
VARIATIONAL INEQUALITY FOR A TIMOSHENKO PLATE
CONTACTING AT THE BOUNDARY WITH AN INCLINED OBSTACLE

V. A. KOVTUNENKO1,2, N. P. LAZAREV3

Abstract. A class of variational inequalities describing equilibrium of elastic Timoshenko
plates which boundary is in contact by the side surface with an inclined obstacle is con-
sidered. At the plate boundary, mixed conditions of Dirichlet type and a non-penetration
condition of inequality type are imposed on displacements in the mid-plane. The novelty
consists in modeling oblique interaction with the inclined obstacle which takes into account
of shear deformation and rotation of transverse cross-sections in the plate.

For proposed problems of equilibrium of the plate contacting the inclined obstacle, unique
solvability of the corresponding variational inequality is proved. Under the assumption that
the variational solution is smooth enough, optimality conditions are obtained in the form
of equilibrium equations and relations revealing the mechanical properties of integrated
stresses, moments, and generalized displacements on the contact part of the boundary.

Accounting for complementarity type conditions due to the contact of the plate with the
inclined obstacle, a primal-dual variational formulation of the obstacle problem is derived. A
semi-smooth Newton method based on a generalized gradient is constructed and performed
as a primal-dual active-set algorithm. It is advantageous for efficient numerical solution of
the problem, provided by a super-linear estimate for the corresponding iterates in function
spaces.

1. Introduction

Starting from the well known work of Fichera [10], the theory of contact problems for elas-
tic bodies has been intensively developed. Inequality type boundary relations, named Sig-
norini conditions to honour Fichera’s teacher, describe a mutual non-penetration of surfaces
(or curves) being in contact. This leads to nonlinearity of the corresponding mathematical
models described by variational inequalities. Open questions in the contact mechanics con-
cern non-smooth behavior, e.g., due to non-coercive [12, 17] and non-convex functions [23],
nonlinear constitutive equations [8, 13, 22], time-discontinuous evolution [20], and geometry
singularities [1].

Within the theory of plates and shells (see textbooks [6, 38, 42]), a subclass of non-
penetration and crack problems was developed in the monographs [18, 19]. These problems
are formulated as non-smooth minimization for lower weakly semi-continuous functionals
over closed convex sets of admissible functions. It is worth noting that obstacle problems
may be derived by limit passage from families of problems describing equilibrium of cracked
bodies using fictitious domain method [37, 39]. For mathematical analysis of elastic plates
we refer to contact problems with obstacles [5] and inclusions [9], to history-dependent
models [3], analysis of thickness dependence [35], inverse coefficient problems [14], and to
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the references therein. For the numerical solution of unilateral problems for plates we cite
[7, 21].

The oblique interaction phenomena in Kirchhoff–Love plates were considered earlier in
[24] for inclined cracks, in [30, 31] for contact with sharp edges of rigid inclusions, and in [34]
for the plate that is in contact by its side edges with inclined obstacle surfaces. Solvability of
the corresponding variational inequalities has been established. However, the Kirchhoff–Love
hypothesis that straight lines normal to the mid-surface remain straight after deformation
does not conform to an oblique geometry. Therefore, we employ Timoshenko’s hypotheses
[41] taking into account the rotational effects: shear deformation and bending rotation.

For the literature on the Timoshenko plate, especially from the mathematical point of view,
we cite [4, 40, 43]. A generalization of the Timoshenko plate model was treated for problems
of contact with elastic obstacles [11], shape sensitivity analysis [32], by constructing penalty
[27] and fictitious domain [28, 29] methods. The studies with respect to numerical solution
can be found in [26], and elasto-plastic behavior in [21, 25]. In the present work, we propose
and analyze a new mathematical model that describes an equilibrium of a Timoshenko plate
which comes into contact with a non-deformable obstacle, where the obstacle surfaces are
not perpendicular to the mid-plane of the plate.

To introduce modeling let us first consider a beam of constant thickness 2h posed along
x-axis:

x ≥ x0, |z| ≤ h,

with the left-side (x0, z), |z| ≤ h, and x ≤ x1 for some x1 > x0. Timoshenko’s hypothesis
suggests displacements (W z, wz) given in the form

(1.1) W z(x) = W (x) + zψ(x), wz(x) = w(x), |z| ≤ h,

where W is the in-plane displacement, w is the deflection of mid-line in z-direction, and ψ
is the angle of rotation of the normal to the mid-line z = 0. Let an obstacle be prescribed
by the half-plane x− x0 ≤ k(z − b) with the straight-line boundary

(1.2) x− x0 = k(z − b),

which is determined by an inverse slope k and a z-intercept b at x = x0. The non-penetration
through the obstacle of the beam left-side in the deformed state (x0 +W z(x0), z + wz(x0)),
|z| ≤ h, implies that

W z(x0) ≥ k
(
z + wz(x0)− b

)
, |z| ≤ h,

which after inserting (1.1) is equivalent to

(1.3) W (x0) + zψ(x0) ≥ k
(
z + w(x0)− b

)
, |z| ≤ h.

