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Chapter 1

Introduction

Nowadays computers have become an integral part in the world of science, especially
when it comes to calculatory problems. For problems which cannot be solved analyt-
ically, computers and numerical methods are of crucial importance. The �eld of com-
putational chemistry deals for instance with the calculatory determination of energies,
charge distribution, di- and multipoles as well as spectroscopic quantities of molecules.
It's goal is to get insight into molecular processes observed in experiment as well as
in order to predict them. The determination of molecular and atomic properties is of
similar importance in the �elds of molecular physics and solid state physics.

The �rst steps to deal with the complex and analytically not accessible many-body
Schrödinger equation were achieved by Hartree and Fock, who derived a set of self-
consistent, wave-function based equations which allowed an iterative calculation of ener-
gies and other desired parameters.1,2 Up to now, the Hartree-Fock method is intensively
used in atomic and nuclei physics as well as theoretical chemistry. The method has its
�aws, nevertheless, which will be discussed in this thesis. One of the most important
ones is the high cost of computation time when large systems are investigated, which
arises, among other things, from the dependency of the many-body wave function on
3N spatial variables.

An approach to lower computational cost of molecular calculations can therefore be
the use of a less complex base variable. The foundation for such an approach has been
provided by Hohenberg and Kohn in 1964 when they proofed that the electron density, a
variable only depending on 3 spatial variables, in principle contains all information about
the ground state properties of a system. This also marked the birth of density functional
theory (DFT) to which the main part of this thesis is devoted. In 1998 Kohn got the
Nobel prize in chemistry �for his development of the density-functional theory�.3,4
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Chapter 1 Introduction Chapter 1 Introduction

In 1965 Kohn and Sham derived a set of self-consistent, iteratively solvable equations
which �nally allowed to use the up to that point only theoretical concept of Hohenberg
and Kohn also in actual computer simulations.5 And due to the fact that the electron
density is a much less complex quantity than the wave function, the computation times
of DFT calculations are substantially lower.

At present day, DFT is successfully applied to a broad variety of quantum mechanical
problems, such as binding energies of molecules in chemistry or the calculation of band
structures of solids in physics.6 The increasing importance of DFT has been reported by
Holthausen and Koch by a comparison of hits for the phrases DFT or density-functional
in abstracts from about 100 in 1990 to 2500 in 1999.7

This thesis provides an introduction to basic, wave-function based many-body quan-
tum mechanics as well as to the theoretical foundations of DFT up to the point where
iteratively accessible, density-based equations for both, time-independent and time-
dependent problems are presented.

A major component in DFT is also the choice of the correct approximation for the
exchange-correlation functional which arises from the Kohn-Sham approach. A detailed
discussion of possible approximation exceeds the coverage of this bachelor thesis, the
interested reader is referred to the book of Holthausen and Koch7 and the articles by
Capelle6 as well as Perdew and Kurth.8
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Chapter 2

Basic Quantum Mechanics

2.1 Schrödingers groundbreaking equation

Erwin Schrödinger's attempt to describe the so-called `matter waves' in 1926, where
he used de Broglie's relations to describe hypothetical plane waves, led to the most
general form of the famous equation named after him, the time-dependent Schrödinger
equation9

ı̇~
∂

∂t
Ψ(~r, t) = ĤΨ(~r, t). (2.1)

It is often impracticable to use a complete relativistic formulation of the formula; there-
fore Schrödinger himself postulated a non-relativistic approximation which is nowadays
often used, especially in quantum chemistry.

Using the Hamiltonian for a single particle

Ĥ = T̂ + V̂ = − ~2

2m
~∇2 + V (~r, t) (2.2)

leads to the (non-relativistic) time-dependent single-particle Schrödinger equation

ı̇~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
~∇2 + V (~r, t)

]
Ψ(~r, t). (2.3)

In this thesis, from now on only non-relativistic cases are considered.

For N particles in three dimensions, the Hamiltonian is

Ĥ =
N∑
i=1

p̂i
2

2mi

+ V (~r1, ~r2, ..., ~rN , t) = −~2

2

N∑
i=1

1

mi

+ V (~r1, ~r2, ..., ~rN , t). (2.4)
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Chapter 2 Basic Quantum Mechanics 2.2 Time-independent equation

The corresponding Schrödinger equation reads

ı̇~
∂

∂t
Ψ(~r1, ~r2, ..., ~rN , t) =

[
−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ..., ~rN , t)

]
Ψ(~r1, ~r2, ..., ~rN , t) (2.5)

2.2 Time-independent equation

Special cases are the solutions of the time-independent Schrödinger equation, where the
Hamiltonian itself has no time-dependency (which implies a time-independent potential
V (~r1, ~r2, ..., ~rN), and the solutions therefore describe standing waves which are called
stationary states or orbitals). The time-independent Schrödinger equation is not only
easier to treat, but the knowledge of its solutions also provides crucial insight to handle
the corresponding time-dependent equation.

The time-independent equation is obtained by the approach of separation of variables,
i.e. the spatial part of the wave function is separated from the temporal part via10

Ψ(~r1, ~r2, ..., ~rN , t) = ψ(~r1, ~r2, ..., ~rN)τ(t) = ψ(~r1, ~r2, ..., ~rN) · e−ı̇ωt. (2.6)

Furthermore, the l.h.s. of the equation reduces to the energy eigenvalue of the Hamilto-
nian multiplied by the wave function, leading to the general eigenvalue equation

Eψ(~r1, ~r2, ..., ~rN) = Ĥψ(~r1, ~r2, ..., ~rN) (2.7)

Again, using the many-body Hamiltonian, the Schrödinger equation becomes

Eψ(~r1, ~r2, ..., ~rN) =

[
−~2

2

N∑
i=1

1

mi

∇2
i + V (~r1, ~r2, ..., ~rN)

]
ψ(~r1, ~r2, ..., ~rN). (2.8)

2.3 The wave function

In the last section, the term wave function was repeatedly used. Therefore, and for a
better understanding of the following a closer look at the wave function is taken.

The �rst and most important postulate is that the state of a particle is completely
described by its (time-dependent) wave function, i.e. the wave function contains all
information about the particle's state.
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Chapter 2 Basic Quantum Mechanics 2.3 The wave function

For the sake of simplicity the discussion is restricted to the time-independent wave func-
tion. A question always arising with physical quantities is about possible interpretations
as well as observations. The Born probability interpretation of the wave function, which
is a major principle of the Copenhagen interpretation of quantum mechanics, provides a
physical interpretation for the square of the wave function as a probability density2,11

|ψ(~r1, ~r2, ..., ~rN)|2d~r1d~r2...d~rN . (2.9)

Equation (2.9) describes the probability that particles 1,2,...,N are located simultane-
ously in the corresponding volume element d~r1d~r2...d~rN .

