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November 4, 2024

Abstract

It is shown that the problem of moisture propagation in porous media with a nonlinear
relation between the mass flux and the pressure gradient as a counterpart of the Darcy
law exhibits the property of bounded speed of propagation even in the case of a hysteresis
relation between the capillary pressure and the moisture content. The paper specifies
conditions for existence and uniqueness of solutions, and provides an upper bound for the
moisture propagation speed.

Keywords: porous media, hysteresis, speed of propagation

2020 Mathematics Subject Classification: 47J40, 35K65, 35K92, 76S05

Introduction

The problem of bounded speed of propagation in classical problems of diffusion with no mass
exchange on the boundary of the spatial domain has been extensively studied in the mathemat-
ical literature, see [21] and the references therein. To our knowledge, nothing has been done so
far in this direction if hysteresis effects in the constitutive law are taken into account. Note that
in porous media, hysteresis occurs as a result of surface tension on the liquid-gas interface, and
in many cases cannot be ignored, see [4]. This paper fills this gap and investigates the problem
of bounded propagation speed in presence of hysteresis. Our starting point is the model pro-
posed in [12] and [13], which includes hysteresis effects in the pressure-saturation relationship
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as well as in a saturation-dependent permeability. The novelty here, with the goal to derive an
upper bound for the propagation speed, consists in introducing a nonlinear diffusion term of
p-Laplacian type. To be precise, we study the following model problem in dimensionless form

θt = div
(
κ(x, θ)|∇u|p−2∇u

)
, (0.1)

θ = G[u], (0.2)

with unknown function u which represents the normalized pressure, that is, u = (π − π0)/π0 ,
where π is the physical pressure and π0 is the standard pressure. By θ we denote the saturation
which, up to a linear transformation, can be identified with the moisture content. It is related
to the pressure in (0.2) in terms of a Preisach hysteresis operator G with initial memory λ .
A detailed justification of why it is meaningful to consider Preisach hysteresis in porous media
modeling can be found in [12]. Note that the problem then becomes degenerate in the sense
that the knowledge of G[u]t does not give a complete information about ut , see again [12].

Equation (0.1), where κ(x, θ) denotes a saturation-dependent specific permeability, follows from
the mass balance and a saturation-dependent variant of the nonlinear Darcy law with exponent
p > 2. In the physics and engineering literature on porous media, the nonlinear Darcy law
with mass flux proportional to a power p > 2 of the pressure gradient is used to model flows
at very low velocities (also called pre-Darcy flow), see [6]. From an analytical point of view,
in the case of non-degenerate pressure-saturation law, the assumption p > 2 ensures that the
moisture front propagation speed is finite, as shown in [8, Chapter VI]. The consequence is
that solutions with compactly supported initial data are compactly supported for any positive
time, with a support that expands with time. In problems with doubly degenerate diffusion (or
degenerate-singular according to the terminology of [5]), a bigger exponent p may be necessary,
and we postpone the discussion on this issue to Subsection 4.3. Let us just mention that for
Problem (0.1)–(0.2), the existence of a clear interface separating the wet and dry regions, as
observed in reality, is guaranteed for p > 3.

Problem (0.1)–(0.2) is considered in a bounded Lipschitzian domain Ω ⊂ RN and time interval
(0, T ), and with a given initial condition

u(x, 0) = u0(x) (0.3)

and a general boundary condition including the homogeneous Neumann, Dirichlet, or Robin
conditions, see (1.1). From the physical point of view, Dirichlet boundary condition is difficult to
justify, but it constitutes an intermediate step in the problem of bounded speed of propagation.
Let BR denote the open ball of radius R centered at the origin, and assume that there exist
0 < R0 < R1 such that BR1 ⊂ Ω, and the initial condition u0 as well as the initial memory
λ of G vanish outside BR0 ⊂ BR1 , see Definition 1.1 and Hypothesis 1.7 below. We show
in Theorem 1.8 that there exists a time t1 > 0 such that the solution to (0.1)–(0.3) with
homogeneous Dirichlet/Neumann/Robin boundary conditions on ∂Ω vanishes outside BR1 for
t ∈ [0, t1] . The solution is then extended to a solution on the whole space RN × (0,∞) with
support in a ball BR(t) ⊂ RN . An explicit formula for R(t) represents an upper bound on the
moisture propagation speed. The proof involves a comparison with a traveling wave solution
which can only be constructed if p > 3. A similar technique has been used also in the case
without hysteresis, see [7]; see also [8, Chapter VI] for a proof by comparison using the so-called
Barenblatt solution which, however, is not suitable for the hysteretic case.
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The degeneracy associated with the Preisach operator, which is not considered in the classical
theory of parabolic equations with hysteresis developed by Visintin in [22], represents a major
difficulty in proving the existence of solutions. In order to control the time derivative of u ,
we have to restrict our considerations to the so-called convexifiable Preisach operators follow-
ing the technique developed in [12] and extended in [13] to the case of saturation-dependent
permeability.

The paper is organized as follows. The problem is stated in Section 1 as a variational formulation
of the PDE (0.1)–(0.2) in appropriate function spaces depending on the choice of the boundary
condition. A time discrete scheme with constant time step τ > 0 is proposed in Section 2.
Estimates independent of τ for the time discrete approximations are shown to be sufficient for
passing to the limit in Section 3 as τ → 0, and for proving that the limit is a solution to the
original problem. Section 4 is devoted to the proof of the bounded propagation speed of the
moisture front when p > 3, and to a discussion about the necessity of such a condition.

1 Statement of the problem

Given a parameter ω ∈ [0, 1], we prescribe for (x, t) ∈ ∂Ω× (0, T ) the boundary condition

ωκ(x, θ)|∇u|p−2∇u · n(x) + (1− ω)u = 0 on ∂Ω. (1.1)

The case ω = 1 corresponds to the homogeneous Neumann boundary condition, ω = 0 is the
Dirichlet boundary condition, and ω ∈ (0, 1) is the Robin boundary condition with boundary
permeability γω = (1 − ω)/ω . We define the reference space Xω = W 1,p

ω (Ω) ∩ L∞(Ω), where
W 1,p

ω (Ω) = W 1,p(Ω) for ω ∈ (0, 1] and W 1,p
ω (Ω) = W 1,p

0 (Ω) for ω = 0, and state the problem
in variational form∫

Ω

(
θtϕ+ κ(x, θ)|∇u|p−2∇u · ∇ϕ

)
dx+ γω

∫
∂Ω

uϕ ds(x) = 0 ∀ϕ ∈ Xω, (1.2)

θ = G[u] a. e. in Ω× (0, T ), (1.3)

with the convention that γ0 can be any real number.

The Preisach operator was originally introduced in [19]. For our purposes, it is convenient to
use the equivalent variational setting from [17].

