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Abstract. The contribution deals with the mathematical modelling of fluid flow in porous media,
in particular water flow in soils. The motivation is to describe the competition between gravity and
capillarity, or, in other words, between transport and diffusion. The analysis is based on a mathematical
model developed by B. Detmann, C. Gavioli, and P. Krejčí, in which the effects of gravity are included
in a novel way. The model consists of a nonlinear partial differential equation describing both the
gravitational transport and the capillary diffusion of water. Although analytical solutions can be
obtained for some special cases, only numerical solutions are available in more general situations. The
solving algorithm is based on a time discretisation and the finite element method, and is written in
Matlab. The results of the numerical simulations are shown and the behaviour of the model is discussed.
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1. Introduction
Mathematical models for water flow in unsaturated
porous media, such as soils, play an important role in
many applications. They have proven to be useful in
geoscience and environmental engineering (e.g. spread-
ing of contamination into soil and groundwater, and
their sanitation), in civil engineering (e.g. the effect of
water content on structures), and in other industrial
applications.

A simple mathematical model for water flow in
saturated porous media is obtained from the mass
balance equation (i.e. the continuity equation) com-
bined with the Darcy law for the water mass flux. If
the porous media is unsaturated, the water flux is
described by a saturation-dependent variant of the
Darcy law (also called the Darcy-Buckingham law),
and the resulting equation is known as the Richards
equation [1]. Many numerical methods have been
used to solve the Richards equation. Some of them,
with their advantages and limitations, are studied for
example in [2–5].

More elaborate mathematical models accounting for
additional effects can be found in the literature. An
occurrence of preferential flow (i.e. preferential paths
through which water flows more easily) is solved for
example in [6]. In [7], the Richards equation with
hysteresis is introduced. Finger flow and the effects
of capillary hysteresis in the model are the objects of
[8].

This paper is structured as follows. In Section 2,
the partial differential equation (PDE) that models
unsaturated fluid flow in a porous medium is presented,
and the solving algorithm is described. In Section 3,
the results of numerical simulations are shown and

discussed. Examples with different initial and boun-
dary conditions related to elementary hydrological
processes in a soil column are considered in this paper.

2. Materials and methods
2.1. The mathematical model
A mathematical model was proposed by Bettina Det-
mann, Chiara Gavioli, and Pavel Krejčí [9] with the
aim of describing the fluid flow in an unsaturated
porous medium under both gravitational transport
and capillary diffusion. Its main feature is a "sticki-
ness" condition: if the saturation stays below a certain
threshold s̄, no transport takes place, and water flows
only by diffusion. This behaviour is encoded in the
positive part in (1) below.

The model is a good approximation of the real
behaviour when s stays away from the (expected)
maximum value 1. The passage to the full saturation
case can be included, too, by cutting off from above the
nonlinearity in (1) to take into account the entrapped
air. This will be the subject of future research.

The mathematical model derived from the mass
balance equation is the following:

st − κ∆p − 2αg (s − s̄)+
sz = 0, (1)

where s = s(x, t) ∈ (0, 1) is the saturation (i.e. the
ratio between the water volume and pore volume), st

its time derivative, sz its derivative with respect to z
(i.e. the variable representing the vertical direction),
and p is the capillary pressure. The notation (·)+ re-
presents the nonnegative part of a function. The time
is denoted by t ≥ 0, the porous body is represented by
a domain Ω ⊂ R3 with coordinates x = (x, y, z) ∈ Ω
and with Lipschitz boundary ∂Ω. The parameter κ is
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the diffusion coefficient, α is the characteristic time
related to the friction on the liquid-solid interface,
g is the gravity constant, and s̄ ∈ (0, 1) denotes a
residual saturation value. If s ≤ s̄, then s can increase
or decrease only due to the flow driven by diffusion.
The model is complemented by a constitutive relation
between the saturation s and the capillary pressure p.
Experimental evidence indicates that the dependence
is of hysteresis type, but only linear dependence is
considered in this paper.

