-driven cracks was studied in Kovtunenko (2022).
Its shape sensitivity analysis is presented in Kovtunenko and Lazarev
(2023) for the incremental formulation of the problem, and the Fourier
series analysis is given in Itou et al. (2022) providing formulas for the
square-root singularity and stress intensity factors. Here we continue
with modeling of cohesive contact at the fracture walls.

The variational theory of solids with non-penetrating cracks and
their quasi-static propagation was established in the monograph by
Khludnev and Kovtunenko (2000). For a dynamic of cracks see Bra-
tov et al. (2009). The non-penetration approach was extended to
nonlinear elastic bodies in Itou et al. (2019, 2021) and viscoelastic
bodies in Itou et al. (2020), for cracks subjected to contact with
Coulomb friction in Itou et al. (2011), Kovtunenko (2000), cohesion
in Kovtunenko (2011), Shcherbakov (2022), and other non-smooth con-
straints in Knees and Schröder (2012). From optimization viewpoint,
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Fig. 1. Plane fracture between two fracture walls.

he non-penetrating cracks are described by variational inequalities
f the mechanical energy is constituted by a smooth and convex
unctional, otherwise, by hemivariational inequalities for non-smooth
nd non-convex energies. Efficient numerical methods that are suit-
ble for solution of the constrained crack problems can be found
n Hintermüller et al. (2005, 2009), Kovtunenko (2004).

Let us consider a two-phase poroelastic material comprising solid
articles and fluid-saturated pores. Within the model of linear elasticity,
he solid phase is described by the Hookes’s constitutive law:

= 𝐀𝜺 + 𝝉0 (1.1)

for the linearized strain 𝜺 and Cauchy stress 𝝈 with a given prestress 𝝉0
and tensor 𝐀 of elastic coefficients. Accounting for the pore pressure 𝑝,
the effective stress is introduced as

𝝉 = 𝝈 − 𝛼𝑝𝐈, (1.2)

where 𝐈 is the identity transformation, and 𝛼 ∈ (0, 1] is the Biot
coefficient. The equilibrium equation reads

div 𝝉 = 𝟎 (1.3)

when the inertia term and volume forces are omitted.
A Newtonian fluid in the pore space is described by the Fick’s

diffusion law:
𝜕𝜁
𝜕𝑡

= −div𝐪 (1.4)

for the flow content 𝜁 and velocity 𝐪. The latter in turn is given by the
Darcy law

𝐪 = −𝜅∇𝑝 (1.5)

recalling the pore pressure 𝑝, where the mobility 𝜅 = 𝜘∕𝜂 for the
permeability 𝜘 > 0 and viscosity 𝜂 > 0. The governing relations for fluid
are completed with the constitutive equation for 𝜁 using dilatation tr𝜺:

𝜁 = 𝑆𝑝 + 𝛼tr𝜺, (1.6)

where 𝑆 > 0 is the storativity. Details of the poroelastic modeling can
be found in Adachi et al. (2007).

We consider a thin fracture inside the poroelastic media separated
by two fracture walls and filled with the same fluid, as illustrated in 3D
in Fig. 1. Let the fluid pressure 𝑓 inside the fracture be prescribed. Fur-
ther we introduce geometrically and physically consistent conditions
suitable at the fracture walls.

In hydrofracking, the physical system is typically controlled by the
rate of fluid injected through an inlet. Increasing the injection affects
both the larger opening 𝑤 and growth of fracture. Its decay may lead
to shrinking and partial closing the fracture. Then non-penetration
between the fracture walls necessitates the non-negative opening:

𝑤 ≥ 0. (1.7)

This description allows a compression at which the fracture can be
mechanically close at 𝑤 = 0, compared to the hydraulically open
2

fracture when 𝑤 > 𝑤c with predefined small 𝑤c > 0.
From the classical brittle fracture theory, the well-known square-
root singularity in the vicinity of the crack tip causes infinite stress that
is physically inconsistent. A cohesive zone model suggested by Baren-
blatt et al. (1960) allows to avoid this theoretical drawback by clos-
ing smoothly the crack faces. In the hydraulic fracture modeling the
traction–separation law is adopted with a bilinear cohesion force:

𝑓coh(𝑤) = 𝑓M

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑤 < 0,
𝑤∕𝑤M if 0 ≤ 𝑤 ≤ 𝑤M,
(𝑤c −𝑤)∕(𝑤c −𝑤M) if 𝑤M < 𝑤 ≤ 𝑤c,
0 if 𝑤 > 𝑤c,

(1.8)

where 0 < 𝑤M < 𝑤c and 𝑓M > 0, which is depicted in the left plot of
Fig. 2. The bilinear function in (1.8) can be derived by differentiation
of a non-negative potential function drawn in the right plot:

𝜙(𝑤) = 𝑓M

⎧

⎪

⎪

⎨

⎪

⎪

⎩

0 if 𝑤 < 0,
𝑤2∕(2𝑤M) if 0 ≤ 𝑤 ≤ 𝑤M,
[𝑤(2𝑤c −𝑤) −𝑤c𝑤M]∕[2(𝑤c −𝑤M)] if 𝑤M < 𝑤 ≤ 𝑤c,
𝑤c∕2 if 𝑤 > 𝑤c.

(1.9)

In general, we allow any uniformly continuous function 𝑓coh to repre-
sent a cohesion force, if it is uniformly bounded from below and above:
there exist 𝐹0 ≥ 0 and 𝐹 ≥ 0 such that

𝑓coh(𝑤)𝑤 ≥ −𝐹0|𝑤|, |𝑓coh(𝑤)| ≤ 𝐹 for all 𝑤, (1.10)

nd the following growth condition holds: there exists 𝐹 ≥ 0 such that

𝑓coh(𝑤1) − 𝑓coh(𝑤2)
)

(𝑤1 −𝑤2) ≥ −𝐹 (𝑤1 −𝑤2)2 for all 𝑤1, 𝑤2. (1.11)

or the cohesion in (1.8) the constants are 𝐹0 = 0, 𝐹 = 𝑓M∕(𝑤c − 𝑤M)
and 𝐹 = 𝑓M.

Accounting for the normal stress 𝜏𝑛, fluid pressure 𝑓 , and cohesion
𝑓coh, the force balance holds:

𝑓c = 𝜏𝑛 + 𝑓 − 𝑓coh(𝑤). (1.12)

The contact force 𝑓c and opening 𝑤 should satisfy the complementarity
conditions (see Khludnev and Kovtunenko, 2000, Ch.1):

𝑤 ≥ 0, 𝑓c ≤ 0, 𝑓c𝑤 = 0. (1.13)

In particular, for the bilinear cohesion force given in (1.8), from (1.12)
and (1.13) we derive three scenarios:

(i) closed crack: 𝜏𝑛 + 𝑓 ≤ 0 if 𝑤 = 0,

(ii) open crack with cohesion: 𝜏𝑛 + 𝑓 − 𝑓coh(𝑤) = 0 if 0 < 𝑤 ≤ 𝑤c,

(iii) open crack without cohesion: 𝜏𝑛 + 𝑓 = 0 if 𝑤 > 𝑤c.

This includes as special cases the boundary conditions known from the
literature. Indeed, (ii) and (iii) coincide with the cohesive condition
for the open crack from Baykin and Golovin (2016); case (iii) at 𝑤c = 0
implies the standard linear condition for the open crack from Shelukhin
et al. (2014); cases (i) and (iii) at 𝑤c = 0 describe cohesionless
non-penetration introduced earlier in Kovtunenko (2022).

For analysis of the governing system, it is worth noting that poroe-
lastic equations (see (2.12) and (2.13)) formally coincide with ther-
moelastic equations when 𝑝 is replaced for the temperature. From the
literature we know that the system of thermoelastic equations is degen-
erate, due to mixed elliptic–parabolic type. Its solvability is provided
in Showalter (2000) by applying the theory of accretive operators
for an implicit parabolic equation. However, the parabolic problem
does not conform well to unilateral conditions under consideration.
Applying the pseudo-monotone theory over a compact feasible set,
in Hömberg et al. (2001), Shi and Shillor (1992) the existence result

for thermoelastic contact problems is proved under assumption of a
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Fig. 2. The bilinear cohesion force 𝑓coh (left) and its potential 𝜙 (right) for 𝑤 ≥ 0.
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Fig. 3. Plane cross-section of the fracture.

small coupling coefficient 𝛼. For arbitrary 𝛼, we prove existence of
olution for the constrained poroelastic problem using Rothe’s method
f temporal semi-discretization.