In particular, (1.3) holds at z = h and z = −h:
k
(
b− w(x0)

)
+W (x0) ≥ h

(
k − ψ(x0)

)
, k

(
b− w(x0)

)
+W (x0) ≥ −h

(
k − ψ(x0)

)
,

implying that

(1.4) k
(
b− w(x0)

)
+W (x0) ≥ h

∣∣k − ψ(x0)
∣∣.

Conversely, (1.4) implies (1.3) due to the linearity in z.
For illustration we present two particular configurations satisfying the non-penetration

condition (1.4). First, if k − ψ(x0) > 0 and b = h, then (1.4) reads

W (x0) + hψ(x0) ≥ kw(x0),
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and contact may occur by the upper beam side as drawn for ψ(x0) = 0 in the left plot of
Fig. 1. Here ν shows the normal vector outward to the beam at the left side. Second, if

Figure 1. Beam contacting the inclined obstacle by the upper side (left plot),
and the lower side (right plot).

k − ψ(x0) < 0 and b = −h, that case corresponds to the inequality

W (x0)− hψ(x0) ≥ kw(x0),

then possible contact by the lower beam side is sketched for ψ(x0) = 0 in the right plot of
Fig. 1.

It is important to note for consistency that, for the straight obstacle as k = 0, the non-
penetration condition (1.4) turns into

W (x0) ≥ h
∣∣ψ(x0)∣∣,

which was considered in [27, 28, 29, 32, 33]. For Kirchhoff–Love plates the non-penetration
reads

W (x0) ≥ h
∣∣∣∂w
∂x

(x0)
∣∣∣,

that was introduced earlier in [18, §3.5].
We will formulate condition that is analogous to (1.4) for the Timoshenko plate in §2.

Existence and uniqueness of solution for the corresponding variational inequality is proven
using the Weierstrass theorem in §3. In §4, a complete system of boundary conditions is found
under the assumption of additional regularity for the variational solution. Complementarity
boundary conditions describing contact with inclined obstacles are given in the form of
equations and inequalities, which restrict deflection and rotation of transverse cross-sections
of the plate.

The next question of our study concerns iterative solution of the complementarity bound-
ary conditions and convergence of its iterates. It will be treated in §5 with the help of a
semi-smooth Newton method using generalized differentiation of non-smooth functions. We
apply a slant derivative to the minimum-based merit function and derive a super-linear error
estimate in function spaces, following the approach in [15, 16] and the references therein.
Numerically, the semi-smooth Newton method can be realized as a primal-dual active-set
algorithm.
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2. Variational problem formulation

We start with the description of the undeformed reference configuration for an isotropic
plate of uniform thickness 2h. Let the plate occupy the right cylinder Ω× (−h, h) ⊂ R3 with
its mid-plane lying in the Ox1x2-plane, where Ω is a bounded simply connected domain with
a Lipschitz boundary Γ. The unit external normal vector to Γ is denoted by ν = (ν1, ν2)(x),
such that the tangential vector τ = (−ν2, ν1). The boundary Γ is decomposed into two
disjoint parts Γ0 and γ. The boundary part Γ0 needs to have the one-dimensional Hausdorff
measure, that is, H1(Γ0) > 0, to guarantee coercivity of the energy.
Let (W,w)(x) denote the vector of displacements in the mid-plane x = (x1, x2) ∈ Ω, such

that W = (w1, w2) are in-plane displacements, and w is the deflection along the axis z. The
rotation of the mid-plane x ∈ Ω is denoted by ψ = (ψ1, ψ2)(x), where ψ1 and ψ2 are rotations
of the mid-plane normal about the x1 and x2-axes, respectively. Analogously to (1.1), in the
Timoshenko plate the in-plane displacements depend linearly on z:

(2.1) wz
i (x) = wi(x) + zψi(x), i = 1, 2, |z| ≤ h,

whereas the deflection is independent of z, i.e.

(2.2) wz(x) = w(x), |z| ≤ h.

Now we describe an inclined obstacle. Let the boundary γ can be parametrized by t ∈
(0, T ). We suppose that the obstacle surface is generated by a line (called generatrix) moved
perpendicular to γ(t). In this case, at every fixed point x(t) ∈ γ the generatrix bounds the
obstacle in the plane cross-section formed by the axis Oz and the normal vector (ν(x(t)), 0).
For example, a right cylinder surface is generated by x − x(t) = 0. An inclined generatrix
can be determined according to (1.2) as the straight line:

(2.3) − (x− x(t)) · ν(x(t)) = k(t)
(
z − b(t)

)
, t ∈ (0, T ),

prescribed by the functions of inverse slope k ∈ C([0, T ]) and z-intercept b ∈ C([0, T ]). Here
and in what follows, the dot stands for the scalar product of vectors, e.g., x ·ν = x1ν1+x2ν2.
In every such cross-section, the non-penetration condition (1.4) holds within the mid-plane
in the direction opposite to ν. Thus there holds the inequality

k(t)
(
b(t)− w(x(t))

)
−W (x(t)) · ν(x(t)) ≥ h

∣∣k(t) + ψ(x(t)) · ν(x(t))
∣∣, t ∈ (0, T ).

In short notation

(2.4) k(b− w)−W · ν ≥ h|k + ψ · ν| on γ.