7 What happens if the positions
of two particles are exchanged, must be considered as well. Following merely logical
reasoning, the overall probability density cannot depend on such an exchange, i.e.

|ψ(~r1, ~r2, ..., ~ri, ~rj, ..., ~rN)|2 = |ψ(~r1, ~r2, ..., ~rj, ~ri, ..., ~rN)|2. (2.10)

There are only two possibilities for the behavior of the wave function during a particle
exchange. The �rst one is a symmetrical wave function, which does not change due
to such an exchange. This corresponds to bosons (particles with integer or zero spin).
The other possibility is an anti-symmetrical wave function, where an exchange of two
particles causes a sign change, which corresponds to fermions (particles which half-
integer spin).12,13

In this text only electrons are from interest, which are fermions. The anti-symmetric
fermion wave function leads to the Pauli principle, which states that no two electrons
can occupy the same state, whereas state means the orbital and spin parts of the wave
function1 (the term spin coordinates will be discussed later in more detail). The an-
tisymmetry principle can be seen as the quantum-mechanical formalization of Pauli's
theoretical ideas in the description of spectra (e.g. alkaline doublets).14

Another consequence of the probability interpretation is the normalization of the wave
function. If equation (2.9) describes the probability of �nding a particle in a volume
element, setting the full range of coordinates as volume element must result in a prob-
ability of one, i.e. all particles must be found somewhere in space. This corresponds to
the normalization condition for the wave function.∫

d~r1

∫
d~r2...

∫
d~rN |ψ(~r1, ~r2, ..., ~rN)|2 = 1 (2.11)

Equation (2.11) also gives insight on the requirements a wave function must ful�ll in
order to be physical acceptable. Wave functions must be continuous over the full spatial
range and square-integratable.15
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Chapter 2 Basic Quantum Mechanics 2.4 Atoms and molecules

Another very important property of the wave function is that calculating expectation
values of operators with a wave function provides the expectation value of the corre-
sponding observable for that wave function.6 For an observable O(~r1, ~r2, ..., ~rN), this can
generally be written as

O = 〈O〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)Ôψ(~r1, ~r2, ..., ~rN). (2.12)

2.4 Atoms and molecules

All atomic and molecular systems deal with charged particles. The single electron
Schrödinger equation where the electron moves in a Coulomb potential,

ı̇~
∂

∂t
ψ(~r) =

[
− ~2

2m
~∇2 − e2

4πε0
· 1

|~r|

]
ψ(~r) (2.13)

marks a good starting point.

For the sake of simplicity, the so-called atomic units are introduced at this point for
subsequent usage. That means the electron mass me, the elementary charge e, the
reduced Planck constant (Dirac constant) ~ as well as the vacuum permittivity factor
4πε0 are all set to unity.16

The Schrödinger equation for the single electron simpli�es to

Eψ(~r) =

[
−1

2
~∇2 − 1

|~r|

]
ψ(~r). (2.14)

This form of the Schrödinger equation is analytically solvable. Although for the descrip-
tion of matter, even atoms, the Schrödinger equation exceeds analytical accessibility
soon. Usage of (2.8) allows a construction of a generalized many-body Schrödinger
equation for a system composed of N electrons and M nuclei, where external magnetic
and electric �elds are neglected.

Eiψi(~r1, ~r2, ..., ~rN , ~R1, ~R2, ..., ~RN) = Ĥψ(~r1, ~r2, ..., ~rN , ~R1, ~R2, ..., ~RN) (2.15)

Equation (2.15) doesn't seem overly complicated on the �rst look, but an examination
of the corresponding molecular Hamiltonian

Ĥ = −1

2

N∑
i=1

∇2
i −

1

2

M∑
k=1

∇2
k −

N∑
i=1

M∑
k=1

Zk
rik

+
N∑
i=1

N∑
j>i

1

rij
+

M∑
k=1

M∑
l>k

ZkZl
Rkl

(2.16)

reveals the real complexity of the equation.
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Chapter 2 Basic Quantum Mechanics 2.4 Atoms and molecules

In equation (2.16), Mk represents the nuclear mass in atomic units (i.e. in units of the

electron mass), Zk and Zl represent the atomic numbers, and rij = |~ri−~rj|, rik = |~ri− ~Rk|
and Rkl = |~Rk − ~Rl| represent the distances between the particles (electron-electron,
electron-nucleus and nucleus-nucleus).

A term-by-term interpretation of the right hand side in (2.16) reveals that the �rst two
terms correspond to the kinetic energies of the electrons and nuclei. The latter three
terms denote the potential part of the Hamiltonian in terms of electrostatic particle-
particle interactions. This is re�ected by the corresponding signs, where the negative
sign denotes an attractive potential between electrons and nuclei, whereas the positive
signs denote repulsive potentials between electrons and electrons as well as the nuclei
among themselves.7

Taking advantage of the fact, that the mass of a proton is approximately 1800 times
larger than the mass of an electron, which is the minimum mass ratio of electron to nu-
cleus (hydrogen atom) and becomes even higher for heavier atoms, another simpli�cation
can be introduced. The so called Born-Oppenheimer approximation states that due to
the mass di�erence the nucleus can be, in comparison to the electrons, considered non-
moving, i.e. spatially �xed. One can say that the core movement can be neglected on
the timescale of electronic transitions which means the core movement has no in�uence
on them.2,17

As a consequence, the general Hamiltonian is replaced by the so-called electronic Hamil-
tonian

Ĥ = −1

2

N∑
i=1

∇2
i −

N∑
i=1

M∑
k=1

Zk
rik

+
N∑
i=1

N∑
j>i

1

rij
, (2.17)

or in terms of operators
Ĥel = T̂ + Û + V̂ = T̂ + ˆVtot. (2.18)

Especially for problems of molecular physics and quantum chemistry, the electronic
Schrödinger equation is of major interest. But despite all simpli�cations a simple look
at equations (2.15) to (2.18) indicates that there are still a few more crucial points left
to deal with until a useful solution can be obtained.

Inspection of equations (2.17) and (2.18) shows that the kinetic energy term T̂ doesn't
depend on the nuclear coordinates Rkl, or in other words, it is only a function of the
electron number. Also the electron-electron repulsion Û is the same for every system
with only Coulomb interactions.

Therefore the only part of the electronic Hamiltonian which depends on the atomic
respectively molecular system is the external potential V̂ caused by the nucleus-electron
repulsion.
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Chapter 2 Basic Quantum Mechanics 2.5 The Hartree-Fock approach

Subsequently this also means that T̂ and Û only need the electron number N as input and
will therefore be denoted as 'universal', whereas V̂ is system-dependent. The expectation
value of V̂ is also often denoted as the external potential Vext, which is consistent as long
as there are no external magnetic or electrical �elds.6

As soon as the external potential is known, the next step is the determination of the
wave functions ψi which contain all possible information about the system. As simple
as that sounds, the exact knowledge of the external potential is not possible for most
natural systems, i.e. in similarity to classical mechanics, the largest system which can
be solved analytically is a 2-body-system, which corresponds to a hydrogen atom. Using
all approximations introduced up to now it is possible to calculate a problem similar
to H+

2 , a single ionized hydrogen molecule. To get results for larger systems, further
approximations have to be made.