Definition 1.1. Let λ ∈ L∞(Ω× (0,∞)) be a given function with the following properties:

∃Λ > 0 : λ(x, r) = 0 for r ≥ Λ,∀x ∈ Ω, (1.4)

∃λ̄ > 0 : |λ(x1, r1)− λ(x2, r2)| ≤
(
λ̄ |x1 − x2|+ |r1 − r2|

)
∀r1, r2 ∈ (0,∞),∀x1, x2 ∈ Ω.

(1.5)

For a given r > 0 , we call the play operator with threshold r and initial memory λ the
mapping which with a given function u ∈ L1(Ω;W 1,1(0, T )) associates the solution ξr ∈
L1(Ω;W 1,1(0, T )) of the variational inequality

|u(x, t)− ξr(x, t)| ≤ r, ξrt (x, t)(u(x, t)− ξr(x, t)− z) ≥ 0 a. e. ∀z ∈ [−r, r], (1.6)
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with initial condition
ξr(x, 0) = λ(x, r) a. e., (1.7)

and we denote
ξr(x, t) = pr[λ, u](x, t). (1.8)

Given a measurable function ρ : Ω× (0,∞)× R → [0,∞) and a bounded measurable function
Ḡ : Ω → [0, 1] , the Preisach operator G is defined as a mapping G : L2(Ω;W 1,1(0, T )) →
L2(Ω;W 1,1(0, T )) by the formula

G[u](x, t) = Ḡ(x) +

∫ ∞

0

∫ ξr(x,t)

0

ρ(x, r, v) dv dr. (1.9)

The Preisach operator is said to be regular if the density function ρ of G in (1.9) belongs to
L∞(Ω× (0,∞)×R) , and there exist constants ρ1, ρ̄ > 0 and a decreasing function ρ0 : R → R
such that for all U > 0 , all x, x1, x2 ∈ Ω , and a. e. (r, v) ∈ (0, U)× (−U,U) we have

0 < ρ0(U) < ρ(x, r, v) < ρ1, (1.10)

|ρ(x1, r, v)− ρ(x2, r, v)| ≤ ρ̄ |x1 − x2|. (1.11)

In applications, the natural physical condition θ = G[u] ∈ [0, 1] is satisfied for each input
function u if and only if the additional assumptions∫ ∞

0

∫ ∞

0

ρ(x, r, v) dv dr ≤ 1− Ḡ(x),

∫ ∞

0

∫ ∞

0

ρ(x, r,−v) dv dr ≤ Ḡ(x), (1.12)

hold for a. e. x ∈ Ω. The function Ḡ(x) can be interpreted as residual moisture content at
standard pressure. Note that the existence result in Theorem 1.6 below holds independently of
any specific choice of Ḡ and ρ and, in particular, of (1.12).

Let us mention the following classical result (see [17, Proposition II.3.11]).

Proposition 1.2. Let G be a regular Preisach operator in the sense of Definition 1.1. Then
it can be extended to a Lipschitz continuous mapping G : Lq(Ω;C[0, T ]) → Lq(Ω;C[0, T ]) for
every q ∈ [1,∞) .

The Preisach operator is rate-independent. Hence, for an input function u(x, t) which is mono-
tone in a time interval t ∈ (a(x), b(x)), a regular Preisach operator G can be represented by a
superposition operator

G[u](x, t) = G[u](x, a(x)) +B(x, u(x, t)) (1.13)

with an increasing function u 7→ B(x, u) called a Preisach branch. Indeed, the branches may be
different at different points x and different intervals (a(x), b(x)). The branches corresponding
to increasing inputs are said to be ascending (the so-called wetting curves in the context of
porous media), the branches corresponding to decreasing inputs are said to be descending
(drying curves). In the ascending case, by [10, Eq. (2.25)] we have for t ∈ (a(x), b(x)) that

ξr(x, t) = max{u(x, t)− r, ξr(x, a(x))},
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hence the ascending branch B+(x, u) is given for u ≥ u(x, a(x)) by the formula

B+(x, u) =

∫ r0(x,u)

0

∫ u−r

ξr(x,a(x))

ρ(x, r, v) dv dr, (1.14)

where r0(x, u) = min{r > 0 : u − r ≤ ξr(x, a(x))} . Similarly, in the descending case it holds
that

B−(x, u) =

∫ r0(x,u)

0

∫ ξr(x,a(x))

u+r

ρ(x, r, v) dv dr (1.15)

for u ≤ u(x, a(x)) and r0(x, u) = min{r > 0 : u + r ≥ ξr(x, a(x))} . The wetting curve
with initial memory λ = 0 is called primary wetting curve. All drying and wetting curves
are bounded from below by the limit wetting curve, which is the theoretical wetting curve
starting from the completely dry state, and from above by the limit drying curve, which is the
theoretical drying curve starting from the completely wet state, see Figure 1.

Figure 1: Primary wetting curve and limit wetting/drying curves in a typical Preisach diagram.

Definition 1.3. Let U > 0 be given. A Preisach operator is said to be uniformly counterclock-
wise convex on [−U,U ] if for all inputs u such that |u(x, t)| ≤ U a. e., all ascending branches
are uniformly convex and all descending branches are uniformly concave.

A regular Preisach operator G is called convexifiable if for every U > 0 there exist a uniformly
counterclockwise convex Preisach operator P on [−U,U ] , positive constants g∗(U), g∗(U), ḡ(U) ,
and a twice continuously differentiable mapping g : [−U,U ] → [−U,U ] such that

g(0) = 0, 0 < g∗(U) ≤ g′(u) ≤ g∗(U), |g′′(u)| ≤ ḡ(U) ∀u ∈ [−U,U ], (1.16)

and G = P ◦ g .
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A typical example of a uniformly counterclockwise convex operator is the so-called Prandtl-
Ishlinskii operator characterized by positive density functions ρ(x, r) independent of v , see
[17, Section 4.2]. Operators of the form P ◦ g with a Prandtl-Ishlinskii operator P and an
increasing function g are often used in control engineering because of their explicit inversion
formulas, see [2, 3, 18]. They are called the generalized Prandtl-Ishlinskii operators (GPI)
and represent an important subclass of Preisach operators. Note also that for every Preisach
operator P and every Lipschitz continuous increasing function g , the superposition operator
G = P ◦ g is also a Preisach operator, and there exists an explicit formula for its density,
see [16, Proposition 2.3]. Another class of convexifiable Preisach operators is shown in [12,
Proposition 1.3]. The technical hypotheses on the permeability function κ can be stated as
follows.

