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Abstract:

Arising in fracture mechanics and engineering, a modedsswalued problem of kinking of a crack
is investigated within the topological context. The objective functepresenting the potential

energy is expanded with respect to the infinitesimal hole (micro-cradkg &ptof the macro-crack.

Based on the refined method of matched asymptotic expansions, thet@symodels are derived

in the terms of stress intensity factors. In particular, thesgthe so-called topological derivatives
of the first-order, which were out of the case of the smooth conception of topolagivatiges.
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1. INTRODUCTION

Appearing in a wide range of real world applications, maand-raicro-cracking phenomena are of
the primary interest for fracture mechanics and the relatgoheering problems in geo-, bio-, and
material sciences. For the common fracture conceptions eetog#, 8, 11), and other works. In
particular, the problem of crack kinking including determining theatiion in which an incipient
crack will propagate is the subject for permanent discussidiheiliterature on fracture mechanics,
see(l, 2,5, 9). In its almost a hundred year history fracture theory has aédrasgreat number of
problems using a variety of techniques, but still there are rfmamal inconsistencies. In fact, the
process of translating micro-effects onto the macro-level sesolta singular character of
mathematical models describing cracks. Such singular probseesdifficult to analyse by
numerical methods. Our study aims to investigate cracking phenomena withwgtoglbtontext.

In fact, a kink of the crack path during its evolution can be viewedsasppage of movement in
the direction tangential to the previous smooth path and an appearanceewf path. This
peculiarity of the crack propagation process is inherently connetitbdthe phenomenon of
appearance of a hole or a micro-crack in a continuum. From a geomiewwpoint, these
phenomena present change of the topology class of the continuum. Dgschéinges in topology
is the key difficulty in the structure analysis and optim@atiRecently, a mathematical foundation
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of the topological sensitivity due to creating infinitesimal bale a continuum was given in the
form of the so-called bubble-method, s@& 13). The mathematical formalism exploits the
corresponding topological derivative of the objective function (the patesrtergy in our context)
when the hole vanishes. However, the main disadvantage of the standardlappruzrns the fact
that the topological derivative was defined for a-priori sina@ometries only. Pre-described non-
smooth cracks inside the continuum are not the case. By these re#s@nspose a generalization
of the topological derivative concept specifically for the non-smooth case netgidg cracks.

To emphasize the main difficulties arising in the problem under @eration, we rely on a model
scalar-valued problem and on a piecewise-linear crack path. Ouraappgsobased on the refined
method of matched asymptotic expansions for topological sensitivity anages8,12). We derive
asymptotic models for the objective function representing the pdtengagy with respect to the
infinitesimal hole (micro-crack) at the tip of the macro-krda particular, this approach gives the
first-order topological derivatives, which were out of the casth® smooth conception (which
assumes that the first-order terms are zero for smooth problems).

2. ASYMPTOTIC ANALYSIS OF THE ENERGY FUNCTIONAL

2.1 Satement of the problem

Let =, ={x=(X,X,): X <0,%, =0} be a semi-infinite crack oR* with two faces=Z . Suppose
that ' is a simple contour with its ends lying on theefa&. of the crack. LetQ be a domain
with the boundary formed by the contdurand the face&; of a finite crack=, with its tip at the

origin of coordinate€D. We consider a hole. containing the origi® with the piecewise-smooth
boundaryda . In our special case when treating kinking cragks,specify the hole. as a linear
segment(0O,Q), and the boundaryda turns into its two opposite faces with a normattoe

defined well at the each face except at the tipsand Q. By & we denote a small positive
parameter. For sufficiently smadl it is always possible to remove the set={x:&*x0a} from

the domainQ, thus obtaining the singularly perturbed domé&ln :Q\Jg with the boundary

0Q, =TUZ;Uw,. In such a domain we consider the following Neumdwundary value
problem for the Poisson equation:

-A U (X) =0, xO0Q,; ()
ou‘/on(x)=0, xO=*Udw,; (2)
ou /an(x) = p(x), xar. ©)

Here, d/dn stands for the derivative in the direction of théward (with respect t®,) normal
vector n. It supposed that a given traction forpesatisfies the usual solvability condition.

After finding the solutionu® of Egs. (1)-(3) we shall consider the energy fiomal

1(u3Q,) =12 [|0,u* ()P dx= [ p(x)u* ()ds, ==12[ p(yu° (x)ds,. (4)
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We need asymptotic formulas of the solutichas € — 0. In particular, its substitution into Eq. (4)
gets the leading term in expansion of the energyctianal, which represents the topological
derivative caused by the diminishing hale at the tipO of the crack=, posed in the domaif® .

