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1. Introduction
Since the first years of the last century charged particles have been used to obtain
information about the properties and nature of the materials under study [1]. In
this diploma thesis we focus on the use of electrons as a probe for the determi-
nation of the characteristics of the materials under consideration. Other kinds of
particles have been also used as a testing probe, e.g. photons (i.e. illumination
with light). Since this thesis is about electron energy loss spectroscopy (EELS)
it will be concerned with the usage of electrons as a testing probe. As we will
see in the upcoming chapters the materials considered in this thesis are metallic
nanoparticles or plasmonic nanoparticles respectively.
In this diploma thesis we aim at obtaining EELS-spectra for these metallic nanopar-
ticles interacting with an electron beam. Due to this interaction the metallic
nanoparticles exhibit plasmon excitations while the electrons lose energy in an in-
elastic process. They are also called plasmonic nanoparticles. We will only shortly
mention the plasmon excitations at this stage and will go into further detail in
the next chapter. Excitations of the bulk of the material correspond to bulk plas-
mon excitations. They correspond to collective excitations of the electron charge
density in the bulk with the well-known plasma frequency ωp =

√
4πne2

m
. e is the

electron charge and m the electron mass. There also occur collective excitations
corresponding to oscillations of the electron charge density at the interface between
two dielectric media. They are known as surface plasmons. If they are confined in
all three spatial dimensions to the particle surface they are called particle plasmons
(see section 2.1.3 for further details).
In section 1.1 we provide the definition of a nanoparticle and in order to give
motivation for the importance of the topic we will shortly focus on the usage of
nanoparticles in various fields of application. Then we give a short and general
introduction to EELS.
Let us start a short historical overview with Ernest Rutherford (* 30. August
1871), who used α-particles to study the structure of atoms, in the year 1911. In
1927 Clinton Joseph Davisson (* 22. October 1881) and Lester Germer (* 10.
October 1896) [2] already used electrons as a testing probe [1]. Another example
for the use of electrons is the famous experiment by James Franck (* 26. August
1882) and Gustav Ludwig Hertz (* 22. July 1887). In 1948 G. Rutherman already
used electrons in transmission mode and he obtained electron energy loss spectra
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1. Introduction

in the range of a few eV ([1], [3]).
The first proposal and demonstration of EELS in TEMs (transmission electron
microscopes) has already been made in the year 1944 by Hillier and Baker [4].
Notice that 1904 Leithäuser [5] was the first to exploit the energy loss of electrons
during their transition through a thin foil [6].
Using electrons in transmission mode means that an electron beam is transmit-
ted through a specimen. The electrons interact with the specimen while passing
through it. From this interaction one obtains an image of the specimen. The
energy losses of the electrons due to the inelastic scattering process caused by the
interaction can be interpreted in terms of what caused the energy loss. The in-
elastic interactions include phonon excitations (phonons are the quanta of lattice
vibrations of a solid), Cerenkov radiation or plasmon excitations. The latter are
the ones relevant in this diploma thesis.
The device for the use of electrons in this way is the transmission electron micro-
scope, TEM in short. In transmission electron microscopy the spatial resolution is
much higher than in light microscopes because electrons have a small De Broglie
wave length. A scanning transmission electron microscope (STEM) (see figure 1.1)
uses spatially focalised electrons transmitted across the target. The electron beam
is focussed into a narrow spot. It is scanned over the specimen in a raster (for
further details see [1] and [7] and section 1.1).

1.1. Definition of a nanoparticle
Nanoparticles

Nanoparticles are small clusters of a few or several million atoms or molecules.
Their name concerns their size which lies in the range of 1 up to 100 nanome-
ters. 1 nanometer is 10−9 meters. The nanoparticle behaves as a whole unit in
terms of its properties. There exists no strict dividing line between a nanoparti-
cle and a non-nanoparticle. Nanoparticles have different properties compared to
the bulk material. Properties that distinguish a nanoparticle from the bulk mate-
rial typically emerge at a length scale under 100 nanometers. So the guiding line
for the definition of a nanoparticle is certainly its length scale [8]. Examples for
such structures are fullerenes or carbon nanotubes. Several types of metallic and
semiconducting nanoparticles have been synthesized and there exist many more
examples which won’t be mentioned in this diploma thesis.

When dealing with nanoparticles we are situated at mesoscopic scales of physics.
Objects belonging to this scale lie between the macroscopic and the microscopic
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1. Introduction

world. At the macroscopic level one is dealing with bulk materials and the lower
limit is roughly the size of single atoms. The microscopic world is subject to quan-
tum mechanics. Mesoscopic and macroscopic objects both contain a large number
of atoms. Macroscopic objects are described by classical mechanics whereas meso-
scopic objects feel the influence of quantum effects and thus are subject of quantum
mechanics. This means that a mesoscopic object - like a nanoparticle - has quan-
tum mechanical properties, in contrast to a macroscopic object. An example for
this is a conducting wire. Its conductance increases with its diameter when we are
in macroscopic scales. But on the mesoscopic level the conductance of the wire
is quantized; this means that the increase of the conductance occurs in discrete
steps. In applied mesoscopic physics one aims at the construction of nano-devices.
Since the systems under study in mesoscopic physics are usually of a size about
100 nanometers up to 1000 nanometers it has a close connection with nanotechnol-
ogy. Nevertheless, in this diploma thesis we are going to use a classical or at least
semiclassical formalism. The reason why we can do that and neglect the quantum
mechanical effects will be further explained in chapter 2.

We already know that the approximate upper limit for the size of a nanoparticle
is 100 nanometers which is still beyond the diffraction limit of light. This property
is very practicable for applications in packaging, cosmetics or coatings. Nanopar-
ticles are used in fields such as computer industry or the pharmaceutical industry.
They are also used in biotechnology, microelectronics, interplanetary sciences or
biochemistry [6]. But all these topics are too far off from this diploma thesis. For
further details see [8], [9].

Metallic nanoparticles

This thesis focuses on plasmonic nanoparticles (metallic nanoparticles), i.e. parti-
cles which exhibit plasmon and surface plasmon excitations when they are excited.
Surface plasmons occur at the interface of vacuum or a material with a positive
dielectric constant and a material with a negative dielectric constant. The latter
are usually metals.

Examples for applications of nanoparticles

Now let us start mentioning the various fields of application for nanoparticles. Al-
though the focus of this work are metallic nanoparticles it is quite important to
gain an introductory insight into the various possible applications of nanoparticles.
The main scientific area where nanoparticles are used nowadays is nanotechnology.
One of the best examples to illustrate the importance of science on the nanometer
length scale is the future use of nanoparticles in medicine. Nanoparticles may be

7



1. Introduction

an important weapon in the fight against cancer. One could control the doses of
medication used in chemotherapy much better. The dose would be lower but much
more targeted at the position of the tumour. So there would be less side effects
than for classical chemotherapy and one would not harm the healthy cells. A great
advantage would be that the nanoparticles are biodegradable [10]. Scientists have
already successfully tested this procedure on a culture of cancer cells [11].
Gold nanostructures are also used for pregnancy tests. The particles are spread
along the test strip and coupled with antibodies, which marks the nanoparticles.
This mark becomes visible through white light: the particles glow in colour. The
antibody realizes a hormone which gives notice of a starting pregnancy. If this
hormone is contained in the urine, the nano-gold-particles build up in the vision
panel of the pregnancy test and produce a red stripe due to a shift of plasmon
resonances through a change of the dielectric environment [12].
Another possible field of application for nanoparticles in the future could be the
cleaning of wastewater. One wants to build nanoparticles for the detoxification of
contaminated water. In this case detoxification means decomposition of haloge-
nous organic materials into molecules which are not toxic and easily decomposable
and organic. Since the risks and effects of nanoparticles for living cells and so for
human beings are not fully understood this technique is not in use yet [13].
Nanotechnology or nanoparticles respectively are also used in car paint. Nanopar-
ticles make the car paint more resistent against scratches. Mercedes for instance
uses a car paint which shall look very new even if its very old. The small particles
(ceramic particles mixed with the nano-car paint) form a much denser net struc-
ture as a usual car paint. The aim of the scientists is that one cannot permanently
deform the car paint, i. e. that the net which forms the car paint dodges mechan-
ical strain and goes back to the original form. One also thinks about self-repairing
car paint. If it becomes scratched open then nanocapsules become scratched open
too and set free a substance which restores the car paint. Even surfaces which are
water- and oil-repellent are in process of planning. Dust does not stick to these
surfaces [14].
Nanoparticles can also be found in food. Antibacterial silver particles, particles as
an anticaking agent for packet soup or nanocapsules in vitamin compound are a
few examples [15]. Reportedly nanoparticles in the milkshake make it more creamy
and healthier [16].
Nanosilver in T-shirts or socks lowers the smell of sweat and has disinfecting ef-
fects. With modern washing agent one can make the clothes with 30 degrees as
clean as with 60 degrees [17].
Nanoparticles are also used in sun tan lotion [9] to improve the protection of the
skin. The solar radiation is reflected and the risks for skin cancer are lowered.
They also prevent the generation of the white film which is present if one uses
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1. Introduction

standard sun tan lotion [18]. But there are discussions about the safety of this
usage of nanoparticles because the effects of the nanoparticles in the sun tan lotion
on the human body are not yet fully understood. Maybe they could have harmful
effects for the cells in the human brain [19].
We won´t go into more detail about all this because these topics are too far off
from the actual topic of this diploma thesis. As mentioned above it is about EELS,
i.e. the aim of this diploma thesis is to derive electron energy loss spectra for the
interaction of a metallic nanoparticle with an external electron beam. One will see
more about the calculation of these EELS-spectra in chapter 3 and 4.
In the upcoming section we will give a definition of a nanoparticle and the nanome-
ter length scale in order to know what such particles are and on which length scales
we are operating.

1.2. Short introduction to electron energy loss
spectroscopy

In electron energy loss spectroscopy (EELS) one shoots an electron beam onto a
certain material under study. It´s aim is to study the characteristics and nature
of electronic excitations in a solid body (metallic nanoparticle) [1]. The electrons
of the beam lie in a narrow and known range of kinetic energy. When they col-
lide with the specimen they undergo scattering. Some of them are inelastically
scattered and therefore they lose energy. This energy loss can be measured with a
spectrometer. By interpreting the spectrum one gets information about the struc-
ture of the material and its chemical properties [20]. This is often carried out in
a transmission electron microscope (TEM). In other words one wants to get infor-
mation about the properties of structured materials with low-energy-excitations
by fast electrons [6] (kinetic energies of about 100 to 300 keV).
For EELS in STEM (Scanning transmission electron microscopy) one has two
types of losses. One of them are excitations of the core electrons at well-defined
energies, ranging from 100 to 2000 eV [1]. The spatial resolution is governed by
the parameter v

ω
. This means that it lies on atomic scales and one can identify

atoms in thin crystals or can gain chemical information of selected parts of the
material under study [1]. Then there are the losses caused by excitations of valence
electrons. They are more intense spectral losses and correspond to collective exci-
tations. These excitations are equivalent to coherent oscillations of the electronic
charge density in the bulk (bulk plasmons) and occur with the so-called plasma
frequency ωp =

√
4πne2

m
. Oscillations of the electronic charge density at the surface

are surface plasmons [1]. Surface and bulk plasmons are excited at energies of a
few eV to about 50 eV. The valence electron energy losses are produced by the

9



1. Introduction

excitation of surface and bulk plasmons [1].

Figure 1.1.: Schematic representation of a STEM (Scanning Transmission Electron
Microscope) [1].

Figure 1.1 shows a schematic representation of a STEM. At the top there is
an emission source emanating electrons. This electron gun is connected to a high
voltage source and with enough current it will begin to emit the electrons by so-
called thermionic or field electron emission. The electron gun shoots the electrons
through an objective aperture. The lense system of the microscope is used to
focus the electron beam onto the specimen. The electrons are flying along the
z-direction which lies perpendicular to the impact parameter b, which is defined as
the distance from the center of the specimen to the electron beam. The electrons
are collected in the analyser. It can be used in two different ways:

• Fixed energy ω: The specimen is scanned for different impact parameters b
[1].

• Fixed impact parameter b: EELS is performed and one obtains different
types of losses, mainly core and valence losses [1].
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1. Introduction

What is the main advantage of using electrons rather than light in the investiga-
tion of the nanoworld in nanotechnology? When using a simple light microscope
one uses photons as a testing probe for the material under study. So a light mi-
croscopes maximum resolution is limited by the relatively large wavelength of the
photons λ, and by the numerical aperture of the microscope [21]. Electrons have a
short wavelength (about 0.1 nanometer for electrons of 100 keV) [1]. For electron
microscopes the spatial resolution can be down to the atomic level (i.e. nanometer
resolution) while the energy resolution usually is about 1 eV. One is able to make
images with high resolution by scanning the probe with an extremely well focussed
electron beam and by analysing the reflected and secondary emitted electrons [1].
It can be decreased to 0.1 eV if one makes the electron beam monochromatic. This
is the best resolution one can get up to now ([6], [20]).
The electron microscope focuses the electron beams on points within the nanome-
ter length scale onto the observed target (e.g. metallic nanoparticles). By the
analysis of the electron energy loss and the detection of the emitted radiation one
aims at:

• Making pictures of the nanoworld.

• Investigation of the excitations of the target (e.g. nanoparticles or bulk
materials).

The last of these two points is important to learn something about how these small
objects (i.e. the target) evolve dynamically. The excitations are relevant in fields
such as encoding of and manipulating information and are applied in molecular
biology. The main goal is to perform spectroscopy at the smallest possible length
scale and at the highest possible energy resolution [6].
Electron microscopes are the best possibility to investigate localised and extended
excitations with spatial details on a sub-nanometer length scale and with an en-
ergy resolution of less than 0.1 eV in each material [6]. These microscopes are
very sensible for surfaces and lead to information about the bulk-properties of a
material. Their main advantage is their high spatial resolution which currently
cannot be achieved by any other technique [6].
EELS experiments lead to information of the electronical band structure, give in-
formation about plasmons in the regions of low energy and about the chemical
identity with atomic resolution; this chemical identity is encoded in the core losses
[6]. They are of great relevance in the following scientific areas for instance:

1. Biochemistry

2. Interplanetary science

3. Micro electronics
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4. Medicine

The scattering of the electrons takes place due to interaction with atoms in the
solid. This interaction is of Coulomb form because the nucleii in the atoms, the
electrons in the atom and the incident electrons are all charged particles [20]. As
mentioned above the incident electrons are either scattered elastically or inelas-
tically. For quasi-elastic scattering the exchanged amount of energy is so small
that it usually cannot be measured with a TEM-EELS-system. The reason for
this is, that the electron is scattered by the nucleus of the atom. The mass of
the nucleus is much higher than the electrons mass and so the energy exchange is
small. What causes inelastic scattering is the interaction between the electrons in
the atom and the incident electron. An example of an excitation in this case are
plasmon excitations. Even before entering a specimen the electric charge of the
incident electron polarizes the specimens surface which leads to surface plasmon
excitations. If the electron beam penetrates the specimen there are also volume or
bulk plasmon excitations present which constitutes a negative contribution to the
energy loss probability of the electrons coming from the so-called begrenzungs-
effect. In chapter 2 we will find out more about plasmons and surface plasmons
and in chapter 3 the begrenzungs-effect will be mentioned again. More information
about this effect can be found in [7] and [22].
In the upcoming chapters we will be concerned with the following forms of excita-
tions:

Bulk plasmons in a source-free metal

• Their magnetic field is zero, B = 0.