2.5 The Hartree-Fock approach

In order to �nd a suitable strategy to approximate the analytically not accessible so-
lutions of many-body problems, a very useful tool is variational calculus, similar to
the least-action principle of classical mechanics. By the use of variational calculus, the
ground state wave function ψ0, which corresponds to the lowest energy of the system E0,
can be approached. A useful literature source for the principles of variational calculus
has been provided by T. Flieÿbach.18

Hence, for now only the electronic Schrödinger equation is of interest, therefore in the
following sections we set Ĥ ≡ Ĥel, E ≡ Eel, and so on.

Observables in quantum mechanics are calculated as the expectation values of opera-
tors.2,10 The energy as observable corresponds to the Hamilton operator, therefore the
energy corresponding to a general Hamiltonian can be calculated as

E = 〈Ĥ〉 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)Ĥψ(~r1, ~r2, ..., ~rN) (2.19)

The central idea of the Hartree-Fock approach is that the energy obtained by any (nor-
malized) trial wave function, di�erent from the actual ground state wave function, is
always an upper bound, i.e. higher than the actual ground state energy. If the trial
function happens to be the desired ground state wave function, the energies are equal

Etrial ≥ E0, (2.20)

with

Etrial =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
trial(~r1, ~r2, ..., ~rN)Ĥψtrial(~r1, ~r2, ..., ~rN) (2.21)

8



Chapter 2 Basic Quantum Mechanics 2.5 The Hartree-Fock approach

and

E0 =

∫
d~r1

∫
d~r2...

∫
d~rNψ

∗
0(~r1, ~r2, ..., ~rN)Ĥψ0(~r1, ~r2, ..., ~rN). (2.22)

The expressions above are usually inconvenient to handle. For the sake of a compact
notation, in the following the bra-ket notation of Dirac is introduced. For a detailed
description of this notation, the reader is referred to the original publication.19

In that notation, equations (2.20) to (2.22) are expressed as

〈ψtrial|Ĥ|ψtrial〉 = Etrial ≥ E0 = 〈ψ0|Ĥ|ψ0〉 (2.23)

Proof:2 The eigenfunctions ψi of the Hamiltonian Ĥ(each corresponding to an energy
eigenvalue Ei) form a complete basis set, therefore any normalized trial wave function
ψtrial can be expressed as linear combination of those eigenfunctions.

ψtrial =
∑
i

λiψi (2.24)

The assumption is made that the eigenfunctions are orthogonal and normalized. Hence
it is requested that the trial wave function is normalized, it follows that

〈ψtrial|ψtrial〉 = 1 = 〈
∑
i

λiψi|
∑
j

λjψj〉 =
∑
i

∑
j

λ∗iλj〈ψi|ψj〉 =
∑
j

|λj|2. (2.25)

On the other hand, following (2.23) and (2.25)

Etrial = 〈ψtrial|Ĥ|ψtrial〉 = 〈
∑
i

λiψi|Ĥ|
∑
j

λjψj〉 =
∑
j

Ej|λj|2 (2.26)

Together with the fact that the ground state energy E0 is per de�nition the lowest
possible energy, and therefore has the smallest eigenvalue ( E0 ≤ Ei ), it is found that

Etrial =
∑
j

Ej|λj|2 ≥ E0

∑
j

|λj|2 (2.27)

what resembles equation (2.23). �

The mathematical framework used above, i.e. rules which assign numerical values to
functions, so called functionals, is also one of the main concepts in density functional
theory. A function gets a numerical input and generates a numerical output whereas a
functional gets a function as input and generates a numerical output.20

9



Chapter 2 Basic Quantum Mechanics 2.5 The Hartree-Fock approach

Equations (2.19) to (2.27) also include that a search for the minimal energy value while
applied on all allowed (physically possible, cf. chapter 2.3) N-electron wave-functions
will always provide the ground-state wave function (or wave functions, in case of a
degenerate ground state where more than one wave function provides the minimum
energy). Expressed in terms of functional calculus, where ψ → N addresses all allowed
N-electron wave functions, this means7

E0 = min
ψ→N

E [ψ] = min
ψ→N
〈ψ|Ĥ|ψ〉 = min

ψ→N
〈ψ|T̂ + V̂ + Û |ψ〉. (2.28)

For N-electron systems this search is, due to the large number of possible wave functions
on the one hand and limitations in computational power and time, practically impossible.
What is possible is the restriction of the search to a smaller subset of possible wave
function, as it is done in the Hartree-Fock approximation.

In the Hartree-Fock approach, the search is restricted to approximations of the N-electron
wave function by an antisymmetric (cf. chapter 2.3) product of N (normalized) one-
electron wave-functions, the so called spin-orbitals χi(~xi).

1 A wave function of this type
is called Slater-determinant, and reads1,7

ψ0 ≈ φSD = (N !)−
1
2

∣∣∣∣∣∣∣∣∣
χ1(~x1) χ2(~x1) · · · χN(~x1)
χ1(~x2) χ2(~x2) · · · χN(~x2)

...
...

. . .
...

χ1(~xN) χ2(~xN) · · · χN(~xN)

∣∣∣∣∣∣∣∣∣ (2.29)

It is important to notice that the spin-orbitals χi(~xi) are not only depending on spatial
coordinates but also on a spin coordinate which is introduced by a spin function, ~xi =
~ri, s.

A detailed discussions of the spin orbitals and their (necessary) properties is omitted in
this text, a detailed treatise is provided in the books by Szabo1 and Holthausen.7 As spin
orbitals e.g. hydrogen-type orbitals (for atomic calculations) and linear combinations of
them are used.21

Returning to the variational principle and equation (2.28), the ground state energy
approximated by a single slater determinant becomes

E0 = min
φSD→N

E [φSD] = min
φSD→N

〈φSD|Ĥ|φSD〉 = min
φSD→N

〈φSD|T̂ + V̂ + Û |φSD〉 (2.30)

A general expression for the Hartree-Fock Energy is obtained by usage of the Slater
determinant as a trial function

EHF = 〈φSD|Ĥ|φSD〉 = 〈φSD|T̂ + V̂ + Û |φSD〉 (2.31)

10



Chapter 2 Basic Quantum Mechanics 2.5 The Hartree-Fock approach

For the sake of brevity, a detailed derivation of the �nal expression for the Hartree-Fock
energy is omitted. It is a straightforward calculation found for example in the Book
by Schwabl.10 The �nal expression for the Hartree-Fock energy contains three major
parts:7

EHF = 〈φSD|Ĥ|φSD〉 =
N∑
i

(i|ĥ|i) +
1

2

N∑
i

N∑
j

[(ii|jj)− (ij|ji)] (2.32)

with

(i|ĥi|i) =

∫
χ∗i (~xi)

[
−1

2
~∇2
i −

M∑
k=1

Zk
rik

]
χi(~xi)d~xi, (2.33)

(ii|jj) =

∫ ∫
|χi(~xi)|2

1

rij
|χj(~xj)|2d~xid~xj, (2.34)