The model in [9] is also coupled with an initial
condition

s(x, 0) = s0(x) (2)

and boundary conditions assuming no flow through
the vertical parts of the boundary

Q · n = 0, (3)

where Q is the water mass flux vector, n the unit
outward normal vector, and · denotes the scalar pro-
duct. The model is completed by boundary conditions
prescribing the inflow/outflow through the horizontal
parts of the boundary

Q · n = β(s − sout), (4)

where β depends on the permeability coefficient and
sout is an outer concentration. In what follows, other
boundary conditions on the horizontal part of the
boundary will also be taken into account for this
model, including the Dirichlet type for its numerical
simplicity.

The model equation, the initial condition, and the
boundary conditions for the 1-D flow are listed in
Section 2.2. More details can be found in [9].

2.2. Algorithm
The vertical flow of water through a column of soil is
modelled as 1-D flow through an unsaturated porous
body. Transport and diffusion effects are taken into
account. The relation between pressure and saturation
is chosen to be linear, that is,

s = γp, (5)

where γ = 1.
Equation (1) in the 1-D case coupled with relation

(5) reduces to

st − κszz − 2αg (s − s̄)+
sz = 0, (6)

where κ > 0, α > 0, g > 0, and s̄ ∈ (0, 1) are constants.
The domain is defined as Ω = (−h, 0) with coordinate
z ∈ (−h, 0), so that s = s(z, t) and p = p(z, t).

The equation-solving algorithm, based on the fi-
nite element method, is developed in Matlab. First,
parameter values, time interval, and spatial mesh (vec-
tor of chosen points) are set up, as well as the initial
and boundary conditions. Then, the pdepe procedure

(namely, the solver for systems of parabolic and el-
liptic PDEs of one spatial variable x and time t) is
used. The options of the solver are set up as default,
except the relative error tolerance (’RelTol’) which
in the examples in Section 3 is set equal to 10−5. The
domain is discretised by fixed division points. The
time mesh is set up automatically, because the time
is discretised by the ode15s solver. This multistep
solver is a variable-step, variable-order solver based
on the numerical differentiation formulas of orders 1
to 5 [? ]. More details about the pdepe solver can
be found in [10]. Then, the graphical outputs are
generated.

The initial condition (i.e. the saturation at the ini-
tial time t = 0) is defined for all z ∈ (−h, 0) as

s(z, 0) = s0(z), (7)

where s0 is a given function in L2(−h, 0) taking values
between 0 and 1.

The boundary conditions (BC) can be defined for
z = −h, 0 and t > 0 as
• given values on the boundary (Dirichlet BC)

s(0, t) = f+(t), s(−h, t) = f−(t); (8)

• given mass flux through the boundary (Neumann
BC)

κsz + αg
[
(s − s̄)+]2 =

{
f+ for z = 0,
f− for z = −h; (9)

• mass flux proportional to inner/outer saturation
difference (Newton BC)

κsz + αg
[
(s − s̄)+]2 =

{
−β+(s − s+) for z = 0,
β−(s − s−) for z = −h;

(10)

where f+, f− are given time dependent functions,
β+ > 0, β− > 0 are the permeability coefficients of the
top and of the bottom, respectively, and s+, s− ∈ [0, 1]
are the values of the outer saturation. BC as in (8)
with f+ = f− = 0 is considered in Section 3.3, BC as
in (9) with f+ = f− = 0 is considered in Section 3.1
and Section 3.2.

The validity of the mass conservation is monitored
by computing the definite integral of the solution s
over the domain by trapezoidal numerical integration.
In the case of no inflow/outflow, the value of the
integral has to remain constant over time. In the
other cases, the value of the integral should comply
with the difference between the inflow and outflow
of water over the boundary. Thus, the water mass
balance can be checked during the execution of the
Matlab program.