Hypothesis 1.4. The permeability κ : Ω×R → R is a bounded Lipschitz continuous function,
more precisely, there exist constants κ∗, κ

∗, κ̄ such that for all θ, θ1, θ2 ∈ R and all x, x1, x2 ∈ Ω
we have

0 < κ∗ ≤ κ(x, θ) ≤ κ∗, |κ(x1, θ1)− κ(x2, θ2)| ≤ κ̄
(
|x1 − x2|+ |θ1 − θ2|

)
. (1.17)

Note that even a local solution to Problem (0.1)–(0.2) may fail to exist if for example λ(x, r) ≡ 0
and div

(
κ(x, θ0)|∇u0|p−2∇u0

)
̸= 0, and we need an initial memory compatibility condition

which we state here following [12]. A more detailed discussion on this issue can be found in the
introduction to [12].

Hypothesis 1.5. Let the initial memory λ and the Preisach density function ρ be as in
Definition 1.1, and let ω be the parameter in (1.1). The initial pressure u0 belongs to W 2,∞(Ω)
and there exist a constant L > 0 and a function r0 ∈ L∞(Ω) such that, for Λ > 0 as in (1.4),
sup essx∈Ω |u0(x)| ≤ Λ and the following initial compatibility conditions hold:

λ(x, 0) = u0(x) a. e. in Ω, (1.18)

θ0(x) = G[u](x, 0) = Ḡ(x) +

∫ ∞

0

∫ λ(x,r)

0

ρ(x, r, v) dv dr a. e. in Ω, (1.19)

1

L

√∣∣ div (κ(x, θ0)|∇u0|p−2∇u0
)∣∣ ≤ r0(x) ≤ Λ a. e. in Ω, (1.20)

− ∂

∂r
λ(x, r) ∈ sign

(
div
(
κ(x, θ0)|∇u0|p−2∇u0

))
a. e. in Ω for r ∈ (0, r0(x)), (1.21)

ωκ(x, θ0(x))|∇u0|p−2∇u0 · n(x) + (1− ω)u0(x) = 0 a. e. on ∂Ω. (1.22)

Unlike [12], here we do not need to assume div
(
κ(x, θ0(x))|∇u0|p−2∇u0(x)

)
∈ L∞(Ω) since

it follows from the fact that u0 ∈ W 2,∞(Ω) together with assumptions (1.5), (1.11), and
Hypothesis 1.4. Our main existence result reads as follows.

Theorem 1.6. Let ω ∈ [0, 1] be given, let Hypotheses 1.4 and 1.5 hold, and let G be a
convexifiable Preisach operator in the sense of Definition 1.3. Then there exists a solution
u ∈ L∞(Ω × (0, T )) to Problem (1.2)–(1.3), (0.3) such that ∇u ∈ Lp(Ω × (0, T );RN) , and
both ut and θt = G[u]t belong to the Orlicz space LΦlog(Ω × (0, T )) generated by the function
Φlog(v) = v log(1 + v) . If moreover κ = κ(x) is independent of θ , then the solution is unique.
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Basic properties of Orlicz spaces are summarized in [13, Section 4]. For a more comprehensive
discussion, we refer the interested reader to the monographs [1, 20].

In the last part of the paper we address the problem of bounded speed of propagation, that
is, whether solutions with compactly supported initial data preserve the property of compact
support for all t > 0. We show indeed that the wetting front propagates with asymptotically
vanishing speed under the following assumptions.

Hypothesis 1.7. Let the initial memory λ be as in Definition 1.1. We assume that there exist
constants R1 > R0 > 0 and Λ > 0 such that BR1 ⊂ Ω and

u0(x) = λ(x, r) = 0 for |x| ≥ R0, r > 0, (1.23)

|u0(x)| ≤ Λ, λ(x, r) ≤ (Λ− r)+ for |x| < R0, r > 0. (1.24)

Theorem 1.8. Let the assumptions of Theorem 1.6 be satisfied, and additionally assume that
Hypothesis 1.7 holds. If p > 3 , the permeability κ > 0 is constant, and Ḡ as well as the
function ρ = ρ(r, v) in (1.9) are independent of x , then

(i) There exists t1 > 0 such that the unique solution u to Problem (1.2)–(1.3), (0.3) from
Theorem 1.6 vanishes in Ω \ BR1 for t ∈ (0, t1) . Moreover, all solutions corresponding
to different values of the parameter ω ∈ [0, 1] coincide in (0, t1) .

(ii) This solution can be extended to RN × (0,∞) with support contained in the ball BR(t)

with radius R(t) = R0 + Cpt
1/p with a constant Cp > 0 depending only on the data.

Roughly speaking, Theorem 1.8 (i) states that the boundary condition on ∂Ω is not active until
the moisture front reaches the boundary of Ω.

An upper bound on the size of the support in terms of a power 1/p of time as in Theorem 1.8 (ii)
was obtained in [7]. The proof relies on the comparison with a traveling wave solution of power-
law type involving t and |x| . Instead, to prove Theorem 1.8 we construct a special family of
dominant traveling wave solutions compatible with the hysteresis terms, see Section 4. Another
argument is used in [8, Chapter VI], where the comparison is made with the Barenblatt solution,
whose support also grows as a power of time, but the power additionally depends on the
dimension N .

2 Time discretization

Let ω ∈ [0, 1] be given. We proceed as in [12], choose a discretization parameter n ∈ N , define
the time step τ = T/n , and replace (1.2)–(1.3) with its time discrete system for the unknowns
{ui : i = 1, . . . , n} ⊂ W 1,p

ω (Ω) of the form∫
Ω

(
1

τ
(G[u]i −G[u]i−1)ϕ+ κ(x,G[u]i)|∇ui|p−2∇ui · ∇ϕ

)
dx+ γω

∫
∂Ω

uiϕ ds(x) = 0 (2.1)

for every test function ϕ ∈ Xω . Here, the time-discrete Preisach operator G[u]i is defined for
an input sequence {ui : i ∈ N ∪ {0}} by a formula of the form (1.9), namely,

G[u]i(x) = Ḡ(x) +

∫ ∞

0

∫ ξri (x)

0

ρ(x, r, v) dv dr, (2.2)
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where ξri denotes the output of the time-discrete play operator

ξri (x) = pr[λ, u]i(x) (2.3)

defined as the solution operator of the variational inequality

|ui(x)− ξri (x)| ≤ r, (ξri (x)− ξri−1(x))(ui(x)− ξri (x)− z) ≥ 0 ∀i ∈ N ∀z ∈ [−r, r], (2.4)

with a given initial condition
ξr0(x) = λ(x, r) a. e. (2.5)

similarly as in (1.6)–(1.7). Note that the discrete variational inequality (2.4) can be interpreted
as weak formulation of (1.6) for piecewise constant inputs in terms of the Kurzweil integral,
and details can be found in [10, Section 2].

