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Abstract: 

Arising in fracture mechanics and engineering, a model scalar-valued problem of kinking of a crack 
is investigated within the topological context. The objective function representing the potential 
energy is expanded with respect to the infinitesimal hole (micro-crack) at the tip of the macro-crack. 
Based on the refined method of matched asymptotic expansions, the asymptotic models are derived 
in the terms of stress intensity factors. In particular, this gives the so-called topological derivatives 
of the first-order, which were out of the case of the smooth conception of topological derivatives. 
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1. INTRODUCTION 

Appearing in a wide range of real world applications, macro- and micro-cracking phenomena are of 
the primary interest for fracture mechanics and the related engineering problems in geo-, bio-, and 
material sciences. For the common fracture conceptions we refer to (4, 8, 11), and other works. In 
particular, the problem of crack kinking including determining the direction in which an incipient 
crack will propagate is the subject for permanent discussions in the literature on fracture mechanics, 
see (1, 2, 5, 9). In its almost a hundred year history fracture theory has addressed a great number of 
problems using a variety of techniques, but still there are many formal inconsistencies. In fact, the 
process of translating micro-effects onto the macro-level results in a singular character of 
mathematical models describing cracks. Such singular problems are difficult to analyse by 
numerical methods. Our study aims to investigate cracking phenomena within topological context.  
 
In fact, a kink of the crack path during its evolution can be viewed as a stoppage of movement in 
the direction tangential to the previous smooth path and an appearance of a new path. This 
peculiarity of the crack propagation process is inherently connected with the phenomenon of 
appearance of a hole or a micro-crack in a continuum. From a geometric viewpoint, these 
phenomena present change of the topology class of the continuum. Describing changes in topology 
is the key difficulty in the structure analysis and optimization. Recently, a mathematical foundation 
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of the topological sensitivity due to creating infinitesimal holes in a continuum was given in the 
form of the so-called bubble-method, see (6, 13). The mathematical formalism exploits the 
corresponding topological derivative of the objective function (the potential energy in our context) 
when the hole vanishes. However, the main disadvantage of the standard approach concerns the fact 
that the topological derivative was defined for a-priori smooth geometries only. Pre-described non-
smooth cracks inside the continuum are not the case. By these reasons, we propose a generalization 
of the topological derivative concept specifically for the non-smooth case represented by cracks. 
 
To emphasize the main difficulties arising in the problem under consideration, we rely on a model 
scalar-valued problem and on a piecewise-linear crack path. Our approach is based on the refined 
method of matched asymptotic expansions for topological sensitivity analysis, see (3,12). We derive 
asymptotic models for the objective function representing the potential energy with respect to the 
infinitesimal hole (micro-crack) at the tip of the macro-crack. In particular, this approach gives the 
first-order topological derivatives, which were out of the case of the smooth conception (which 
assumes that the first-order terms are zero for smooth problems).  
 
 

2. ASYMPTOTIC ANALYSIS OF THE ENERGY FUNCTIONAL 

2.1 Statement of the problem 

Let }0,0:),({ 2121 =≤==Ξ∞ xxxxx  be a semi-infinite crack on 2R  with two faces ±
∞Ξ . Suppose 

that Γ  is a simple contour with its ends lying on the faces ±
∞Ξ  of the crack. Let Ω  be a domain 

with the boundary formed by the contour Γ  and the faces ±Ξ0  of a finite crack 0Ξ  with its tip at the 

origin of coordinates O . We consider a hole ω  containing the originO  with the piecewise-smooth 
boundary ω∂ . In our special case when treating kinking cracks, we specify the hole ω  as a linear 
segment ),( QO , and the boundary ω∂  turns into its two opposite faces with a normal vector 
defined well at the each face except at the tips O  and Q . By ε  we denote a small positive 

parameter. For sufficiently small ε  it is always possible to remove the set }:{ 1 ωεωε ∈= − xx  from 

the domain Ω , thus obtaining the singularly perturbed domain εε ω\Ω=Ω  with the boundary 

εεε ωUU
±ΞΓ=Ω∂ . In such a domain we consider the following Neumann boundary value 

problem for the Poisson equation: 
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Here, n∂∂  stands for the derivative in the direction of the outward (with respect to εΩ ) normal 

vector n . It supposed that a given traction force p  satisfies the usual solvability condition.  
 