3. Results
An instance of redistribution after infiltration is in-
troduced as an example in Section 3.1. The resulting
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Figure 1. Initial condition (11).

saturation profiles are in agreement with the results for
this elementary hydrological process from [11]. This
redistribution phenomena is also mentioned in [12],
where hysteresis effects are additionally included. The
initial condition corresponds to saturated soil in a
layer of given thickness below the terrain with a steep
transition (almost a jump) to dry soil. In Section 3.2,
the process of wetting the soil column with a water
source located in the bottom layer of the column is
examined. In Section 3.3, the impact of κ and s̄ on a
similar setting is studied.

Sandy loam is considered in the following examples,
with residual volumetric water content θr = 0.111 and
volumetric water content of the saturated medium
θs = 0.482, which is in turn equal to the porosity npor.
Thus, s̄ = θr/npor = 0.111/0.482 = 0.2303.

3.1. Example 1
In this first example the parameters are chosen as
follows: diffusion coefficient κ = 0.005, 2αg = 1,
maximal depth h = 5, value of the space discretization
parameter d = 0.01. The value of the time step τ
is chosen automatically by the solver. The initial
condition (displayed in Figure 1) is chosen as

s0(z) =

 1 for z > −0.50,
100z + 51 for z = [−0.51, −0.50],
0 for z < −0.51,

(11)

which means saturated soil to the depth of 0.5 and dry
soil below. The BC is that of impermeable boundary

κsz + αg
[
(s − s̄)+]2 = 0, (12)

so that the control integral of the saturation over the
domain remains constant over time, as displayed in
Figure 2. The exception is the small interval (of order
10−4) at the beginning, caused by a sharp change in
the shape of the saturation curve.

The saturation profile at selected times t =
0.5, 5, 250, 2500 is plotted in Figure 8. At the be-
ginning of the redistribution process, a rapid change

Figure 2. Integral of the solution over the domain.

in the saturation profile in the upper layer can be no-
ticed. A significant shift of the water content from the
upper to the lower layer is then observed, that is, the
water content decreases in the upper layer (above the
wetting front) and increases in the lower layer. The
terrain saturation decreases from s = 1 to near s = s̄.
This is caused by the dominant effect of transport in
this zone. The effect of diffusion (note that κ has a
significantly large value) can be seen on the shape of
the wetting front, which is slowly tilting and moving
downward.

The saturation value over time decreases close to the
terrain and increases in the lower layers. According
to (6), if the value s(zi, t) of the saturation at a given
depth zi is smaller than s̄, then the transport term
is not active at zi, and the water movement is driven
only by diffusion. Hence, if the saturation in the upper
layers decreases until it reaches the value s̄, then only
the diffusion term contributes to the redistribution
of water. With the above parameter setting, the
saturation along the entire soil column drops below
s̄ at time t = 152, as can be seen in Figure 3. The
water is then redistributed by diffusion until it reaches
a uniform distribution profile along the soil column,
and the maximal value of s decreases until it meets
the minimal value, as shown in Figure 3. From time
t = 1756, the difference between the maximum and
minimum value of the solution is less than 0.1. The
process slows down as the saturation value decreases.

3.2. Example 2
The initial condition is now changed to

s0(z) =

 0 for z > −4.50,
−30z − 135 for z = [−4.50, −4.51],
0.3 for z < −4.51,

(13)

which means unsaturated soil with saturation equal
to s = 0.3 (hence s > s̄) in a bottom layer of thickness
equal to 0.49 with a steep transition to dry soil up to
terrain. The other parameters and boundary condi-
tions are as above. The saturation profile at selected
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Figure 3. Maximum and minimum of the solution
s(z, t) in the range defined by the time steps and
residual saturation.

Figure 4. Maximum and minimum of the solution
s(z, t) in the range defined by the time steps (top) and
zoom to the beginning of the calculation (bottom).

times t = 0.5, 5, 250, 2500 is plotted in Figure 9. First,
flow driven by transport near the bottom and by dif-
fusion above the unsaturated layer is observed. Then
the transport-driven flow in the lower layers becomes
weaker, the saturation starts to decrease and when the
threshold value s̄ is met, the transport term becomes
inactive, so that only the upper layers are continu-
ously wetted by diffusion. The profiles of maximal
and minimal soil saturation over time are shown in
Figure 4, where the peak in the bottom figure occurs
at the time when the increase in saturation due to
transport in the lower layer ends.