For each i ∈ {1, . . . , n} , there is no hysteresis in the passage from ui−1 to ui , so that (2.1) is
a standard quasilinear elliptic equation. The existence of a solution ui ∈ W 1,p

ω (Ω) follows from
a classical argument based on Fourier expansion into eigenfunctions of the Laplacian, Brouwer
degree theory, and a homotopy argument similarly as in [14, Section 3]. An introduction to
topological methods for solving nonlinear partial differential equations can be found in [11,
Chapter V].

2.1 Uniform upper bounds

The first step is an L∞ bound on ui . This is achieved by testing (2.1) by ϕ = Hε(ui − Λ),
with Hε being a Lipschitz regularization

Hε(s) =


0 for s ≤ 0,
s
ε

for s ∈ (0, ε),
1 for s ≥ ε,

(2.6)

of the Heaviside function for some ε > 0 and Λ as in Hypothesis 1.5. Arguing as in [13,
Section 2.1], we obtain

|ui(x)| ≤ Λ, |ξri (x)| ≤ (Λ− r)+ (2.7)

for a. e. x ∈ Ω and all r ≥ 0 and i ∈ {0, 1, . . . , n} . In particular, even if we do not assume the
a priori boundedness of G as in (1.12), by assumption (1.10) we obtain

|G[u]i| ≤ C (2.8)

with a constant C > 0 independent of i and τ .

We further test (2.1) by ϕ = ui and get for θi = G[u]i

1

τ

∫
Ω

(G[u]i −G[u]i−1)ui dx+

∫
Ω

κ(x, θi)|∇ui|p dx+ γω

∫
∂Ω

|ui|2 ds(x) = 0 (2.9)

for all i ∈ {1, . . . , n} . We define the functions

ψ(x, r, ξ) :=

∫ ξ

0

ρ(x, r, v) dv, Ψ(x, r, ξ) :=

∫ ξ

0

vρ(x, r, v) dv. (2.10)
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Choosing z = 0 in (2.4) and using the fact that the function ψ is increasing, we obtain in both
cases ξri ≥ ξri−1 or ξri ≤ ξri−1 the inequalities

(ψ(x, r, ξri )− ψ(x, r, ξri−1))ui ≥ (ψ(x, r, ξri )− ψ(x, r, ξri−1))ξ
r
i ≥ Ψ(x, r, ξri )−Ψ(x, r, ξri−1).

Identity (2.9) together with Hypothesis 1.4 then yield

1

τ

∫
Ω

∫ Λ

0

(
Ψ(x, r, ξri )−Ψ(x, r, ξri−1)

)
dr dx+ κ∗

∫
Ω

|∇ui|p dx ≤ 0 (2.11)

for i ∈ {1, . . . , n} . Summing up over i and exploiting the fact that, by the definition of ξr0 in
(2.5) and the assumptions on ρ and λ in Definition 1.1,∫ Λ

0

Ψ(x, r, ξr0(x)) dr =

∫ Λ

0

∫ λ(x,r)

0

vρ(x, r, v) dv dr ≤ ρ1
2

∫ Λ

0

λ2(x, r) dr ≤ C,

and using (2.7) we get the estimate

max
i=0,...,n

sup ess
x∈Ω

|ui(x)|+ τ
n∑

i=0

∫
Ω

|∇ui|p dx ≤ C (2.12)

with a constant C > 0 independent of τ .

2.2 Convexity estimate

Recall that the operator G is convexifiable in the sense of Definition 1.3, that is, for every
U > 0 there exists a twice continuously differentiable mapping g : [−U,U ] → [−U,U ] such
that g(0) = 0, 0 < g∗ ≤ g′(u) ≤ g∗ <∞ , |g′′(U)| ≤ ḡ , and G is of the form

G = P ◦ g, (2.13)

where P is a uniformly counterclockwise convex Preisach operator on [−U,U ] . Let us fix U
from (2.7) and the corresponding function g .

We need to define a backward step u−1 satisfying the strong formulation of (2.1) for i = 0,
that is,

1

τ
(G[u]0(x)−G[u]−1(x)) = div

(
κ(x,G[u]0(x))|∇u0|p−2∇u0

)
in Ω (2.14)

with boundary condition (1.22). Repeating the argument of [12, Proposition 3.3], we use
assumptions (1.10) and (1.21) to find for each 0 < τ < ρ0(U)/2L

2 functions u−1 and G[u]−1

satisfying (2.14) as well as, thanks to (1.20), the estimate

1

τ
|u0(x)− u−1(x)| ≤ C (2.15)

with a constant C > 0 independent of τ and x . The discrete equation (2.1) extended to i = 0
has the form∫

Ω

(
1

τ
(P [w]i − P [w]i−1)ϕ+ κ(x, θi)|∇ui|p−2∇ui · ∇ϕ

)
dx+ γω

∫
∂Ω

uiϕ ds(x) = 0 (2.16)
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with wi = g(ui), θi = G[u]i for i ∈ {0, 1, . . . , n} and for an arbitrary test function ϕ ∈ Xω .
We proceed as in [12] and test the difference of (2.16) taken at discrete times i+ 1 and i

γω

∫
∂Ω

(ui+1 − ui)ϕ ds(x) +

∫
Ω

(
1

τ

(
P [w]i+1 − 2P [w]i + P [w]i−1

)
ϕ

+
(
κ(x, θi+1)|∇ui+1|p−2∇ui+1 − κ(x, θi)|∇ui|p−2∇ui

)
· ∇ϕ

)
dx = 0

(2.17)

by ϕ = f(wi+1 − wi) with

f(w) :=
w

τ + |w| . (2.18)

The boundary term gives a positive contribution which will be neglected. As for the hysteresis
term on the left-hand side of (2.17), following the same steps as in [13, Section 2.2] we obtain

1

τ

n−1∑
i=0

(P [w]i+1 − 2P [w]i + P [w]i−1)f(wi+1−wi) ≥
β

4

n−1∑
i=0

|wi+1−wi| log
(
1 +

|wi+1−wi|
τ

)
− C

(2.19)
with a constant C > 0 independent of τ . We thus get from (2.17)

n−1∑
i=0

∫
Ω

|wi+1 − wi| log
(
1 +

|wi+1−wi|
τ

)
dx

+
n−1∑
i=0

∫
Ω

(
κ(x, θi+1)|∇ui+1|p−2∇ui+1 − κ(x, θi)|∇ui|p−2∇ui

)
· ∇f(wi+1 − wi) dx ≤ C

(2.20)

with a constant C > 0 independent of τ . Let us denote for simplicity κi = κ(x, θi). Then(
κi+1|∇ui+1|p−2∇ui+1 − κi|∇ui|p−2∇ui

)
· ∇f(wi+1−wi) (2.21)

= f ′(wi+1−wi)

(((
κi+1−κi

)
|∇ui|p−2∇ui + κi+1(|∇ui+1|p−2∇ui+1−|∇ui|p−2∇ui)

)
×

×
((
g′(ui+1)−g′(ui)

)
∇ui + g′(ui+1)(∇ui+1−∇ui)

))

= f ′(wi+1−wi)

(
g′(ui+1)κi+1(|∇ui+1|p−2∇ui+1−|∇ui|p∇ui)(∇ui+1−∇ui)

+
(
g′(ui+1)−g′(ui)

)(
κi+1−κi

)
|∇ui|p + g′(ui+1)

(
κi+1−κi

)
|∇ui|p−2∇ui · (∇ui+1−∇ui)

+ κi+1

(
g′(ui+1)−g′(ui)

)
∇ui · (|∇ui+1|p−2∇ui+1−|∇ui|p−2∇ui)

)
.