• Their electrical field is longitudinal, ∇×E = 0

Hence they fulfill the Maxwell equations trivially if the permittivity vanishes.

Surface plasmons

• They are confined to the interfaces between metals and dielectrics.

• Their magnetic fields are unequal to zero.

• They are transversal, i.e. ∇ · E = 0 in each homogeneous region of space
which is separated by the interface on which the plasmons are defined.
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2. Theoretical Basics
In this chapter we will provide the mathematical and theoretical basics for this
diploma thesis. Section 2.1 will be about the basic concepts of plasmonics. We
are going to start with a general section about the dielectric function. In the last
part of this section we will derive the dielectric function for a semiclassical model,
the Drude model, which leads us to the Drude form of the dielectric function,
valid for a free electron gas. The dielectric function is essential for the description
of metallic nanoparticles. Then we will introduce surface plasmons and particle
plasmons. The other two basic ingredients for the theoretical description of EELS
are provided in chapter 3. There we will see how to describe the electron beam
and the interaction between the electrons and the particle.
In section 2.2 we are going to introduce some basic concepts of classical field theory
needed in chapter 3 for the calculation of the electron energy loss probability for
an electron passing by a sphere or going through it. Some more basic concepts of
classical electrodynamics can be found in the appendix.
The last part of this chapter is dedicated to the boundary integral method.

2.1. Fundamentals of Plasmonics
What we are going to do in this section is to describe basic concepts of an emerging
scientific field known as "Plasmonics" (see [23] for further details). This field con-
sists of the study of plasmon resonances and has influence on many experimental
situations in nanotechnology. The first form of plasmon excitations with which we
will be concerned are the volume or bulk plasmons, which are usually referred to
as plasmons in the literature ([24], [25]). They are the collective excitations of the
conduction electrons in a metal. Then we will introduce surface plasmons. They
are plasmons confined to the surface between a dielectric and a metal. Finally,
we will discuss particle plasmons which are most relevant for this diploma thesis.
They are surface plasmons in metallic nanoparticles, such as gold or aluminium
nanospheres. This section is based on [23].
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2. Theoretical Basics

2.1.1. Dielectric function
The dielectric function is one of the basic quantities in electrodynamics. It de-
scribes the response of a system (in our case a metallic nanoparticle) to external
excitations (plane wave or electron beam), i.e. it describes the effect of an external
electromagnetic field on a polarizable medium. In the dielectric formalism all the
information about the target (the nanoparticle) in an EELS-experiment excited
by the external electron beam is contained in this dielectric response function [7].
For vacuum or for a small frequency range a medium is non-dispersive. Otherwise
a medium is dispersive and because of that a general dielectric function has to be
momentum and frequency dependent: ε = ε(k, ω) where ω is the frequency and k
is the wave vector (momentum).
In this diploma thesis we consider the so-called optical approximation and neglect
the dependence of ε on the momentum k. This limit, i.e. k → 0, is the long
wavelength limit and is also called quasi-static approximation. Then the dielectric
function is ε(0, ω) ∼= ε(ω). The local approach ε(k = 0, ω) can be used because the
very fast electrons in the beam only transfer small momentum k in the inelastic
interaction process [1], i.e.:

k = ω

v
≈ 0.1 nm−1 (2.1)

So we can neglect dispersion effects.
At this point it is convenient to mention that we will consider the electron as a
classical point particle when deriving the energy loss probability (see chapter 3 for
further details).

The Maxwell equations for macroscopic electromagnetism in Gaussian units are:

∇ ·D = 4πρext (2.2)

∇ ·B = 0 (2.3)

∇×E = −1
c

∂B

∂t
(2.4)

∇×H = 4π
c

jext + 1
c

∂D

∂t
(2.5)

The following table gives the definitions of the terms entering the Maxwell equa-
tions:
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2. Theoretical Basics

B . . . magnetic induction or magnetic flux density
H . . . magnetic field
D . . . dielectric displacement
E . . . electrical field
ρext . . . external charge density
jext . . . external current density
c . . . speed of light

We are using Gaussian units throughout this diploma thesis. For a detailed dis-
cussion of unit systems in classical field theory consult the fabulous book of John
David Jackson [26].
The total charge density is given by:

ρtot = ρext + ρ (2.6)

The total current density is given by:

jtot = jext + j (2.7)

The external charge and current densities ρext and jext drive the system. ρ and j
are the responses of the system to the external excitation.
Now we introduce the polarisation P and the magnetisation M . We get:

D = E + 4πP (2.8)

H = B − 4πM (2.9)

Here we only consider non-magnetic media. Because of that we set M = 0. P
describes the electric dipole moment per unity volume in the material. P is caused
by the alignment of microscopic dipoles with the electrical field.

∇ · P = −4πρ (2.10)

The continuity equation
∇ · j = −∂ρ

∂t
(2.11)

says that charge is conserved. From this charge conservation it follows that

4πj = −∂P

∂t
(2.12)

Now we plug
D = E + 4πP (2.13)
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into
∇ ·D = 4πρext (2.14)

and get
∇ ·E = 4πρtot (2.15)

In the following we will consider linear, isotropic and non-magnetic media.
We define:

D = εE (2.16)

B = µH (2.17)

ε is the dielectric constant or relative permittivity and µ is the relative permeability
of the non-magnetic medium (µ = 1 throughout) [23].
We express D = εE through the dielectric susceptibility χ:

P = χE (2.18)

E + 4πP = (1 + 4πχ)E = εE (2.19)

4πχ ·
(

1
χ

+ 1
)

= ε (2.20)

ε = 1 + 4πχ (2.21)

The current density can be expressed through the conductivity σ:

j = σE (2.22)

This relation, as well as
D = εE (2.23)

are only valid for linear media without dispersion in time and space.
The optical response of metals depends on the frequency ω and possibly on the
wave vector k too. Because of that we have to take into account the non-locality
in time and space by generalising the linear relations in the following way:

D(r, t) =
∫
dt′dr′ε(r − r′, t− t′)E(r′, t′) (2.24)

j(r, t) =
∫
dt′dr′σ(r − r′, t− t′)E(r′, t′) (2.25)
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2. Theoretical Basics

We assume homogeneity for our material system, i. e. the response functions only
depend on the differences between the space and time coordinates r−r′ and t− t′.
For a local response, the response functions are proportional to a δ-function. Then
we get the original formulas without the integrals.
If we make a Fourier transformation with respect to

∫
dtdrei(kr−ωt) of the above

equations the convolutions are changed to multiplications. By doing this we split
the fields into single plane wave parts with wave vector k and frequency ω.
We get:

D(k, ω) = ε(k, ω)E(k, ω) (2.26)

4πj(k, ω) = σ(k, ω)E(k, ω) (2.27)

Now we use
D = E + 4πP (2.28)

and
4πj = ∂P

∂t
(2.29)

and equation (2.27) as well as the change from ∂
∂t

to−iω from the Fourier transform
to get the final result for the frequency dependent dielectric function:

ε(k, ω) = 1 + 4πiσ(k, ω)
ω

(2.30)

For the limit of optical frequencies we have a spatially local response for metals:

ε(k = 0, ω) = ε(ω) (2.31)

This is valid as long as the wave length λ is larger than characteristical dimensions
(for instance the mean free path of the electrons) of the material. As we have
already mentioned for the metallic nanoparticles considered in this diploma thesis
the wavelength of light λ (the wavelength of the electromagnetic field interacting
with the metallic nanoparticle) is larger than the particle dimensions thus justifying
the usage of the quasistatic approximation, i.e. neglecting the dependence on
momentum (equation (2.31)).
In general we have complex valued functions of the frequency ω:

ε(ω) = ε1(ω) + iε2(ω) (2.32)

σ(ω) = σ1(ω) + iσ2(ω) (2.33)
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Re(σ) dictates the magnitude of the absorption and Im(σ) contributes to ε1, i.e.
to the magnitude of the polarisation.
Now we combine the following two equations:

∇×E = −1
c

∂B

∂t
(2.34)

∇×H = 4π
c

jext + 1
c

∂D

∂t
(2.35)

where we assume that jext = 0, i.e there is no external perturbation.
We get:

∇×∇×E = − 1
c2
∂2D

∂t2
(2.36)

After a Fourier transformation we have:

k · (kE)− k2 ·E − k2 ·E = −ε(k, ω)ω
2

c2 E (2.37)

where c is the velocity of light in vacuum.

• transversal waves, k ·E = 0:

k2 = ε(k, ω)ω
2

c2 (2.38)

• longitudinal waves:
ε(k, ω) = 0 (2.39)

Longitudinal collective oscillations only occur for frequencies that correspond
to zeros of ε(ω).

Dielectric function of the free electron gas

In a wide frequency range one can describe the optical properties of metals with
a "plasma model". In this model a gas of free electrons with number density n
moves against the rigid background of positive ion cores.
The plasma model contains no details of the lattice potential or the interaction
of electrons with electrons. Instead one plugs several aspects of the band structure
into the effective optical mass of each electron [23]. The response of the system to
the applied electromagnetic field results in an oscillation of the electrons. Their
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movement is damped by collisions. These collisions occur with a certain charac-
teristical collision frequency

γ = 1
τ

(2.40)

where τ is the relaxation time of the free electron gas. For room temperature it
lies approximately at 10−14 seconds

τ ≈ 10−14 s (2.41)

From this it follows that
γ = 100 THz (2.42)

The equation of motion for an electron of the plasma sea, which is exposed to
an external electrical field E is

mẍ +mγ · ẋ = −e ·E (2.43)

We assume that
E(t) = E0 · e−iωt (2.44)

From this we get a particular solution, which describes the oscillations of the
electron:

x(t) = x0 · e−iωtE(t) (2.45)
x0 is the complex amplitude. Via the following formula

x(t) = e

m (ω2 + iγω) (2.46)

this amplitude contains all phase shifts between E and the response of the material
system.
The electrons are displaced by the influence of the electrical field. The displaced
electrons contribute to the macroscopic polarisation P = −nex through

P = − e2n

m (ω2 + iγω) ·E (2.47)

We plug this expression into D = E + 4πP and get

D =
(

1−
ω2
p

ω2 + iγω

)
·E (2.48)

where ωp is the plasma frequency:

ω2
p = 4πne2

m
(2.49)
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where n is an electron charge density.
This yields the formula for the dielectric function of a free electron gas:

ε(ω) = 1−
ω2
p

ω2 + iγω
(2.50)

It has a real and an imaginary part:

ε(ω) = ε1(ω) + iε2(ω) (2.51)

The real and imaginary parts are:

ε1(ω) = 1−
ω2
pτ

2

1 + ω2τ 2 (2.52)

ε2(ω) =
ω2
p · τ

ω (1 + ω2τ 2) (2.53)

Here we consider frequencies ω < ωp since the plasmon resonances which we con-
sider lie below the bulk plasmon frequency ωp.
For high frequencies near ωp we have ωτ >> 1. Then damping is negligible and
ε(ω) is mostly real

ε(ω) = 1−
ω2
p

ω2 (2.54)

This is the dielectric function of the undamped free electron plasma.
For gold, silver and copper we have to extend the free electron model. This is
caused by the fact that the d-band is close to the Fermi surface and generates a
residual polarisation of the ion cores:

P∞ = (ε∞ − 1) E (2.55)

ε∞ lies in the following range:

1 ≤ ε∞ ≤ 10 (2.56)

ε∞ = 10 is the value for gold. The modified Drude dielectric function then reads
as follows:

ε(ω) = ε∞ −
ω2
p

ω2 + iγω
(2.57)

2.1.2. Plasmons
In subsubsection 2.1.1 we have introduced the plasma frequency ωp (see equation
(2.49)). This is the frequency with which the free electron gas oscillates under the
influence of an external electromagnetic field.
Plasmons are collective excitations of the free conduction electrons in metals. They
are the quanta of the collective vibrations of the electron gas, and they are so-called
quasiparticles.

20



2. Theoretical Basics

Volume plasmons

In the literature plasmons in bulk materials are also referred to as volume or bulk
plasmons.
We look more closely at this collective oscillation of the conduction electrons
against the fixed positive background (i.e. the ions). By the oscillation the elec-
trons are displaced. Suppose that the electrons are displaced by a distance x.
Because of the displacement a charge density ρ arises:

ρ = ±4πnex (2.58)

This charge density generates an electric field of the following form:

E = 4πnex (2.59)

This means that the oscillating electrons experience a restoring force. Thus the
oscillations obey the following equation of motion:

nmẍ = −neE = 4πn2e2x (2.60)

The plasma frequency ωp was defined as

ω2
p = 4πne2

m
(2.61)

With this definition one can write the equation of motion in the following way:

ẍ+ ω2
px = 0 (2.62)

Thus ωp is the frequency of the oscillations of the conduction electrons, i.e. the
electron gas. The plasmons are the quanta of these vibrations.

2.1.3. Surface plasmons
In this subsection we describe surface plasmon polaritons (i.e. surface plasmons
interacting with an external electromagnetic field). Surface plasmons occur at the
interface between a metal and a dielectric. We start with the derivation of the
boundary conditions at the interface between two dielectric media.

Derivation of the boundary conditions between different media

This section is based on [26]. We start by depicting the interface between two
dielectric media in figure 2.1.
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Figure 2.1.: Interface between two media. The normal vector n points from
medium 1 (E1, B1) to medium 2 (E2, B2). The interface between
medium 1 and medium 2 is occupied by a surface charge density σ.