(ii|jj) =

∫ ∫
χi(~xi)χ

∗
j(~xj)

1

rij
χj(~xj)χ

∗
i (~xi)d~xid~xj. (2.35)

The �rst term corresponds to the kinetic energy and the nucleus-electron interactions, ĥ
denoting the single particle contribution of the Hamiltonian, whereas the latter two terms
correspond to electron-electron interactions. They are called Coulomb and exchange
integral, respectively.1,7

Examination of equations (2.32) to (2.35) furthermore reveals, that the Hartree-Fock
energy can be expressed as a functional of the spin orbitals EHF = E[{χi}]. Thus,
variation of the spin orbitals leads to the minimum energy.7

An important point is that the spin orbitals remain orthonormal during minimization.
This restriction is accomplished by the introduction of Lagrangian multipliers λi in
the resulting equations, which represent the Hartree-Fock equations. For a detailed
derivation, the reader is referred to the book by Szabo and Ostlund.1,7, 18

Finally, one arrives at
f̂χi = λiχi i = 1, 2, ..., N (2.36)

with

f̂i = −1

2
~∇2
i −

M∑
k=1

Zk
rik

+
N∑
i

[Ĵj(~xi)− K̂j(~xi)] = ĥi + V̂ HF (i), (2.37)

the Fock operator for the i-th electron. In similarity to(2.32) to (2.35), the �rst two
terms represent the kinetic and potential energy due to nucleus-electron interaction,
collected in the core Hamiltonian ĥi, whereas the latter terms are sums over the Coulomb
operators Ĵj and the exchange operators K̂j with the other j electrons, which form the

Hartree-Fock potential V̂ HF .

11



Chapter 2 Basic Quantum Mechanics 2.6 Limitations and failings of the

Hartree-Fock approach

There the major approximation of Hartree-Fock can be seen. The two electron repulsion
operator from the original Hamiltonian is exchanged by a one-electron operator V̂ HF

which describes the repulsion in average.7

2.6 Limitations and failings of the Hartree-Fock

approach

Atoms as well as molecules can have an even or odd number of electrons. If the number
of electrons is even and all of them are located in double occupied spatial orbitals φi, the
compound is in a singlet state. Such systems are called closed-shell systems. Compounds
with an odd number of electrons as well as compounds with single occupied orbitals, i.e.
species with triplet or higher ground state, are called open-shell systems respectively.
These two types of systems correspond to two di�erent approaches of the Hartree-Fock
method. In the restricted HF-method (RHF), all electrons are considered to be paired
in orbitals whereas in the unrestricted HF (UHF)-method this limitation is lifted totally.
It is also possible to describe open-shell systems with a RHF approach where only the
single occupied orbitals are excluded which is then called a restricted open-shell HF
(ROHF) which is an approach closer to reality but also more complex and therefore less
popular than UHF.7

There are also closed-shell systems which require the unrestricted approach in order
to get proper results. For instance, the description of the dissociation of H2 (i.e. the
behavior at large internuclear distance), where one electron must be located at one
hydrogen atom, can logically not be obtained by the use of a system which places both
electrons in the same spatial orbital. Therefore the choice of method is always a very
important point in HF calculations.1

The size of the investigated system can also be a limiting factor for calculations. Kohn
states a number of M = p5 with 3 ≤ p ≤ 10 parameters for a result with su�cient
accuracy in the investigation of the H2 system.4 For a system with N = 100 (active)
electrons the number of parameters rises to

M = p3N = 3300 to 10300 ≈ 10150 to 10300. (2.38)

Equation (2.38) states, that the minimization of the energy would have to be performed
in a space of at least 10150 dimension which exceeds the computational possibilities
nowadays by far. HF-methods are therefore restricted to systems with a small number of
involved electrons (N ≈ 10). Referring to the exponential factor in (2.38) this limitation
is sometimes called exponential wall.4
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Chapter 2 Basic Quantum Mechanics 2.6 Limitations and failings of the

Hartree-Fock approach

Since a many electron wave function cannot be described entirely by a single Slater
determinant, the energy obtained by HF calculations is always larger than the exact
ground state energy. The most accurate energy obtainable by HF-methods is called the
Hartree-Fock-limit.7

The di�erence between EHF and Eexact is called correlation energy and can be denoted
as22

EHF
corr = Emin − EHF . (2.39)

Despite the fact that Ecorr is usually small against Emin, as in the example of a N2

molecule where
EHF
corr = 14.9eV < 0.001 · Emin, (2.40)

it can have a huge in�uence.23

For instance, the experimental dissociation energy of the N2 molecule is

Ediss = 9.9eV < Ecorr (2.41)

which corresponds to a large contribution of the correlation energy to relative energies
such as reaction energies which are of particular interest in quantum chemistry.23

The main contribution to the correlation energy arises from the mean �eld approximation
used in the HF-method. That means one electron moves in the average �eld of the other
ones, an approach which completely neglects the intrinsic correlation of the electron
movements. To get a better understanding what that means, one may picture the
repulsion of electrons at small distances which clearly cannot be covered by a mean-�eld
approach like the Hartree-Fock-method.7
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Chapter 3

Density functional theory

3.1 A new base variable - the electron density

In the section 2.3 about the wave function ψ , a general statement about the calculation
of observables has been provided. A quantity calculated in a very similar way is the topic
of this section. The electron density (for N electrons) as the basic variable of density
functional theory is de�ned as3,7

n(~r) = N
∑
s1

∫
d~x2...

∫
d~xNψ

∗(~x1, ~x2, ..., ~xN)ψ(~x1, ~x2, ..., ~xN). (3.1)

What has to be mentioned is that the notation in (3.1) considers a wave function de-
pendent on spin and spatial coordinates. In detail, the integral in the equation gives the
probability that a particular electron with arbitrary spin is found in the volume element
d~r1. Due to the fact that the electrons are indistinguishable, N times the integral gives
the probability that any electron is found there. The other electrons represented by the
wave function ψ(~x1, ~x2, ..., ~xN) have arbitrary spin and spatial coordinates.7

If additionally the spin coordinates are neglected, the electron density can even be
expressed as measurable observable only dependent on spatial coordinates3,4

n(~r) = N

∫
d~r2...

∫
d~rNψ

∗(~r1, ~r2, ..., ~rN)ψ(~r1, ~r2, ..., ~rN), (3.2)

which can e.g. be measured by X-ray di�raction.7

Before presenting an approach using the electron density as variable, it has to be ensured
that it truly contains all necessary informations about the system. In detail that means it
has to contain information about the electron number N as well as the external potential
characterized by V̂ .7
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Chapter 3 Density functional theory 3.2 The Hohenberg-Kohn theorems

The total number of electrons can be obtained by integration the electron density over
the spatial variables7

N =

∫
d~rn(~r). (3.3)

What is left to proof is that also the external potential is characterized uniquely by the
electron density, where uniquely means up to an additive constant.