In Section 2 we endow with a variational formulation the poroe-
astic problem subjected to non-penetration conditions and cohesion
orces at the crack faces. In Section 3 we rigorously prove solvability
f the incremental approximation, then pass it to the limit in the virtue
f uniform a-priori estimates of the incremental solution, which hold
nder assumption of a small coefficient 𝐹 in the lower bound (1.11)

for the cohesion (see the sufficient condition (3.16)).

2. Variational formulation

We start describing geometry of a poroelastic body with a fluid-
driven crack in the Euclidean space of points 𝐱 = (𝑥1,… , 𝑥𝑑 ) ∈ R𝑑 ,

here spatial dimensions 𝑑 = 2 and 𝑑 = 3 are relevant physically.
Let 𝛺 be a domain with the Lipschitz boundary 𝜕𝛺, which has

ormal vector 𝐧 = (𝑛1,… , 𝑛𝑑 ) directed outward 𝛺, and consists of two
isjoint sets 𝜕𝛺 = 𝛤D ∪ 𝛤N. We assume that a manifold 𝛴 (that is a
urve in 2D, and a surface in 3D) splits 𝛺 into two sub-domains 𝛺±

ith Lipschitz boundaries 𝜕𝛺± such that

𝛺+ ∩ 𝜕𝛺− = 𝛴, 𝛺 = 𝛺+ ∪𝛺− ∪ 𝛴, (2.1)

where the normal vector 𝐧 at 𝛴 is directed outward 𝛺−, hence inward
𝛺+. Let 𝛤c be a part of the interface associated with the crack, and its
wo faces 𝛤±

c be such that

c ⊂ 𝛴, 𝛤±
c ⊂ 𝛴±. (2.2)

Then a reservoir without crack is associated by the complement set

𝛺c = 𝛺 ⧵ 𝛤c. (2.3)

In time 𝑡 ∈ [0, 𝑇 ] with a final time 𝑇 > 0, the time–space cylinder is
determined as follows:

𝛺𝑇
c = (0, 𝑇 )×𝛺c, 𝜕𝛺𝑇 = (0, 𝑇 )×𝜕𝛺, 𝛤 𝑇

𝛾 = (0, 𝑇 )×𝛤𝛾 for 𝛾 ∈ {c,D,N},

(2.4)

see 2D illustration in Fig. 3.
Next we give a function setting of the problem. We assume a

function prescribed in the cylinder 𝛺𝑇
c :

𝑓 (𝑡, 𝐱) ∈ 𝐻1(0, 𝑇 ;𝐻1(𝛺 )) (2.5)
3

c

conforming the initial and boundary data for the fluid pressure. Let
us note that such 𝑓 can differ on the opposite crack faces and should
coincide at the crack tip (the crack front in 3D). For the solid phase,
the symmetric tensor of prestress 𝝉0 = (𝜏0𝑖𝑗 )

𝑑
𝑖,𝑗=1, vectors of undrained

tate and boundary force are given by

0(𝑡, 𝐱) ∈ 𝐻1(0, 𝑇 ;𝐿2(𝛺c))𝑑×𝑑 , 𝐮0 =
(

𝑢01,… , 𝑢0𝑑
)

(𝐱) ∈ 𝐿2(𝛺c)𝑑 ,

= (𝑔1,… , 𝑔𝑑 )(𝑡, 𝐱) ∈ 𝐻1(0, 𝑇 ;𝐿2(𝛤N))𝑑 . (2.6)

et the mobility for pressure allow cross-diffusion described by the
ensor of inhomogeneous coefficients 𝜿 = (𝜅𝑖𝑗 )𝑑𝑖,𝑗=1(𝐱) ∈ 𝐿∞(𝛺c)𝑑×𝑑 ,
hich is symmetric: 𝜅𝑖𝑗 = 𝜅𝑗𝑖, and uniformly positive definite: there
xist 0 < 𝜅 ≤ 𝜅 such that for all 𝑝, 𝑞 ∈ 𝐻1(𝛺c)

∫𝛺c

𝜿∇𝑝 ⋅ ∇𝑝 𝑑𝐱 ≥ 𝜅‖∇𝑝‖2𝐿2(𝛺c)
, |

|

|∫𝛺c

𝜿∇𝑝 ⋅ ∇𝑞 𝑑𝐱||
|

≤ 𝜅‖∇𝑝‖𝐿2(𝛺c)‖∇𝑞‖𝐿2(𝛺c),

(2.7)

here ‘‘⋅’’ stands for the scalar product, and using the multiplication of
ensors 𝜿∇𝑝. The fourth-order tensor of inhomogeneous elasticity co-
fficients 𝐀 = (𝐴𝑖𝑗𝑘𝑙)𝑑𝑖,𝑗,𝑘,𝑙=1(𝐱) ∈ 𝐿∞(𝛺c)𝑑×𝑑×𝑑×𝑑 is assumed symmetric:
𝑖𝑗𝑘𝑙 = 𝐴𝑗𝑖𝑘𝑙 = 𝐴𝑘𝑙𝑖𝑗 and uniformly elliptic. Therefore, applying Korn
nd Poincaré inequalities to the second-order tensor of linearized strain
= (𝜀𝑖𝑗 )𝑑𝑖,𝑗=1 given by

(𝐮) = 1
2
(

∇𝐮 + ∇𝐮⊤
)

, 𝜺(𝐯) = 1
2
(

∇𝐯 + ∇𝐯⊤
)

, (2.8)

where ⊤ stands for transposition, there exist constants 0 < 𝑎 ≤ 𝑎 such
that for all 𝐮, 𝐯 ∈ 𝐻1(𝛺c)𝑑 :

∫𝛺c

𝐀𝜺(𝐮) ⋅ 𝜺(𝐮) 𝑑𝐱 ≥ 𝑎‖𝐮‖2
𝐻1(𝛺c)

if 𝐮 = 𝟎 on 𝛤D,

|

|

|∫𝛺c

𝐀𝜺(𝐮) ⋅ 𝜺(𝐯) 𝑑𝐱||
|

≤ 𝑎‖𝐮‖𝐻1(𝛺c)‖𝐯‖𝐻1(𝛺c).
(2.9)

At the boundary, the following trace inequality holds: there exists 𝐾tr >
0 such that

‖𝐮‖2
𝐿2(𝜕𝛺∪𝛤+

c ∪𝛤−
c )

≤ 𝐾tr‖𝐮‖2𝐻1(𝛺c)
. (2.10)

In the geometry (2.1)–(2.4), we look for the unknown displacement
and pore pressure in 𝛺𝑇

c :

𝐮 = (𝑢1,… , 𝑢𝑑 )(𝑡, 𝐱) ∈ 𝐻1(0, 𝑇 ;𝐻1(𝛺c))𝑑 ,

𝑝(𝑡, 𝐱) ∈ 𝐻1(0, 𝑇 ;𝐿2(𝛺c)) ∩ 𝐿2(0, 𝑇 ;𝐻1(𝛺c)).
(2.11)

The symmetric second-order tensors of stress 𝝉 = (𝜏𝑖𝑗 )𝑑𝑖,𝑗=1 and 𝝈 =
(𝜎𝑖𝑗 )𝑑𝑖,𝑗=1 are defined according to (1.1) and (1.2). The mechanical stress
𝝈(𝐮) depends on 𝐮 through the linearized strain 𝜺(𝐮) in (2.8). Avoiding
redundant 𝜁 and 𝐪, the governing system (1.1)–(1.6) is reduced to the
Stokes equation:

− div𝝈(𝐮) + 𝛼∇𝑝 = 0 in 𝛺𝑇
c , (2.12)

and the following mass balance equation:
𝜕 (

𝑆𝑝 + 𝛼tr𝜺(𝐮)
)

− div(𝜿∇𝑝) = 0 in 𝛺𝑇 , (2.13)

𝜕𝑡 c
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where the trace tr𝜺(𝐮) = div𝐮. They are endowed with the initial
ondition:

(0) = 𝐮0, 𝑝(0) = 𝑓 (0) in 𝛺c, (2.14)

and mixed Dirichlet–Neumann conditions at the boundary of reservoir:

𝐮 = 𝟎 on 𝛤 𝑇
D , 𝝈(𝐮)𝐧 − 𝛼𝑝𝐧 = 𝐠 on 𝛤 𝑇

N , 𝑝 = 𝑓 on 𝜕𝛺𝑇 (2.15)

for the data from (2.5) and (2.6).
In view of the presence of a crack, the fields are discontinuous

allowing jumps:

[[𝐮]] ∶= 𝐮|𝛤+
c
−𝐮|𝛤−

c
, [[𝝈(𝐮)]] ∶= 𝝈(𝐮)|𝛤+

c
−𝝈(𝐮)|𝛤−

c
, [[𝑝]] ∶= 𝑝|𝛤+

c
− 𝑝|𝛤−

c
.