In figure 2.1 the cylinder has a height h, the volume V and the surface S. The
upper and lower areas of the cylinder are denoted by ∆a.
The Maxwell equations in differential form are given in the appendix. By using
the theorems of Gauss and Stoke we can transform them to integral form. Let
V be a finite space element, confined by the surface S (see 2.1). n is the surface
normal which points outwards from the surface element dA, i.e. from medium 1
to medium 2. We apply the theorem of Gauss to Coulomb´s law and the last of
the Maxwell equations (the first and fourth Maxwell equation, see appendix A.4
or section 2.1.1) and get the following integral relations:∮

S
D · ndA = 4π

∫
V
ρd3x (2.63)∮

S
B · ndA = 0 (2.64)

The first of these two equations is the law of Gauss (see appendix A.3). The second
equation is analogous to the first one but it is it´s magnetic analogon.
If we apply Stoke´s theorem to the second and third Maxwell equation (Ampere´s
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law and Faraday´s induction law) we get∮
C

H · dl =
∫
S′

[
j + ∂D

∂t

]
· n′dA (2.65)∮

C
E · dl = −

∫
S′

∂B

∂t
· n′dA (2.66)

From this form of the Maxwell equations we can derive the boundary conditions
of the electromagnetic fields and the potentials at the interface between the two
media. The interface is occupied with surface charges and surface currents. We
apply the law of Gauss (2.63) and its magnetic analogon (2.64) to the volume V
of the cylinder of height h and surface S. For an infinitesimal height h the surface
of the cylinder jacket does not yield any contribution. Only the upper and lower
circular areas denoted by ∆a contribute to the integrals. We get:∮

S
D · ndA = (D2 −D1) · n∆a (2.67)∮

S
B · ndA = (B2 −B1) · n∆a (2.68)

If the charge density ρ is singular on the interface and forms an idealized surface
charge density σ on it, then we get for the right hand side of (2.63):∫

V
ρd3x = σ∆a (2.69)

This yields the relation between the normal components of D and B, i.e. the
boundary conditions for the normal components of the fields D and B:

(D2 −D1) · n = 4πσ (2.70)
(B2 −B1) · n = 0 (2.71)

In other words: the normal component of B is continuous at the interface, whereas
the normal component of D has a jump.
Now we can apply Stoke´s theorem in an analogous way to the rectangular loop.
This leads us to the boundary conditions for the tangential components of E and
H . Let ∆l be the length of one of the longer sides of the rectangular and let the
lateral sides be negligibly small. The integral on the left hand sides of equations
(2.65) and (2.66) becomes:∮

C
Edl = (t× n) · (E2 −E1)∆l (2.72)∮

C
Hdl = (t× n) · (H2 −H1)∆l (2.73)
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The right hand side of (2.66) vanishes because ∂B
∂t

is finite at the interface and the
area spanned by C vanishes for infinitesimally small lateral sides. The right hand
side of (2.65) does not vanish if there is an idealized surface current of density K
flowing on the interface. The integral on the right hand side of (2.65) becomes

∫
S′

[
j + ∂D

∂t

]
· tdA = K · t∆l (2.74)

Since ∂D
∂t

is finite on the interface too the second term of this integral also vanishes.
The relation between the tangential components of E and H are:

n× (E2 −E1) = 0 (2.75)
n× (H2 −H1) = K (2.76)

This means that the tangential components of E are continuous.
The boundary conditions for the potential Φ can be derived by using the relation
D = εE = −ε∇Φ applied to our problem, i.e.:

D1 = ε1E1 = −ε1∇Φ1 (2.77)
D2 = ε2E2 = −ε2∇Φ2 (2.78)

We insert this into equation (2.70) and get:

(−ε2∇Φ2 + ε1∇Φ1) · n = 4πσ (2.79)

and from this, using that n∇Φ is the normal derivative of Φ at the surface:

ε1Φ′1|S = ε2Φ′2|S (2.80)

where the ′ denotes the normal derivative and S denotes the surface.
In the case of a spherical nanoparticle with radius a and surface charge density σ
in a dielectric medium with dielectric function εout one can transform this equation
to spherical coordinates. The dielectric function of the sphere is εin. We get:

εin
∂Φin

∂r
|a − εout

∂Φout

∂r
|a = 4πσ (2.81)

∂Φin

∂θ
|a −

∂Φout

∂θ
|a = 0 (2.82)
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Surface Plasmon Polaritons

Surface plasmons are confined to the interface between a material with a positive
dielectric constant and a material (metal) with a negative dielectric constant or at
the interface between vacuum and a material with a negative dielectric constant.
Because one of the materials has to have a negative dielectric function metals are
a good candidate for this material. The dielectric function of the metal has to be
more negative than the one of the dielectric (e.g. air):

|ε2| > ε1 (2.83)

The reason for this will be explained below.

Figure 2.2.: Surface plasmons occur for instance at the interface between a metal
(blue area) and a dielectric, where the dielectric function of the metal
ε2 is negative and the one from the dielectric (air, for instance), ε1, is
positive.

The electrical field associated with the surface plasmons E falls off exponentially
in the metal and in the dielectric. It is called an evanescent field.
The evanescent fields have a strong spatial localisation and propagate along the
interface. They are only present in the immediate vicinity of the object or inter-
face. In figure 2.2 we see the exponential decay of the evanescent fields away from
the metal-dielectric-interface. Later in this chapter we will see that an evanescent
wave corresponds to a TM-(transversal magnetic) mode, propagating along the
interface between the metal and the dielectric.
After these introductory words about evanescent waves we will now go into detail
about surface plasmon polaritons at the interface between a non-absorbing dielec-
tric and a conductor. Surface plasmon polaritons are electromagnetic excitations
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which are confined to the interface between a dielectric (air for instance) and a con-
ductor (a metal for instance) and they only propagate along this interface falling
off exponentially in the direction perpendicular to the interface. This exponential
fall-off means that they have evanescent character [23].
In figure 2.2 a typical geometry for the occurrence of surface plasmon polaritons
is depicted.
We start by applying the Maxwell equations to a flat interface between a conduc-
tor and a dielectric. We consider the case without external charge and current
densities, i.e. ρext = 0 and jext = 0. Then we can combine the following two
Maxwell equations

∇×E = −1
c

∂B

∂t

∇×H = 1
c

∂D

∂t

which yields the wave equation

∇×∇×E = 1
c2
∂2D

∂t2
(2.84)

Now we use the following relations:

∇×∇×E = ∇(∇ ·E)−∇2 ·E (2.85)
∇(ε ·E) = E ·∇ε+ ε∇ ·E (2.86)

Since there are no external charges present we also have ∇ ·D = 0.
All this yields the following wave equation:

∇
(
−1
ε

E ·∇ε
)
−∇2E = − 1

c2 ε
∂2E

∂t2
(2.87)

If ε(r) has only negligible variation with respect to its argument we get the fol-
lowing form of the wave equation:

∇2E − ε

c2
∂2E

∂t2
= 0 (2.88)

Now we assume that the time-dependence is harmonic, i.e.:

E(r, t) = E(r)e−iωt (2.89)

We plug this into equation (2.88) and get:

∇2E + k2
0 · ε ·E = 0 (2.90)
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This is the so-called Helmholtz-equation. k0 = ω
c
is the wave number of the

propagating wave in vacuum.
Now we want to consider the special case of an one-dimensional geometry, i.e.
ε only depends on one spatial direction, ε = ε(z). The interface in which the
evanescent wave is propagating equals the plane z = 0. We can describe the wave
in the following way:

E(x, y, z) = E(z) · eikx·x (2.91)
kx is the component of the wave vector k in the direction of propagation and is
called propagation constant [23].
We plug this into the Helmholtz equation and get:

∂2E(z)
∂z2 + (k2

0ε− k2
x)E = 0 (2.92)

An analogous equation holds for the magnetic field H . To get this equation
one starts again with the assumption of harmonic time dependence and follows
basically the same steps as above.
We use again the equations

∇×E = −1
c

∂B

∂t
(2.93)

∇×H = 1
c

∂D

∂t
(2.94)

to find explicit expressions for the field components E and H .
Since we assume harmonic time dependence we get the following system of coupled
equations:

∂Ez
∂y
− ∂Ey

∂z
= iωHx (2.95)

∂Ex
∂z
− ∂Ez

∂x
= iωHy (2.96)

∂Ey
∂x
− ∂Ex

∂y
= iωHz (2.97)

∂Hz

∂y
− ∂Hy

∂z
= −iωεEx (2.98)

∂Hx

∂z
− ∂Hz

∂x
= −iωεEy (2.99)

∂Hy

∂x
− ∂Hx

∂y
= −iωεEz (2.100)

We have propagation along the x-direction and assume homogeneity in y-direction.
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Then the system of equations takes the following form:

∂Ey
∂z

= −iωHx (2.101)
∂Ex
∂z
− ikxEz = iωHy (2.102)

ikxEy = iωHz (2.103)
∂Hy

∂z
= iωεEx (2.104)

∂Hx

∂z
ikxHz = −iωεEy (2.105)

ikxHy = −iωεEz (2.106)

From this set of equations one gets two sets of solutions:

• TM-modes, i.e. only Ex, Ey and Hy are unequal to zero

• TE-modes, i.e. only Hx, Hz and Ey are unequal to zero

TM stands for "transversal magnetic" and TE stands for "transversal electric".
The solutions for the TM-modes are:

Ex = −i 1
ωε
· ∂Hy

∂z
(2.107)

Ez = − kx
ωε
·Hy (2.108)

The corresponding wave equation is:

∂2Hy

∂z2 + (k2
0ε− k2

x)Hy = 0 (2.109)

The solutions for the TE-modes are of the following form:

Hx = i
1
ω
· ∂Ey
∂z

(2.110)

Hz = kx
ω
· Ey (2.111)

and the corresponding wave equation is:

∂2Ey
∂z2 + (k2

0ε− k2
x)Ey = 0 (2.112)
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Now we come to the description of surface plasmon polaritons for the simple case
depicted in figure 2.2, i.e. we consider a single flat interface between a conductor
and a dielectric. The dielectric has a constant ε1 > 0 which is real. The conductor
has a dielectric constant ε2(ω) with Re(ε2) < 0. For metals the condition Re(ε2) <
0 is fulfilled for ω < ωp.
The solutions we are searching for are propagating waves with an evanescent field
falling off in the z-direction (perpendicular to the interface) and are thus confined
to the interface.
For z > 0 the TM-solutions for this case are:

Hy(z) = A2e
ikxxe−k2z (2.113)

Ex(z) = iA2
1
ωε1

k2e
ikxxe−k2z (2.114)

Ez(z) = −A1
kx
ωε1

eikxxe−k2z (2.115)

For z < 0 we get:

Hy(z) = A1e
ikxxek1z (2.116)

Ex(z) = −iA1
1
ωε2

k1e
ikxxek1z (2.117)

Ez(z) = −A1
kx
ωε2

eikxxek1z (2.118)

kiz with i = 1, 2 are the components of the wave vector perpendicular to the
interface in the two media.
Now we use the boundary conditions which we have obtained in the beginning
of this subsection. The continuity of Hy and εiEz at the interface leads to the
condition

A1 = A2 (2.119)

This leads to
k2

k1
= −ε1

ε2
(2.120)

For confinement at the interface the following must hold:

Re(ε2) < 0 if ε1 > 0 (2.121)

This means that surface plasmon polaritons only exist at the interface between
materials with opposite signs of the real parts of their dielectric constants, i.e.
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between insulators and conductors.
The expression Hy(z) = A1e

ik1x · ek1z has to fulfill the wave equation

∂2Hy

∂z2 + (k2
0ε− k2

x)Hy = 0 (2.122)

From this we get the following relations:

k2
1 = k2

x − k2
0ε1 (2.123)

k2
2 = k2

x − k2
0ε2 (2.124)

Now we combine this equation with equation (2.120). This yields the dispersion
relation for the surface plasmon polaritons:

kx = k0

√
ε1ε2

ε1 + ε2
(2.125)

The expression in the square root has to be larger than 0 because then the wave is
confined to the interface. Because of that |ε2| > ε1 (the dielectric function of the
metal has to be more negative than the one of the dielectric). Now we look at the
TE-solutions. For z > 0 the TE-solutions for this case are:

Ey(z) = A2e
ikxxe−k2z (2.126)

Hx(z) = −iA2
1
ω
k2e

ikxxe−k2z (2.127)

Hz(z) = A2
kx
ω
eikxxe−k2z (2.128)

For z < 0 we get:

Ey(z) = A1e
ikxxek1z (2.129)

Hx(z) = iA1
1
ω
k1e

ikxxek1z (2.130)

Hz(z) = A1
kx
ω
eikxxek1z (2.131)

Since Ey and Hx are continuous at the interface (see first part of this section about
surface plasmons) we get

A1(k1 + k2) = 0 (2.132)
Confinement at the interface means that Re(k1) > 0 and Re(k2) < 0. From this
we get:

A1 = 0 (2.133)
A2 = A1 = 0 (2.134)
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This means that for TE-polarization there do not exist surface-plasmon-polariton-
modes. Surface plasmon polaritons only exist for TM-polarization.
For large wave vectors the frequency of the surface plasmon polaritons reaches the
surface plasmon frequency [23]:

ωSP = ωp√
1 + ε1

(2.135)

To prove this we insert the expression for the dielectric function in the Drude
model

ε(ω) = 1−
ω2
p

ω2 + iγω
(2.136)

into the dispersion relation of the surface plasmon polaritons (equation (2.125)).
If the damping of the oscillation of the conduction electrons is negligible, i.e. if
Im(ε2(ω)) = 0, then kx goes to infinity while the frequency reaches the surface
plasmon frequency ω → ωSP and the group velocity goes to zero, vg → 0. This
means that we have an electrostatic mode and this mode is called surface plasmon.

Particle Plasmons

Particle plasmons are the modes of excitation of a metallic nanoparticle. Thus
these plasmon modes are the ones of interest in this diploma thesis. Like for surface
plasmons we should also talk about particle plasmon polaritons because they are
so-to-say the particle plasmons in interaction with an electromagnetic field. If
an electromagnetic field impinges on a metallic nanoparticle the particle becomes
polarized and this polarization generates a restoring force. From this restoring
force we again get a plasmon mode. Particle plasmons are surface plasmons which
are confined in all three spatial dimensions to the particle surface ([23],[27]).