3.2 The Hohenberg-Kohn theorems

The �basic lemma of Hohenberg-Kohn�4 states that not only n(~r) is a functional of v(~r)
but that also v(~r) is up to a constant determined by n(~r) uniquely.3,4, 7

Since the original publication of Hohenberg and Kohn3 deals with an electron gas, the
Hamiltonian is resembled by the electronic Hamilton operator introduced in equation
(2.17), Ĥel = T̂ + V̂ +Û , with the one di�erence that the non-universal contribution V̂ in
this case represents a general external potential (which in case of the electronic Hamilton
approximated by Born-Oppenheimer contains a nuclear �eld contribution).3,6, 7

Following the original approach of Hohenberg and Kohn, accompanied by their proof
via reductio ad absurdum, the discussion in this thesis is restricted to non-degenerate
ground states.3 This restriction nevertheless doesn't a�ect the presented proof for the
second theorem and can be lifted as well for the �rst theorem.24,25

The energy of the system can be denoted as

E = 〈ψ|Ĥ|ψ〉 = 〈ψ|T̂ + V̂ + Û |ψ〉 =

∫
v(~r)n(~r)d~r + 〈ψ|T̂ + Û |ψ〉, (3.4)

which will be used for the proof of Hohenberg and Kohn's �rst theorem.

Theorem.3The external potential v(~r) is a functional of the electron density n(~r) and,
up to an unimportant constant, uniquely determined by it.

Proof.4,26 It is assumed that there exist two external potentials v(~r) and v′(~r) which di�er
by more than just a trivial constant. Furthermore, the assumption is made, that both
potentials give rise to the same electron density n(~r). Clearly, arising from the nature
of V̂ in that case there have to be two di�erent Hamiltonians Ĥ and Ĥ ′. Furthermore
ψ and ψ′ have to be di�erent, since they ful�ll di�erent Schrödinger equations. Finally
also the energies E and E ′ associated with the particular wave function di�er.
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Chapter 3 Density functional theory 3.2 The Hohenberg-Kohn theorems

Now the two wave functions ψ and ψ′ are used as trial functions assuming the other
wave function is the ground state wave function. Then the expressions

E ′0 = 〈ψ′|Ĥ ′|ψ′〉 < 〈ψ|Ĥ ′|ψ〉 = 〈ψ|Ĥ + V̂ ′ − V̂ |ψ〉 = 〈ψ|Ĥ|ψ〉+ 〈ψ|V̂ ′ − V̂ |ψ〉 (3.5)

and

E0 = 〈ψ|Ĥ|ψ〉 < 〈ψ′|Ĥ|ψ′〉 = 〈ψ′|Ĥ ′ + V̂ − V̂ ′|ψ′〉 = 〈ψ′|Ĥ ′|ψ′〉+ 〈ψ′|V̂ − V̂ ′|ψ′〉 (3.6)

are obtained. By the use of (3.4), this can be rewritten as

E‘0 < E0 +

∫
[v′(~r)− v(~r)]n(~r)d~r (3.7)

and

E0 < E ′0 +

∫
[v(~r)− v′(~r)]n(~r)d~r (3.8)

By summation of (3.7) and (3.8) the inequality

E‘0 + E0 < E0 + E ′0 (3.9)

is obtained, which represents an inconsistency and therefore provides by reductio ad
absurdum the proof that v(~r) is truly a unique functional of n(~r).�

The �rst Hohenberg-Kohn theorem can also be written in another form which is some-
times called the �strong form� of the Hohenberg-Kohn theorem.6 Here ∆v(~r) and ∆n(~r)
correspond to the change in potential and electron density respectively:∫

∆v(~r)∆n(~r) < 0 (3.10)

Whereas equation (3.10) can be derived from the original proof27it can also be derived
perturbatively.

The importance of this proof lies in the fact, that it not only implies the �rst Hohenberg
Kohn theorem (if ∆v(~r) 6= 0 clearly also ∆n(~r) must not vanish) but also provides
an assertion about the signs of ∆v(~r) and ∆n(~r), i.e. a (mostly) positive potential
∆v(~r) requires a (mostly) negative electron density ∆n(~r) to ensure the negativity of
the integral in (3.10).6

From the �rst Hohenberg Kohn theorem it is obvious that also the ground state wave
function is a unique functional of the ground state electron density

ψ0(~r1, ~r2, ..., ~rN) = ψ [n0(~r)] . (3.11)

Furthermore, recalling (2.12), the ground state expectation value of any observable is a
functional of n0(~r) too, i.e.

O0 = O [n0(~r)] = 〈ψ [n0(~r)] |Ô|ψ [n0(~r)]〉. (3.12)
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Chapter 3 Density functional theory 3.2 The Hohenberg-Kohn theorems

Among these observables is the ground state energy, the expectation value of the Hamil-
tonian, which is of great importance. Recalling equation (3.4), the ground state energy
corresponding to an potential v(~r) can be denoted as

Ev,0 = Ev [n0(~r)] = 〈ψ [n0(~r)] |Ĥψ [n0(~r)]〉 =

∫
v(~r)n0(~r)d~r+〈ψ [n0(~r)] |T̂+Û |ψ [n0(~r)]〉.

(3.13)
To obtain a more convenient handling of equation 3.13, the Hohenberg-Kohn functional
FHK [n(~r)] and subsequently, the energy functional Ev [n(~r)] are de�ned:3

FHK [n(~r)] ≡ 〈ψ [n0(~r)] |T̂ + Û |ψ [n0(~r)]〉 (3.14)

Ev [n(~r)] ≡
∫
v(~r)n0(~r)d~r + FHK [n(~r)] (3.15)

In similarity to the terminology introduced in the section about the Hartree-Fock method,
the Hohenberg-Kohn functional represents the system-independent or universal part.
Equation (3.13) furthermore leads to another crucial �nding of the original paper by
Hohenberg and Kohn, which is often addressed as the second theorem of Hohenberg and
Kohn.3

Theorem II.3,28 The ground state energy can be derived from the electron density by
the use of variational calculus. The electron density, which provides a minimum of the
ground state energy, is therefore the exact ground state density.

Originally this second theorem has been proved by variation calculus,3 the proof pro-
vided subsequently is a di�erent one, namely the so called constrained-search approach,
introduced by Levy and Lieb29,30 and subsequently thoroughly examined in the books
by Parr, Yang as well as Kryachko and Ludena.31,32

Since the wave function is a unique functional of the electron density, every trial wave
function ψ′ corresponds to a trial density n′(~r) following equation (3.2). According to
the Rayleigh-Ritz principle, the ground state energy is obtained as

Ev,0 = min
ψ′
〈ψ′|Ĥ|ψ′〉. (3.16)

Proof.4 In principle, the minimization can be carried out in two steps. In the �rst
step, a trial electron density n′(~r) is �xed. The class of trial functions corresponding to
that electron density is then denoted by ψ

′α
n′ . Then, the constrained energy minimum is

de�ned as

Ev [n′(~r)] ≡ min
α
〈ψ′α

n′ |Ĥ|ψ
′α
n′ 〉 =

∫
v(~r)n′(~r)d~r + F [n′(~r)] . (3.17)
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Chapter 3 Density functional theory 3.2 The Hohenberg-Kohn theorems

In that notation, F [n′(~r)] is the universal functional

F [n′(~r)] ≡ min
α
〈ψ′α

n′ |T̂ + Û |ψ′α
n′ 〉 (3.18)

which is clearly related to the Hohenberg-Kohn functional in (3.13). What is important
to notice at this point is that the universal functional F [n′(~r)] requires no explicit
knowledge of v(~r).