The functions κ and g′ are bounded and Lipschitz continuous, and

f ′(wi+1−wi) =
τ

(τ + |wi+1−wi|)2
. (2.22)
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Moreover, since θi = P [w]i admits a representation similar to (2.2), by Hypothesis 1.4, estimate
(2.8), and the Lipschitz continuity of the time-discrete play implied by (2.4) we obtain

|κ(x, θi+1)− κ(x, θi)| ≤ κ̄|θi+1 − θi| ≤ C|wi+1 − wi| a. e.,

whereas, from assumption (1.16),

|g′(ui+1)−g′(ui)| ≤ ḡ(U)|ui+1−ui| ≤ ḡ(U)(g∗(U))
−1|wi+1−wi|.

These considerations, as well as the elementary identity

(|a|p−2a− |b|p−2b) · (a− b) = |a|p + |b|p − (|a|p−2 + |b|p−2)a · b

=
1

2

(
|a|p−2 + |b|p−2

)
|a− b|2 + 1

2

(
|a|p−2 − |b|p−2

) (
|a|2 − |b|2

)
,

(2.23)

which holds for arbitrary vectors a, b ∈ RN , allow us to estimate each of the four terms inside
the big brackets on the right-hand side of (2.21) as follows:

g′(ui+1)κi+1(|∇ui+1|p−2∇ui+1−|∇ui|p−2∇ui) · (∇ui+1−∇ui) (2.24)

≥ c(|∇ui+1|p−2 + |∇ui|p−2)|∇ui+1−∇ui|2 ≥ 0,(
g′(ui+1)−g′(ui)

)(
κi+1−κi

)
|∇ui|p ≤ C|wi+1−wi|2|∇ui|p, (2.25)

g′(ui+1)
(
κi+1−κi

)
|∇ui|p−2∇ui · (∇ui+1−∇ui) (2.26)

≤ C|wi+1−wi|
(
|∇ui|p−1 + |∇ui+1|p−1

)
||∇ui+1−∇ui|,

κi+1

(
g′(ui+1)−g′(ui)

)
∇ui · (|∇ui+1|p−2∇ui+1−|∇ui|p−2∇ui) (2.27)

≤ C|wi+1−wi|
(
|∇ui|p−1 + |∇ui+1|p−1

)
|∇ui+1−∇ui|.

The terms on the right-hand side of (2.26) and (2.27) can be estimated using Young’s inequality
with c as in (2.24) and a possibly large constant C , namely

|wi+1−wi|
(
|∇ui|p−1 + |∇ui+1|p−1

)
|∇ui+1−∇ui|

≤ C|wi+1−wi|2
(
|∇ui|p + |∇ui+1|p

)
+
c

4

(
|∇ui|p−2 + |∇ui+1|p−2

)
|∇ui+1−∇ui|2,

where the second term can then be reabsorbed into (2.24). Hence, by (2.22), for the left-hand
side of (2.21) we get the lower bound(

κi+1|∇ui+1|p−2∇ui+1 − κi|∇ui|p−2∇ui
)
· ∇f(wi+1−wi) (2.28)

≥ −τC|wi+1−wi|2
(
|∇ui|p + |∇ui+1|p

)
(τ + |wi+1−wi|)2

≥ −τC
(
|∇ui|p + |∇ui+1|p

)
.

As a consequence of (2.20), (2.12), and (2.28), and by assumption (1.16) and the definition of
wi , we thus have the crucial estimate

n−1∑
i=0

∫
Ω

|ui+1 − ui| log
(
1 +

|ui+1−ui|
τ

)
dx ≤ C

(
1 + τ

n∑
i=0

∫
Ω

|∇ui|p dx
)

≤ C (2.29)

with a constant C > 0 independent of τ .
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3 Proof of Theorem 1.6

We construct the sequences {û(n)} and {ū(n)} of approximations by piecewise linear and piece-
wise constant interpolations of the solutions to the time-discrete problem associated with the
division ti = iτ = iT/n for i = 0, 1, . . . , n of the interval [0, T ] . Namely, for x ∈ Ω and
t ∈ [ti−1, ti), i = 1, . . . , n , we define

û(n)(x, t) = ui−1(x) +
t− ti−1

τ
(ui(x)− ui−1(x)), (3.1)

ū(n)(x, t) = ui(x), (3.2)

continuously extended to t = T . Similarly, we consider

Ĝ(n)(x, t) = G[u]i−1(x) +
t− ti−1

τ
(G[u]i(x)−G[u]i−1(x)),

Ḡ(n)(x, t) = G[u]i(x).

Then (2.1) is of the form∫
Ω

(
Ĝ

(n)
t ϕ+ κ(x, Ḡ(n))

∣∣∇ū(n)∣∣p−2∇ū(n) · ∇ϕ
)
dx+ γω

∫
∂Ω

ū(n)ϕ ds(x) = 0 (3.3)

for every test function ϕ ∈ Xω . Our goal is to let n → ∞ (or, equivalently, τ → 0) in (3.3),
and obtain in the limit a solution to (1.2)–(1.3). The argument is based on the estimate which
follows from (2.12) and (2.29), namely

sup ess
(x,t)∈Ω×(0,T )

|û(n)(x, t)|+
∫ T

0

∫
Ω

|û(n)t | log
(
1 + û

(n)
t

)
dx dt+

∫ T

0

∫
Ω

|∇û(n)|p dx dt ≤ K (3.4)

with a constant K > 0 independent on n . In [13], we have proved the following results.

Lemma 3.1. Let Φlog be as in Theorem 1.6, and let K > 0 be as in (3.4). Then there exists
a function α : (0, 1) → (0, 1) such that limτ→0 α(τ) = 0 and for all v ∈ (0, 2K) and τ ∈ (0, 1)
we have

Φlog(v)

τΦlog

(
v
τ

) =
log(1 + v)

log
(
1 + v

τ

) ≤ α(τ).

