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Kurzfassung / Abstract

Abbildung von Exzitonen in Kohlenstoffnanoröhren mit

plasmonischen Nanoteilchen

In dieser Arbeit untersuchen wir die Abbildung von Exzitonen in Kohlen-

stoffnanoröhren mit plasmonischen Nanoteilchen. Zur Beschreibung der Par-

tikelplasmonen wird die Randelementmethode verwendet. Die Interband-

Polarisation der Kohlenstoffnanoröhre wird mit dem Formalismus der zwei-

ten Quantisierung berechnet. Bei der Berechnung des Dipolmatrixelements

in paralleler und normaler Richtung wird die Tight-Binding-Methode ver-

wendet. Die Wechselwirkung wird für unterschiedliche Positionen des metal-

lischen Nanoteilchens bezüglich der Nanoröhre untersucht.

Imaging excitons in carbon nanotubes with plasmonic

nanoparticles

In this thesis we study the imaging of excitons in carbon nanotubes with

plasmonic nanoparticles. For the description of the particle plasmons the

boundary element approach is used. The interband polarization of the car-

bon nanotube is found with the formalism of second quantization. For the

calculation of the parallel and perpendicular dipole matrix element a tight

binding model is used. We study the interaction for different positions of the

metallic nanoparticle relative to the nanotube.
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Chapter 1

Introduction

Nano-optics studies optical phenomena on the nanometer scale which is near

or beyond the diffraction limit of light [NH06]. An important constituent of

nano-optics is plasmonics, which is based on interaction processes between

electromagnetic radiation and conduction electrons at metallic interfaces or

in small metallic nanostructures. The local excitations on metallic nanopar-

ticles are called particle plasmons or local surface plasmon resonances. Their

properties depend on the interparticle coupling [Trü07], [HT08a], [HT08b],

[HK05] and on the dielectric constant of the enviroment [Fis88], and they

can be used as a sensing element [Sqa02] [Kal01] [Boy02]. Interesting appli-

cations are also given by studing the coupling of plasmons to excitons [Tor09]

[ZG06]. Semiconducting single-walled carbon nanotubes are promising tools

for nanoelectronics. One way of imaging excitons in single-walled carbon

nanotubes [Har05] is with plasmonic nanoparticles.
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Chapter 2

Plasmonic nanoparticles

Figure 2.1: This picture shows the Lycurgus cup at the British Museum in
London. When illuminated from outside it appears green. However, when
illuminated from within, it glows red. The glass contains metal nanoparticles,
gold and silver, which give it these unusual optical properties. source: nanowerk.com

2.1 Metallic nanoparticles

Nanoparticles have a size of about 10 to 100 nanometers in each spatial

direction. Nanoparticles exhibit size-related properties that differ from those
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CHAPTER 2. PLASMONIC NANOPARTICLES

of bulk materials. One example is the existence of surface plasmons confined

to metallic nanoparticles. One possible method to create them is the use of

electron beam lithography. We refer to [Aus06] .

2.1.1 Dielectric function

A dielectric function describes how an electric field affects a polarizable

medium. Over a wide range the optical properties of metals can be explained

by the plasma model. It can also be extendend to conducting materials. The

following definitions and calculations are based on [NH06] and [Mai07].

Plasma model

In the plasma model, a gas of free electrons moves against a fixed background

of positive ions. The equation of motion for an electron under the influence

of an external electromagnetic field is

m~̈x+mγ~̇x = −e ~E. (2.1)

Here γ = 1/τ is the characteristic collision frequency and τ is the relaxation

time of the free electron gas. By making an ansatz of a harmonic driving

field with frequency ω
~E(t) = ~E0e

−iωt (2.2)

we find:

~x(t) =
e

m(ω2 + iωγ)
~E(t). (2.3)

The macroscopic polarization

~P = −ne~x (2.4)

by the displaced electrons then becomes

~P = − ne2

m(ω2 + iωγ)
~E. (2.5)
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2.1. METALLIC NANOPARTICLES

For the dielectric displacement

~D = ε0 ~E + ~P , (2.6)

we get:

~D = ε0(1−
ω2
p

ω2 + iωγ
) ~E. (2.7)

Here

ω2
p =

ne2

ε0m
(2.8)

is the the square of the plasma frequency. The complex dielectric function of

the free electron gas is therefore given by

ε(ω) = 1−
ω2
p

ω2 + iωγ
. (2.9)

Its real and imaginary parts are

ε′(ω) = 1−
ω2
pτ

2

1 + ω2τ 2
(2.10)

ε′′(ω) =
ω2
pτ

ω(1 + ω2τ 2)
. (2.11)

The dielectric function of the plasma model can also be linked to the con-

ductivity σ(ω):

ε(ω) = 1 +
iσ(ω)

ε0ω
. (2.12)

Therefore this is also known as the Drude model of the optical response of

metals. It describes the optical response of metals only good for photon

energies below the threshold of interband transitions. However a description

of the optical properties of gold and silver at visible frequencies can be found

by describing the interband transitions with the classical picture of a bound

electron with resonance frequency ω0

m~̈x+mγ~̇x+mω2
0~x = −e ~E. (2.13)
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CHAPTER 2. PLASMONIC NANOPARTICLES

2.1.2 Volume plasmons

The physical meaning of ωp can be understood by looking at the collective

longitudinal oscillations of the conduction electrons against the fixed positive

background. The displacement by a distance u generates a charge density

σ = ±neu. (2.14)

This leads to an electric field

E =
neu

ε0
. (2.15)

The displaced electrons thus experience a restoring force which leads to the

following equation of motion:

nmü = −neE = −n
2e2u

ε0
(2.16)

ü+ ω2
pu = 0 (2.17)

The plasma frequency thus is the natural frequency of a free oscillation of

the electron gas. The quanta of these oscillations are denoted as plasmons.