Since we prescribe zero condition (2.8) on the complementary part of the boundary Γ0 we
assume the compatibility condition k = b = 0 at the intersection γ ∩ Γ0.

We proceed with governing relations for the Timoshenko model following [38]. The tensors
ε = {εij} of bending and shear strains in the plate are given by

εij(W ) =
1

2
(wi,j + wj,i), εij(ψ) =

1

2
(ψi,j + ψj,i), i, j = 1, 2

(
w,i =

∂w

∂xi

)
.

The integrated stresses σ = {σij} and moments m = {mij} read using summation over
repeated indices as follows:

(2.5) σij(W ) =
3

h2
aijklεkl(W ), mij(ψ) = aijklεkl(ψ), i, j, k, l = 1, 2.
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Here nonzero components of the elastic modulus tensor A = {aijkl} are

aiiii = D, aiijj = Dκ, aijij = aijji = D
1− κ

2
(i ̸= j), i, j = 1, 2,

where the flexural rigidity D = E(2h)3/(12(1−κ2)) for the plate , E > 0 is Young’s modulus,
and κ is Poisson’s ratio, 0 < κ < 1/2. The shear forces q = (q1, q2)(x) are given by

(2.6) qi(w,ψ) = S(w,i + ψi), i = 1, 2,

where the transverse shear stiffness S = 2hGκ is determined by the thickness 2h, shear
modulus G = E/(2(1 + κ)) and shear correction factor κ > 0.

For prescribed external forces F = (f1, f2, f3, µ1, µ2) ∈ L2(Ω)5, the potential energy of the
Timoshenko plate occupying the mid-plane Ω has the form

Π(χ) =
1

2
B(χ, χ)−

∫
Ω

F · χdx,

defined by the symmetric bilinear form

(2.7) B(ξ, χ) =

∫
Ω

(
σij(U)εij(W ) + qi(u, ϕ)(w,i + ψi) +mij(ϕ)εij(ψ)

)
dx,

for χ = (W,w, ψ)(x) ∈ H1(Ω)5, and ξ = (U, u, ϕ)(x) ∈ H1(Ω)5 with U = (u1, u2), ϕ =
(ϕ1, ϕ2).

We introduce the Sobolev spaces

H(Ω) = H1
Γ0
(Ω)5, H1

Γ0
(Ω) =

{
w ∈ H1(Ω)

∣∣ w = 0 on Γ0

}
,

which includes the homogeneous Dirichlet boundary conditions

(2.8) W = (0, 0), w = 0, ψ = (0, 0) on Γ0.

The set of admissible functions is specified by the non-penetration condition:

(2.9) K =
{
χ ∈ H(Ω)

∣∣ χ satisfies (2.4)
}
.

Then the inclined obstacle problem reads in variational formulation:

(2.10) find ξ ∈ K such that Π(ξ) = min
χ∈K

Π(χ).

Solvability of the constrained minimization problem (2.10) is established in the next section.

3. Existence, uniqueness, and optimality condition

In order to prove the existence of solution to (2.10), we establish some auxiliary results.
We recall the Korn and Poincaré inequalities: there exist constants c1 > 0 and c2 > 0 such
that [18, §1.4]:

(3.1)

∫
Ω

σij(W )εij(W ) dx ≥ 3

h2
c1∥W∥2H1(Ω)2 ,

∫
Ω

mij(ψ)εij(ψ) dx ≥ c1∥ψ ∥2H1(Ω)2

according to (2.5), and

(3.2) ∥∇w∥L2(Ω)2 ≥ c2∥w∥H1(Ω),

which are valid for χ = (W,w, ψ) ∈ H(Ω) due to the zero boundary conditions on Γ0.
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Lemma 3.1 (Coercivity of the bilinear form B). For the bilinear form B defined in (2.7),
the lower estimate holds:

(3.3) B(χ, χ) ≥ c0∥χ∥2H1(Ω)5

with a constant c0 > 0 independent of χ ∈ H(Ω).

Proof. We apply weighted Young’s inequality with arbitrary ϵ > 0 to the mixed term

2

∣∣∣∣∫
Ω

w,iψi dx

∣∣∣∣ ≤ 1

ϵ
∥∇w∥2L2(Ω)2 + ϵ∥ψ∥2L2(Ω)2

in order to estimate the second term in the bilinear form B in (2.7) from below

(3.4)

∫
Ω

qi(w,ψ)(w,i + ψi) dx ≥ S
(
1− 1

ϵ

)
∥∇w∥2L2(Ω)2 + S(1− ϵ)∥ψ∥2L2(Ω)2 ,

with S > 0 from (2.6). Therefore, from (3.1) and (3.4) it follows the estimate

(3.5) B(χ, χ) ≥ 3c1
h2

∥W∥2H1(Ω)2 + S
(
1− 1

ϵ

)
∥∇w∥2L2(Ω)2 +

(
c1 + S(1− ϵ)

)
∥ψ∥2H1(Ω)2 .

By choosing 1 < ϵ < 1 + c1/S all factors in the right-hand-side of (3.5) are positive. Taking
into account the Poincaré inequality (3.2), this provides the uniform lower estimate (3.3). □

Lemma 3.2 (Convexity and weak closedness of the admissible set K). The set K of admis-
sible functions χ = (W,w, ψ) determined in (2.9) is convex and weakly closed.