Proposition 3.2. Let the sequence u(n) satisfy the condition (3.4). Then it is compact in the
space L1(Ω;C[0, T ]) .

Proposition 3.2 and the Lipschitz continuity of G in L1(Ω;C[0, T ]) stated in Proposition 1.2
imply that, passing to a subsequence if necessary, G[û(n)] → G[u] in L1(Ω;C[0, T ]) . To estimate
the difference |Ḡ(n)(x, t)−G[û(n)]| , let us define

ξ̃(n)r (x, t) = ξri−1(x) +
t− ti−1

τ

(
ξri (x)− ξri−1(x)

)
for (x, t) ∈ Ω× (ti−1, ti],

ξ̄(n)r (x, t) = ξri (x) for (x, t) ∈ Ω× (ti−1, ti],

ξ̂(n)r (x, t) = pr[û
(n)](x, t) for (x, t) ∈ Ω× [0, T ],
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with ξri defined in (2.3). By (1.6) and (2.4) we have

∂ξ̂
(n)
r

∂t

(
û(n) − ξ̂(n)r − z

)
≥ 0 a. e., (3.5)

∂ξ̃
(n)
r

∂t

(
ū(n) − ξ̄(n)r − z

)
≥ 0 a. e., (3.6)

for all |z| ≤ r . Putting z = ū(n) − ξ̄
(n)
r in (3.5) and z = û(n) − ξ̂

(n)
r in (3.6) and summing up

the inequalities, we get

1

2

∂

∂t

(∣∣ξ̂(n)r − ξ̃(n)r

∣∣2) ≤ ∂

∂t

(
ξ̂(n)r − ξ̃(n)r

) ((
û(n) − ū(n)

)
+
(
ξ̄(n)r − ξ̃(n)r

))
. (3.7)

Note that (2.4) implies

|ξ̄(n)r (x, t)−ξ̃(n)r (x, t)| ≤
∣∣ξri (x)−ξri−1(x)

∣∣ ≤ ∣∣ui(x)−ui−1(x)
∣∣ for a. e. (x, t) ∈ Ω×(ti−1, ti]. (3.8)

We have | ∂
∂t
ξ̂
(n)
r | ≤ | ∂

∂t
û(n)| a. e., and from (3.7), (3.8) we obtain

∂

∂t

((
ξ̂(n)r − ξ̃(n)r

)2)
(x, t) ≤ 8|ui(x)− ui−1(x)|2

τ
for a. e. (x, t) ∈ Ω× (ti−1, ti]. (3.9)

Hence, by (3.9), (2.7), (2.29), and Lemma 3.1,∫
Ω

max
t∈[0,T ]

∣∣ξ̂(n)r − ξ̃(n)r

∣∣2(x, t) dx ≤ C
n−1∑
i=0

∫
Ω

|ui+1 − ui|2 dx

≤ C
n−1∑
i=0

∫
Ω

|ui+1 − ui| log(1 + |ui+1 − ui|) dx ≤ Cα(τ) (3.10)

with a constant C independent of τ . Additionally, (1.10), (2.7), and (3.8) yield

|Ĝ(n)(x, t)− Ḡ(n)(x, t)| ≤ C
∣∣ui(x)− ui−1(x)

∣∣ (3.11)

so that, combining (3.10)–(3.11), we obtain∫
Ω

max
t∈[0,T ]

∣∣G[û(n)]− Ḡ(n)
∣∣(x, t) dx+ ∫

Ω

max
t∈[0,T ]

∣∣G[û(n)]− Ĝ(n)
∣∣(x, t) dx ≤ Cα1/2(τ).

Hence, both Ḡ(n) and Ĝ(n) converge to G[u] strongly in L1(Ω × (0, T )). Furthermore, the
sequence {∇ū(n)} is bounded in Lp

(
(Ω× (0, T );RN

)
. Hence, ∇ū(n) → ∇u weakly in Lp

(
(Ω×

(0, T );RN
)
. To pass to the limit in the elliptic term in (3.3), we use a variant of the Minty

trick. Notice first that ϕ = ū(n) − u + δy with y ∈ Lp(0, T ;Xω) and δ ∈ R is an admissible
test function in (3.3), and we obtain∫

Ω

(
Ĝ

(n)
t (ū(n) − u+ δy) + κ(x, Ḡ(n))

∣∣∇ū(n)∣∣p−2∇ū(n) · ∇(ū(n) − u+ δy)
)
dx

+ γω

∫
∂Ω

ū(n)(ū(n) − u+ δy) ds(x) = 0.

(3.12)
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By monotonicity (see also (2.23)) we have

κ(x, Ḡ(n))
(∣∣∇ū(n)∣∣p−2∇ū(n) −

∣∣∇(u− δy)
∣∣p−2∇(u− δy)

)
· ∇(ū(n) − u+ δy) ≥ 0 (3.13)

for all δ ∈ R and y ∈ Lp(0, T ;Xω), hence

κ(x, Ḡ(n))
∣∣∇ū(n)∣∣p−2∇ū(n) · ∇(ū(n) − u+ δy)

≥ κ(x, Ḡ(n))
∣∣∇(u− δy)

∣∣p−2∇(u− δy) · ∇(ū(n) − u+ δy), (3.14)

and ū(n)(ū(n) − u+ δy) ≥ (u− δy)(ū(n) − u+ δy). From (3.12) we obtain

γω

∫
∂Ω

(u− δy)(ū(n) − u+ δy) ds(x) +

∫
Ω

(
Ĝ

(n)
t (ū(n) − u+ δy)

+ κ(x, Ḡ(n))
∣∣∇(u− δy)

∣∣p−2∇(u− δy) · ∇(ū(n) − u+ δy)
)
dx dt ≤ 0. (3.15)

The functions Ĝ
(n)
t are bounded the Orlicz space LΦlog(Ω × (0, T )) generated by the function

Φlog . It can be considered as the dual space to the small Orlicz space L
Φexp

♯ (Ω×(0, T )) generated

by the function Φexp(v) = ev − v − 1. Hence, passing to a subsequence, we conclude that Ĝ
(n)
t

converge weakly* to G[u]t in LΦlog(Ω × (0, T )) (see [13, Section 5] for more details). Since
û(n) and ū(n) are uniformly bounded, by the Lebesgue Dominated Convergence Theorem they
converge strongly in L

Φexp

♯ (Ω× (0, T )), and we get

lim
n→∞

∫ T

0

∫
Ω

Ĝ
(n)
t (ū(n) − u+ δy) dx dt = δ

∫ T

0

∫
Ω

G[u]ty dx dt. (3.16)