2.2 Thefirst limit problem

As £ - 0 the holew, is collapsed to the poir®, the boundary condition at the contaw, in
Eq. (2) disappears, and Eqgs. (1)-(3) form thetl{imon-perturbed) problem with crack:

-AN(X) =0, xOQ; (B
o/on(x)=0, xOZ%; (6)
ov°/on(x) = p(x), xOr. (7)

For the following use we introduce the polar cooate systenr > 0,¢ [1 (0,277) at the origirD.
Applying the method of separation of variablesEoss. (5)-(7), the asymptotic formula holds:

v°(x):ic,?]rwz¢m(¢)+0(r‘“‘+l)/2), r-0. (8

m=0

The coefficientc, in Eq. (8) is called the stress intensity facldre angular functions:

D% (g) =coskg), D*(p) = 2m) V2 (k+1/2)sin((k+1/2)¢), k=01,...

are normalized as adopted in the fracture mechahiesother functions in the Fourier series:

W) =-(2m™, W*(g)=(2km)*coskg), WHH(P)=(@2m ™V (k-Y2)?sin((k-1/2)¢)
for k =12,... are normalized to satisfy the following conditions
aX™ Y™ S, (0) =3, Y°=(logr)¥°, Y"=r""2W" X"™=r"p" (9)
Here S; (O ) stands for the circle of radiu8 centred atO, and q denotes the integral
qU,V;0G) = j{au/an(x)V(x)—U(x) oV/on(x)}ds, =I{V(X)AU (X) —U (X)AV (x)}dx. (@0)
3G G
The weight functions¢™(x )are to be found as the non-energetic singulartisok of the
homogeneous problem in Egs. (5)-(7) whers 0. They enjoy the following asymptotic behaviour:
¢"(X) =rMWM($)+0(, r - 0.
With their help, the coefficients in Eq. (8) candeermined by the formulas:

co = [ p(¥¢"(¥9ds,, m=01...
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2.3 Special solutions

In the domain R?\ (=, Uw) we considerthe series of Neumann problems for 1.2,...
-An (=0, ¢OR\(E.Uw); @9
9,7"(£) =0, SU0ENWUow (12
(&) = X () +o(), €] — oo, a3

Here d, denotes derivative in the direction of inward {witespect tow) normal vectorv.
Consider the coefficientn' in the asymptotic expansion of the special sofutjo:

n'(&) = (@) +m; oW (P) +O(p ™), p - . (14)

Using Green'’s formula and the normalization cowodisiin Eq. (9) we obtain

mi= [0t - XY e - j

RA\(Z,,Uw)

0.xY'de. @9

—o

We consider the case when={r 0 (0,1),¢ = £} . It describes the crack_ Uw kinking at the
origin O with the fixed angleg # 0 to the branchw =(0,Q) of the lengthl > 0. In this case, the
second term in Eq. (15) disappears, and similarkd. (8) the expansion holds

n'(&) =Cy +Cipy*® (p,) +O(p,), p; - 0 (16)

written in the local polar coordinated, > 0,4, (0277) around the crack tiQ. Here C; is the

stress intensity factor of the special solutipnof Egs. (11)-(13) ak =1. Following the Nazarov’s
method and applying path-independent integralsuggest the equality

qa(7t, 0 1" Sx(0) = a(r*,é M7 S.(Q). A7)

Substituting the expansions given in Eq. (14) agd(E6) into Eg. (17) and using Eq. (9), from Eq.
(15) and Eq. (17) we calculate
M= —dlp" @)+ Mo VWHg), Y2 0P} (@) -mE oW (@) $:(0)
= —q(Cl + Clp4 0 () -IC 0} P (4,): S.(Q) =1 (C))2

(XS)
2.4 The second limit problem

Based on the above results, now we consider tharped problem in Egs. (1)-(3). The asymptotic

formula for the solutionu® is well known; see, e.g(10). The method of matched asymptotic
expansions (se@, 14)) implies the following structure for the inner agytotic representation:
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u(x) = g + " (6), 19

which is valid in a small neighbourhood &f. Here we used the stretched variabfes £™*x. On
the other hand, around the tof the kinked crack we have the following asymm@&ixpansion

us(x) =c; +cr,20Y(g,), 1, - 0. (20)

From Eq. (16), Eq. (19), and Eq. (20) we infer thfat c’C! + O(£"?).

2.5 Expansion of the energy functional
Away from some neighbourhood &f the outer asymptotic expansion has the form
u®(x) = v°(x) +e(c/m; )6 (). @D
Substituting Eqg. (21) into the energy functionaEiq. (4) gets due to Eq. (18)
Q) =10v%Q) —5/2(cfmjf)j p(X) ¢ (X)ds, +O(¥?)
r
=1(v;Q) - £/2(c?)?ms + O(¥?) 22)

= 1(v%;Q) - (&)(c?C})? /2 +O(£%).

Note that due to the expansion in the second pnaiblem, Eq. (22) yields the well-known formula
1(U%;Q,) =1V Q) - (d)(c))?/2+0(¥?).

Thus, from Eq. (22) we conclude with the topologaterivative, which is of the first order,

lim, o '(UE;QE)‘; D wai/z @9

with respect to the diminishing crack braneh of the lengthd .

3. CONCLUSION

From the practical point of view, we obtained tlsyraptotic expansion of the potential energy
expressed in the terms of stress intensity factang;h are of the primary importance for engineers.
We observe that the topological derivative in E2B)(is expressed with the help of two stress

intensity factors. While the former (initial) steetensity factorc! depends on the specific choice
of physical parameters and geometric data of thereece crack problem before kink, which is
given in Egs. (5)-(7), the latte€, is the universal parameter depending on the gegnoétthe
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kinked infinite domain only. This implicit quantifg to be determined from the special solutipn
for model problem of the crack kinking from EqsL){13) atk =1.

In the particular case, when the reference stasenisoth, thusc) = Qthen the first-order term is

zero, and the topological derivative is determirdthe higher-order term in the asymptotic
expansion in EqQ. (22). This fact agrees with theatim conception of topological derivatives.
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