Proof. We can express the non-penetration condition (2.4) determining the admissible set K
equivalently as two inequalities:

Φ1(χ) := k(b− w)−W · ν − h(k + ψ · ν) ≥ 0,

Φ2(χ) := k(b− w)−W · ν + h(k + ψ · ν) ≥ 0.(3.6)

Since the both functions Φ1 and Φ2 in (3.6) are linear with respect to χ = (W,w, ψ), from
Φ1(χ

i) ≥ 0 and Φ2(χ
i) ≥ 0, i = 1, 2, it follows Φ1(αχ

1 + (1− α)χ2) ≥ 0 and Φ2(αχ
1 + (1−

α)χ2) ≥ 0, α ∈ [0, 1], thus the convexity of K.
It is enough to show that K is (norm) closed, since every closed convex set is weakly

closed. Let us assume a convergent sequence χn = (W n, wn, ψn) ∈ K such that

χn → χ strongly in L2(Γ)5 as n→ ∞,

hence it converges almost everywhere on γ. Passing to the limit n→ ∞ in the inequalities

Φ1(χ
n) ≥ 0, Φ2(χ

n) ≥ 0 a.e. on γ,

we conclude with (3.6) and χ ∈ K. This proves that K is weakly closed. □

With the help of Lemmas 3.1 and 3.2 we prove the existence theorem below.

Theorem 3.1 (Existence and uniqueness of the solution, and the optimality condition).
The constrained minimization (2.10) describing the inclined obstacle problem has the unique
solution ξ ∈ K. Its necessary and sufficient optimality condition is given by the variational
inequality

(3.7) B(ξ, χ− ξ) ≥
∫
Ω

F · (χ− ξ) dx for all χ ∈ K.
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Proof. We apply the Weierstrass theorem for lower weakly semi-continuous functions from
[2]. The coercivity of Π follows directly from the estimate (3.3) for B. The functional Π is
quadratic and coercive, hence lower weakly semi-continuous. Together with the convexity
and weak closedness of K in the Hilbert space H(Ω), this allows us to claim existence of at
least one solution ξ ∈ K to the minimization problem (2.10).
The functional Π is quadratic and coercive, hence convex. Calculating its Gâteaux deriv-

ative (see [27] for details) necessitates the variational inequality (3.7) for the bilinear form
B, which is sufficient to the minimization (2.10) because of convexity of Π. By the virtue of
(3.3), B is coercive, hence restricts at most one solution. The theorem is proven. □

In the next section we use the variational inequality (3.7) in order to derive a boundary
value formulation, supported by a complete system of boundary conditions fulfilled at γ.

4. The strong formulation

In the sequel we use the following Green’s formulas for ξ ∈ H2(Ω)5 and χ ∈ H(Ω), see
[18, §1.4]:∫

Ω

σij(U)εij(W ) dx = −
∫
Ω

σij,j(U)wi dx+

∫
γ

(
σν(U)(W · ν) + στ (U)(W · τ)

)
dγ,(4.1)

by decomposing the stress vector at the boundary into the normal σν(U) = σij(U)νiνj and
the tangential στ (U) = σij(U)νjτi components; then

(4.2)

∫
Ω

qi(u, ϕ)(w,i + ψi) dx =

∫
Ω

(
qi(u, ϕ)ψi − qi,i(u, ϕ)w

)
dx+

∫
γ

qν(u, ϕ)w dγ,

with the normal shear force qν(u, ϕ) = qi(u, ϕ)νi; and

(4.3)

∫
Ω

mij(ϕ)εij(ψ) dx = −
∫
Ω

mij,j(ϕ)ψi dx+

∫
γ

(
mν(ϕ)(ψ · ν) +mτ (ϕ)(ψ · τ)

)
dγ,

where mν(ϕ) = mij(ϕ)νjνi and mτ (ϕ) = mij(ϕ)νjτi are the normal and tangential moments.
Based on (4.1)–(4.3) and (2.7), after the substitution in (3.7) test functions χ = ξ ± η,

where η ∈ C∞
0 (Ω)5 are compactly supported smooth functions, we derive the equilibrium

equations

(4.4) − σij,j(U) = fi (i = 1, 2), −qi,i(u, ϕ) = f3, −mij,j(ϕ) + qi(u, ϕ) = µi (i = 1, 2),

which hold in terms of distribution in Ω. We assume that the solution ξ ∈ H2(Ω)5. Then the
equations (4.4) hold true a.e. in Ω, since F ∈ L2(Ω)5. By the trace and Sobolev embedding
theorems, the trace ξ ∈ L2+ϵ(Γ)5 for arbitrary ϵ ≥ 0. To derive relations on γ, we observe
that the normal stress σν(U), shear force qν(u, ϕ), and moment mν(ϕ) are also L

2+ϵ-functions
defined a.e. on Γ.