In the second step, equation (3.17) is minimized over all trial densities n′(~r):

Ev,0 = min
n′(~r)

Ev [n′(~r)] = min
n′(~r)
{
∫
v(~r)n′(~r)d~r + F [n′(~r)]} (3.19)

Now, for a non-degenerate ground state, the energy in (3.19) is attained, if n′(~r) is the
actual ground state density. �

Furthermore, the constrained search approach �nally lifts the restriction to non-degenerate
ground states. If a ground state density corresponding to a number of wave functions
is selected, only one of the wave functions connected with the energy of the degenerate
ground state is found.7

Recapitulating, it has been shown that density functional theory provides a clear and
mathematical exact framework for the use of the electron density as base variable. Nev-
ertheless, nothing of what has been derived is of practical use. Or in other words, the
Hohenberg-Kohn theorems, as important as they are, do not provide any help for the
calculation of molecular properties and also don't provide any information about ap-
proximations for functionals like F [n(~r)]. In the direct comparison to the variational
approach of the Hartree-Fock method, the variational principle introduced in the sec-
ond theorem of Hohenberg and Kohn is even more tricky. Whereas in wave-function
based approaches like Hartree-Fock or con�guration interaction1 (CI) the obtained en-
ergy value provides information about the quality of the trial wave function (the lower
E, the better the wave function), this is not the case in the variational principle based on
the electron density. More than that, it can even happen that some functionals provide
energies lower than the actual ground state energy in particular calculations.7

Also important to mention is that there are certain functions n(r) which would ful�ll the
requirements4 and be therefore possible ground state densities, but do not correspond
to a potential v(~r). Therefore another requirement on the electron density is its v-
representability, i.e. it must correspond to some potential.4
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Chapter 3 Density functional theory 3.3 The Kohn-Sham equations

3.3 The Kohn-Sham equations

The framework by Hohenberg and Kohn is exact, yet not very useful in actual calcu-
lations. The only possibility would be the direct use of the second Hohenberg-Kohn
theorem for energy minimization, a way that is possible in general but has proven itself
to be impractical. The most desirable way in which quantities can be calculated for
problems without an exact analytical solution is one that allows iterations.6

An early example of an iterative approach are the self-consistent single particle Hartree-
equations.4,33 Of course, the Hartree-equations are clearly wave-function based and
not directly related to the work of Hohnberg and Kohn, yet they have been proven
very useful. Hartree's approximation assumes that every electron moves in an e�ective
single-particle potential of the form

vH(~r) = − Z
|~r|

+

∫
n(~r′)

|~r − ~r′|
d~r′. (3.20)

The �rst term is an attractive Coulomb potential of a nucleus with atomic number Z,
whereas the integral term corresponds to the potential caused by the mean electron
density distribution n(~r).

The mean density can be denoted in terms of the single particle wave functions

n(~r) =
M∑
j=1

|φj(~r)|2. (3.21)

It is important to mention that the sum in (3.21) runs over the M lowest eigenvalues in
accordance to the Pauli principle.

Since the electron-electron interactions are taken into account in the potential term, the
N-electron and therefore (neglecting the spin coordinates) 3N-dimensional Schrödinger
equation can be approximately replaced by N 3-dimensional single particle equations for
electrons moving in an e�ective potential de�ned in (3.20):[

−1

2
~∇2 + vH(~r)

]
φj(~r) = εjφj(~r) j = 1, ..., N (3.22)

To solve these self consistent Hartree-equations iteratively an electron density n(~r) and
subsequently a potential vH(~r) are de�ned, which is then used to solve (3.22) for the
chosen wave function. Via comparison of the l.h.s. and the r.h.s. in equation (3.21) one
then can determine the deviation of the square-sum of the calculated wave functions from
the initially used density. This procedure is repeated with adapted densities in every
step until the di�erence between the l.h.s. and r.h.s. deceeds a certain threshold.
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Chapter 3 Density functional theory 3.3 The Kohn-Sham equations

Since the framework of Hohenberg and Kohn is formally exact, an extraction of the
Hartree equations from their variational principle for the energy should provide even
improvements and, more than that, an alternative and �nally practically useful formu-
lation of the second theorem.4

Therefore, Kohn and Sham investigated the density functional theory applied to a system
of N non-interacting electrons in an external potential, similar to Hartree's approach.

Recalling (3.17) and (3.18), the expression for the energy of such a system is of the
form

Ev(~r) [n′(~r)] ≡
∫
v(~r)n′(~r)d~r + TS [n′(~r)] ≥ E (3.23)

where n′(~r) is a v-representable density for non-interacting electrons and TS [n′(~r)] the
kinetic energy of the ground state of those non-interacting electrons.4

Setup of the Euler-Lagrange equation18 for the non-interacting case (3.23) with the
density de�ned in (3.21) as argument provides4

δEv [n′(~r)] ≡
∫
δn′(~r)

[
v(~r) +

δ

δn′(~r)
TS [n′(~r)] |n′(~r)=n(~r) − ε

]
d~r = 0 (3.24)

with n′(~r), the exact ground state density for the potential v(~r), and the Lagrangian
multiplier ε to ensure particle density conservation.

Via equations (3.20) to (3.22), where the approximated Hartree-potential is replaced
by a simple external potential, it is possible to calculate the ground state energy and
particle density of the non-interacting single particles. For a system of non-interacting
electrons, the total ground state energy and particle density can therefore simply be
denoted as the sums

E =
N∑
j=1

εj (3.25)

and

n(~r) =
N∑
j=1

|φj(~r)|2. (3.26)

In addition, Kohn and Sham used the universal functional in equations (3.17) to (3.19)
as an alternative formulation, namely4,5

F [n′(~r)] ≡ TS [n′(~r)] +
1

2

∫
[n′(~r)] [n′(~r′)]

|~r − ~r′|
d~rd~r′ + Exc [n′(~r)] . (3.27)
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In (3.27) TS [n′(~r)] is the kinetic energy functional of non-interacting electrons (which is
not even for the same density n(~r) the true kinetic energy of the interacting system7)
and the second term is the so-called Hartree term which describes the electrostatic self-
repulsion of the electron density.8 The last term is called exchange-correlation term. It
is implicitly de�ned by (3.27) and can in practice only be approximated. The quality of
the approximation for Exc [n′(~r)] is therefore one of the key issues in DFT.4

Construction of the Euler-Lagrange equations for the interacting case in equation (3.27)
provides4

δEv [n′(~r)] ≡
∫
δn′(~r)

[
veff (~r) +

δ

δn′(~r)
TS [n′(~r)] |n′(~r)=n(~r) − ε

]
d~r = 0 (3.28)

with

veff (~r) ≡ v(~r) +

∫
[n(~r′)]

|~r − ~r′|
d~r′ + vxc(~r) (3.29)

and the functional derivative

vxc(~r) ≡
δ

δn′(~r)
Exc [n′(~r)] |n′(~r)=n(~r) (3.30)

whereas the Euler-Lagrange equation resembles (3.24) up to the potential term.