After finding the solution εu of  Eqs. (1)-(3) we shall consider  the energy functional 
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We need asymptotic formulas of the solution εu as 0→ε . In particular, its substitution into Eq. (4) 
gets the leading term in expansion of the energy functional, which represents the topological 
derivative caused by the diminishing hole εω  at the tip O  of the crack 0Ξ  posed in the domain Ω . 

 

2.2 The first limit problem 

As 0→ε  the hole εω  is collapsed to the point O , the boundary condition at the contour εω∂  in 

Eq. (2)  disappears, and Eqs. (1)-(3) form the limit (non-perturbed) problem with crack: 
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For the following use we introduce the polar coordinate system )2,0(,0 πϕ ∈>r  at the originO . 
Applying the method of separation of variables for Eqs. (5)-(7), the asymptotic formula holds: 
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The coefficient 0
1c  in Eq. (8) is called the stress intensity factor. The angular functions: 

( ) K,1,0,)21(sin)21()2()(),cos()( 21122 =++=Φ=Φ −+ kkkk kk ϕπϕϕϕ  

are normalized as adopted in the fracture mechanics. The other functions in the Fourier series: 

( )ϕπϕϕπϕπϕ )21(sin)21()2()(),cos()2()(,)2()( 221121210 −−=Ψ=Ψ−=Ψ −−−−− kkkk kk  

for K,2,1=k  are normalized to satisfy the following conditions: 
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Here )(OSR  stands for the circle of radius R  centred at O ,  and  q  denotes the integral 
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The weight functions )(xmς  are to be found as the non-energetic singular solutions of the 
homogeneous problem in Eqs. (5)-(7) when 0=p . They enjoy the following asymptotic behaviour: 

.0),1()()( 2 →+Ψ= − rOrx mmm ϕς  

With their help, the coefficients in Eq. (8) can be determined by the formulas: 
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2.3 Special solutions 

In the domain )(\2 ωU∞ΞR  we consider the series of Neumann problems for K,2,1=k  
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Here ν∂  denotes derivative in the direction of inward (with respect to ω ) normal vector ν . 

Consider the coefficient 1,1
ωm  in the asymptotic expansion of the special solution 1η : 
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Using Green’s formula and the normalization conditions in Eq. (9) we obtain 
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We consider the case when }),,0({ βϕω =∈= lr . It describes the crack ωU∞Ξ  kinking at the 
origin O  with the fixed angle 0≠β  to the branch ),( QO=ω  of the length 0>l . In this case, the 
second term in Eq. (15) disappears, and similarly to Eq. (8) the expansion holds 
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written in the local polar coordinated )2,0(,0 πϕρ ββ ∈>  around the crack tipQ . Here 1
1C  is the 

stress intensity factor of the special solution 1η  of Eqs. (11)-(13) at 1=k . Following the Nazarov’s 
method and applying path-independent integrals we suggest the equality 

)17()).(;,())(;,( 1111 QSqOSq R εξρ ηξηηρη ∇⋅=∂  

Substituting the expansions given in Eq. (14) and Eq. (16) into Eq. (17) and using Eq. (9),  from Eq. 
(15) and Eq. (17) we calculate  
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2.4 The second limit problem 

Based on the above results, now we consider the perturbed problem in Eqs. (1)-(3). The asymptotic 
formula for the solution εu  is well known; see, e.g., (10). The method of matched asymptotic 
expansions (see (7, 14)) implies the following structure for the inner asymptotic representation: 
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which is valid in a small neighbourhood of O . Here we used the stretched variables x1−= εξ . On 
the other hand, around the tip Q of the kinked crack we have the following asymptotic expansion 
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From Eq. (16), Eq. (19), and Eq. (20) we infer that )( 211
1

0
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2.5 Expansion of the energy functional 