Theorem 4.1 (Equilibrium equations and boundary conditions). For the H2-smooth solu-
tion ξ = (U, u, ϕ) ∈ K, the variational inequality (3.7) is equivalent to the following system
of equilibrium equations:

(4.5) − σij,j(U) = fi, i = 1, 2, in Ω,

(4.6) − qi,i(u, ϕ) = f3 in Ω,
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(4.7) −mij,j(ϕ) + qi(u, ϕ) = µi, i = 1, 2, in Ω,

and the boundary conditions:

(4.8) U = (0, 0), u = 0, ϕ = (0, 0) on Γ0,

together with natural conditions

(4.9) στ (U) = 0, mτ (ϕ) = 0, qν(u, ϕ) = kσν(U) on γ,

and complementarity conditions stemming from the non-penetration:

(4.10) k(b− u)− U · ν ≥ h|k + ϕ · ν|, hσν(U) ≤ −|mν(ϕ)| on γ,

(4.11) σν(U)
(
k
(
b− u

)
− U · ν

)
−mν(ϕ)(k + ϕ · ν) = 0 on γ.

Proof. In the virtue of (4.1)–(4.4), the variational inequality (3.7) reduces itself to the bound-
ary

(4.12)

∫
γ

(
σν(U)

(
(W − U) · ν

)
+ στ (U)

(
(W − U) · τ

)
+ qν(u, ϕ)(w − u)

+mν(ϕ)
(
(ψ − ϕ) · ν

)
+mτ (ϕ)

(
(ψ − ϕ) · τ

))
dγ ≥ 0

for all χ ∈ K. If we test (4.12) with (W ·ν, w, ψ ·ν) = (U ·ν, u, ϕ ·ν) and arbitrary tangential
components (W · τ, ψ · τ), then we get the equations

(4.13) στ (U) = 0, mτ (ϕ) = 0 on γ,

and the variational inequality for all χ ∈ K:

(4.14)

∫
γ

(
σν(U)

(
(W − U) · ν

)
+ qν(u, ϕ)(w − u) +mν(ϕ)

(
(ψ − ϕ) · ν

))
dγ ≥ 0.

Next we test (4.14) with (W ·ν, w, ψ ·ν) = (U ·ν−kη, u+η, ϕ ·ν) for an arbitrary function
η ∈ C∞

0 (γ). In this case, the non-penetration condition (2.4) holds because of

(4.15) k
(
b− w

)
−W · ν − h

∣∣k − ψ · ν
∣∣ = k

(
b− u

)
− U · ν − h

∣∣k + ϕ · ν
∣∣,

and ξ ∈ K. As the consequence we infer∫
γ

(
−kσν(U) + qν(u, ϕ)

)
η dγ ≥ 0

for all η, which implies the equality

(4.16) qν(u, ϕ) = kσν(U) on γ.

Taking into account (4.16) we can rewrite (4.14) in the form

(4.17)

∫
γ

(
σν(U)

(
(W − U) · ν + k(w − u)

)
+mν(ϕ)

(
(ψ − ϕ) · ν

))
dγ ≥ 0
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for all χ ∈ K. Now we test (4.17) with (W ·ν, w, ψ ·ν) such thatW ·ν+kw = U ·ν+ku−h|η|
and ψ · ν = ϕ · ν + η for η ∈ C∞

0 (γ) fulfills (4.15). This reduces (4.17) to∫
γ

(
−hσν(U)|η|+mν(ϕ)η

)
dγ ≥ 0,

leading to the inequality

(4.18) hσν(U) ≤ −|mν(ϕ)| on γ.

Finally, we employ the half-sum and the half-difference of functions in (3.6):

1

2

(
Φ1(χ) + Φ2(χ)

)
= k(b− w)−W · ν, 1

2

(
Φ1(χ)− Φ2(χ)

)
= −h(k + ψ · ν),

such that (4.17) allows the equivalent representation by Φ1 and Φ2 as∫
γ

(1
2
σν(U)

(
Φ1(ξ) + Φ2(ξ)− Φ1(χ)− Φ2(χ)

)
+

1

2h
mν(ϕ)

(
Φ1(ξ)− Φ2(ξ)− Φ1(χ) + Φ2(χ)

))
dγ ≥ 0

for all χ ∈ K. Collecting similar terms implies

(4.19)
1

2h

∫
γ

((
hσν(U) +mν(ϕ)

)(
Φ1(ξ)−Φ2(χ)

)
+
(
hσν(U)−mν(ϕ)

)(
Φ2(ξ)−Φ2(χ)

))
dγ ≥ 0.

When inserting into (4.19) (W · ν, w, ψ · ν) = (0, b,−k) such that Φ1(χ) = Φ2(χ) = 0 we get∫
γ

((
hσν(U) +mν(ϕ)

)
Φ1(ξ) +

(
hσν(U)−mν(ϕ)

)
Φ2(ξ)

)
dγ ≥ 0,

and testing (4.19) with (W ·ν, w, ψ·ν) = (2U ·ν, 2u−b, 2ϕ·ν+k) such that Φ1(χ) = 2Φ1(ξ) ≥ 0
and Φ2(χ) = 2Φ2(ξ) ≥ 0 leads to the opposite inequality∫

γ

((
hσν(U) +mν(ϕ)

)
Φ1(ξ) +

(
hσν(U)−mν(ϕ)

)
Φ2(ξ)

)
dγ ≤ 0,

thus providing together the equality

(4.20)

∫
γ

((
hσν(U) +mν(ϕ)

)
Φ1(ξ) +

(
hσν(U)−mν(ϕ)

)
Φ2(ξ)

)
dγ = 0.