(2.16)

We decompose vectors into the normal and tangential components at
the boundary 𝜕𝛺 ∪ 𝛤+

c ∪ 𝛤−
c :

𝐮 = 𝑢𝑛𝐧+𝐮𝛤 for 𝑢𝑛 ∶= 𝐮⋅𝐧, 𝝈(𝐮)𝐧 = 𝜎𝑛(𝐮)𝐧+𝝈𝛤 (𝐮) for 𝜎𝑛(𝐮) ∶= 𝝈(𝐮)𝐧⋅𝐧,

(2.17)

such that 𝜏𝑛 = 𝜎𝑛(𝐮) − 𝛼𝑝 in (1.12). At the crack faces, there is no stress
in tangential direction:

𝝈𝛤 (𝐮) = 𝟎 on 𝛤+
c ∪ 𝛤−

c for 𝑡 ∈ (0, 𝑇 ), (2.18)

and the pore pressure 𝑝 is continuous

𝑝 = 𝑓 on 𝛤+
c ∪ 𝛤−

c for 𝑡 ∈ (0, 𝑇 ), (2.19)

with the fluid pressure 𝑓 prescribed in (2.5). In the normal direction,
the crack opening 𝑤 = [[𝑢𝑛]] and 𝑝 = 𝑓 according to (2.19), then from
(1.12) and (1.13) we infer the following complementarity conditions:

[[𝜎𝑛(𝐮) + (1 − 𝛼)𝑓 ]] = 0, 𝜎𝑛(𝐮) + (1 − 𝛼)𝑓 − 𝑓coh
(

[[𝑢𝑛]]
)

≤ 0,

[[𝑢𝑛]] ≥ 0,
[

𝜎𝑛(𝐮) + (1 − 𝛼)𝑓 − 𝑓coh
(

[[𝑢𝑛]]
)]

[[𝑢𝑛]] = 0 on 𝛤 𝑇
c . (2.20)

For 𝐻1-functions in (2.11), and similarly in (2.5), the jump and the
normal stress are defined as

[[𝑢𝑛]], [[𝑝]], [[𝑓 ]] ∈ 𝐻1∕2
00 (𝛤c), 𝜎𝑛(𝐮) ∈ 𝐻1∕2

00 (𝛤c)⋆ (2.21)

in the Lions–Magenes space 𝐻1∕2
00 (𝛤c) of functions, which continuation

by zero belongs to 𝐻1∕2(𝛴), and its adjoint space of linear continuous
functionals 𝐻1∕2

00 (𝛤c)⋆. Then relations in (2.20) are well defined in the
sense of distributions in the dual spaces, see Khludnev and Kovtunenko
(2000, Ch.1) for details.

Now we give a variational formulation to the problem.

Proposition 2.1 (Variational Problem). The poroelastic problem with fluid-
driven crack subjected to non-penetration and cohesion conditions consists in
finding 𝐮 and 𝑝 in (2.11) which satisfy the initial condition (2.14), equality
and inequality constraints from (2.15), (2.19) and (2.20):

𝐮 = 𝟎 on 𝛤 𝑇
D , 𝑝 = 𝑓 on 𝜕𝛺 ∪ 𝛤+

c ∪ 𝛤−
c for 𝑡 ∈ (0, 𝑇 ), [[𝑢𝑛]] ≥ 0 on 𝛤 𝑇

c ,

(2.22)

at 𝑡 ∈ (0, 𝑇 ). They solve the following variational inequality:

∫𝛺c

(

𝝈(𝐮) ⋅ 𝜺(𝐯 − 𝐮) − 𝛼𝑝 tr𝜺(𝐯 − 𝐮)
)

𝑑𝐱 + ∫𝛤c
𝑓coh

(

[[𝑢𝑛]]
)

[[𝑣𝑛 − 𝑢𝑛]] 𝑑𝑆𝐱

≥ ∫𝛤N
𝐠 ⋅ (𝐯 − 𝐮) 𝑑𝑆𝐱 + ∫𝛤c

[[𝑓 (𝑣𝑛 − 𝑢𝑛)]] 𝑑𝑆𝐱 (2.23)

for all test functions 𝐯 ∈ 𝐻1(𝛺c)𝑑 with 𝐯 = 𝟎 at 𝛤D and [[𝑣𝑛]] ≥ 0 at 𝛤c,
and variational equation:

∫𝛺c

[ 𝜕
𝜕𝑡
(

𝑆𝑝 + 𝛼tr𝜺(𝐮)
)

𝑞 + 𝜿∇𝑝 ⋅ ∇𝑞
]

𝑑𝐱 = 0 (2.24)

for all test functions 𝑞 ∈ 𝐻1(𝛺 ) such that 𝑞 = 0 at 𝜕𝛺 ∪ 𝛤+ ∪ 𝛤−.
4

0 c c c f
Proof. For smooth functions 𝐮, 𝐯 and 𝑝, the following Green formula
associated to Stokes equation holds:

−∫𝛺c

(

div𝝈(𝐮) − 𝛼∇𝑝
)

⋅ 𝐯 𝑑𝐱 = ∫𝛺c

(

𝝈(𝐮) ⋅ 𝜺(𝐯) − 𝛼𝑝 tr𝜺(𝐯)
)

𝑑𝐱

− ∫𝛤N

(

𝝈(𝐮)𝐧 − 𝛼𝑝𝐧
)

⋅ 𝐯 𝑑𝑆𝐱 + ∫𝛤c
[[
(

𝝈(𝐮)𝐧 − 𝛼𝑝𝐧
)

⋅ 𝐯]] 𝑑𝑆𝐱 , (2.25)

if 𝐯 = 𝟎 on 𝛤D. For the transport, Green’s formula takes place for all
smooth functions 𝑝 and 𝑞:

− ∫𝛺c

div(𝜿∇𝑝)𝑞 𝑑𝐱 = ∫𝛺c

𝜿∇𝑝 ⋅ ∇𝑞 𝑑𝐱, if 𝑞 = 0 on 𝜕𝛺 ∪ 𝛤+
c ∪ 𝛤−

c .

(2.26)

ince pointwise conditions in (2.20) can be expressed equivalently in
he variational form:

[𝜎𝑛(𝐮) + (1 − 𝛼)𝑓 ]] = 0, [[𝑢𝑛]] ≥ 0,
[

𝜎𝑛(𝐮) + (1 − 𝛼)𝑓 − 𝑓coh
(

[[𝑢𝑛]]
)]

[[𝑣𝑛 − 𝑢𝑛]] ≤ 0

(2.27)

or all [[𝑣𝑛]] ≥ 0. Substitution of the equilibrium equation (2.12)
nd boundary conditions from (2.15), (2.18), (2.19) and (2.27) into
reen’s formula (2.25) tested with 𝐯−𝐮 yields the variational inequality

2.23). Inserting the mass balance equation (2.13) into (2.26) leads
traightforwardly to (2.24).

Conversely, 𝐻2-smooth solution of (2.22)–(2.24) after integration
y parts justifies equations and inequalities (2.12)–(2.15) and (2.18)–
2.20). This completes the proof. □

Within the variational theory, it is worth noting the following issue.
f there exists a potential 𝜙 constituting the cohesion force 𝑓coh = 𝜙′,
hen an energy functional can be introduced by

(𝐮, 𝑝) = ∫𝛺c

( 1
2
𝝈(𝐮) ⋅ 𝜺(𝐮) − 𝛼𝑝 tr𝜺(𝐮)

)

𝑑𝐱 + ∫𝛤c
𝜙
(

[[𝑢𝑛]]
)

𝑑𝑆𝐱

− ∫𝛤N
𝐠 ⋅ 𝐮 𝑑𝑆𝐱 − ∫𝛤c

[[𝑓𝑢𝑛]] 𝑑𝑆𝐱

such that constrained minimization

min
𝐯

(𝐯, 𝑝) subject to 𝐯 ∈ 𝐻1(𝛺c)𝑑 with 𝐯 = 𝟎 on 𝛤D and [[𝑣𝑛]] ≥ 0 on 𝛤c

(2.28)

ields the first-order necessary optimality condition (2.23). However,
solution of the variational inequality (2.23) does not provide the
inimum in (2.28) because of the lack of convexity of 𝜙, e.g. given

y (1.9).