Because of that, the minimizing density can be calculated in a way similar to the Hartree-
approach described in equations (3.20) to (3.22). The corresponding equations are the
single-particle Schrödinger equations[

−1

2
~∇2 + veff (~r)

]
φj(~r) = εjφj(~r) j = 1, ..., N (3.31)

as well as the de�ning equation for the particle density

n(~r) =
M∑
j=1

|φj(~r)|2, (3.32)

which form together with the e�ective potential veff (~r) in (3.29) the self-consistent
Kohn-Sham equations.4,5

The accurate ground state energy, as one of the most important quantities, can be
expressed as4

E =
∑
j

εj + Exc [n(~r)]−
∫
vxc(~r)n(~r)dv − 1

2

∫
[n(~r)] [n(~r′)]

|~r − ~r′|
d~rd~r′. (3.33)

Equation (3.33) can be seen as an generalization of the energy expression obtained with
the Hartree-approach (note that the neglect of Exc [n(~r)] andvxc [n(~r)] leads back to
equation (3.25)).4
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Chapter 3 Density functional theory 3.4 Problems and limitations of DFT

Similar to the Hohenberg-Kohn theorems, also equations (3.31) to (3.33) are formally
exact, which means, if the exact Exc [n(~r)] and vxc [n(~r)] would be used, one would obtain
the exact solution.

3.4 Problems and limitations of DFT

In summary, both the Hohenberg-Kohn formulation as well as the approach by Kohn-
Sham are formally exact and therefore allow in principle an exact solution provided that
the functional Exc [n(~r)] is exactly known.

In practice this is never the case, which reveals the crucial point in (ground state) density
functional theory. Every calculatory approach in DFT stands and falls with the quality
of the approximation for the unknown functionals F [n(~r)] and Exc [n(~r)].4,7 As stated in
the introduction, possible approximations of the functional Exc [n(~r)] are not discussed
in this thesis but can be found in several literature sources.1,6, 7, 8

There are also a few other points which have to be taken into consideration. In section 3.1
about the electron density, the term v-representability has been introduced, accompanied
by the fact that there do exist particle densities which do not correspond to a potential
v(~r)7,4

The same question can also be asked for an antisymmetric N -body wave function
ψ(~r1, ~r2, ..., ~rN). How can it be assured that a given density n(~r) corresponds to such a
wave function? Both of these questions are very important, because an energy calculated
from a �physically impossible density� would provide a useless solution.6,7

Nevertheless, the problem of N -representability has been solved and it has been proofed
that every nonnegative function can be written in the form (3.1) by the use of some
anti-symmetric wave function ψ(~r1, ~r2, ..., ~rN)34,35 The v-representability problem on the
other hand lacks of a solution. But instead of a solution, it is referred to the proof which
has been presented for the second HK-theorem (Levy and Lieb) and the subsequent
statement that a knowledge of v(~r) and therefore v-representability of the density is not
a necessity.29,30

Another problem arises as soon as information about excited states is required. Recalling
that the minimum of the functional Ev [n′(~r)] in (3.17) corresponds to the ground state
energy, it could be assumed that the other extrema of the functional correspond to
excited state densities as well, even if the variational principle is in general only valid
for the ground state. This is in fact the case, but on the other hand not every excited
state density corresponds to an extremum of the functional .6,36

22



Chapter 3 Density functional theory 3.5 Time dependent DFT

Therefore, to obtain trustful information about the excited states of a system, other
methods have to be found. A variety of di�erent methods have been investigated,37,38,39,40

one of the most prominent among them is the so called time-dependent DFT,7,6, 41 to
which the �nal part of this thesis is assigned.

3.5 Time dependent DFT

In general, time-dependent DFT is an alternative yet exact formulation of time-dependent
quantum mechanics.42 The density functional theory discussed up to now solely dealed
with equivalence to time-independent wave functions ψ(~r1, ~r2, ..., ~rN) which ful�ll time-
independent Schrödinger equations of a form presented in section 2.2.

But there are a lot of problems which require the consideration of time-dependency.
Such problems would be, for example, photoabsorption spectra, scattering processes,
interaction of matter with laser �elds and various more.41,42

The starting point is the time-dependent Schrödinger equation41,42 already introduced
in 2.1 which is, due to its importance for the following considerations, repeated brie�y
at this point.

ı̇~
∂

∂t
Ψ(~r1, ~r2, ..., ~rN , t) = Ĥ(~r1, ~r2, ..., ~rN , t)Ψ(~r1, ~r2, ..., ~rN , t) (3.34)

with a time-dependent Hamilton operator similar to the electronic Hamiltonian intro-
duced in section 2.4

Ĥ(~r1, ~r2, ..., ~rN , t) = T̂ (~r1, ~r2, ..., ~rN) + V̂ (~r1, ~r2, ..., ~rN , t) + Ŵ (~r1, ~r2, ..., ~rN). (3.35)

It contains of the operators

T̂ (~r1, ~r2, ..., ~rN) = −1

2

N∑
i=1

∇2
i , (3.36)

Ŵ (~r1, ~r2, ..., ~rN) =
1

2

N∑
i=1

N∑
i>j

1

|~ri − ~rj|
, (3.37)

V̂ (~r1, ~r2, ..., ~rN , t) =
N∑
i=1

vext(~ri, t) =
N∑
i=1

M∑
k=1

Zk

|~ri − ~Rk(t)|
, (3.38)

and the initial condition reads

Ψ(~r1, ~r2, ..., ~rN , t = t0) = Ψ0. (3.39)
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The next section will deal with the major distribution in this �eld, the paper of Erich
Runge and E.K.U. Gross from 1984, who provided a comparable theorem for time-
dependent systems as Hohenberg and Kohn did it for time-independent systems.3 This
theorem is nowadays known as the �Runge-Gross-theorem�41,42

Since the Rayleigh-Ritz minimum principle doesn't exist in time-dependent systems,
and an appropriate action integral provides only a stationary point at the solution of a
Schrödinger equation similar to (3.34), another approach has to be found.

Runge and Gross achieved that by showing the invertibility of the map G : v(~r, t) →
n(~r, t) up to a merely time dependent constant.