Figure 5. Initial condition (14) with a steep wetting
front.

3.3. Example 3
The influence of the choice of κ and s̄ on the satu-
ration profile is shown in the next examples. The
following parameters are chosen: γ = 1, 2αg = 1,
diffusion coefficient κ in the range [0, 0.01], residual
saturation s̄ = 0 or s̄ = 0.2303, maximal depth h = 5,
value of the space discretization parameter d = 0.01.
The value of the time step τ is chosen automatically
by the solver. The initial condition is now chosen as

s0(z) =

 −0.5z for z > −2.00,
100z + 201 for z = [−2.00, −2.01],
0 for z < −2.01,

(14)

and is displayed in Figure 5. For numerical simplicity,
the boundary condition here is of Dirichlet type (8)
with f+ = f− = 0.

The diffusion-driven flow is determined by the value
of the diffusion coefficient κ. If κ = 0, the diffusion
term in (6) is inactive. If the value of κ is close to
0, for example κ = 0.001, the diffusion is negligible.
Higher values of κ are associated with strong diffusion.

If the diffusion is strong enough, that is, the value
of κ is large enough, it is possible to choose an initial
condition with a steep transition between two different
saturation values, because the gradient of the solution
soon becomes slightly smaller during the calculation
due to the diffusion flow, and the simulation is stable.
This situation occurs in this example in Figure 6,
bottom, and also in Sections 3.1 and 3.2. Conversely,
when the value of κ is small, the gradient of the
solution remains large, or even tends to infinity, and
numerical instabilities (i.e. oscillations of the solution)
occur. Depending on the value of κ, these oscillations
can cause calculation collapse, as shown in Figure 6,
top, or disappear, as in Figure 6, centre.

The same analysis applies if a high saturation gra-
dient between the wet and dry parts of the porous
body occurs later in the calculation.

In Figure 7 the effect of the residual saturation s̄ on
the solution s is shown. When s̄ is higher, the wetting
front reaches a smaller depth.
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Figure 6. Effect of the diffusion coefficient κ on
the solution s(z, 0.5): without diffusion (κ = 0, top),
negligible diffusion (κ = 0.001, centre), and strong
diffusion (κ = 0.01, bottom).

4. Conclusions
A mathematical model for the unsaturated flow of
water in a porous medium was studied. Numerical
simulations of a vertical 1-D water flow in an un-
saturated soil column were performed. The case of
redistribution of water in soil after infiltration was
shown, and the results were compared with theoreti-
cal physical expectations from the technical literature.

Figure 7. Effect of s̄ on the solution s(z, 5) with
κ = 0.005: without stickiness (s̄ = 0, top) and with
stickiness (s̄ = 0.2303, bottom).

The case of infiltration from below was also consi-
dered. The model has shown a good approximation
of the physical behaviour because, with the no-flux
boundary condition (12), the saturation values stay
under control even if we initially allow s = 1 in a layer
of given thickness as in (11).

The effect of two parameters, the permeability κ
and the residual saturation s̄, was studied. Their
magnitude has a significant impact on the solution,
and in some cases on the stability of the calculation.

From the modelling point of view, the continuation
of this research will include the case when the satura-
tion s becomes close to 1. From the numerical point
of view, future investigations will be directed towards
the development of an algorithm for the 2-D flow, to
test the behaviour of the model in 2-D (Ω ⊂ R2). The
influence of hysteresis and the preferential flow should
also be explored.

List of symbols
s Saturation
p Capillary pressure
κ Diffusion coefficient
s̄ Residual saturation
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α Characteristic time
g Gravity constant
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Figure 8. Evolution of the solution s(z, t) over time
with κ = 0.005 and initial condition as in (11).

Figure 9. Evolution of the solution s(z, t) over time
with κ = 0.005 and initial condition as in (13).
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