. Existence theory

In order to prove a variational solution for the poroelastic prob-
em with fluid-driven crack subjected to non-penetration and cohe-
ion conditions, we approximate (2.12)–(2.15) by applying Rothe’s
ethod of temporal semi-discretization, where the time derivative is

pproximated by a difference quotient.
For a fixed final time 𝑇 and integer 𝑁 > 0, let the uniform mesh of

ize 𝛿 = 𝑇 ∕𝑁 > 0 be given by points:
𝛿
0 = 0, 𝑡𝛿1 = 𝛿, … , 𝑡𝛿𝑘 = 𝑘𝛿, … , 𝑡𝛿𝑁 = 𝑁𝛿 = 𝑇 . (3.1)

he time-continuous functions from (2.5) and (2.6) constitute the
equence of data:

𝛿
𝑘 ∶= 𝑓 (𝑡𝛿𝑘) ∈ 𝐻1(𝛺c) ∩ 𝐿2(𝛤N ∪ 𝛤+

c ∪ 𝛤−
c ), 𝝉0𝛿𝑘 ∶= 𝝉0(𝑡𝛿𝑘) ∈ 𝐿2(𝛺c)𝑑×𝑑 ,

𝛿
𝑘 ∶= 𝐠(𝑡𝛿𝑘) ∈ 𝐿2(𝛤N)𝑑

(3.2)

or 𝑘 = 1,… , 𝑁 . Initializing with the initial conditions (2.14), we look
or the unknown pore pressure 𝑝𝛿 (𝐱)−𝑓 𝛿(𝐱) ∈ 𝐻1(𝛺 ) and displacement
𝑘 𝑘 0 c



Applications in Engineering Science 15 (2023) 100136H. Itou et al.

v

𝑎

T
c

𝑏

i
i

a

g
s

𝐮𝛿𝑘(𝐱) ∈  from the feasible set

 =
{

𝐯 ∈ 𝐻1(𝛺c)𝑑 | 𝐯 = 𝟎 on 𝛤D, [[𝑣𝑛]] ≥ 0 on 𝛤c
}

, (3.3)

which solve subsequently the recursive relations for 𝑘 = 1,… , 𝑁 :

∫𝛺c

(

𝐀𝜺(𝐮𝛿𝑘) ⋅ 𝜺(𝐯 − 𝐮𝛿𝑘) − 𝛼𝑝𝛿𝑘tr𝜺(𝐯 − 𝐮𝛿𝑘)
)

𝑑𝐱 + ∫𝛤c
𝑓coh

(

[[(𝑢𝛿𝑘)𝑛]]
)

[[𝑣𝑛 − (𝑢𝛿𝑘)𝑛]] 𝑑𝑆𝐱

≥ ∫𝛺c

𝝉0𝛿𝑘 ⋅ 𝜺(𝐯 − 𝐮𝛿𝑘) 𝑑𝐱 + ∫𝛤N
𝐠𝛿𝑘 ⋅ (𝐯 − 𝐮𝛿𝑘) 𝑑𝑆𝐱 + ∫𝛤c

[[𝑓 𝛿
𝑘

(

𝑣𝑛 − (𝑢𝛿𝑘)𝑛
)

]] 𝑑𝑆𝐱 ,

(3.4)

∫𝛺c

[(

𝑆𝑝𝛿𝑘 + 𝛼tr𝜺(𝐮𝛿𝑘)
)

𝑞 + 𝛿𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑞
]

𝑑𝐱 = ∫𝛺c

(

𝑆𝑝𝛿𝑘−1 + 𝛼tr𝜺(𝐮𝛿𝑘−1)
)

𝑞 𝑑𝐱

(3.5)

for all test functions 𝐯 ∈  and 𝑞 ∈ 𝐻1
0 (𝛺c).

Theorem 3.1 (Solvability of the Incremental Problem). Let the uniform
conditions (2.7) and (2.9) on the coefficients 𝜿 and 𝐀, and (1.10) on the
cohesion force 𝑓coh hold. For every 𝑘 = 1,… , 𝑁 there exists a solution
(𝐮𝛿𝑘, 𝑝

𝛿
𝑘−𝑓 𝛿

𝑘 ) ∈ ×𝐻1
0 (𝛺c) to the incremental poroelastic problem (3.4) and

(3.5) for the fluid-driven crack subject to non-penetration and cohesion. If
𝑓coh monotonically increases, then it is unique.

Proof. Summation of (3.4) and (3.5) builds a single variational in-
equality:

𝑎𝛿(𝐮𝛿𝑘, 𝑝
𝛿
𝑘, 𝐯 − 𝐮𝛿𝑘, 𝑞) + 𝑏(𝐮𝛿𝑘, 𝐯 − 𝐮𝛿𝑘) ≥ 𝑙𝛿𝑘(𝐯 − 𝐮𝛿𝑘, 𝑞) for all (𝐯, 𝑞) ∈  ×𝐻1

0 (𝛺c),

(3.6)

with a bilinear function:

𝑎𝛿(𝐮, 𝑝, 𝐯, 𝑞) ∶= ∫𝛺c

[

𝐀𝜺(𝐮) ⋅𝜺(𝐯)+𝑆𝑝𝑞+𝛼
(

tr𝜺(𝐮)𝑞−𝑝 tr𝜺(𝐯)
)

+𝛿𝜿∇𝑝 ⋅∇𝑞
]

𝑑𝐱

(3.7)

and a nonlinear bifunction in the left-hand side:

𝑏(𝐮, 𝐯) ∶= ∫𝛤c
𝑓coh

(

[[𝑢𝑛]]
)

[[𝑣𝑛]] 𝑑𝑆𝐱 , (3.8)

and a linear function in the right-hand side:

𝑙𝛿𝑘(𝐯, 𝑞) ∶= ∫𝛺c

[

𝝉0𝛿𝑘 ⋅ 𝜺(𝐯) +
(

𝑆𝑝𝛿𝑘−1 + 𝛼tr𝜺(𝐮𝛿𝑘−1)
)

𝑞
]

𝑑𝐱

+ ∫𝛤N
𝐠𝛿𝑘 ⋅ 𝐯 𝑑𝑆𝐱 + ∫𝛤c

[[𝑓 𝛿
𝑘 𝑣𝑛]] 𝑑𝑆𝐱 .

(3.9)

For a penalty parameter 𝜖 > 0 and the bifunction associated with
the non-penetration in :

𝛽𝜖(𝐮, 𝐯) ∶=
1
𝜖 ∫𝛤c

min
(

0, [[𝑢𝑛]]
)

[[𝑣𝑛]] 𝑑𝑆𝐱 (3.10)

such that 𝛽𝜖(𝐮,𝐮) ≥ 0, we introduce a standard penalization of the
ariational inequality (3.6):

𝛿(𝐮𝛿𝜖𝑘 , 𝑝𝛿𝜖𝑘 , 𝐯, 𝑞) + 𝑏(𝐮𝛿𝜖𝑘 , 𝐯) + 𝛽𝜖(𝐮𝛿𝜖𝑘 , 𝐯) = 𝑙𝛿𝑘(𝐯, 𝑞) (3.11)

for all test functions (𝐯, 𝑞) ∈ 𝐻1(𝛺c)𝑑 × 𝐻1
0 (𝛺c) such that 𝐯 = 𝟎 on

𝛤D. The uniform conditions (2.7) and (2.9) on 𝜿 and 𝐀, and (1.10) on
𝑓coh guarantee boundedness and coercivity of [𝑎𝛿 + 𝑏 + 𝛽𝜖] in the left-
hand side of Eq. (3.11), noting that the term 𝛼(tr𝜺(𝐮)𝑞 − 𝑝 tr𝜺(𝐯)) = 0
in (3.7) for (𝐮, 𝑝) = (𝐯, 𝑞). Moreover, the nonlinear bifunction [𝑏 + 𝛽𝜖]
is weakly continuous in the following sense: if 𝐮𝑚 ⇀ 𝐮 weakly in
𝐻1(𝛺c)𝑑 as 𝑚 → ∞, then [[𝑢𝑚𝑛 ]] → [[𝑢𝑛]] strongly in 𝐿2(𝛤c) by the compact
embedding, and uniformly continuous functions preserve the strong
convergence:

𝑚

5

[𝑏 + 𝛽𝜖](𝐮 , 𝐯) → [𝑏 + 𝛽𝜖](𝐮, 𝐯) as 𝑚 → ∞. (3.12)
Therefore, Galerkin’s approximation and Brouwer’s fixed point theorem
proves existence of a solution (𝐮𝛿𝜖𝑘 , 𝑝𝛿𝜖𝑘 ) to the penalty equation (3.11).