To pass to the limit in the gradient term of (3.15), we rewrite it as

κ(x, Ḡ(n))W · ∇(ū(n) − u+ δy) = κ(x,G[u])W · ∇(ū(n) − u) + δκ(x, Ḡ(n))W · ∇y
+
(
κ(x, Ḡ(n))− κ(x,G[u])

)
W · ∇(ū(n) − u)

with W =
∣∣∇(u − δy)

∣∣p−2∇(u − δy) ∈ Lp′(Ω × (0, T );RN), where 1
p
+ 1

p′
= 1. The functions

∇ū(n) weakly converge to ∇u in Lp(Ω× (0, T );RN), hence

lim
n→∞

∫ T

0

∫
Ω

κ(x,G[u])W · ∇(ū(n) − u) dx dt = 0. (3.17)

We have, up to a subsequence, Ḡ(n) → G[u] strongly in every Lq and pointwise almost every-
where, and it follows from the Lebesgue Dominated Convergence Theorem that

lim
n→∞

δ

∫ T

0

∫
Ω

κ(x, Ḡ(n))W · ∇y dx dt = δ

∫ T

0

∫
Ω

κ(x,G[u])W · ∇y dx dt. (3.18)

We estimate the remaining integral using Hölder’s inequality as∫ T

0

∫
Ω

(
κ(x, Ḡ(n))− κ(x,G[u])

)
W · ∇(ū(n) − u) dx dt

≤ C

(∫ T

0

∫
Ω

|κ(x, Ḡ(n))− κ(x,G[u])|p′|W |p′ dx dt
)1/p′

,
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and using again the Lebesgue Dominated Convergence Theorem we conclude that

lim
n→∞

∫ T

0

∫
Ω

(
κ(x, Ḡ(n))− κ(x,G[u])

)
W · ∇(ū(n) − u) dx dt = 0. (3.19)

Summarizing the above computations and passing to the limit in the boundary term, we see
that

δ

∫ T

0

(∫
Ω

(
G[u]ty + κ(x,G[u])

∣∣∇(u− δy)
∣∣p−2∇(u− δy) · ∇y

)
dx

+ γω

∫
∂Ω

(u− δy)y ds(x)

)
dt ≤ 0

for every δ ∈ R . Dividing the above inequality by |δ| and letting δ tend to 0, we complete
the existence part of the proof of Theorem 1.6.

Assume now that κ = κ(x) is independent of θ , and let u1, u2 be two solutions of (1.2)–(1.3)
with the same initial condition u0 and the same initial memory λ . We use the Hilpert trick
(see [15], see also [12, Proposition 4.3]) and test the identity∫

Ω

(
(G[u1]−G[u2])tϕ+ κ(x)

(
|∇u1|p−2∇u1 − |∇u2|p−2∇u2

)
· ∇ϕ

)
dx = 0 (3.20)

by ϕ = Hε(u1 − u2), where Hε is the Lipschitz continuous approximation of the Heaviside
function defined in (2.6). We conclude that u1 ≤ u2 a. e., which implies uniqueness.

4 Bounded speed of propagation

This section is devoted to the proof of Theorem 1.8. The idea is to construct a class of explicit
solutions ue to the PDE

G[ue]t − κ div (|∇ue|p−2∇ue) = 0, (4.1)

with p > 2 and for (x, t) ∈ RN × (0,∞), which vanish on some half-space associated with a
unit vector e ∈ RN , and to show afterward that these solutions are dominant over the solution
from Theorem 1.6.

4.1 Traveling wave solutions

Let 0 < R0 < R1 be as in Hypothesis 1.7. We fix R ∈ (R0, R1) and a unit vector e ∈ RN , and
define ue in the form of a traveling wave

ue(x, t) = Uc

(
ct+R− e · x

)
(4.2)

with a suitable constant speed c > 0 of propagation, where Uc : R → R is a continuously
differentiable function depending on c such that Uc(z) = 0 for z ≤ 0, U ′

c(z) > 0 for z > 0.
By definition, the function ue vanishes in the half-space e · x ≥ R + ct . Moreover, for every
x ∈ RN , the function t 7→ ue(x, t) is nondecreasing, and ue(x, 0) = Uc(R− e · x). We have

G[ue](x, t) = Γ
(
Uc

(
ct+R− e · x

))
, (4.3)
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where Γ is the primary wetting curve associated with G , that is, according to (1.13)–(1.14)
and the subsequent discussion,

Γ(u) = Ḡ+

∫ u

0

∫ u−r

0

ρ(r, v) dv dr =: Ḡ+ Γ0(u), (4.4)

with Γ0(0) = 0. Furthermore,

∇ue(x, t) = −eU ′
c (ct+R− e · x) , |∇ue|p−2∇ue = −e (U ′

c (ct+R− e · x))p−1

and

div
(
|∇ue|p−2∇ue

)
=
(
(U ′

c (ct+R− e · x))p−1
)′
, (4.5)

where the prime denotes the derivative with respect to z . Hence, in view of (4.3), ue is a
solution to (4.1) if and only if

cΓ0(Uc(z)) = κ
(
U ′
c(z)

)p−1
(4.6)

for all z ≥ 0, that is

U ′
c(z) =

( c
κ
Γ0(Uc(z))

)1/(p−1)

, Uc(0) = 0. (4.7)

If a solution to (4.7) exists, then it is unique. Since Γ0 is nonnegative and increasing, we
conclude that Uc is increasing and convex, and limz→∞ Uc(z) = ∞ .

A necessary and sufficient condition for the existence of a solution to (4.7) reads

F (u∗) :=

∫ u∗

0

Γ0(u)
−1/(p−1) du <∞ ∀u∗ > 0. (4.8)

Then

Uc(z) = F−1(c∗z), c∗ :=
( c
κ

)1/(p−1)

. (4.9)

From (1.10) it follows that Γ0(u) ≤ ρ1
2
u2 . On the other hand, we have for all u∗ > 0 and

u ∈ (0, u∗) that Γ′
0(u) ≥ uρ0(u

∗), hence

Γ0(u) ≥ min

{
Γ0(u

∗),
1

2
ρ0(u

∗)u2
}

for all u > 0. (4.10)

By the monotonicity of Γ0 and ρ0 , we can fix u∗ > 0 and ρ∗ > 0 such that Γ0(u
∗) ≥ ρ∗ ,

ρ0(u
∗) ≥ 2ρ∗ , and obtain from the above computations that

ρ∗

(
u

1 + u

)2

≤ Γ0(u) ≤
ρ1
2
u2 for all u > 0. (4.11)

The necessary and sufficient condition (4.8) for the existence of traveling wave solutions thus
holds if and only if p > 3. Note that by virtue of (4.11), for z close to 0 we have Uc(z) ≈
z(p−1)/(p−3) , U ′

c(z) ≈ z2/(p−3) , (U ′
c(z))

p−1 ≈ z2(p−1)/(p−3) , so that formula (4.5) is meaningful.
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Consider now the homogeneous Dirichlet problem on BR1∫
BR1

(
G[u]tϕ+ κ|∇u|p−2∇u · ∇ϕ

)
dx = 0 (4.12)

for every test function ϕ ∈ W 1,p
0 (BR1)∩L∞(BR1). The existence of a unique solution to (4.12)

follows from Theorem 1.6 for ω = 0 and Ω = BR1 . We prove the following intermediate result.