The substitution of Φ1 and Φ2 from (3.6) into (4.20) after canceling 2h yields the identity

(4.21)

∫
γ

(
σν(U)

(
k
(
b− u

)
− U · ν

)
−mν(ϕ)(k + ϕ · ν)

)
dγ = 0.

Relations (4.4), (4.13), (4.16), (4.18), (4.21) together with the non-penetration condition
(2.4) imply the boundary value formulation (4.5)–(4.11).

Conversely, we will show that a function ξ = (U, u, ϕ) ∈ K ∩ H2(Ω)5 satisfying the
relations (4.4), (4.13), (4.16), (4.18), (4.21) is the solution to the variational inequality (3.7).

9



For arbitrary χ = (W,w, ψ) ∈ H(Ω), we multiply the five equilibrium equations (4.4) by
(w1−u1, w2−u2, w−u, ψ1−ϕ1, ψ2−ϕ2) and integrate over the domain Ω. After summation
this gives

(4.22)

∫
Ω

(
σij,j(U)(wi − ui) + qi,i(u, ϕ)(w − u) +

(
mij,j(ϕ)− qi(u, ϕ)

)
(ψi − ϕi)

)
dx

= −
∫
Ω

(
fi(wi − ui) + f3(w − u) + µi(ψi − ϕi)

)
dx.

Applying Green’s formulas (4.1)–(4.3) to (4.22) and recalling the bilinear form B in (2.7), it
follows

B(ξ, χ− ξ)−
∫
γ

(
σν(U)

(
(W − U) · ν

)
+ στ (U)

(
(W − U) · τ

)
+ qν(u, ϕ)(w − u)

+mν(ϕ)
(
(ψ − ϕ) · ν

)
+mτ (ϕ)

(
(ψ − ϕ) · τ

))
dγ =

∫
Ω

F · (χ− ξ) dx.

In virtue of the boundary conditions (4.13), (4.16) at γ and the identity (4.21) we proceed

B(ξ, χ− ξ)−
∫
Ω

F · (χ− ξ) dx =

∫
γ

(
σν(U)

(
(W −U) ·ν+k(w−u)

)
+mν(ϕ)

(
(ψ−ϕ) ·ν

))
dγ

=

∫
γ

(
σν(U)

(
W · ν + k(w − b)

)
+mν(ϕ)(k + ψ · ν)

)
dγ,

which after assembling the terms yields

(4.23) B(ξ, χ− ξ)−
∫
Ω

F · (χ− ξ) dx =
1

2h

∫
γ

((
hσν(U) +mν(ϕ)

)
Φ1(χ)

+
(
hσν(U)−mν(ϕ)

)
Φ2(χ)

)
dγ.

The boundary inequality (4.18) and the non-penetration condition (2.4) at γ together guaran-
tee the non-negative sign in the right-hand side of (4.23), thus concluding with the variational
inequality (3.7). This finishes the proof. □

In the following section we will study the numerical solution of the relations (4.5)–(4.11).
Its main challenge concerns realization of the complementarity conditions (4.10) and (4.11).

5. Semi-smooth Newton method of solution

First we give a primal-dual formulation of the problem.

Lemma 5.1 (Primal-dual problem). The smooth solution ξ ∈ K ∩H2(Ω)5 of the variational
inequality (3.7) together with the Lagrange multiplier Λ = (λ1, λ2) ∈ L2(Ω)2 determined by

(5.1) λ1 = hσν(U) +mν(ϕ), λ2 = hσν(U)−mν(ϕ)
10



solve the following primal-dual system:

(5.2) B(ξ, χ)−
∫
Ω

F · χdx =
1

2h

∫
γ

(
λ1
(
Φ1(χ)− k(b− h)

)
+ λ2

(
Φ2(χ)− k(b+ h)

))
dγ

for all χ ∈ H(Ω), where Φ1 and Φ2 are given in (3.6), and

(5.3) Φi(ξ) ≥ 0, λi ≤ 0 (i = 1, 2), λ1Φ1(ξ) = 0, λ2Φ2(ξ) = 0 on γ.

Conversely, the primal component of (ξ,Λ) ∈ H(Ω)×L2(Ω)2 solving the primal-dual system
(5.2) and (5.3) satisfies the variational inequality (3.7).

Proof. Indeed, Theorem 4.1 holds true for the smooth solution ξ. In this case, the normal
stress σν(U), shear force qν(u, ϕ), and moment mν(ϕ) are well-defined a.e. on γ. With their
help we can determine the Lagrange multiplier components in (5.1). From (4.23) tested with
χ = 0, using (3.6) it follows the identity

(5.4) −B(ξ, ξ) +

∫
Ω

F · ξ dx =
1

2h

∫
γ

(
λ1k(b− h) + λ2k(b+ h)

)
dγ,

and the variational equation (5.2) holds for all test functions χ ∈ H(Ω). The complemen-
tarity conditions (4.10) and (4.11) take the respective form (5.3).