aking the limit as 𝜖 → 0 in the standard way, and using the weak
ontinuity

(𝐮𝛿𝜖𝑘 ,𝐮𝛿𝜖𝑘 ) → 𝑏(𝐮𝛿𝑘,𝐮
𝛿
𝑘) as 𝐮𝛿𝜖𝑘 ⇀ 𝐮𝛿𝑘 weakly in 𝐻1(𝛺c)𝑑 , (3.13)

t justifies that (𝐮𝛿𝑘, 𝑝
𝛿
𝑘−𝑓 𝛿

𝑘 ) ∈ ×𝐻1
0 (𝛺c) is a solution to the variational

nequality (3.6).
Testing (3.6) with 𝑞 = 0 implies the variational inequality (3.4), next

choosing 𝐯 = 𝟎 and 𝐯 = 2𝐮𝛿𝑘 yields the variational equation (3.5).
The uniqueness result is well-known under the monotony assump-

tion. The proof is completed. □

Next we derive uniform estimates for the solution of the incremental
problem, which are independent of the time step 𝛿. For this task we
introduce a piecewise-affine interpolant for the semi-discrete functions:

𝐮𝛿(𝑡) =
𝑡 − 𝑡𝛿𝑘−1

𝛿
𝐮𝛿𝑘 +

𝑡𝛿𝑘 − 𝑡
𝛿

𝐮𝛿𝑘−1, 𝑝𝛿(𝑡) =
𝑡 − 𝑡𝛿𝑘−1

𝛿
𝑝𝛿𝑘 +

𝑡𝛿𝑘 − 𝑡
𝛿

𝑝𝛿𝑘−1 (3.14)

t 𝑡 ∈ (𝑡𝛿𝑘−1, 𝑡
𝛿
𝑘] =∶ 𝐼𝛿𝑘 for 𝑘 = 1,… , 𝑁 , which have piecewise-constant

time derivatives:

𝜕𝐮𝛿
𝜕𝑡

(𝑡) =
𝐮𝛿𝑘 − 𝐮𝛿𝑘−1

𝛿
,

𝜕𝑝𝛿

𝜕𝑡
(𝑡) =

𝑝𝛿𝑘 − 𝑝𝛿𝑘−1
𝛿

at 𝑡 ∈ 𝐼𝛿𝑘 . (3.15)

The interpolants 𝑓 𝛿(𝑡), 𝝉0𝛿(𝑡), 𝐠𝛿(𝑡) are similarly defined from (3.2).

Theorem 3.2 (Uniform Estimate of the Incremental Solution). Let the
rowth condition (1.11) on the cohesion force 𝑓coh hold with a sufficiently
mall lower bound 𝐹 such that

𝐾 ∶=
𝑎
5
− 𝐹𝐾tr > 0. (3.16)

The solution (𝐮𝛿 , 𝑝𝛿 − 𝑓 𝛿) of the incremental poroelastic problem for the
fluid-driven crack (3.4) and (3.5), after interpolation (3.14) and (3.15),
possesses the following estimates:

𝑎‖𝐮𝛿‖2
𝐿∞(0,𝑇 ;𝐻1(𝛺c))

+ 𝑆‖𝑝𝛿‖2
𝐿∞(0,𝑇 ;𝐿2(𝛺c))

+ 𝜅‖∇𝑝𝛿‖2
𝐿2(𝛺𝑇

c )

≤ 𝑎‖𝐮0‖2𝐻1(𝛺c)
+ 𝑆‖𝑓 (0)‖2

𝐿2(𝛺c)
+

𝜅𝛿
2
‖∇𝑓 (0)‖2

𝐿2(𝛺c)

+ 𝑇𝐹 + 3‖𝑃 𝛿
‖𝐿2(0,𝑇 ) − 𝛿𝑃 𝛿(0) + ‖𝑄𝛿

‖𝐿2(0,𝑇 ),

𝐾‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐿2(0,𝑇 ;𝐻1(𝛺c))
+ 𝑆‖‖

‖

𝜕𝑝𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛺𝑇
c )

≤ 𝜅
2
‖∇𝑓 (0)‖2

𝐿2(𝛺c)
+ ‖𝑅𝛿

‖𝐿2(0,𝑇 ),

(3.17)

where the constants are taken from conditions (1.10) and (1.11) on 𝑓coh,
(2.7) on 𝜿, (2.9) on 𝐀, and (2.10) on the boundary trace, and the data are
gathered within

𝑃 𝛿 ∶= ‖𝝉0𝛿‖2𝐿2(𝛺c)
+ (𝛼 + 𝑆)‖𝑓 𝛿

‖

2
𝐿2(𝛺c)

+ (𝜅 +𝐾tr )‖𝑓 𝛿
‖

2
𝐻1(𝛺c)

+ ‖𝐠𝛿‖2𝐿2(𝛤N)
,

𝑄𝛿 ∶=
(

1 + 𝛼𝑑 + (2 + 𝐹 )𝐾tr
)

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
+ 𝑆‖‖

‖

𝜕𝑝𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛺c)
,

𝑅𝛿 ∶= 5
4𝑎

{

‖

‖

‖

𝜕𝝉0𝛿
𝜕𝑡

‖

‖

‖

2

𝐿2(𝛺c)
+𝐾tr

‖

‖

‖

𝜕𝐠𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛤N)

+𝐾tr
‖

‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛤+
c ∪𝛤−

c )
+ 𝛼2𝑑‖‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛺c)

}

+ 𝜅𝑇
2

‖

‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖

2

𝐻1(𝛺c)
. (3.18)

Proof. (i) Uniform estimate of interpolates in (3.14). Let us test (3.5)
with 𝑞 = 𝑝𝛿𝑘 − 𝑓 𝛿

𝑘 ∈ 𝐻1
0 (𝛺c):

∫𝛺c

[(

𝑆𝑝𝛿𝑘 + 𝛼tr𝜺(𝐮𝛿𝑘)
)

(𝑝𝛿𝑘 − 𝑓 𝛿
𝑘 ) + 𝛿𝜿∇𝑝𝛿𝑘 ⋅ ∇(𝑝

𝛿
𝑘 − 𝑓 𝛿

𝑘 )
]

𝑑𝐱

=
(

𝑆𝑝𝛿𝑘−1 + 𝛼tr𝜺(𝐮𝛿𝑘−1)
)

(𝑝𝛿𝑘 − 𝑓 𝛿
𝑘 ) 𝑑𝐱
∫𝛺c
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+

|

|

I
(

∫

≤

S
p

d

v

∫

≥

T
y

and subtract (3.4) tested with 𝐯 = 𝐮𝛿𝑘−1 ∈ :

∫𝛺c

(

𝐀𝜺(𝐮𝛿𝑘) ⋅ 𝜺(𝐮
𝛿
𝑘−1 − 𝐮𝛿𝑘) − 𝛼𝑝𝛿𝑘tr𝜺(𝐮

𝛿
𝑘−1 − 𝐮𝛿𝑘)

)

𝑑𝐱

+ ∫𝛤c
𝑓coh

(

[[(𝑢𝛿𝑘)𝑛]]
)

[[(𝑢𝛿𝑘−1)𝑛 − (𝑢𝛿𝑘)𝑛]] 𝑑𝑆𝐱

≥ ∫𝛺c

𝝉0𝛿𝑘 ⋅ 𝜺(𝐮𝛿𝑘−1 − 𝐮𝛿𝑘) 𝑑𝐱

+ ∫𝛤N
𝐠𝛿𝑘 ⋅ (𝐮

𝛿
𝑘−1 − 𝐮𝛿𝑘) 𝑑𝑆𝐱 + ∫𝛤c

[[𝑓 𝛿
𝑘
(

(𝑢𝛿𝑘−1)𝑛 − (𝑢𝛿𝑘)𝑛
)

]] 𝑑𝑆𝐱 , (3.19)

such that the term 𝛼𝑝𝛿𝑘tr𝜺(𝐮
𝛿
𝑘−1 − 𝐮𝛿𝑘) is canceled, then we have

∫𝛺c

(

𝐀𝜺(𝐮𝛿𝑘) ⋅ 𝜺(𝐮
𝛿
𝑘) + 𝑆(𝑝𝛿𝑘)

2 + 𝛿𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘
)

𝑑𝐱 ≤
5
∑

𝑙=1
𝐼𝑙 (3.20)

at 𝑡 ∈ 𝐼𝛿𝑘 for 𝑘 = 1,… , 𝑁 , where the integrals are given by

𝐼1 ∶= ∫𝛺c

(

𝐀𝜺(𝐮𝛿𝑘) ⋅ 𝜺(𝐮
𝛿
𝑘−1) + 𝝉0𝛿𝑘 ⋅ 𝜺(𝐮𝛿𝑘 − 𝐮𝛿𝑘−1) + 𝛼tr𝜺(𝐮𝛿𝑘 − 𝐮𝛿𝑘−1)𝑓

𝛿
𝑘
)