2.2. Basic elements of classical electrostatics
In this section we start with the Poisson equation which will be used in chapter 3
and 4 to get the potential of the interaction between the electron beam and the
metallic spherical nanoparticle. Then we shortly mention Dirichlet and Neumann
boundary conditions because we need them for the discussion about Green´s func-
tions and to show the uniqueness of the solution of the Poisson equation. The
Green function technique is used to solve the Poisson equation in the following
chapters. Finally we introduce the multipole expansion because the solutions of
chapter 3 will follow from such an expansion of the Green function, imposing the
boundary conditions of 2.1.3 to obtain the coefficients of the expansion. In this
section we follow closely the book of [26].
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2.2.1. Poisson equation
This subsection introduces the Poisson equation for the electrostatic case in order
to give the foundation for the calculations of chapter 3 where we use the Poisson
equation for dielectric media.
The electrostatic field is described by the following two differential equations:

∇ ·E = 4πρ (2.137)
∇×E = 0 (2.138)

These are the Maxwell equations for the static case.
From the last of these two equations it follows that E is representable by the
gradient of a scalar function. This function is the so-called scalar potential Φ:

E = −∇Φ (2.139)

We plug this equation into the differential form of Gauss´ law (equation (2.137)).
Formula (2.137) and Gauss´ law are discussed in appendix A.3.
This yields:

∇(−∇Φ) = 4πρ (2.140)
∇2Φ = ∆Φ = −4πρ (2.141)

This is the Poisson equation for the static case and for ρ 6= 0. For ρ = 0 it
reduces to the so-called Laplace equation.
The Poisson equation is a partial differential equation for the scalar potential Φ(x).
Its solution for a spatially restricted charge density ρ is

Φ(x) =
∫ ρ(x′)
|x− x′|

d3x′ (2.142)

This solution goes to zero for large distance |x − x′| and only holds for infinite
media.
Now we have to show that Φ(x) fulfills the Poisson equation and the Laplace
equation respectively. To manage that we apply the Laplace operator ∆ on both
sides of the solution (2.142):

∆Φ(x) =
∫

∆ ρ(x′)
|x− x′|

d3x′ (2.143)

The integrand is singular. To avoid too much writing one renames |x − x′| to r.
The following relation holds:

∆ 1
|x− x′|

= ∆
(1
r

)
= −4π · δ(x− x′) (2.144)
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We have to proof this equation. 1
r
is singular at r = 0. This function is first

replaced by a smooth function:

χε(r) = 1√
r2 + ε2

(2.145)

lim
ε→0

χε(r) = 1
r

(2.146)

Because of its symmetry we will treat the problem in spherical coordinates. The
Laplace operator in spherical coordinates is (see appendix):

∆ = 1
r

∂2

∂r2 r + 1
r2

[
1

sinϑ
∂

∂ϑ

(
sinϑ ∂

∂ϑ

)
+ 1

sin2 ϑ

∂2

∂ϕ2

]
(2.147)

In our case we only need the radial part, i. e. 1
r
∂2

∂r2 r. We get:

∆χε(r) = 1
r

∂2

∂r2
r√

r2 + ε2
=

= 1
r

∂

∂r

(
1√

r2 + ε2
− r2

3
√
r2 + ε2

)
=

= 1
r

∂

∂r

(
r2 + ε2√

r2 + ε2 · (r2 + ε2)
− r2

3
√
r2 + ε2

)
=

= ε2

r

∂

∂r

 1
(r2 + ε2)

3
2

 =

= −3 · ε2

(r2 + ε2)
5
2

=: µε(r) (2.148)

Integration yields: ∫
d3rµε(r) = 4π

∫
drr2µε(r) =

= 4π
∫
drr2∆ χε(r)︸ ︷︷ ︸

r ∂
2

∂r2 rχε(r)

=

Now we use partial integration: = −4π
∫ ∞

0
dr

(
∂

∂r
rχε(r)

)
=

= −4π r√
r2 + ε2

|∞0 = −4π (2.149)

The parameter ε does not play any role and because of that we have the desired
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proof. We get
∆
(1
r

)
= −4πδ(r) (2.150)

Therefore
Φ(x) =

∫ ρ(x′)
|x− x′|

d3x′ (2.151)

is a solution of the Poisson equation.

2.2.2. Uniqueness of the solution of the Poisson equation
There exist two kinds of boundary conditions which hold for the potential and
proof its uniqueness within a volume V enclosed by a surface S.

Dirichlet boundary conditions

Φ is given on the boundary S of a closed volume V .
We assume that the Poisson equation has two different solutions Φ1 and Φ2 in the
volume V . One can show (see [26]) that on the boundary of the volume V enclosed
by S, they shall fulfill the following condition:

Φ1(x) = Φ2(x) ∀ x ∈ ∂V (2.152)

This condition is derived and can be found in the usual textbooks of classical
Electrodynamics, like the highly recommended books from Jackson andGriffiths
([26],[28]).

Neumann boundary conditions

Here the potential in the direction normal to the area S is given, i. e. ∂Φ
∂n

.
The condition which has to be fulfilled by now is:

∂Φ1(x)
∂n

= ∂Φ2(x)
∂n

(2.153)

where x ∈ V and ∂
∂n

denotes the normal derivative.

2.2.3. The Green function
In chapter 3 we use the method of Green functions to solve the Poisson equation.
In this subsection we will give a short overview of Green´s functions.
In order to get the solution of the Poisson or Laplace equation in a finite volume V
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with Dirichlet or Neumann boundary conditions on the boundary area S enclosing
V , one uses the second Green identity

∫
V
dV (ψ∆Φ +∇ψ∇Φ) =

∮
∂V
dA

(
ψ
∂

∂n
Φ
)

(2.154)

and the Green function.
Equation (2.154) is subtracted from the first Green identity

∫
V

(∇Φ∇ψ + Φ∆ψ)dV =
∮
∂V
dA

(
Φ∂Ψ
∂n

)
(2.155)

This leads to ∫
V
dV (Φ∆ψ − ψ∆Φ) =

∮
∂V
dA

(
Φ ∂

∂n
ψ − ψ ∂

∂n
Φ
)

(2.156)

One makes the following choice for ψ:

ψ = 1
|x− x′|

(2.157)

We apply the Laplace operator to this equation:

∆
(

1
|x− x′|

)
= −4πδ(x− x′) (2.158)

1
|x−x′| is only one function from a whole class of functions which fulfill this equation.
They are called Green´s functions.
In general they fulfill the following equation:

∆G(x,x′) = −4πδ(x− x′) (2.159)

with
G(x,x′) = 1

|x− x′|
+ F (x,x′) (2.160)

F fulfills the Laplace equation:
∆F = 0 (2.161)

G(x,x′) is symmetric with respect to its arguments:

G(x,x′) = G(x′,x) (2.162)

This relation is a result of the translational invariance of space and is called reci-
procity theorem.
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The Green function fulfills the Poisson equation from above but it does not fulfill
the Dirichlet and Neumann boundary conditions. Only if the surface S lies at
infinity it fulfills these boundary conditions. By choosing F (x,x′) properly one
can achieve the fulfillment of the boundary conditions.
One uses the second Green identity and chooses ψ = G(x,x′):

Φ(x) =
∫
V
d3x′ρ(x′)G(x,x′) +

+
∮
∂V
dA′

[
G(x,x′) ∂Φ

∂n′
− Φ ∂

∂n′
G(x,x′)

]
(2.163)

Now we have two cases:

Green function for Dirichlet boundary conditions

We choose
G(x,x′) = GD(x,x′) (2.164)

Therefore
GD(x,x′) = 0 (2.165)

if x′ lies on the boundary ∂V . Then the term proportional to ∂Φ
∂n′

disappears. The
solution is:

Φ(x) =
∫
V
ρ(x′)GD(x,x′)d3x′ − 1

4π

∮
∂V
dA′

(
Φ(x′∂GD

∂n′
)
)

(2.166)

Green function for Neumann boundary conditions

One could be tempted to use the ansatz ∂
∂n′
G(x,x′) = 0. With this ansatz the

second term of the surface integral of the over-determined problem

Φ(x′) =
∫
V
dV

ρ(x′)
R
− 1

4π

∮
∂V
dA

(
Φ ∂

∂n

1
R
− 1
R

∂Φ
∂n

)
(2.167)

disappears. The ansatz leads to a wrong result because it does not fulfill the
conditions of Gauss law for the unit charge. The result is:∮

∂V
dA′

∂

∂n′
GN(x,x′) =

∮
∂V
dA′n′∇′GN(x,x′) =

∫
V
d3x′∆′GN(x,x′) = −4π

(2.168)
The law of Gauss says that the expression on the right hand side has to be 4πq
and not −4π.
The simplest choice which leads to a fulfillment of Gauss law would be:

∂

∂n′
G(x,x′) = −4π

S
(2.169)
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if S is the total area and for x′ lying on the boundary ∂V .
This is plugged into the over-determined relation (2.167) for Φ(x) where

1
R

= 1
|x− x′|

(2.170)

The result is:

Φ(x) =
∫
V
d3x′ρ(x′)GN(x,x′) + 1

4π

∮
∂V
dA′GN(x,x′) ∂Φ

∂n′
+ 1
S

∮
∂V
dA′Φ (2.171)

where
1
S

∮
∂V

ΦdA′ = 〈Φ〉∂V≡S (2.172)

is the average value of the potential on the surface. If S → ∞ the average value
disappears if Φ falls off faster than 1

x
for x→∞.

Interpretation of F (x,x′)

F fulfills the Laplace equation in the volume V : ∆F = 0. Therefore it represents
the potential of a charge distribution outside of V . Together with the potential of
a point charge at x′, 1

|x−x′| ,the Green function has exactly the following values:

GD(x,x′) = 0 and ∂

∂n′
GN(x,x′) + 4π

S
= 0 for x ∈ S (2.173)

The external charge distribution shall exactly compensate the point charge at x′

on the surface S. Therefore the outer charge distribution depends on x′. x′ is the
position of the point charge.

2.2.4. Multipole expansion
To connect this section about the basic concepts of electrostatics with the upcom-
ing chapters 3 and 4 we introduce the so-called multipole expansion. This will
be used in chapter 3 for the calculation of the energy loss probability. Again we
follow closely the book of Jackson [26].
We use spherical coordinates, referring the reader to appendix A.1 and A.2 for
further details about spherical harmonics and spherical coordinates.
A localized charge distribution is described by a charge density ρ(x′) which is only
not vanishing inside of a sphere of radius R around a certain point of origin. If ρ
decreases faster than every power of the spheres radius then the multipole expan-
sion is valid for sufficiently large distances. The potential outside of the sphere
can be written as an expansion in spherical harmonics (see appendix A.2):

Φ(x) =
∞∑
l=0

l∑
m=−l

4π
2l + 1qlm

Ylm(θ, ϕ)
rl+1 (2.174)
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This is the so-called multipole expansion. The term with l = 0 equals a monopole,
the one with l = 1 a dipole and so on. Now we need to determine the constants
qlm. We use

Φ(x) =
∫ ρ(x′)
|x− x′|

d3x′ (2.175)

We use the expansion of 1
|x−x′|

ρ(x′)
|x− x′|

= 4π
∞∑
l=0

l∑
m=−l

1
2l + 1

rl<
rl+1
>

Y ?
lm(θ′, ϕ′)Ylm(θ, ϕ) (2.176)

The definition of r< and r> can be found in [26]. For our case r< = r′ and r> = r
since we are interested in the potential outside of the charge distribution. From
this we get

Φ(x) =
∑
lm

1
2l + 1

[∫
Y ?
lm(θ′, ϕ′)r′lρ(x′)d3x′

]
Ylm(θ, ϕ)
rl+1 (2.177)

The term in the square brackets equals qlm. These coefficients are called multipole
moments.

2.3. Boundary integral method
For spherical nanoparticles calculations can be performed analytically without too
much effort. If the systems under study become more complicated (e.g. coupled
spheres or sphere-plane-system) an analytical calculation would be too elaborate
and a numerical method is needed. In this section we introduce the boundary
integral method (BIM). One goes over from integrals over surfaces (boundary in-
tegrals) to sums over surface elements (see section 4.1) for numerical computational
calculations. In this approach we need to solve the Poisson equation 2.178. The
aim is to find the induced surface charge density σ induced by an external charge
density ρext. The section is based on [1] (in chapter 4 we are going to make a
boundary element method approach out of this boundary integral approach by
discretizing the particles surface by small surface elements and going over from
boundary integrals to sums over these elements).
We use the approximation of a local response of the system under consideration.
Then the dielectric function of the medium depends on space too, ε(r, ω). If we
have a homogeneous medium we have no space dependency. The Poisson equation
for inhomogeneous media can be written in this approximation in the following
way:

∇ [ε(r, ω)∇Φ(r, ω)] = −4πρext(r, ω) (2.178)
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Here Φ(r, ω) is the scalar potential and ρext(r, ω) is the external charge density
distribution.
The dielectric response is described by an arbitrary function of space r and fre-
quency ω. This function is the dielectric function ε(r, ω).
Using the product rule we get:

∇ε∇Φ + ε∆Φ = −4πρext (2.179)

The potential of the Poisson equation reads as follows:

Φ(r, ω) = Φ∞(r, ω) + Φboundary(r, ω) (2.180)

The first term is the Coulomb term coming from the second term of equation
(2.179). Φ(r, ω) follows from the Poisson equation (2.178) in a similar way as
equation (2.142). The explicit expressions for the two terms are:

Φ∞(r, ω) =
∫
dr′

ρext(r′, ω)
ε(r′, ω)|r − r′|

(2.181)

Φboundary(r, ω) = 1
4π

∫
dr′
∇Φ(r′, ω)∇ε(r′, ω)
ε(r′, ω)|r − r′|

(2.182)

In infinitely extended and homogeneous media Φ∞(r, ω) reduces to the screened
potential of the bulk of the material or particle under consideration. One gets

Φ∞(r, ω) = 1
ε (ω)

∫
dr′

ρext(r′, ω)
|r − r′|

(2.183)

The term Φboundary(r, ω) results from the inhomogeneity of the response function.
Φboundary(r, ω) reduces to surface integrals for homogeneous dielectrics separated
by abrupt interfaces. From now on we will only consider this case. We get

Φboundary(r, ω) ≡ 1
4πε

∫
d(surface)surface charge density

|r − r′|
(2.184)

If we have ν different homogeneous dielectrics we have the dielectric function εν(ω)
for the medium ν, where ν labels the different dielectrics.
This yields

ε(r, ω) =
∑
ν

εν(ω)θν(r) (2.185)

This is the total dielectric function, depending on the frequency ω. The function
θν(r) is 1 if r lies in medium ν and 0 otherwise [1].
The term under the integral in Φboundary is unequal to zero only at the interfaces.
At the interfaces ε changes abruptly. This fact is described by so-called surface
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delta functions which ensure that the integrand is unequal to zero only on the
interfaces. This means that one can write

1
4π
∇Φ ·∇ε

ε
= 1

4πD ·∇1
ε

= σδS (2.186)

δS is a surface delta function which defines the interface. This term can be derived
by using the following relations

D = εE (2.187)

∇ ·E = 4πρ = −∇Φ (2.188)

∇ ·D = 4πρ (2.189)

σ is the induced surface charge density of the boundary and the expression for it
follows from the boundary condition (D2 −D1)n = 4πσ.