Conversely, if a pair (ξ,Λ) ∈ H(Ω)×L2(Ω)2 solves the primal-dual system (5.2) and (5.3),
then ξ satisfies (5.4) and (4.23), hence the variational inequality (3.7). According to (5.1),
the normal stress and moment can be found as

σν(U) =
1

2h

(
λ1 + λ2

)
, mν(ϕ) =

1

2

(
λ1 − λ2

)
.

The proof is complete. □

As a consequence of Lemma 5.1, we note that the primal-dual solution (ξ,Λ) is unique,
too.

Now we express the complementarity relations (5.3) by a nonlinear merit function C :
R2 7→ R arising as the minimum for arbitrarily fixed constant r > 0:

(5.5) C(Φi(ξ), λi) := min(Φi(ξ),−rλi) = 0, i = 1, 2, on γ.

Since the min-function is not smooth, in the lemma below we employ a concept of semi-
smooth functions from [36] with the generalized gradient

(5.6) C ′
Φ(Φi(ξ), λi) = 1I(Φi(ξ),λi), C ′

λ(Φi(ξ), λi) = −r1A(Φi(ξ),λi),

where 1 denotes the indicator function of the corresponding active set:

(5.7) A(Φi(ξ), λi) = {x ∈ γ|
(
Φi(ξ) + rλi

)
(x) > 0},

and its complementary to the boundary γ inactive set:

(5.8) I(Φi(ξ), λi) = {x ∈ γ|
(
Φi(ξ) + rλi

)
(x) ≤ 0}.

Lemma 5.2 (Semi-smooth min-function). For functions (ξ,Λ), (χ,M) ∈ H(Ω)× L2+ϵ(Ω)2,
M = (µ1, µ2), the min-function C : L2+ϵ(γ)2 7→ L2(γ), ϵ > 0, with the generalized gradient
(C ′

Φ, C
′
λ) defined in (5.6)–(5.8), is semi-smooth in the sense of the following estimate

(5.9) ∥C̃Φi
∥L2(I(Φi(χ),µi)) + ∥C̃λi

∥L2(A(Φi(χ),µi)) = o
(
∥δi∥L2+ϵ(γ)

)
11



hold for the 1st-order asymptotic approximations for every i = 1, 2 (there is no summation
over i):

C̃Φi
:= C(Φi(χ), µi)− C(Φi(ξ), λi)− C ′

Φ(Φi(χ), µi)
(
Φi(χ)− Φi(ξ)

)
,

C̃λi
:= C(Φi(χ), µi)− C(Φi(ξ), λi)− C ′

λ(Φi(χ), µi)(µi − λi),(5.10)

and using the notation for increment:

δi := Φi(χ)− Φi(ξ) + r(µi − λi), i = 1, 2.

Proof. If we calculate the quantities C̃Φi
and C̃λi

in (5.10) using (5.6)–(5.8), then we find
that
(5.11)

C̃Φi
= −r(µi − λi), C̃λi

= 0 at A(Φi(χ), µi) ∩ A(Φi(ξ), λi)

C̃Φi
= −Φi(ξ)− rµi, C̃λi

= −Φi(ξ)− rλi at A(Φi(χ), µi) ∩ I(Φi(ξ), λi) =: N1
i

C̃Φi
= 0, C̃λi

= Φi(χ)− Φi(ξ) at I(Φi(χ), µi) ∩ I(Φi(ξ), λi)

C̃Φi
= Φi(ξ) + rλi, C̃λi

= Φi(χ) + rλi at I(Φi(χ), µi) ∩ A(Φi(ξ), λi) =: N2
i

,

and on the sets N1
i and N2

i it holds

(5.12) 0 ≤ −Φi(ξ)− rλi ≤ δi on N1
i , 0 < −Φi(ξ)− rλi ≤ −δi on N2

i .

Therefore, from (5.11) and (5.12) we estimate the L2-norm using the Hölder inequality as

∥C̃Φi
∥L2(I(Φi(χ),µi)) ≤ ∥δi∥L2(N2

i )
≤ |N2

i |
ϵ

2(2+ϵ)∥δi∥L2+ϵ(N2
i )
,

∥C̃λi
∥L2(A(Φi(χ),µi)) ≤ ∥δi∥L2(N1

i )
≤ |N1

i |
ϵ

2(2+ϵ)∥δi∥L2+ϵ(N1
i )
.(5.13)

Since the measures |N1
i | and |N2

i | of intersection of the active and inactive sets in (5.11)
decrease to zero at χ = ξ and M = Λ, inequalities (5.13) lead to the assertion (5.9) and
finish the proof. □

With the help of Lemmas 5.1 and 5.2 we prove the theorem on iterative solution of the
primal-dual problem written in the form (5.2) and (5.5) by a semi-smooth Newton method.