𝑑𝐱,

𝐼2 ∶= ∫𝛺c

(

𝑆𝑝𝛿𝑘𝑝
𝛿
𝑘−1 + 𝑆(𝑝𝛿𝑘 − 𝑝𝛿𝑘−1)𝑓

𝛿
𝑘 + 𝛿𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑓

𝛿
𝑘
)

𝑑𝐱,

𝐼3 ∶= ∫𝛤N
𝐠𝛿𝑘 ⋅ (𝐮

𝛿
𝑘 − 𝐮𝛿𝑘−1) 𝑑𝑆𝐱 ,

𝐼4 ∶= ∫𝛤c
[[𝑓 𝛿

𝑘
(

(𝑢𝛿𝑘)𝑛 − (𝑢𝛿𝑘−1)𝑛
)

]] 𝑑𝑆𝐱 ,

𝐼5 ∶= ∫𝛤c
𝑓coh

(

[[(𝑢𝛿𝑘)𝑛]]
)

[[(𝑢𝛿𝑘−1)𝑛 − (𝑢𝛿𝑘)𝑛]] 𝑑𝑆𝐱 .

Using the symmetry of 𝐀 and 𝜿, notation (3.15), tr2𝜺(𝐮) ≤ 𝑑‖𝜺(𝐮)‖2,
Cauchy–Schwarz, weighted Young and trace (2.10) inequalities, the
upper bounds in (1.10), (2.7) and (2.9) provide estimates of 𝐼1–𝐼5:

|𝐼1| ≤
1
2 ∫𝛺c

(

𝐀𝜺(𝐮𝛿𝑘) ⋅ 𝜺(𝐮
𝛿
𝑘) + 𝐀𝜺(𝐮𝛿𝑘−1) ⋅ 𝜺(𝐮

𝛿
𝑘−1)

)

𝑑𝐱

+ 𝛿
2
‖𝝉0𝛿𝑘 ‖

2
𝐿2(𝛺c)

+ 𝛿
2
(1 + 𝛼𝑑)‖‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
+ 𝛼𝛿

2
‖𝑓 𝛿

𝑘‖
2
𝐿2(𝛺c)

,

|𝐼2| ≤
𝑆
2

(

‖𝑝𝛿𝑘‖
2
𝐿2(𝛺c)

+ ‖𝑝𝛿𝑘−1‖
2
𝐿2(𝛺c)

)

+ 𝑆𝛿
2

(

‖

‖

‖

𝜕𝑝𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐿2(𝛺c)
+ ‖𝑓 𝛿

𝑘‖
2
𝐿2(𝛺c)

)

𝛿
2 ∫𝛺c

(

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 + 𝜿∇𝑓 𝛿

𝑘 ⋅ ∇𝑓 𝛿
𝑘

)

𝑑𝐱,

𝐼3| ≤ ‖𝐠𝛿𝑘‖𝐿2(𝛤N)
‖

‖

‖

𝛿 𝜕𝐮
𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖𝐿2(𝛤N)
≤ 𝛿

2
‖𝐠𝛿𝑘‖

2
𝐿2(𝛤N)

+
𝛿𝐾tr
2

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
,

|𝐼4| ≤ ‖𝑓 𝛿
𝑘‖𝐿2(𝛤+

c ∪𝛤−
c )
‖

‖

‖

𝛿 𝜕𝐮
𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖𝐿2(𝛤+
c ∪𝛤−

c )

≤
𝛿𝐾tr
2

(

‖𝑓 𝛿
𝑘‖

2
𝐻1(𝛺c)

+ ‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)

)

,

𝐼5| ≤ 𝐹‖

‖

‖

[[

𝛿
( 𝜕𝐮𝛿

𝜕𝑡

)

𝑛

|

|

|𝐼𝛿𝑘

]]

‖

‖

‖𝐿2(𝛤c)
≤ 𝛿𝐹

2

(

1 +𝐾tr
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)

)

.

nserting these estimates into (3.20), using the upper bound for 𝜿 in
2.7) and gathering the same terms, the result multiplied by 2 yields

𝛺c

𝐀𝜺(𝐮𝛿𝑘) ⋅ 𝜺(𝐮
𝛿
𝑘) 𝑑𝐱 + 𝑆‖𝑝𝛿𝑘‖

2
𝐿2(𝛺c)

+ 𝛿 ∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱

∫𝛺c

𝐀𝜺(𝐮𝛿𝑘−1) ⋅ 𝜺(𝐮
𝛿
𝑘−1) 𝑑𝐱 + 𝑆‖𝑝𝛿𝑘−1‖

2
𝐿2(𝛺c)

+ 𝛿(𝐹 + 𝑃 𝛿
𝑘 +𝑄𝛿

|𝐼𝛿𝑘
), (3.21)

where the notation 𝑄𝛿 in the right-hand side is given in (3.18), and

𝑃 𝛿
𝑘 ∶= ‖𝝉0𝛿𝑘 ‖

2
𝐿2(𝛺c)

+ (𝛼 +𝑆)‖𝑓 𝛿
𝑘‖

2
𝐿2(𝛺c)

+ (𝜅 +𝐾tr )‖𝑓 𝛿
𝑘‖

2
𝐻1(𝛺c)

+ ‖𝐠𝛿𝑘‖
2
𝐿2(𝛤N)

.

Summing up (3.21) over 𝑘 = 1,… , 𝑚 and using the telescope rule,
we have

∫ 𝐀𝜺(𝐮𝛿𝑚) ⋅ 𝜺(𝐮
𝛿
𝑚) 𝑑𝐱 + 𝑆‖𝑝𝛿𝑚‖

2
𝐿2(𝛺 )

+ 𝛿
𝑚
∑

∫ 𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱
6

𝛺c
c 𝑘=1 𝛺c
≤ ∫𝛺c

𝐀𝜺(𝐮𝛿0) ⋅ 𝜺(𝐮
𝛿
0) 𝑑𝐱 + 𝑆‖𝑝𝛿0‖

2
𝐿2(𝛺c)

+ 𝛿
𝑚
∑

𝑘=1
(𝐹 + 𝑃 𝛿

𝑘 +𝑄𝛿
|𝐼𝛿𝑘

). (3.22)

The left-hand side of (3.22) is estimated due to the lower bounds in
(2.7) for 𝜿 and (2.9) for 𝐀. Taking maximum over 𝑚 ∈ [1, 𝑁] in (3.22),
recalling the initial condition (2.14) and the upper bound for 𝐀 in (2.9),
it follows the estimate:

𝑎 max
𝑘∈[1,𝑁]

‖𝐮𝛿𝑘‖
2
𝐻1(𝛺c)

+ 𝑆 max
𝑘∈[1,𝑁]

‖𝑝𝛿𝑘‖
2
𝐿2(𝛺c)

+ 𝜅𝛿
𝑁
∑

𝑘=1
‖∇𝑝𝛿𝑘‖

2
𝐿2(𝛺c)

≤ 𝑎‖𝐮0‖2𝐻1(𝛺c)
+ 𝑆‖𝑓 (0)‖2

𝐿2(𝛺c)
+ 𝛿𝑁𝐹 + 𝛿

𝑁
∑

𝑘=1
(𝑃 𝛿

𝑘 +𝑄𝛿
|𝐼𝛿𝑘

). (3.23)

ince Kepler’s integration rule applied to the piecewise-affine inter-
olant from (3.14) gives the following form

∫

𝑇

0
‖𝐮𝛿‖2

𝐻1(𝛺c)
𝑑𝑡 =

𝑁
∑

𝑘=1
∫

𝑡𝛿𝑘

𝑡𝛿𝑘−1

‖𝐮𝛿‖2
𝐻1(𝛺c)

𝑑𝑡

= 𝛿
3

𝑁
∑

𝑘=1

(

‖𝐮𝛿𝑘‖
2
𝐻1(𝛺c)

+ ‖𝐮𝛿𝑘−1‖
2
𝐻1(𝛺c)

+ ‖𝐮𝛿𝑘‖𝐻1(𝛺c)‖𝐮
𝛿
𝑘−1‖𝐻1(𝛺c)

)

,

by use of algebraic inequality 2𝑥𝑦 ≤ 𝑥2 + 𝑦2 we obtain

𝛿
3

(

‖𝐮𝛿0‖
2
𝐻1(𝛺c)

+ 2
𝑁−1
∑

𝑘=1
‖𝐮𝛿𝑘‖

2
𝐻1(𝛺c)

+ ‖𝐮𝛿𝑁‖

2
𝐻1(𝛺c)

)

≤ ∫

𝑇

0
‖𝐮𝛿‖2

𝐻1(𝛺c)
𝑑𝑡

≤ 𝛿
2

(

‖𝐮𝛿0‖
2
𝐻1(𝛺c)

+ 2
𝑁−1
∑

𝑘=1
‖𝐮𝛿𝑘‖

2
𝐻1(𝛺c)

+ ‖𝐮𝛿𝑁‖

2
𝐻1(𝛺c)

)

.