σ(s, ω) = 1
4π

(
1

εν2(ω) −
1

εν1(ω)

)
ns ·D (2.190)

= 1
4π

εν1(ω)− εν2(ω)
εν1(ω)εν2(ω) ns ·D(s, ω) (2.191)

s is the coordinate vector along the interface and ns is the normal to the interface
at the vector s. The index ν1 labels the medium which is orientated against
the direction of the normal to the interface and ν2 labels the medium which is
orientated in the direction of the normal to the interface (see Figure 2.3).
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Figure 2.3.: The curve represents an interface between two dielectric media. The
normal to the interface ns points from medium 1 to medium 2. Rs is
the position vector to the point where we calculate the potential. It
is plotted inside a little coordinate system with y-axis (vertical) and
x-axis (horizontal), where the z-axis points inside of the page [1].

ν1 and ν2 can depend on the vector s. The surface delta function δS is uniquely
defined because the component of the dielectric displacement normal to the inter-
face, ns ·D, is continuous. Φboundary becomes

Φboundary(r, ω) =
∫
ds
σ(s, ω)
|r − s|

(2.192)

For the derivation of this equation we have used the law of Gauss. It is discussed
in A.3. Here we will only shortly mention it.
The law of Gauss is in general:

• For a single point charge:∮
S

E · nda =

4πq, if q lies inS
0, if q lies outside ofS

• For several charges: ∮
S

E · nda = 4π
∑
i

qi (2.193)

in the volume enclosed by S.
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• For a continuous charge distribution ρ(x):∮
S

E · nda = 4π
∫
V
ρ(x)d3x (2.194)

where V is the volume enclosed by S.

Its differential form is: ∮
S

A · nda =
∫
V
∇Ad3x (2.195)

From this we get: ∫
V

(∇ ·E − 4πρ) d3x = 0 (2.196)

V is an arbitrary volume.
Finally we get:

∇ ·E != 4πρ (2.197)

Now we consider the electric field at a point in medium ν2 infinitesimally close to
the interface. Owing to Gauss´ theorem the electrical field near the interface can
be written as a sum of the contributions from the electrical field generated by all
external charges plus the contribution from the charge density [7]:

E = −ns ·∇Φ(s, ω) + 2πσ(s, ω) (2.198)

The normal component of the dielectric displacement is:

ns ·D(s, ω) = εν2(ω) [−ns ·∇Φ(ns, ω) + 2πσ(ns, ω)] (2.199)

because D = ε ·E.
We can insert σ(ns, ω) in this equation. Furthermore we use equation (2.181) and
equation (2.192) to get

Λ(ω) · σ(s, ω) = nS ·∇Φ∞(s, ω) +
∫
ds′F (s, s′) · σ(s′, ω) (2.200)

where
Λ(ω) = 2πεν2(ω) + εν1(ω)

εν2(ω)− εν1(ω) (2.201)

and
F (s, s′) = −nS · (s− s′)

|s− s′|3
(2.202)

Equation (2.200) is the desired integral equation for the surface charge distribution
σ. The problem has now only 2 dimensions instead of three. This means that the
number of points needed to solve the equation numerically is reduced ([1], [29]).
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3. Electron energy loss probability
for a dielectric sphere

In this chapter we are going to calculate the energy loss probabilities for an elec-
tron passing by a dielectric metallic nanosphere or going through it. The general
concept is presented and it can be applied in more complex situations. We use
the Poisson equation (see section 2.2) for this derivation of the probability. The
solution of it will lead us to the potential needed for the analytical calculation of
the energy loss probability. Considering the spherical geometry allows to model
the form of nanoparticles in experiments [1].

3.1. Theory of Electron Energy Loss Spectroscopy
In this section we present the classical theory of Electron Energy Loss Spectroscopy
used in this diploma thesis. The basic equations needed in the subsequent sections
are provided.

3.1.1. Classical dielectric formalism
Enrico Fermi´s famous work about the stopping of fast charged particles in di-
electric materials [30] lead to the application of classical electrodynamics for the
description of the interaction of fast electrons with matter [6].
The energy loss of a fast electron moving with constant velocity v along a straight
line trajectory r = re(t) is related or equivalent respectively to the force which is
exerted from the induced electrical field Eind of the material and acts back on the
electron.

∆E =
∫
dt · v ·Eind(re(t), t) =

∫ ∞
0

ω · P (ω) (3.1)

where P (ω) is the classical electron energy loss probability.

P (ω) = 1
π

∫
dt · Im

{
v · e−iωt ·Eind(re(t), t)

}
(3.2)
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Non-retarded case

In the quasistatic case considered in this diploma thesis we neglect the retardation
of the electromagnetic signal which mediates the interaction between the electron
and the probe.
The electrical field is given by

E(r, ω) = −∇Φ(r, ω) (3.3)

Without retardation we have no magnetic response and so one can neglect the
magnetic field H .
We express the electric potential Φ by the screened interaction W (r, r′, ω), i.e.
the Green function of the Poisson equation of our problem (see chapter 2 and
this chapter). W is the potential generated at r by a unit charge at position r′.
Attention has to be paid to the implicit e−iωt-dependence. W has to be combined
with the charge density for an electron with a straight trajectory, moving along
the z-direction with constant velocity v. The trajectory is:

r = r0 + v · t (3.4)

The electron charge density in frequency space becomes:

ρ(r, ω) = −
∫
dteiωtδ(r − r0 − v · t) = −1

v
δ(R−R0) · eiω(z−z0)/v (3.5)

The convention for the Fourier transformation to the ω-space is given in the next
section. Here R0 is the impact parameter, i.e. the two-dimensional vector (bx, by).
It describes the distance from the center of the metallic nanoparticle to the electron
beam in the direction perpendicular to the direction of motion of the electrons.
The potential is:

Φ(r, ω) = 1
v

∫
dz′W (r,R0, z

′, ω)eiω(z′−z0)/v (3.6)

If we plug this into equation 3.3 we get the following expression for the energy loss
probability:

P (R0, ω) = 1
πv2

∫
dzdz′Im

{
−W (R0, z,R0, z

′, ω)eiω(z′−z0)/v
}

(3.7)

In this chapter we are going to derive this quantity andW for the case of a spherical
metallic nanoparticle.
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Classical vs. quantum formalism

This work uses the classical formalism to describe the electrons and nanoparticles
involved in the interaction processes of an EELS experiment. The validity of the
classical approximation (considering electrons as point particles with a constant
velocity v) has already been studied in the literature (see [1], [22] and [31]). If we
describe the electron beam by the following wave function

Ψ0(r) ∝ Φ(r⊥ − b)eik0z (3.8)

where b is the position of the center of the electron probe and r⊥ is the transver-
sal projection of the position vector, we can describe the total energy loss as an
incoherent sum over all trajectories of the losses of the classical electrons:

Pqm(ω) =
∫
dr⊥|Φ(r⊥ − b)|2P (ω, r⊥) (3.9)

Here P is the classical electron energy loss probability. The condition for the
validity of this formula is that all inelastically scattered electrons are collected in
the analyser of the scanning transmission electron microscope [1]. The quantum
corrections are small. Elastic scattering processes and recoil are neglected. The
interaction can also be described classically because we neglect recoil effects. For
further details see [1], [22] and [31].

3.2. Electron trajectory past sphere
Electron energy loss probabilities have been calculated for various geometries.
EELS-spectra have been calculated for thin films [22] and the cases of hemispheri-
cal particles, cylindrical interfaces, systems of coupled spheres or hyperbolic wedges
have been discussed in [1] and the corresponding references in this work.
The most simple particle geometry to consider is that of an isolated small sphere.
The sphere is described by a dielectric function ε(ω). The electron energy loss prob-
ability can be derived analytically for this case, using Mie theory ([32], [33]). Other
works considering the electron energy loss for an isolated sphere are [7], [34], [35]
or [36]. In chapter 5 results for the EELS-spectrum of an electron beam exciting
a spherical metallic nanoparticle will be presented, obtained by a Mathematica-
routine for the analytical (Mie-) case and with MATLAB using a numerical method
known as boundary element method (see chapter 2 and 4). The aim of this diploma
thesis is to compare the analytical results obtained with Mie-theory with the ones
obtained by the boundary element method. Two cases will be considered.
If the electron beam does not penetrate the sphere the geometry of the problem
looks as follows:
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Figure 3.1.: Dielectric sphere with electron beam passing by distance b from the
its center. The impact parameter is defined as the distance from the
center of the sphere to the electron beam. The sphere is described
by the dielectric function ε(ω). The electron passes the sphere in the
z-direction with a constant velocity vz.

b is the impact parameter defined as the distance between the center of the
sphere and the electron trajectory. It´s dielectric function is ε(ω).
The inelastic scattering process takes place in the following way: the external
electron beam is described by an external charge density ρext which corresponds
to an external potential Φext. The electrons induce a potential Φind(r) in the
probe which acts back onto them. The interaction is given by the characteristics
of the trajectory, i.e. v and b, the composition of the medium, i.e. ε(ω) and the
geometry of the structure, e.g. a sphere in our case. We get Φind from a solution
of the Poisson equation in frequency space.
We want to calculate the energy loss probability P (ω) for the electron along the
whole trajectory. P (ω) is the probability of losing the energy ω per unit energy
and unit path length [1]. To do this derivation we have to calculate the total
potential of this problem first. The general equation has already been introduced
in chapter 2.2. For our problem we make a Fourier transformation of the Poisson
equation to the frequency space. The Poisson equation was:

∆Φ(r, t) = −4π
ε
ρ(r, t) (3.10)

This equation has to be Fourier transformed. The convention for the transforma-
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tion is:

f(k, ω) =
∞∫
−∞

dr

∞∫
−∞

dte−i(kr−ωt)f(r, t) (3.11)

f(k, ω) = 1
(2π)4

∞∫
−∞

dk

∞∫
−∞

dωei(kr−ωt)f(k, ω) (3.12)

The Poisson equation in frequency space becomes

∆Φ(r, ω) = − 4π
ε(ω)ρ(r, ω) (3.13)

if we make the Fourier transformation only with respect to t. The charge density
ρ is given by:

ρ(r, ω) = −1
v
e
iωz
v δ(y − b)δ(x− b) (3.14)

where v is the component of the velocity of the electron in its direction of motion.
The lateral extension of the beam is small [1] and thus the electron is considered
as a classical point particle, moving with velocity v along the z-direction.
The Fourier transformation of the charge density reads as follows:

ρ(r, t) = −δ(r − vt) = −δ(z − vt)δ(y − b)δ(x− b) (3.15)

Now we make a partial Fourier transformation with respect to t:

ρ(r, ω) = −δ(y − b)δ(z − b)
∞∫
−∞

dteiωtδ(z − vt) (3.16)

We solve this integral by substitution: z = vt −→ t = z
v
. Then we exactly get

equation (3.14).
To solve the Poisson equation we define its Green´s function W (r, r′, ω). This
function is the screened interaction of the problem.

∆W (r, r′, ω) = − 4π
ε(ω)δ(r − r′) (3.17)

We interpret this equation as the Poisson equation for a point charge which is
situated at r′. With this assumption we can use the usual electrostatics as found
in [7], [26], [28] and [37]. We can express the solution of (3.13) with W (r, r′, ω):

Φ(r, ω) =
∞∫
−∞

d3r′W (r, r′, ω)ρ(r′, ω) (3.18)
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W (r, r′, ω) consists of an induced part and a Coulomb part:

W (r, r′, ω) = Wind(r, r′, ω) + 1
|r − r′|

(3.19)

We want to expand Wind(r, r′, ω) as a regular solution of the Laplace equation.
This means that for now we only consider the homogeneous part of the above
Poisson equation, which equals the Laplace equation

∆Wind(r, r′, ω) = 0 = 1
r2 r

2∂rWind +
1

r2 sin θ∂θ sin θWind + 1
r2 sin θ∂ϕ (3.20)

The ansatz for the particular solution is the same as in appendix A.1 (see equation
(A.2)):

Wind = R(r)P (θ)Q(ϕ) (3.21)
Analogous to the appendix we set z = cos θ −→ dz = − sin θdθ. Like in section A.1
we plug the separation ansatz into the Laplace equation. The resulting equation
has a left hand side which only depends on r and a right hand side depending on
θ and ϕ. The left hand side and the right hand side are both equal to a constant
which we call λ. Finally we get three equations for the three variables r, θ and ϕ.
The solution for the ϕ-part leads to

Q(ϕ) = eimϕ (3.22)

The solution for the θ-part is:

P (θ) = Pm
l (x) (3.23)

These are the so-called Legendre polynomials (see appendix).
The solution for the r-part is of the form rl within the sphere and 1

rl+1 outside of
the sphere.
The final solution for the induced part of the screened interaction is:

Wind(r, r′, ω) =
∞∑
l=0

l∑
m=−l

4π
2l + 1

1
rl+1r′l+1γl(ω) · a2l+1 · Y ?

lm(θ′, ϕ′)Ylm(θ, ϕ) (3.24)

(compare the expression for the multipole expansion (equation (2.174)))
a is the radius of the sphere. γl are the associated response functions of the sphere
and are given by

γl(ω) = l(1− ε)
l(ε+ 1) + 1 (3.25)
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3. Electron energy loss probability for a dielectric sphere

(see [7] for details)
The full screened interaction is therefore:

W (r, r′, ω) = 1
|r − r′|

+
∞∑
l=0

l∑
m=−l

4π
2l + 1

a2l+1

rl+1r′l+1γl(ω) · Y ?
lm(θ′, ϕ′)Ylm(θ, ϕ) (3.26)

W (r, r′, ω) can be interpreted as the total energy loss or in other words as the
work done against the electric field which acts on the electron along the whole
trajectory [38].
We can express the energy loss with the energy loss probability P (ω):

W (r, r′, ω) =
∞∫
0

dωωP (ω) (3.27)

P (ω) is given by

P (ω) = 1
πv2

∞∫
−∞

dz′dzIm
{
Wind(r, r′, ω) · e−iω(z−z′)/v

}
(3.28)

We have to insert Wind(r, r′, ω) into this equation and then perform the integral
along the electron trajectory. To perform the integration we need the following
result:

∞∫
−∞

dx
Pm
l

(
z√

b2+z2

)
√
b2 + z2l+1 e

ikz = 2 ·
(
ik

|k|

)l−m |k|l

(l −m)!Km(|k| · b) (3.29)

with spherical coordinates r =
√
b2 + z2 and cos θ = z

r
. k = ω

v
is the wave number.