Theorem.41The map G : v(~r, t) → n(~r, t) is obtained for a single particle potential
v(~r, t) which is Taylor-expandable at t = t0, by solving the time-dependent Schrödinger
equation with a �xed initial state Ψ(~r1, ~r2, ..., ~rN , t = t0) = Ψ0 and subsequent calculation
of the corresponding densities n(~r, t). It is invertible up to a merely time-dependent
function c(t) in the potential.

Proof.41It is assumed, that the two potentials v(~r, t) and v′(~r, t) di�er by more than a
merely time-dependent function, i.e. v(~r, t) − v′(~r, t) 6= c(t). These potentials can of
course, still be identical at t = t0. Furthermore due to the prerequisite of the theorem
that the two potentials have to be Taylor-expandable at t = t0, there must exist a
minimal and non-negative integer k ful�lling

∂k

∂tk
[v(~r, t)− v′(~r, t))] |t=t0 6= const. (3.40)

Now it has to be proven that the corresponding densities n(~r, t) and n′(~r, t) are in fact
di�erent, if equation (3.40) holds for a k ≥ 0 .

The �rst step of the proof shows that the corresponding current densities j(~r, t) and
j′(~r, t) are, in fact, di�erent. The identicallity of the current and particle densities is
ensured by the evolution from a �xed initial state Ψ0.

The time-dependency of the current density can be expressed by the equation of mo-
tion

ı̇
∂

∂t
〈Ψ({~ri}, t)|Ô({~ri}, t)|Ψ({~ri}, t)〉 =

= 〈Ψ({~ri}, t)|ı̇
∂

∂t
Ô({~ri}, t) +

[
Ô({~ri}, t), Ĥ({~ri}, t)

]
|Ψ({~ri}, t)〉.

(3.41)
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Usage of

j(~r, t) = 〈Ψ({~ri}, t)|~̂j(~r)({~ri}, t)|Ψ({~ri}, t)〉 (3.42)

where

~̂j(~r) =
1

2ı̇

N∑
s=1

[
ψ̂∗s(~r)~∇ψ̂s(~r)− (~∇ψ̂∗s(~r))ψ̂s(~r)

]
(3.43)

leads to

ı̇
∂~j(~r, t)

∂t
= 〈Ψ({~ri}, t)|

[
~̂j(~r), Ĥ({~ri}, t)

]
|Ψ({~ri}, t)〉. (3.44)

Due to the �xed initial state Ψ0 from which Ψ({~ri}, t) and Ψ′({~ri}, t) evolve, equation
(3.44) subsequently leads to

ı̇
∂~j(~r, t)

∂t

[
~j(~r, t)−~j′(~r, t))

]
|t=t0 = 〈Ψ0|

[
~̂j(~r), Ĥ({~ri}, t0)−, Ĥ ′({~ri}, t0)

]
|Ψ0〉 =

= ı̇ n(~r, t0)~∇ [v(~r, t0)− v′(~r, t0)] .
(3.45)

If now v(~r, t) and v′(~r, t) di�er at t = t0, which is equivalent to equation (3.40) holding for
k=0, the r.h.s. does not vanish and the current densities j(~r, t) and j′(~r, t) di�er at every
time in�nitesimally later than t0. If equation (3.40) holds for a minimum integer k > 0,
equation (3.41) must be applied k times. The prerequisite, that the k−th derivatives of
the potentials with respect to the spatial coordinates, is assumed to be ful�lled within
this proof.41

All that can, after some rearrangements and algebra, be expressed mathematically as(
ı̇
∂

∂t

)k+1 [
~j(~r, t)−~j′(~r, t))

]
|t=t0 = ı̇ n(~r, t0)~∇

[(
ı̇
∂

∂t

)k
[v(~r, t)− v′(~r, t))] |t=t0

]
6= 0

(3.46)
what completes the proof for the current densities.

The discussion for the corresponding particle densities starts at the continuity equation

∂

∂t
[n(~r, t)− n′(~r, t))] = −div

[
~j(~r, t)−~j′(~r, t))

]
. (3.47)

By the use of the result in (3.46) and the (k+1)-th derivative of the continuity equation
above, the expression(

∂

∂t

)k+2

[n(~r, t)− n′(~r, t))] |t=t0 = −div n(~r, t) · ~∇

[(
∂

∂t

)k
[v(~r, t)− v′(~r, t))] |t=t0

]
(3.48)

is obtained.
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The last remaining step is now to proof that the r.h.s. of equation (3.48) doesn't vanish
as long as equation (3.40) holds.

It is assumed, that div
[
n(~r, t0)~∇u(~r)

]
= 0 with u(~r) 6= const, subsequently

0 =

∫
d~ru(~r)div

[
n(~r, t0)~∇u(~r)

]
= −

∫
d~rn(~r, t0)

[
~∇u(~r)

]2
+

1

2

∮
n(~r, t0)

[
~∇u2(~r)

]
· d~s

(3.49)

If the initial density n(~r, t0) falls o� rapidly enough, the surface integral in (3.49) vanishes

and it can be concluded that n(~r, t0)
[
~∇u(~r)

]2
≡ 0. This is in contradiction to u(~r) 6=

const, neglecting the theoretical possibility that u(~r) = const in exactly the spatial
subregions in which n(~r, t0) vanishes (if such exist). It proofs by reductio ad absurdum
that the r.h.s. in (3.48) cannot vanish and n(~r, t) and n′(~r, t) di�er in�nitesimally later
than t0. �

With that proof at their hands, Runge and Gross also derived a set of, in principle exact,
equations similar to the Kohn-Sham equations for ground state DFT.41

Theorem II.41 �The exact time-dependent density of the system can be computed from

n(~r, t) =
M∑
j=1

|φj(~r, t)|2 (3.50)

where the single-particle orbitals ful�ll[
ı̇
∂

∂t
+

1

2
~∇2

]
φj(~r, t) = veff (~r, t;n(~r, t))φj(~r, t) j = 1, ..., N (3.51)

with the e�ective single particle potential

veff (~r, t;n(~r, t)) ≡ v(~r, t) +

∫
d~r′ n(~r′, t)w(~r, ~r′) +

δAxc
δn(~r, t)

(3.52)

.�

Proof.41 Analogous to the stationary case, the exchange-correlation part of the action
is denoted as

Axc [n(~r, t)] =

∫
dt〈Ψ [n(~r)] (t)|Ŵ |Ψ [n(~r)] (t)〉

−1

2

∫∫∫
n(~r, t)w(~r, ~r′)n(~r′, t) + S0 [n(~r, t)]− SW [n(~r, t)]

(3.53)

with the density functional

S[n(~r, t)] =

∫
dt〈Ψ [n(~r)] (t)|ı̇ ∂

∂t
T̂ |Ψ [n(~r)] (t)〉. (3.54)
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The stationary action principle is then

δA

δn(~r, t)
= 0 =

δS0

δn(~r, t)
−
[
v(~r, t) +

∫
d~r′ n(~r′, t)w(~r, ~r′) +

δAxc
δn(~r, t)

]
(3.55)

what resembles exactly the Euler equation for a system of non-interacting particles in
the e�ective potential veff (~r, t;n(~r, t)). �
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