Away from some neighbourhood of O  the outer asymptotic expansion has the form 
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Substituting Eq. (21) into the energy functional in Eq. (4) gets due to Eq. (18) 

)22(

).(2))(();(

)()(2);(

)()()()(2);();(

2321
1

0
1

0

231,120
1

0

2311,10
1

0

εε
εε

εςε

ω

ωε
ε

OCclvI

OmcvI

OdsxxpmcvIuI x

+−Ω=

+−Ω=

+−Ω=Ω ∫
Γ

 

Note that due to the expansion in the second limit problem, Eq. (22) yields the well-known formula 

).(2))(();();( 232
1

0 εε ε
ε

ε OclvIuI +−Ω=Ω  

Thus, from Eq. (22) we conclude with the topological derivative, which is of the first order, 
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with respect to the diminishing crack branch εω  of the length lε . 

 

3. CONCLUSION 

From the practical point of view, we obtained the asymptotic expansion of the potential energy 
expressed in the terms of stress intensity factors, which are of the primary importance for engineers. 
We observe that the topological derivative in Eq. (23) is expressed with the help of two stress 
intensity factors. While the former (initial) stress intensity factor 0

1c  depends on the specific choice 
of physical parameters and geometric data of the reference crack problem before kink, which is 
given in Eqs. (5)-(7), the latter 11C  is the universal parameter depending on the geometry of the 
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kinked infinite domain only. This implicit quantity is to be determined from the special solution 1η  
for model problem of the crack kinking from Eqs. (11)-(13) at 1=k .  

In the particular case, when the reference state is smooth, thus 00
1 =c , then the first-order term is 

zero, and the topological derivative is determined by the higher-order term in the asymptotic 
expansion in Eq. (22). This fact agrees with the smooth conception of topological derivatives. 

Acknowledgments: The first author is partially supported by the Russian Foundation for Basic 
Research (project 07-08-00527). The second author is supported by the Austrian Science Fund 
(FWF) (project P21411-N13), and the Siberian Branch of the Russian Academy of Sciences 
(project N90). 

4. REFERENCES 

1. Amestoy, M.; Leblond, J.-B. Int. J. Solids Struct. 1992, 29, 465-501. 
2. Argatov, I. I.; Nazarov, S. A. J. Appl. Math. Mech. 2002, 66, 491-503. 
3. Argatov, I. I.; Sokolowski, J. Comput. Math. Math. Phys. 2003, 43, 710-724. 
4. Cherepanov, G.P. Mechanics of Brittle Fracture. McGraw-Hill: New York etc., 1979. 
5. Cotterell, B.; Rice, J. R. Int. J. Fracture 1980, 16, 155-169. 
6. Eschenauer, H. A.; Kobelev, V. V.; Schumacher, A. Struct. Multidiscip. Optim.1994, 42-51. 
7. Il'in, A. M. Matching of Asymptotic Expansions of Solutions of Boundary Value Problems; 
 Trans. Math. Monogr. 102, AMS: Providence,RI,1992. 
8. Khludnev, A. M.; Kovtunenko, V. A. Analysis of Cracks in Solids; WIT-Press: 
 Southampton, Boston, 2000. 
9. Khludnev, A. M.; Kovtunenko, V. A.; Tani, A. J. Math. Soc. Japan 2008, 60, 1219-1253. 
10. Mazja, W. G.; Nazarov, S. A.; Plamenevskii, B. A. Asymptotic Theory of Elliptic Boundary 
 Value Problems in Singularly Perturbed Domains; Birkhaeuser-Verlag: Basel, 2000. 
11. Morozov, N. F.; Petrov, Yu. V. Dynamics of Fracture, Springer: Berlin, 2000. 
12. Nazarov, S. A.; Sokolowski, J. J. Math. Pures Appl. 2003, 82, 125-196. 
13. Sokolowski, J; Zochowski, A. SIAM J. Control Optim. 1999, 37, 1251-1272. 
14. Van Dyke, M. D. Perturbation Methods in Fluid Mechanics; Academic Press: New York, 
 1964. 

Dr. Stamatov
Typewritten Text
233