Theorem 5.1 (Semi-smooth Newton method). Let the primal-dual system (5.2) and (5.5)
describing the obstacle problem have the smooth solution (ξ,Λ) ∈ H(Ω) × L2+ϵ(Ω)2, ϵ > 0.
Initializing (ξ0,Λ0), a semi-smooth Newton iteration reads: for n ≥ 0 find (ξn+1,Λn+1) ∈
H(Ω)× L2+ϵ(Ω)2 such that

(5.14) B(ξn+1, χ)−
∫
Ω

F ·χdx =
1

2h

∫
γ

(
λn+1
1

(
Φ1(χ)−k(b−h)

)
+λn+1

2

(
Φ2(χ)−k(b+h)

))
dγ

for all χ ∈ H(Ω), and for every i = 1, 2 (there is no summation over i):

C ′
Φ(Φi(ξ

n), λni )
(
Φi(ξ

n+1)− Φi(ξ
n)
)
= −C(Φi(ξ

n), λni ),

C ′
λ(Φi(ξ

n), λni )(λ
n+1
i − λni ) = −C(Φi(ξ

n), λni ) on γ.(5.15)

It possesses the super-linear estimate

(5.16) ∥ξn+1 − ξ∥H1(Ω)5 + ∥Λn+1 − Λ∥L2(γ)2 = o
(
∥δn∥L2+ϵ(γ)2

)
,

where the increment:

(5.17) δn = (δn1 , δ
n
2 ), δni := Φi(ξ

n)− Φi(ξ) + r(λni − λi), i = 1, 2.
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The Newton iterate (5.15) on the primal-dual active and inactive sets yields the linear equa-
tions:

(5.18) Φi(ξ
n+1) = 0 on I(Φi(ξ

n), λni ), λn+1
i = 0 on A(Φi(ξ

n), λni ), i = 1, 2.

Proof. Subtracting Φi(ξ) and λi from the respective equations in (5.15), adding C(Φi(ξ), λi) =
0, using C ′

Φ(Φi(ξ
n), λni ) = 1 on I(Φi(ξ

n), λni ), and C
′
λ(Φi(ξ

n), λni ) = −r on A(Φi(ξ
n), λni ) ac-

cording to (5.6), we get on the inactive set I(Φi(ξ
n), λni ):

Φi(ξ
n+1)− Φi(ξ) = −

[
C(Φi(ξ

n), λni )− C(Φi(ξ), λi)− C ′
Φ(Φi(ξ

n), λni )
(
Φi(ξ

n)− Φi(ξ)
)]
,

and on the active set A(Φi(ξ
n), λni ):

λn+1
i − λi =

1

r

[
C(Φi(ξ

n), λni )− C(Φi(ξ), λi)− C ′
λ(Φi(ξ

n), λni )(λ
n
i − λi)

]
.

Applying to the right-hand side the estimate (5.9) with χ = ξn andM = λn in (5.10) follows
that

(5.19) ∥Φi(ξ
n+1)− Φi(ξ)∥L2(I(Φi(ξn),λn

i ))
+ ∥λn+1

i − λi∥L2(A(Φi(ξn),λn
i ))

= o
(
∥δni ∥L2+ϵ(γ)

)
,

where δni is defined in (5.17).
Next we subtract the variational equation (5.2) from (5.14) such that

B(ξn+1 − ξ, χ) =
1

2h

∫
γ

(
(λn+1

1 − λ1)
(
Φ1(χ)− k(b− h)

)
+ (λn+1

2 − λ2)
(
Φ2(χ)− k(b+ h)

))
dγ

for all χ ∈ H(Ω). This equation allows to estimate the increment of the Lagrange multipliers
Λn+1 − Λ on γ in the dual norm, using the trace theorem and boundedness of B, as

(5.20) ∥Λn+1 − Λ∥L2(γ)2 ≤ c4∥ξn+1 − ξ∥H1(Ω)5 , c4 > 0.

Further testing it with χ = ξn+1 − ξ and decomposing into active and inactive sets we have

(5.21) B(ξn+1 − ξ, ξn+1 − ξ) =
1

2h

∫
A(Φi(ξn),λn

i )∪I(Φi(ξn),λn
i )

(λn+1
i − λi)

(
Φi(ξ

n+1)− Φi(ξ)
)
dγ.

Applying to (5.21) weighted Young’s inequality, (3.3), (5.19) and (5.20) proves the estimate
(5.16). Inserting (5.6)–(5.8) into the Newton iterate (5.15) yields (5.18) and finishes the
proof. □

Provided by the estimate (5.16) in Theorem 4.1, after discretization of the primal-dual it-
erative problem (5.14) and (5.18) it follows the super-linear convergence in finite-dimensional
spaces, when the initialization (ξ0,Λ0) is sufficiently close to the solution (ξ,Λ) with small
δ0 in (5.17).

6. Conclusion

We summarize our principal findings in the papers. The variational inequality describing
Timoshenko plates that may come into contact by the side surface with inclined obstacles is
studied. We start with the constrained minimization problem (2.10) over the set of admis-
sible functions K, defined according to the newly proposed non-penetration condition (2.4).
The existence and uniqueness of solution, and its optimality condition in the form of the
variational inequality (3.7) is established. For the smooth solution, it yields the equilibrium
equations (4.5)–(4.7), and mixed boundary conditions of the equality type (4.8)–(4.9) and

13



the complementarity relations (4.10)–(4.11). The corresponding primal-dual variational for-
mulation (5.2) and (5.3) of the obstacle problem is derived. Using a slant derivative for the
minimum function, the semi-smooth Newton method is constructed and performed as the
primal-dual active-set algorithm (5.14) and (5.18). The super-linear estimate for the Newton
iterates is proven in function spaces.
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