This provides the lower and upper bounds for the sum:

∫

𝑇

0
‖𝐮𝛿‖2

𝐻1(𝛺c)
𝑑𝑡 − 𝛿

2
‖𝐮𝛿0‖

2
𝐻1(𝛺c)

≤ 𝛿
𝑁
∑

𝑘=1
‖𝐮𝛿𝑘‖

2
𝐻1(𝛺c)

≤ 3∫

𝑇

0
‖𝐮𝛿‖2

𝐻1(𝛺c)
𝑑𝑡 − 𝛿‖𝐮𝛿0‖

2
𝐻1(𝛺c)

.

With its help, the estimate (3.23) can be rewritten for the time-
dependent interpolant functions:

𝑎 max
𝑡∈[0,𝑇 ]

‖𝐮𝛿‖2
𝐻1(𝛺c)

+ 𝑆 max
𝑡∈[0,𝑇 ]

‖𝑝𝛿‖2
𝐿2(𝛺c)

+ 𝜅 ∫

𝑇

0
‖∇𝑝𝛿‖2

𝐿2(𝛺c)
𝑑𝑡

≤ 𝑎‖𝐮0‖2𝐻1(𝛺c)
+ 𝑆‖𝑓 (0)‖2

𝐿2(𝛺c)
+

𝜅𝛿
2
‖∇𝑓 𝛿

0 ‖
2
𝐿2(𝛺c)

+ 𝑇𝐹 + 3∫

𝑇

0
𝑃 𝛿 𝑑𝑡 − 𝛿𝑃 𝛿(0) + ∫

𝑇

0
𝑄𝛿 𝑑𝑡, (3.24)

where 𝛿𝑁 = 𝑇 , piecewise-affine 𝑃 𝛿 and piecewise-constant 𝑄𝛿 are
efined in (3.18).
(ii) Uniform estimate of interpolates in (3.15). Summation of the

ariational inequality (3.4) at 𝑡 = 𝑡𝛿𝑘−1 gives

𝛺c

(

𝐀𝜺(𝐮𝛿𝑘−1) ⋅ 𝜺(𝐯 − 𝐮𝛿𝑘−1) − 𝛼𝑝𝛿𝑘−1tr𝜺(𝐯 − 𝐮𝛿𝑘−1)
)

𝑑𝐱

+ ∫𝛤c
𝑓coh

(

[[(𝑢𝛿𝑘−1)𝑛]]
)

[[𝑣𝑛 − (𝑢𝛿𝑘−1)𝑛]] 𝑑𝑆𝐱

∫𝛺c

𝝉0𝛿𝑘−1 ⋅ 𝜺(𝐯 − 𝐮𝛿𝑘−1) 𝑑𝐱 + ∫𝛤N
𝐠𝛿𝑘−1 ⋅ (𝐯 − 𝐮𝛿𝑘−1) 𝑑𝑆𝐱

+ ∫𝛤c
[[𝑓 𝛿

𝑘−1
(

𝑣𝑛 − (𝑢𝛿𝑘−1)𝑛
)

]] 𝑑𝑆𝐱 . (3.25)

aking 𝐯 = 𝐮𝛿𝑘 ∈  in (3.25) and using (3.19), after division by 𝛿2 it
ields the inequality:

∫𝛺c

{

𝐀𝜺
( 𝜕𝐮𝛿

𝜕𝑡

)

⋅ 𝜺
( 𝜕𝐮𝛿

𝜕𝑡

)

− 𝛼
𝜕𝑝𝛿

𝜕𝑡
tr𝜺

( 𝜕𝐮𝛿
𝜕𝑡

)}

|

|

|𝐼𝛿𝑘
𝑑𝐱

+ ∫𝛤c

𝑓coh
(

[[(𝑢𝛿𝑘)𝑛]]
)

− 𝑓coh
(

[[(𝑢𝛿𝑘−1)𝑛]]
)

𝛿

[[

( 𝜕𝐮𝛿
𝜕𝑡

)

𝑛

|

|

|𝐼𝛿𝑘

]]

𝑑𝑆𝐱 ≤
8
∑

𝑙=6
𝐼𝑙|𝐼𝛿𝑘

(3.26)
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𝐼

𝐼

𝐼

𝐼

t
(

|

|

T
(

≤

S
t
(

∫

𝐮

at 𝑡 ∈ 𝐼𝛿𝑘 for 𝑘 = 1,… , 𝑁 , where the integrals 𝐼6–𝐼8 are determined as

6 ∶= ∫𝛺c

𝜕𝝉0𝛿
𝜕𝑡

⋅ 𝜺
( 𝜕𝐮𝛿

𝜕𝑡

)

𝑑𝐱, 𝐼7 ∶= ∫𝛤N

𝜕𝐠𝛿

𝜕𝑡
⋅
𝜕𝐮𝛿
𝜕𝑡

𝑑𝑆𝐱 ,

8 ∶= ∫𝛤c

[[

𝜕𝑓 𝛿

𝜕𝑡
𝜕𝐮𝛿
𝜕𝑡

]]

⋅ 𝐧 𝑑𝑆𝐱 .

Testing the variational equation (3.5) with 𝑞 = 𝑝𝛿𝑘 − 𝑝𝛿𝑘−1 − 𝑓 𝛿
𝑘 + 𝑓 𝛿

𝑘−1 ∈
𝐻1

0 (𝛺c) and dividing by 𝛿2 we get

∫𝛺c

{[

𝑆
𝜕𝑝𝛿

𝜕𝑡
+ 𝛼

𝜕𝑝𝛿

𝜕𝑡
tr𝜺

( 𝜕𝐮𝛿
𝜕𝑡

)] 𝜕(𝑝𝛿 − 𝑓 𝛿)
𝜕𝑡

+ 𝜿∇𝑝𝛿𝑘 ⋅ ∇
𝜕(𝑝𝛿 − 𝑓 𝛿)

𝜕𝑡

}

|

|

|𝐼𝛿𝑘
𝑑𝐱 = 0

(3.27)

at 𝑡 ∈ 𝐼𝛿𝑘 for 𝑘 = 1,… , 𝑁 . In the sum of (3.26) and (3.27) the term
𝛼𝜕𝑝𝛿∕𝜕𝑡 tr𝜺(𝜕𝐮𝛿∕𝜕𝑡) is canceled, then lower bounds in (1.11) for 𝑓coh and
(2.9) for 𝐀 provide

𝑎‖‖
‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
+ 𝑆‖‖

‖

𝜕𝑝𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐿2(𝛺c)
+ 1

𝛿 ∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱

− 𝐹‖

‖

‖

𝜕[[𝑢𝛿𝑛]]
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐿2(𝛤c)
≤

9
∑

𝑙=6
𝐼𝑙|𝐼𝛿𝑘

+ 𝐼10,

(3.28)

where the integrals 𝐼9 and 𝐼10 are given by

9 ∶= ∫𝛺c

𝛼tr𝜺
( 𝜕𝐮𝛿

𝜕𝑡

) 𝜕𝑓 𝛿

𝜕𝑡
𝑑𝐱,

10 ∶= ∫𝛺c

( 1
𝛿
𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝

𝛿
𝑘−1 + 𝜿∇𝑝𝛿𝑘 ⋅ ∇

𝜕𝑓 𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

)

𝑑𝐱.