Details of this non-trivial result can be found in [39].
Putting all this into (3.28) yields the expression for the energy loss probability for
an electron passing by the sphere without penetrating it:

P (ω) = 4a
πv2

∞∑
l=1

l∑
m=0

Im(γl(ω))
(
ωa

v

)2l 2− δm0

(l +m)!(l −m)!K
2
m

(
ωb

v

)
(3.30)

Km stands for the modified Bessel function of order m and δm0 is the Kronecker
delta. A plot of P (ω) against the frequency ω can be seen below.
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3. Electron energy loss probability for a dielectric sphere

Figure 3.2.: Plot of the electron energy loss probability P (ω) on the y-axis against
the energy ω on the x-axis for an aluminium nanosphere. The plot
has been obtained with a Mathematica-routine and for two values of
l in the sum.

The radius of the particle was chosen to be a = 5 nm ad the impact parameter
b = 6 nm. We see two peaks. The first one corresponds to l = 1 in the sum and the
second one to l = 2. In general the poles of the response function give a discrete
set of l-modes [1]:

ωl =
√

l

2l + 1ωp (3.31)

from ω = ωp√
3 for l = 1 (Mie-frequency) till ω = ωp√

2 for l → ∞ [1] (the surface
modes of the energy loss probability for thin films as obtained by Ritchie [22]). For
large radius a (a large enough in comparison with v

ω
) high multipolar terms are

strongly excited which correspond to energy losses near ωp√
2 [1]. For a→∞ P (ω)

converges to the energy loss probability for a plane (see [1] and [22]). Otherwise
the classical dipole excitation for l = 1 is the main excitation. The resolution is
given by a and b [1].
The analytical results for gold are presented in figure 3.3:
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3. Electron energy loss probability for a dielectric sphere

Figure 3.3.: Plot of the electron energy loss probability P (ω) on the y-axis against
the energy ω on the x-axis. The plot has been obtained with a
Mathematica-routine and for two values of l in the sum. The ma-
terial of the nanosphere is gold in this case.

The radius was a = 5 nm and b = 6 nm.

3.3. Electron trajectory penetrating sphere
If the electron goes through the sphere we have the following geometry:

Figure 3.4.: Electron beam penetrating the dielectric nanosphere. The definitions
are the same as in figure 3.1.
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3. Electron energy loss probability for a dielectric sphere

The calculation is performed basically in the same way as for the previous case.
Again we want to solve the Poisson equation

∆Φ(r, ω) = − 4π
ε(ω)ρ(r, ω) (3.32)

with the charge density

ρ(r, ω) = −1
v
e
iωx
v δ(y − b)δ(z − b) (3.33)

and again we define the Green function for this problem to be the screened inter-
action W , obeying the following Poisson equation

∆W (r, r′, ω) = − 4π
ε(ω)δ(r − r′) (3.34)

The relation between Φ and W is again given by

Φ(r, ω) =
∞∫
−∞

d3r′W (r, r′, ω)ρ(r′, ω) (3.35)

Again we are interested in the induced part of W . To calculate the screened
interaction one has to expand W in a multipolar series (see section 2.2.4). This
expansion has to be performed separately in each region of space. For our geometry
(sphere) we have three regions. If both points r and r′ lie inside of the sphere the
first of the three terms holds. If both points lie outside of the sphere the second
term holds. The coefficients of the expansions can be obtained by the appropriate
boundary conditions (see section 2.1.3).

Wind(r, r′, ω) =
∞∑
l=0

l∑
m=−l

4π
2l + 1

rlr′l

a2l+1αl(ω)Y ?
lm(θ′, ϕ′)Ylm(θ, ϕ) (3.36)

r, r′ ≤ a

Wind(r, r′, ω) =
∞∑
l=0

l∑
m=−l

4π
2l + 1

rl<
rl+1
>

βl(ω)Y ?
lm(θ′, ϕ′)Ylm(θ, ϕ) (3.37)

r< ≤ a, r> ≥ a

Wind(r, r′, ω) =
∞∑
l=0

l∑
m=−l

4π
2l + 1

a2l+1

rl+1r′l+1γl(ω)Y ?
lm(θ′, ϕ′)Ylm(θ, ϕ) (3.38)

r, r′ ≥ a

Here r< is the smallest of r and r> the biggest of r. The response functions γl, αl
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3. Electron energy loss probability for a dielectric sphere

and βl are given by

αl(ω) = (l + 1)(ε− 1)
ε(lε+ l + 1) (3.39)

βl(ω) = 2l + 1
lε+ l + 1 (3.40)

γl(ω) = l(1− ε)
lε+ l + 1 (3.41)

where ε(ω) = 1 − ω2
p

(ωiγ) is the dielectric function of Aluminium. For more details
about the derivation of these terms and about the response functions we refer to
[40] and [41].

3.3.1. Electron energy loss probability for an electron
penetrating the sphere

As mentioned above the derivation of the electron energy loss probability for an
electron penetrating the sphere is done in the same way as in the case for an
electron passing by the sphere. More details can be found in [7], [41] and [40].
Here we only give the final result:

P (ω) = 4a
πv2

∑
l=0

∑
m=0

(2− δm0)(l −m)!
(l +m)! {Im{γl(ω)} (Aolm)2 +

+ Im

{
2βl(ω)− 1

ε(ω)

}
AilmA

o
lm + Im {αl(ω)}

(
Ailm

)2
} (3.42)

where the functions Alm are defined in the following way:

Bo
lm(ω) = al

∫ ∞
za

dz
1
rl+1P

m
l

(
z

r

)
glm

[
ωz

v

]
(3.43)

Bi
lm(ω) = 1

al+1

∫ za

0
dzrlPm

l

(
z

r

)
glm

[
ωz

v

]
(3.44)

where za =
√
a2 − b2 and r =

√
z2 + b2. Pm

l (x) are the Legendre polynomials and

glm(z) =

cos(z) if (l +m) even
sin(z) if (l +m) odd

Now we come to the definition of the functions Alm:

Ai,olm =

B
i,o
lm if (l +m) even

i−(l+m)Bi,o
lm if (l +m) odd

53



3. Electron energy loss probability for a dielectric sphere

This equation contains all the bulk terms. These terms are the ones proportional
to Im(−1/ε(ω)).
The energy loss W has two contributions; the contribution from the surface comes
from the induced parts of the potential and has been calculated above (equation
(3.42)). The contribution from the Coulomb part is the energy loss experienced
by a classical particle travelling the distance 2za through an unbounded medium
with the dielectric function ε(ω). It yields the bulk energy loss probability:

P (ω) = 4za
1
πv2 Im

{
− 1
ε(ω)

}
ln 2v2

ωp
(3.45)

For details of the derivation of this term we refer to [7] and [41]. ωp is the bulk
plasmon energy. The peaks of P (ω) in an infinite medium, i.e. from the bulk
loss probability, are given by the poles of Im

{
− 1
ε(ω)

}
. They correspond to an

excitation at the bulk plasmon energy ωp for a free electron without damping.
In the introduction we mentioned the so-called begrenzungs-effect or boundary
effect. In equation (3.42) the term proportional to ε−1 is exactly this contribution.
It is a negative correction to the bulk plasmon excitation probability due to the
presence of the boundary, i.e. the interface ([7], [36]). It reduces the bulk losses
compared to the case of an electron travelling through an unbounded medium.
The first description of it has been performed in [22] for thin films and occurs
for penetrating electron beams. The physical meaning of this effect is that the
excitation of surface modes takes place at the expense of the excitation of bulk
modes [7]. The total energy loss is thus smaller than that of an infinite medium.
To get a bulk plasmon excitation probability which is positive, the negative bulk
correction from the boundary effect has to be balanced by the infinite bulk term
[7].

54



4. Numerical methods
This chapter provides the basics used in the program for the numerical determina-
tion of the energy loss spectra. We are using a boundary element method approach
whereby the surface of the metallic nanoparticle is discretized by small triangular
surface elements. The form of the boundary element method used here is based
on [34] and [42]. We assume homogeneous dielectric surroundings and isotropic
dielectric functions for the materials and particles under consideration, which are
separated by abrupt interfaces [27]. The advantage is that one only has to dis-
cretize the boundaries between the different dielectric media and not the whole
volume [27].
Since the potentials caused by σ and j have a weaker spatial dependence for our
approach we can assume that the surface charges and currents are located at the
centers of each surface element. In this approach we write the potentials as a
sum over all surface elements. In the program the particles are stored as faces ad
vertices. The faces are the areas of the triangles and the vertices are their edge
points.

4.1. Boundary element method
In this thesis we use a boundary element method approach for the numerical deter-
mination of the energy loss spectra. For details about the topic of this section we
refer to [6], [27], [34] and [42]. In our approach we aim at the determination of the
surface charge density σ such that the boundary conditions of the Maxwell equa-
tions are fulfilled. Thus the BEM (boundary element method) approach consists
of solving the Maxwell equations by calculating the surface charge densities σ and
surface currents j on the boundary of the particle for a given external excitation.
For spherical particles we can compare the results with the ones obtained by Mie
theory.
The BEM approach is appropriate for dielectric environments consisting of bodies
which can be described by homogeneous and isotropic dielectric functions. The
dielectric bodies have to be separated by sharp boundaries. The volume of the
bodies (particles) is denoted by V and their boundary by ∂V . The outer surface
normal n defines the interior and exterior of the particle. The direction in which it
points is the outside direction. The dielectric functions are denoted by ε1 (outside)
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4. Numerical methods

and ε2 (inside).
We are using the quasistatic approximation. Quasistatic means that we are using
a frequency dependent dielectric function ε(ω) and not the static limit ε. The
arguments justifying the usage of the quasistatic limit and thus neglecting the de-
pendence on momentum have already been introduced in chapter 2. The electrical
field is expressed by the gradient of a scalar potential Φ as in classical electrostatics
(see section 2.2).
The main idea of the BEM approach is that one can easily write down the solutions
of the Poisson equation (or Laplace equation without any external sources) as an
ad-hoc solution. For restricted regions these solutions still fulfill the Laplace or
Poisson equation but with the wrong boundary conditions. To correct this we arti-
ficially add a surface charge distribution σ on the boundary such that the boundary
conditions are fulfilled. The ad-hoc solutions for the case of an unbounded medium
and the contributions from the surface charges then fulfill the equations with the
right boundary conditions. Thus they are the proper and unique solutions of our
problem.
For the solution of the Poisson equation we introduce the Green function (see
2.2.3):

∆G(r − r′) = −4πδ(r − r′) (4.1)

where G is defined as
G = 1

|r − r′|
(4.2)

This solves the Poisson equation in an unbounded and homogeneous region for a
pointlike source. For the external excitation Φext we can write the scalar potential
in the following form (ad hoc):

Φ(r) =
∫
∂V
G(r − s′)σ(s′)dA′ + Φext(r) (4.3)

σ is the surface charge density. The solution is constructed in such a way that the
Laplace-equation is automatically fulfilled in the media and σ has to be determined
such that the Maxwell equations are fulfilled. The continuity of the potential at
the boundary implies continuity of the tangential electrical field E. This is fulfilled
if the surface charge density is the same in- and outside of the boundaries. The
perpendicular component of D is also continuous at the boundaries. If we want
to use this condition we have to evaluate the following:

lim
r→s

n ·∇Φ(r) ≡ lim
r→s

∂Φ(r)
∂n

= lim
r→s

∫
∂V

∂G(r − s′)
∂n

σ(s′)dA′ + ∂Φext(r)
∂n

(4.4)

We have to be cautious with the limes in the integral. Assuming a coordinate
system with n in the z-direction and σ being constant in a small circle with radius
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R we get

lim
z→±0

n
∫ r − s′

|r − s′|3
dA′ −→ lim

z→±0
2πz

R∫
0

ρdρ

(ρ2 + z2)
3
2

= 2π (4.5)

We have a +-sign if we come from the outside. We get for the normal derivative
of Φ:

∂Φ(s)
∂n

= ±2πσ(s) +
∫
∂V
F (s− s′)σ(s′)dA′ + ∂Φext(s)

∂n
(4.6)

where
F (s− s′) = ∂G(s− s′)

∂n
(4.7)

is the normal derivative of the Green function. ∂
∂n

denotes the derivative along the
outer surface normal.
Now we convert the boundary integrals to boundary elements. In order to do that
we discretize the surface of the metallic nanoparticle by small surface elements and
we assume that the surface charges are at the centers of the elements. We get(

∂Φ
∂n

)
i

= ±2πσi +
∑
i

Fijσj +
(
∂Φext

∂n

)
i

(4.8)

Fij =
(
∂G
∂n

)
ij
connects the surface elements i and j.

In a compact matrix notation equation (4.8) reads as follows:

∂Φ
∂n

= ±2πσ + Fσ + ∂Φext

∂n
(4.9)

The continuity of the dielectric displacements perpendicular component implies

ε2

(
2πσ + Fσ + ∂Φext

∂n

)
= ε1

(
−2πσ + Fσ + ∂Φext

∂n

)
(4.10)

From this we get for σ:
(Λ + F )σ = −∂Φext

∂n
(4.11)

where
Λ = 2πε2 + ε1

ε2 − ε1
(4.12)

From this we can determine σ by matrix inversion for a given external excitation.
We can make an eigenmode expansion of F :

FX = Xλ, X̃F = λX̃, XX̃ = X̃X = 1 (4.13)
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whereX and X̃ are the matrices of the left and right eigenvectors. λ is the diagonal
matrix with the corresponding eigenvectors. This eigenmode expansion is useful
if we only need a certain range of eigenmodes for the description of the problem,
e.g. for the excitation with plane waves.
We assume that we have a particle with ε2 and ε1 such that the matrix Λ becomes
scalar:

X̃(Λ + F )σ = (Λ + λ)X̃σ = −X̃ ∂Φext

∂n
(4.14)

From this we get for σ:

σ = −X(Λ + λ)−1X̃
∂Φext

∂n
(4.15)

The eigenmodes (eigenenergies) correspond to particle plasmons. The eigenmodes
of a sphere are the spherical harmonics.

4.2. External excitation
In our quasistatic approximation the surface derivative of the external potential
describes the excitation. The excitation is the same inside and outside of the
boundary. In chapter 2 we said that we use the quasistatic limit if the particle is
significantly smaller than the wavelength of light λ (optical approximation). For
a metallic sphere radii of a smaller than 50 nm are small enough to use this ap-
proximation.