Proposition 4.1. Let Hypothesis 1.7 be satisfied and let p > 3 . Then there exists t1 > 0 such
that the solution to Problem (4.12), (0.3) has compact support in BR1 for all t ∈ (0, t1) .

Proof. The strategy is to compare the solution to Problem (4.12), (0.3) with the traveling
wave solution ue defined in (4.2). We start by noting that, since Uc is increasing and convex,
we find c > 0 such that

Uc(R−R0) ≥ Λ. (4.13)

This is indeed possible: by virtue of (4.9), condition (4.13) can be equivalently written as( c
κ

)1/(p−1)

(R−R0) ≥ F (Λ), (4.14)

which is certainly true if c > 0 is sufficiently large. Then from (4.13) and Hypothesis 1.7 we
obtain

|u0(x)| ≤ Uc(R−R0) ≤ Uc(R− e · x) = ue(x, 0)

for all e ∈ ∂B1 and a. e. x ∈ BR1 . Let t1 > 0 be such that ct1 + (R − R0) < R1 . For every
test function ϕ ∈ W 1,p

0 (BR1) ∩ L∞(BR1), it follows from (4.1) and (4.12) that∫
BR1

(
(G[u]−G[ue])tϕ+ κ

(
|∇u|p−2∇u− |∇ue|p−2∇ue

)
· ∇ϕ

)
dx = 0. (4.15)

Let f : R → R be a nondecreasing function. Then(
|∇u|p−2∇u− |∇ue|p−2∇ue

)
· ∇f(u− ue) ≥ 0,

see (2.23). We then test (4.15) by Hε(u−ue), where Hε is the Lipschitz continuous approxima-
tion of the Heaviside function defined in (2.6). This is indeed an admissible test function, since
for |x| = R1 we have by definition u(x, t) = 0 and ue(x, t) ≥ 0, hence Hε(u − ue)(x, t) = 0.
Passing to the limit as ε→ 0, we obtain∫

RN

(G[u]−G[ue])tH(u− ue) dx ≤ 0, (4.16)

and from Hilpert’s inequality (see [15]) we conclude that u(x, t) ≤ ue(x, t) a. e. for each e ∈ RN ,
|e| = 1. By symmetry, we get −u(x, t) ≤ ue(x, t). For t ∈ (0, t1) and e = x/|x| we have in
particular

|u(x, t)| ≤ Uc

(
ct+R− |x|

)
and Uc

(
ct+R− |x|

)
= 0 for R1 > |x| ≥ ct1 +R, (4.17)

see Figure 2. Hence u has compact support in BR1 for t < t1 , which completes the proof of
Proposition 4.1.

■
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Figure 2: Dominant traveling wave solution.

4.2 Proof of Theorem 1.8

Let u1 be a solution to Problem (4.12), (0.3) for p > 3 and t ∈ (0, t1), and whose initial state
satisfies Hypothesis 1.7. By Proposition 4.1, it has compact support in BR1 . If u1 is extended
by 0 to Ω \BR1 , then it necessarily coincides with the unique solution to Problem (1.2)–(1.3),
(0.3), which is precisely statement (i) of Theorem 1.8.

To prove statement (ii), we repeat the argument of part (i), where we choose R > R0 and
T > 0 arbitrarily large, and set Ω = BRT

with RT := cT +R . According to formula (4.17), the
corresponding solution uT (·, t) has compact support in BRT

for t ∈ (0, T ) and coincides with
u1 for t ∈ (0, t1). We can let T → ∞ and conclude that uT can be extended to a solution u∞
on the whole space-time domain RN × (0,∞). According to (4.14), u∞ is dominated by ue
provided that

c1/(p−1)(R−R0) ≥ κ1/(p−1)F (Λ) =: Λ̄. (4.18)

From (4.18) it follows that the speed c > 0 of propagation can be arbitrarily small if R is
sufficiently large. An upper bound x = R(t) for the wetting front is given by the envelope of
the linear functions

Rc(t) = R + ct, R = R0 + Λ̄c−1/(p−1), (4.19)

defined by the condition that the straight lines x = Rc(t) are tangent to the curve x = R(t)
at their contact points, see Figure 3. This leads to the ODE

R(t)− tṘ(t) = R0 + Λ̄
(
Ṙ(t)

)−1/(p−1)
, (4.20)

which admits an explicit representation

R(t) = R0 + Cp t
1/p, Cp = p

(
Λ̄

p− 1

)(p−1)/p

.

This completes the proof of Theorem 1.8.

4.3 Doubly nonlinear equations and necessity of the condition p > 3

If 2 < p ≤ 3 the comparison technique developed in the previous two subsections cannot be
applied. Obviously, this does not imply that for this range of exponents the speed of propagation
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Figure 3: Moving wetting front.

is infinite. To fill this gap, in this subsection we gather some observations and draw some
connections between our problem and some well-known nonlinear parabolic equations.

The double-sided estimate (4.11) indicates that Problem (0.1)–(0.2) can be compared to the
equation (

|u|u
)
t
− κ div

(
|∇u|p−2∇u

)
= 0, (4.21)

which is an instance of the doubly nonlinear parabolic equation(
|u|m−1u

)
t
− κ div

(
|∇u|p−2∇u

)
= 0 (4.22)

when m = 2. The case p − 1 > m is commonly known as the slow diffusion equation, while
the case p− 1 < m is named the fast diffusion equation, see [9]. The difference between them
becomes apparent in the fact that slow diffusion equations allow solutions with compact support
and perturbations propagate at finite speed, while in fast diffusion equations perturbations
propagate at infinite speed, prohibiting solutions with compact support. When m = 2 as in
our case, the critical exponent is exactly p = 3. On the one hand, this confirms that when
p > 3 the speed of propagation has to be finite, which is in agreement with our findings; on
the other hand, when p < 3 (or p = 3) we cannot expect solutions with compactly supported
initial data to be compactly supported for any positive time, so the condition p > 3 is also
necessary.
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[13] C. Gavioli, P. Krejč́ı: Degenerate diffusion in porous media with hysteresis-dependent permeabil-
ity. arXiv:2402.01278.
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