Applying Cauchy–Schwarz and weighted Young inequalities, using
r2𝜺(𝐮) ≤ 𝑑‖𝜺(𝐮)‖2, it follows from the upper bounds in (2.7), (2.9), and
2.10) that

𝐼6| ≤
‖

‖

‖

𝜕𝝉0𝛿
𝜕𝑡

‖

‖

‖𝐿2(𝛺c)
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖𝐻1(𝛺c)
≤

𝑎
5
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
+ 5

4𝑎
‖

‖

‖

𝜕𝝉0𝛿
𝜕𝑡

‖

‖

‖

2

𝐿2(𝛺c)
,

|𝐼7| ≤
‖

‖

‖

𝜕𝐠𝛿

𝜕𝑡
‖

‖

‖𝐿2(𝛤N)
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖𝐿2(𝛤N)
≤

𝑎
5
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
+

5𝐾tr
4𝑎

‖

‖

‖

𝜕𝐠𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛤N)
,

|𝐼8| ≤
‖

‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖𝐿2(𝛤+
c ∪𝛤−

c )
‖

‖

‖

𝜕𝑢𝛿𝑛
𝜕𝑡

‖

‖

‖𝐿2(𝛤+
c ∪𝛤−

c )

≤
𝑎
5
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
+

5𝐾tr
4𝑎

‖

‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛤+
c ∪𝛤−

c )
,

𝐼9| ≤ 𝛼
√

𝑑‖‖
‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖𝐻1(𝛺c)
‖

‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖𝐿2(𝛺c)
≤

𝑎
5
‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
+ 5𝛼2𝑑

4𝑎
‖

‖

‖

𝜕𝑓 𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛺c)
,

|𝐼10| ≤
1
2𝛿 ∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱 +

1
2𝛿 ∫𝛺c

𝜿∇𝑝𝛿𝑘−1 ⋅ ∇𝑝
𝛿
𝑘−1 𝑑𝐱

+ 1
2𝑇

max
𝑘∈[1,𝑁]∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱 +

𝑇
2 ∫𝛺c

(

𝜿∇ 𝜕𝑓 𝛿

𝜕𝑡
⋅ ∇

𝜕𝑓 𝛿

𝜕𝑡

)

|

|

|𝐼𝛿𝑘
𝑑𝐱.

Inserting these estimates into (3.28) and using the trace inequality,
after gathering the same terms give
(𝑎
5
− 𝐹𝐾tr

)

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
+ 𝑆‖‖

‖

𝜕𝑝𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐿2(𝛺c)
+ 1

2𝛿 ∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱

≤ 1
2𝛿 ∫𝛺c

𝜿∇𝑝𝛿𝑘−1 ⋅ ∇𝑝
𝛿
𝑘−1 𝑑𝐱 +

1
2𝑇

max
𝑘∈[1,𝑁]∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱 + 𝑅𝛿

|𝐼𝛿𝑘
,

(3.29)

where the term 𝑅𝛿 is determined in (3.18).
Summing (3.29) over 𝑘 = 1,… , 𝑚 for integer 𝑚 and using the

telescope rule and lower bound in (2.7), we obtain
(𝑎
5
− 𝐹𝐾tr

)

𝑚
∑

𝑘=1

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
+ 𝑆

𝑚
∑

𝑘=1

‖

‖

‖

𝜕𝑝𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐿2(𝛺c)

+ 1 𝜿∇𝑝𝛿𝑚 ⋅ ∇𝑝𝛿𝑚 𝑑𝐱
7

2𝛿 ∫𝛺c
≤ 1
2𝛿 ∫𝛺c

𝜿∇𝑝𝛿0 ⋅ ∇𝑝
𝛿
0 𝑑𝐱 +

𝑚
2𝑇

max
𝑘∈[1,𝑁]∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱 +

𝑚
∑

𝑘=1
𝑅𝛿

|𝐼𝛿𝑘
.

aking maximum over 𝑚 ∈ [1, 𝑁] we have

𝑎
5
− 𝐹𝐾tr

)

𝑁
∑

𝑘=1

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
+ 𝑆

𝑁
∑

𝑘=1

‖

‖

‖

𝜕𝑝𝛿

𝜕𝑡
|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐿2(𝛺c)

+ 1
2𝛿

max
𝑚∈[1,𝑁]∫𝛺c

𝜿∇𝑝𝛿𝑚 ⋅ ∇𝑝𝛿𝑚 𝑑𝐱

1
2𝛿 ∫𝛺c

𝜿∇𝑝𝛿0 ⋅ ∇𝑝
𝛿
0 𝑑𝐱 +

𝑁
2𝑇

max
𝑘∈[1,𝑁]∫𝛺c

𝜿∇𝑝𝛿𝑘 ⋅ ∇𝑝
𝛿
𝑘 𝑑𝐱 +

𝑁
∑

𝑘=1
𝑅𝛿

|𝐼𝛿𝑘
.

ince the max-norm of ∇𝑝𝛿 is canceled due to 𝑇 = 𝛿𝑁 , after multiplica-
ion by 𝛿, by use of the upper bound in (2.7) and the interpolant from
3.15) with the norm

𝑇

0

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
𝑑𝑡 =

𝑁
∑

𝑘=1
∫

𝑡𝛿𝑘

𝑡𝛿𝑘−1

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
𝑑𝑡 = 𝛿

𝑁
∑

𝑘=1

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

|

|

|𝐼𝛿𝑘

‖

‖

‖

2

𝐻1(𝛺c)
,

the following inequality holds:
(𝑎
5
− 𝐹𝐾tr

)

∫

𝑇

0

‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐻1(𝛺c)
𝑑𝑡 + 𝑆 ∫

𝑇

0

‖

‖

‖

𝜕𝑝𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛺c)
𝑑𝑡

≤ 𝜅
2
‖∇𝑝0‖2𝐿2(𝛺c)

+ ∫

𝑇

0
𝑅𝛿 𝑑𝑡.

(3.30)

From (3.24) and (3.30) we infer assertions (3.16)–(3.18) of the
theorem. The proof is completed. □

Finally, on the basis of uniform estimates we prove the main exis-
tence theorem.

Theorem 3.3 (Solvability of the Temporal Problem). Under assumptions
of Theorems 3.1 and 3.2, there exists a variational solution (𝐮, 𝑝) to the
poroelastic problem for the fluid-driven crack subject to non-penetration and
cohesion, which is defined in (2.11) and satisfies the initial condition (2.14),
variational inequality (2.23) and variational equality (2.24).

Proof. Let Theorems 3.1 and 3.2 hold true. In the virtue of convergence
of the interpolants as 𝛿 → 0:

𝝉0𝛿 → 𝝉0, 𝜕𝝉0𝛿
𝜕𝑡

→
𝜕𝝉0
𝜕𝑡

, 𝑓 𝛿 → 𝑓,
𝜕𝑓 𝛿

𝜕𝑡
→

𝜕𝑓
𝜕𝑡

,

𝐠𝛿 → 𝐠, 𝜕𝐠𝛿

𝜕𝑡
→

𝜕𝐠
𝜕𝑡

strongly in 𝐿2(0, 𝑇 ),
(3.31)

from (3.17) and (3.18), under condition (3.16) we infer the uniform
estimates:

𝑎‖𝐮𝛿‖2
𝐿∞(0,𝑇 ;𝐻1(𝛺c))

+ 𝑆‖𝑝𝛿‖2
𝐿∞(0,𝑇 ;𝐿2(𝛺c))

+ 𝜅‖∇𝑝𝛿‖2
𝐿2(𝛺𝑇

c )
≤ const,

𝐾‖

‖

‖

𝜕𝐮𝛿
𝜕𝑡

‖

‖

‖

2

𝐿2(0,𝑇 ;𝐻1(𝛺c))
+ 𝑆‖‖

‖

𝜕𝑝𝛿

𝜕𝑡
‖

‖

‖

2

𝐿2(𝛺𝑇
c )

≤ const.

Therefore, there exists a convergent subsequence 𝛿𝑚, and an accumula-
tion point (𝐮, 𝑝) from the function space described in (2.11), such that
as 𝛿𝑚 → 0:
𝛿𝑚 → 𝐮 weakly in 𝐻1(0, 𝑇 ;𝐻1(𝛺c)),

strongly in 𝐿2(0, 𝑇 ;𝐿2(𝛤N ∪ 𝛤+
c ∪ 𝛤−

c )),
(3.32)

where the strong convergence is provided by the compact embedding,
and

𝑝𝛿𝑚 → 𝑝 weakly in 𝐻1(0, 𝑇 ;𝐿2(𝛺c)) ∩ 𝐿2(0, 𝑇 ;𝐻1(𝛺c)), strongly in 𝐿2(𝛺𝑇
c ),

(3.33)

where the strong convergence is according to Aubin–Lions lemma
(cf. Simon, 1986, Theorem 5 on p.84).

Taking the limit in the incremental problem (3.4) and (3.5) as
𝛿𝑚 → 0 on the basis of convergences (3.31)–(3.33), we conclude
that (𝐮, 𝑝) solves the variational inequality (2.23) and the variational
equation (2.24). This finishes the proof. □
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This is worth noting that passing in (3.17) and (3.18) to the limit
as 𝛿𝑚 → 0 according to the convergences (3.31)–(3.33) will justify
corresponding a-priori estimates for the solution from Theorem 3.3.
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