4.2.1. Electron beam passing by the nanoparticle
For an electron beam passing by the nanoparticle without penetrating the sphere
and moving along the z-direction we have the following external charge density:

ρext(r, ω) = −δ(r − b) · e
i(z−z0)

v

v
(4.16)

b is the impact parameter, defined as the distance from the center of the nanosphere
to the electron beam.
The external potential calculated along the trajectory of the electron in z-direction
is:

Φext = −
∫ ρext(r, ω)
ε|r − r′|

dz = −e
− iωz0

v

ε · v

∫ ∞
−∞

e
iωz
v

√
b2 + z2

dz = − 2
ε · v

K0

(
ωb

v

)
e−iz0

ω
v

(4.17)
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K0 is the modified Bessel-function. Here we have used the relation

Kν(z) =
√
πzν

2νΓ
(
ν + 1

2

) ∫ ∞
1

e−zt
(
t2 − 1

)ν− 1
2 dt (4.18)

where Γ
(
ν + 1

2

)
=
√
π for ν = 0 ([43], [44]).

Now we want to calculate the quantity which is directly needed in the program.
It is the gradient of Φext:

−∇Φext = −
(
r̂
∂

∂r
+ ẑ

∂

∂z

)
Φext = − 2

εv

{
K1

(
ωr

v

)
r̂ + iK0

(
ωr

v

)
ẑ
}
ω

v
e−

ωz
v

(4.19)
We insert this quantity into equation (4.15). The surface charge density enters
into the equation which we need for the calculation of the energy loss probability.
This equation is:

Φind(r) =
∫
∂Ω
G(r − s)σ(s)da =

∑
i

G(r − si)σi · Ai =
∑
i

1
|r − si|

σiAi (4.20)

where the sum over i runs over all triangles of the discretized surface of the
nanosphere. This is the potential induced by the external excitation.

Figure 4.1.: Plot of a gold nanoparticle. The colour of the sphere shows the normal
derivative of the external potential which has its highest value for red
colour and the lowest value for blue colour. The line represents the
electron beam passing by the sphere.
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Figure 4.1 shows a plot of our spherical metallic nanoparticle. The blue line
represents the electron beam. The regions of highest external potential are the
ones close to the electron beam, i.e. the interaction is strongest in this region. To
be correct not the potential is plotted in colour onto the surface of the particle.
It is the normal derivative of the external potential induced on the surface of the
sphere but we will refer to it as the potential keeping in mind that it actually is
its normal derivative.

4.2.2. Electron beam penetrating the nanoparticle
For the case of penetrating electrons the only difference in the calculation lies
in the external potential. Now we have to calculate it numerically by using the
following formula:

Φext(r, ω) =
∫
dr′

ρext(r′, ω)
ε(r′, ω) · |r − r′|

(4.21)

Φext(r, ω) is analogous to Φ∞ of section 2.3 (see equation (2.181)). Again we use

ρext(r′, ω) = −δ(x′ − x0)δ(y′ − y0)e
iωz′
v

v
(4.22)

The potential becomes:

Φext = −
∫
dz′

1
v

e
iωz′
v

ε ·
√

(x− x0)2 + (y − y0)2 + (z − z′)2
(4.23)

Again we form the gradient of Φ:

∇Φext =
(
∂

∂x
x̂+ ∂

∂y
ŷ + ∂

∂z
ẑ

)
Φext (4.24)

The three terms resulting from the gradient are:
(
∂

∂x

)
Φext =

∫
dz′

1
2vε

e
iωz′
v

[(x− x0)2 + (y − y0)2 + (z − z′)2]
3
2

(2x− 2x0) (4.25)

(
∂

∂y

)
Φext =

∫
dz′

1
2vε

e
iωz′
v

[(x− x0)2 + (y − y0)2 + (z − z′)2]
3
2

(2y − 2y0) (4.26)

(
∂

∂z

)
Φext =

∫
dz′

1
2vε

e
iωz′
v

[(x− x0)2 + (y − y0)2 + (z − z′)2]
3
2

(2z − 2z′) (4.27)
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ε is the dielectric function of the particle.

Figure 4.2.: The line through the nanosphere represents again the electron beam.
We see that the potential has its highest values close to the intrusion
points of the electron beam.

Figure 4.2 shows the nanoparticle with the electron beam going through it.
The enhancement of the potential in the vicinity of the points of intrusion of the
electron beam is clearly visible. One sees that the two red spots are not exactly
symmetric (i.e. not exactly of the same size).

4.3. Energy loss
The quantity which lies at the heart of this diploma thesis is the so-called electron
energy loss probability of the electron passing by or penetrating the sphere. It is:

P (ω) = 1
v

∫
Im {ρ?ext · Φind} dz (4.28)

It will be derived in what follows.
The electron beam interacts with the particle in the following way: the external

potential of the electron beam induces a surface charge density on the sphere and
thus an induced potential Φind arises. This induced potential acts back on the
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electron or electrons, exerting an electric field which is acting on the electrons
along the whole trajectory. The electrons experience an energy loss which can be
calculated as the work done against the already mentioned electric field [38]:

W =
∫ ∞
−∞

∂Φind

∂z
dz =

∫ ∞
−∞

dΦinddz −
∫ ∞
−∞

∂Φind

∂t
dt (4.29)

If the induced potential is the same at both ends of the electrons trajectory (this
is the case when we avoid the elastic contributions to W ; they vanish when con-
sidering the whole trajectory [7]) this formula becomes

W = −1
v

∫ ∞
−∞

∂Φind

∂z
dz (4.30)

All the derivatives of Φind are evaluated at the trajectory. A more detailed
discussion about the equality of the potentials at both ends of the trajectory
(Φ(z = −∞) = Φ(z =∞)) can be found in [7].
The expression for the work W can be expressed via the loss probability (see
equation (4.28) for instance):

W =
∫ ∞

0
dωP (ω) (4.31)

Since W (r, r′, ω) = W (r′, r, ω) we get for the loss probability:

P (ω) = 1
πv2

∫ ∞
−∞

dz′
∫ ∞
−∞

dzIm {Wind(r, r′, ω)} e−iω(z−z′)/v (4.32)

One can express this formula in terms of the charge density ρ (see equation (4.16)).
This yields:

P (ω) = 1
π

∫ ∞
−∞

dr′
∫ ∞
−∞

drIm {ρ∗(r, ω)Wind(r, r′, ω)} ρ(r′, ω) (4.33)

For an electron moving along the z-direction we only integrate over z and can
bring this equation to the form which was encountered in equation (4.28).

62



5. Results
In this chapter we start with a comparison between Mie-theory and the BEM
approach. We have divided the chapter into sections with plots of the energy loss
against the energy and on the impact parameter and considered aluminium, silver
and gold nanospheres for non-penetrating and penetrating trajectories.

5.1. Comparison between Mie-theory and boundary
element method

In this section we compare the results from Mie-theory with the ones from the
BEM approach. We start with plots of the energy loss against the energy and
then give plots against the impact parameter. The energy axes are all in eV.

5.1.1. Plots against the energy
Non-penetrating trajectories

At first we consider the case of trajectories passing by the nanosphere (see figures
3.1 and 4.1). We show plots for aluminium, silver and gold for different radii and
impact parameters.

Aluminium

In the following plots the red line corresponds to the Mie-theory-results and the
blue line to the results from the BEM approach.
It is convenient here to mention that we have only considered two l-values in the
sums of the analytical formulae for the energy loss probability in nearly all of our
plots. We will explicitly mention if this is not the case. More accurate results
could be obtained by taking into account more l-values. As was mentioned in the
literature ([35], [39], [41], [45]) one has to consider many l-values for more accurate
results. In the plots for aluminium we usually have taken three l-values in the sum.
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5. Results

Figure 5.1.: Plot of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 5 nm and an impact parameter
of b = 6 nm.

For a = 10 nm and b = 11 nm we see a good qualitative agreement between
the dipolar peak of the Mie and the BEM results. Here we already see a quanti-
tative difference of the spectra. This difference becomes larger for larger spheres.
This behaviour may be caused by the fact that retardation effects become more
important for larger spheres. The reason for the quantitative difference has to be
attributed to a mistake in the programs.
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Figure 5.2.: Plot of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 10 nm and an impact parameter
of b = 11 nm.

In all of the figures for aluminium we see two main excitation peaks, one near 9
eV and another peak near 10 eV.
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Figure 5.3.: Plot of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 15 nm and an impact parameter
of b = 16 nm.

Figure 5.3 shows a plot with 20 l-values in the sum.
The spectra can be interpreted as particle plasmon excitations. In chapter 3 we
have determined the energy loss probability from the induced potential by making
a multipolar expansion of the Green function W . For the plots within Mie-theory
(red lines) we have taken into account two values of l in the sum. The dominant
peaks in the plots correspond to the l = 1 contribution and the smaller peaks near
10 eV correspond to l = 2 (or higher multipolar terms, l > 2). There we also
mentioned that the dipole excitation corresponds to the frequency ω = ωp√

3 . For
aluminium ωp = 15 and 15/

√
3 ≈ 8.6603. The dipole peaks lie near to that value.

The agreement between Mie theory and BEM is best for a = 15 nm (figure 5.3).
For the sphere with a = 30 we see that the higher multipolar terms (corresponding
to the peak near 10 eV) are stronger excited than for the other radii considered
here.
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(a) (b)

Figure 5.4.: Plots of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 30 nm and an impact parameter
of b = 31 nm for 20 l-values (a) and 3 l-values (b).

In figure 5.4 we have again considered 20 l-values. To illustrate the point of the
better agreement for more l-values we show a plot with only 3 values in this figure.
We can see that the heights of the peaks do not differ that much for more (20)
l-values.
For all of the aluminium plots we have used a Drude dielectric function.
The following plots are for two different impact parameters and a sphere of radius
10 nm and again 20 values of l.
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(a) (b)

Figure 5.5.: Plots of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 10 nm and an impact parameter
of b = 16 nm (a) and a = 10 nm and b = 21 nm (b).

We see that for higher values of the impact parameter the multipolar terms are
not as strongly excited as for small b. Since the electron beam is farther away from
the particle in this case this behaviour is expected.

Silver

From now on all of the plots only take into account 2 values of l in the analytical
expressions for P (ω).
All three plots for a silver nanosphere clearly show two excitation peaks which can
be interpreted analogously as for aluminium.
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Figure 5.6.: Plot of the energy loss probability against the energy in eV for a silver
nanosphere of radius a = 5 nm and an impact parameter of b = 6 nm.

The first peak lies around 3.95 eV and the second one around 4.15 eV.

Figure 5.7.: Plot of the energy loss probability against the energy in eV for a silver
nanosphere of radius a = 10 nm and an impact parameter of b = 15
nm.
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Figure 5.8.: Plot of the energy loss probability against the energy in eV for a silver
nanosphere of radius a = 15 nm and an impact parameter of b = 20
nm.

Figure 5.9.: Plot of the energy loss probability against the energy in eV for a silver
nanosphere of radius a = 30 nm and an impact parameter of b = 35
nm.
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Again we show plots for the same radius but different impact parameters (a = 10
nm in this case). We see that the quantitative agreement for a larger impact
parameter is better.

(a) (b)

Figure 5.10.: Plots of the energy loss probability against the energy in eV for a
silver nanosphere of radius a = 10 nm and an impact parameter of
b = 20 nm (a) and a = 10 nm and b = 25 nm (b).

For the largest of the considered impact parameters the quantitative agreement
is best.

Gold

For gold, using a Drude dielectric function, we see that for larger spheres the
agreement between BEM and Mie-theory is not as good as for the sphere with
radius a = 5 nm. The main feature which all the plots have in common are
again the excitation peaks around a certain resonance frequency for which particle
plasmons are excited.
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Figure 5.11.: Plot of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 5 nm and an impact parameter
of b = 6 nm.

We see that for gold the excitation peaks lie scarcely above 2.6 eV. For a = 5 nm
we see a good agreement between the results from Mie theory and the numerical
results.
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Figure 5.12.: Plot of the energy loss probability against the energy in eV for an
aluminium nanosphere of radius a = 15 nm and an impact parameter
of b = 20 nm.

Figure 5.13.: Plot of the energy loss probability against the energy in eV for a gold
nanosphere of radius a = 30 nm and an impact parameter of b = 40
nm.
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Again a better agreement could be obtained by considering much more than 2
l-values in the sum.
At this stage it is crucial to mention that Johnson and Christy [46] have pointed
out that the free Drude-model fails in the visible and ultraviolet region. Absorp-
tion in these regions comes from d-band transitions to the sp-conduction bands.
The energies of the incident electrons have to lie lower than the threshold for the
occurrence of interband transitions for the Drude expression of the dielectric func-
tion to be valid. The free-electron behaviour is dominant in the infrared region
because there n is small and k is large [46] (ε = n+ ik). As already mentioned in
2 the Drude model does not work as well for gold as for aluminium and silver.

Penetrating trajectories

In this section we provide loss-probability-vs.-energy-plots for penetrating trajec-
tories. One of the main aims of this work was to obtain an EELS-spectrum for
the case of an electron beam penetrating the nanoparticle.

Aluminium

The impact parameter in all of the cases is b = 3 nm and the radius is a = 5
nm.

Figure 5.14.: Plot of the energy loss probability against the impact parameter for
an aluminium nanosphere of radius a = 5 nm and an impact param-
eter of b = 3 nm.
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Silver

Figure 5.15.: Plot of the energy loss probability against the impact parameter for
a silver nanosphere of radius a = 5 nm and an impact parameter of
b = 3 nm.

For silver as well as for aluminium we see the main excitation peaks at the same
energy values as for the case of non-penetrating trajectories. For both materials
the Drude model is a good approximation.

Gold

In figure 5.16 we see a high peak near 2.9 eV. We have already mentioned the
problem with d-band transitions when using the Drude dielectric function for gold.
This peak can probably be caused by these transitions.
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Figure 5.16.: Plot of the energy loss probability against the impact parameter for
a gold nanosphere of radius a = 5 nm and an impact parameter of
b = 3 nm.

5.1.2. Plots against the impact parameter
This section provides the most important results of this work.
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Aluminium

Figure 5.17.: Plot of the energy loss probability against the impact parameter for
an aluminium nanosphere of radius a = 5 nm.

Figure 5.17 is one of the main results of this diploma thesis. It shows the energy
loss spectrum of the electron beam penetrating an aluminium nanosphere. In this
figure the impact parameter b is plotted against the energy loss probability P (ω).
For values of b < a we are within the sphere, namely the electron beam is going
through it. For values of b > a the electron beam passes the sphere without
penetrating it. For b = a we have grazing incidence, i.e. the electron beam does
not penetrate the sphere but exactly touches its surface.
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Silver

Figure 5.18.: Plot of the energy loss probability against the impact parameter for
a silver nanosphere of radius a = 5 nm.
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Gold

Figure 5.19.: Plot of the energy loss probability against the impact parameter for
a gold nanosphere of radius a = 5 nm.

The agreement between the analytical results and the numerical results is best for
gold. What one sees in all the plots is that the curve from the numerical results
is not smooth. The reason for this is probably as follows. The surface of the
nanosphere is discretized by small triangles in the BEM approach which we are
using here. In our program we took the two triangles which are penetrated by the
electron beam and their nearest neighbours and evaluated the mean value of the
normal derivative of the external potential on them. In general one should have to
integrate over these triangles to obtain a more accurate result. In conclusion we
can say that the qualitative agreement between Mie theory and BEM approach is
good but there is still work to be done to get a better quantitative agreement.

5.2. Drude versus full dielectric function
In chapter 2 we have derived the dielectric function from classical Maxwell´s theory
and in the second subsubsection of 2.1.1 we have derived it for the classical Drude
model for metals. There we have also mentioned a problem with this model for
the case of gold caused by the fact that the density of states in the d-band is
pronounced. The relatively high value ε0 = 10 is also caused by this fact. The
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plots that follow now show the real and imaginary parts of the dielectric function
for two different media.
Figures 5.20 and 5.21 show the dielectric functions for aluminium in the Drude
form. The real part of the dielectric function is depicted in 5.20 and the imaginary
part in 5.21. The dielectric function is:

ε(ω) = ε∞ −
ω2
p

ω · (ω + iγ) (5.1)

where ε∞ is 1 for aluminium. γ describes the dissipative effects of the system and
is an effective damping.

Figure 5.20.: Real part of the dielectric function for aluminium in the Drude-
model. The energy axes is given in eV.
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Figure 5.21.: Imaginary part of the dielectric function for aluminium in the Drude-
model.

Figures 5.22 (imaginary part) and 5.24 (real part) show the same but this time
for gold. The experimental values for gold can be found in [46]. In chapter 4 we
present numerical results using a Drude dielectric function and a dielectric function
interpolated from the experimental values of [46]. In [46] the analysis was done in
terms of the complex index of refraction

ñ = n+ ik (5.2)

where n and k are the optical constants. The dielectric function is

ε = ε1 + iε2 = ñ2 (5.3)

The experimental data for gold and silver have been taken from [46].
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Figure 5.22.: Imaginary part of the dielectric function for gold in the Drude-model.

Figure 5.23.: Imaginary part of the experimental dielectric function for gold.

A comparison with the data from [46] shows that for the imaginary part of the
dielectric function of gold the agreement with the experimental data is good for
energies lower than 2.5 eV [9]. For the real part of the dielectric function the Drude
form of the dielectric function is a very good approximation.
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Figure 5.24.: Real part of the dielectric function for gold in the Drude-model.

Figure 5.25.: Real part of the experimental dielectric function for gold.

For silver the real parts of the dielectric functions agree very well.
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Figure 5.26.: Real part of the Drude dielectric function for silver.

Figure 5.27.: Real part of the experimental dielectric function for silver.
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Figure 5.28.: Imaginary part of the Drude dielectric function for silver.

Figure 5.29.: Imaginary part of the experimental dielectric function for silver.
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6. Summary and Outlook
In this diploma thesis we have been concerned with electron energy loss spectra
(EELS) of metallic nanoparticles. We have discussed them for two cases:

• Electron beam passing by the metallic nanoparticle

• Electron beam penetrating the metallic nanoparticle

The main aim of the thesis was to obtain spectra for the second case. For this we
used two methods:

1. Analytical method: We used Mie-theory to obtain the electron energy loss
probability

2. Numerical method: We used the Boundary element method (BEM) to obtain
the loss probability

In the comparison of the data we saw a good agreement for gold nanospheres using
the classical Drude model for the description of the response of the system, i.e. its
dielectric function. Especially the plots of the electron energy loss probability P (ω)
against the impact parameter b were most important. We saw that the curve was
not as smooth for the numerical results which can be explained by the "technique"
we have used to handle the potential values at the triangles which are penetrated
by the electron beam. We just took the potential values for these two triangles and
its next neighbours and formed the average value of them. An improvement of the
results could be obtained by considering more l-values. Furthermore we neglected
the momentum dependence of ε throughout and used the Drude dielectric function
in order to obtain all the results. The next important steps would be to consider
the results for a "full" experimental dielectric function and the case of momentum
dependence ε(k, ω).
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A.1. Laplace equation in spherical coordinates
The following calculations are based mainly on [9] and [26]. Certain problems
in physics have special types of symmetry. Many of these problems contain the
Laplace operator ∆. One encounters it for instance in solving the Laplace or the
Poisson equation. Depending on the type of symmetry one will use an adequate
set of coordinates to solve them. For spherical symmetry one will use spherical
coordinates denoted by (r, θ, φ). The Laplace equation in spherical coordinates
with the Laplace operator acting on a scalar potential Φ is:

∆Φ = 1
r

∂2

∂r2 (rΦ) + 1
r2 sin θ

∂

∂θ

(
sin θ∂Φ

∂θ

)
+ 1
r2 sin2 θ

∂2Φ
∂ϕ2 = 0 (A.1)

We make the following ansatz:

Φ = R(r)
r

P (θ)Q(ϕ) (A.2)

The aim of this ansatz is to separate the Laplace equation into three parts, namely
three differential equations for the three variables r, θ and ϕ. Equation A.1 be-
comes:

PQ
d2R

dr2 + RQ

r2 sin θ
d

dθ

(
sin θdP

dθ

)
+ RP

r2 sin2 θ

d2Q

dϕ2 = 0 (A.3)

We multiply this equation by r2 sin2 θ
RPQ

and get

r2 sin2 θ

[
1
R

d2R

dr2 + 1
Pr2 sin θ

d

dθ

(
sin θdP

dθ

)]
+ 1
Q

d2Q

dϕ2 = 0 (A.4)

Only the last term on the left hand side depends on ϕ and so it has to be equal
to a constant, denoted by (−m2). So the differential equation for ϕ is:

1
Q

d2Q

dϕ2 = −m2 (A.5)

This is a wave equation and its solution is

Q = e±imϕ (A.6)
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m has to be an integer because otherwise Q is not unique.
The equation for the θ-part, namely for P (θ) is:

1
sin θ

d

dθ

(
sin θdP

dθ

)
+
[
l(l + 1)− m2

sin2 θ

]
P = 0 (A.7)

This is the differential equation for the spherical functions, namely it has the form
of the associated Legendre differential equation. Its solution has the form of the
associated Legendre polynomials Pm

l (cos θ). l(l + 1) is another real constant.
For R(r) we get:

d2R

dr2 −
l(l + 1)
r2 U = 0 (A.8)

This is the radial equation. The solution is:

U = Arl+1 +Br−l (A.9)

A.2. Associated Legendre functions and spherical
harmonics

We start from equation (A.7). In this equation we introduce the parameter x =
cos θ. Then it takes the form:

d

dx

[
(1− x2)dP

dx

]
+
[
l(l + 1)− m2

1− x2

]
(A.10)

This is the associated Legendre differential equation. For m2 = 0 we get the
ordinary Legendre differential equation with the Legendre polynomials of the order
l, Pl(x), as solutions. For the 5 lowest orders they are:

P0(x) = 1 (A.11)
P1(x) = x (A.12)

P2(x) = 1
2(3x2 − 1) (A.13)

P3(x) = 1
2(5x3 − 3x) (A.14)

P2(x) = 1
8(35x4 − 30x2 + 3) (A.15)

They fulfill an orthogonality relation:
1∫
−1

Pl′(x)Pl(x)dx = 2
2l + 1δl

′l (A.16)
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We are searching for the solutions of the associated Legendre differential equation,
i.e. solutions for arbitrary l and m. We get the so-called associated Legendre func-
tions or polynomials, respectively, as solutions. They also form a set of orthogonal
functions:

1∫
−1

Pm
l′ (x)Pm

l (x)dx = 2
2l + 1

(l +m)!
(l −m)!δl

′l (A.17)

In the previous section we split the Laplacian equation into a product of functions,
each depending only on one of the variables r, θ, and ϕ. The solution for the
angular part, i.e. for the part depending on θ and ϕ is:

Q(ϕ)P (θ) = e±imϕPm
l (cos θ) (A.18)

The Qs form a complete set of orthogonal functions on the interval 0 ≤ ϕ ≤ 2π
with respect to m and the Pm

l form such a set for each value of m with respect to
l on the interval −1 ≤ cos θ ≤ 1. Therefore the product of these functions above
also forms a complete set of orthogonal functions with respect to l and m on the
surface of the unit sphere. From (A.17) we can derive the convenient normalisation
factor and we get the so-called spherical harmonics Ylm(θ, ϕ):

Ylm(θ, ϕ) =

√√√√2l + 1
4π

(l −m)!
(l +m)!P

m
l (cos θ)eimϕ (A.19)

A.2.1. Orthogonality relation, completeness and symmetry of
the spherical harmonics

A symmetry relation of the spherical harmonics concerning complex conjugation
is

Yl−m = (−1)mY ?
lm(θ, ϕ) (A.20)

Their orthogonality relation reads as follows:
2π∫
0

dϕ

π∫
0

sin θdθY ?
l′m′(θ, ϕ)Ylm(θ, ϕ) = δl′lδm′m (A.21)

And the completeness relation is
∞∑
l=0

l∑
m=−l

Y ?
lm(θ′, ϕ′)Ylm(θ, ϕ) = δ(ϕ− ϕ′)δ(cos θ − cos θ′) (A.22)

For the special case of m = 0 we get

Yl0(θ, ϕ) =
√

2l + 1
4π Pl(cos θ) (A.23)
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For the first three values of l and m ≥ 0 the spherical harmonics are:

l = 0 Y00 = 1
4π

Y11 = −
√

3
8π sin θeiϕ

l = 1
Y10 =

√
3

4π cos θ
Y22 = 1

4

√
15
2π sin2 θe2iϕ

l = 2 Y21 = −
√

15
8π sin θ cos θeiϕ

Y20 =
√

5
4π (3

2 cos2 θ − 1
2)

Y33 = −1
4

√
35
4π sin3 θe3iϕ

Y32 = 1
4

√
105
2π sin2 θ cos θe2iϕ

l = 3
Y31 = −

√
21
4π sin θ(5 cos2 θ − 1)eiϕ

Y11 =
√

7
4π (5

2 cos3 θ − 3
2 cos θ)

A.2.2. Expansion of functions in spherical harmonics
An arbitrary function can be expanded in a series of spherical harmonics:

f(θ, ϕ) =
∞∑
l=0

l∑
m=−l

AlmYlm(θ, ϕ) (A.24)

The expansion coefficients Alm are given by

Alm =
∫
dΩY ?

lm(θ, ϕ)f(θ, ϕ) (A.25)

The general solution of a boundary value problem in spherical coordinates can be
expanded in spherical harmonics and powers of r:

Φ(r, θ, ϕ) =
∞∑
l=0

l∑
m=−l

[
Almr

l +Blmr
−(l+1)

]
Ylm(θ, ϕ) (A.26)

The coefficients are determined by the boundary conditions.

A.3. The law of Gauss
This section is mainly based on [26].
To derive the law of Gauss we define the electrical flow first:

Ψ =
∫
dA ·E (A.27)
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where dA = dA · n and n is the normal to the surface A pointing outwards and
A is a closed surface surrounding a volume V . The law of Gauss describes the
relation between the electric flow through a surface and the charges contained in
the volume which has this surface A as its boundary. One considers a surface A
which surrounds the origin of the coordinate system.
The following relation holds:

cosϑdA = r2dΩ (A.28)

Figure A.1.: Plot of the surface S enclosing the volume V . n is the normal vector
to the surface A. The normal component of the electrical field is
integrated over the closed surface S. The space angle dΩ over the
charge q yields 4π if the charge lies within the surface and 0 otherwise.
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Figure A.2.: Graphical illustration of the formula cosϑdA = r2dΩ.

The electric flow through the surface element dA is E · ndA and with

E = q
r

|r|3
(A.29)

|E| = q| r

|r|3
| (A.30)

E = q
1
r2 (A.31)

where r = |r| is the absolute value of r, the flow becomes:

E · ndA = |E||n| cos θdA = (A.32)

= q
1
r2 cos θdA = qdΩ (A.33)

Furthermore we have
∫
S dΩ = 4π or 4πr2 but r = 1. 4πr2 is the surface of a sphere.

This means that our volume is a sphere. Using this result we get for the electric
flow: ∮

S
E · ndA =

∮
S

EdA = 4π · q (A.34)

The law of Gauss is in words: The electric flow going through a closed surface is
4π times the charge contained in the surrounded volume. If the charge lies outside
of the sphere we have no contribution to the electric flow. So we have the following
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form of Gauss law for a single charge in the volume:∮
S
dA ·E = 4πq if q lies within A (A.35)∮

S
dA ·E = 0 otherwise (A.36)

We can generalize this equation for a continuous charge distribution ρ(r):∮
dA ·E = 4π

∫
V
drρ(r) (A.37)

For several point charges we get:∮
dA ·E = 4π

∑
i

qi (A.38)

Now we use the integral relation of Gauss which we know from vector analysis:∮
∂V
dA ·G =

∫
V
dr∇ ·G (A.39)

where G is an arbitrary vector field.
We use this equation for A.37 and get:∮

dA ·E =
∫
V
dr∇ ·E (A.40)

This is the differential form of Gauss law. Since V is arbitrary we get the first
Maxwell equation:

∇ ·E = 4πρ(r) (A.41)
Since E = −∇Φ we immediately get the Poisson equation

∆Φ(r) = −4πρ(r) (A.42)

which becomes the Laplace equation if ρ = 0.

A.4. Maxwell equations
Coulomb´s law ∇ ·D = 4πρ
Ampere´s law ∇×H = 4πj
Faraday´s law of induction ∇×E + ∂B

∂t
= 0

There exist no free magnetic charges ∇ ·B = 0

These are the macroscopic Maxwell equations (i.e. the Maxwell equations in matter
for the presence of external sources j and ρ) in atomic units. The microscopic
Maxwell equations (i.e. the Maxwell equations in vacuum) are just these equations
with j = 0 and ρ = 0.
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