2.1.3 Jellium model

Plasmons can also be analyized with the formalism of second quantization.

In this section, mainly based on [HK09], the superscript for the operators

are suppressed and the spin index is assumed to be included in the quasi-

momentum subscript. The electron charge density operator

〈ρ~q〉 = − e

L3

∑
~k

〈a†~k−~qa~k〉 (2.18)

fulfills the following Heisenberg equation of motion [Sak03] :

d

dt
a†~k−~qa~k =

i

~
[H, a†~k−~qa~k]. (2.19)
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2.1. METALLIC NANOPARTICLES

Here a†~k and a~k are the creation and annihilation operators for fermions. They

satisfy the following anti-commutation relations:

[ar, a
†
s]+ = δrs (2.20)

[ar, as]+ = [a†r, a
†
s]+ = 0. (2.21)

H is the Hamilton operator of the electron gas and can be rewritten in terms

of these operators

H =
∑
~k

Eka
†
~k
a~k +

1

2

∑
~k,~k′,~q 6=0

Vqa
†
~k−~q

a†~k′+~qa~k′a~k. (2.22)

By calculating the commutator of the Heisenberg equation of motion we find

for the kinetic term:

i

~
∑
~k′

Ek′ [a
†
~k′
a~k′ , a

†
~k−~q

a~k] = i(εk−q − εk)a†~k−~qa~k (2.23)

with

εk = Ek/~ and εk−q = ε|~k−~q| = E|~k−~q|/~. (2.24)

For the Coulomb term we get:

∑ iVp
2~

[a†~k′−~pa
†
~n+~pa~na~k′ , a

†
~k−~q

a~k] =
∑ iVp

2~
[a†~k−~q−~pa

†
~n+~pa~na~k

− a†~k′−~pa
†
~k−~q+~p

a~k′a~k

+ a†~k−~qa
†
~k′−~p

a~k−~pa~k′

− a†~k−~qa
†
~n+~pa~na~k+~p]. (2.25)

Hence,

d

dt
〈a†~k−~qa~k〉 = i(εk−q − εk)〈a†~k−~qa~k〉

+
i

~
∑
~n,~p

(〈a†~k−~q−~pa
†
~n+~pa~na~k〉

+ 〈a†~k−~qa
†
~n+~pa~k−~pa~n〉). (2.26)
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CHAPTER 2. PLASMONIC NANOPARTICLES

Here the two-operator dynamics is coupled to four operator terms. We there-

fore split the four-operator expectation values into products of the relevant

two-operator expectation values. By using the random phase approximation

and keeping 〈a†~k−~qa~k〉 and 〈a†~ka~k〉 = f~k as dynamic variables we find

d

dt
〈a†~k−~qa~k〉 u i(εk−q − εk)〈a†~k−~qa~k〉+

iVq
~

(f~k − f~k−~q)
∑
~n

〈a†~n−~qa~n〉. (2.27)

Here f~k is the Fermi-Dirac distribution function for electrons in thermody-

namic equilibrium. An argument for this approximation is to say that an

expectation value 〈a†~ka~k′〉 has a time dependence of 〈a†kak′〉 ∝ ei(ωk−ωk′ t). Un-

der the sums the terms
∑

~k,~k′ e
i(ω~k
−ω~k′ )t oscillate rapidly for k 6= k′ and so

average to zero. To solve for the eigenfrequencies we make the following

ansatz

〈a†~k−~qa~k〉(t) = e−i(ω+iδ)t〈a†~k−~qa~k〉(0) (2.28)

and get

~(ω + iδ + εk−q − εk)〈a†~k−~qa~k〉 = Vq(f~k−~q − f~k)
∑
~n

〈a†~n−~qa~n〉. (2.29)

This can be rewritten as

〈ρ~q〉 = Vq〈ρ~q〉
∑
~k

f~k−~q − f~k
~(ω + iδ + εk−q − εk)

, (2.30)

and 〈ρ~q〉 can be canceled. Then

Vq
∑
~k

f~k−~q − f~k
~(ω + iδ + εk−q − εk)

= 1. (2.31)

The real part of this equation determines the eigenfrequencies ω = ωq of the

plasma oscillations,

Vq
∑
~k

f~k−~q − f~k
~(ωq + εk−q − εk)

= 1. (2.32)
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2.1. METALLIC NANOPARTICLES

To study the long wavelength limit we expand in terms of q,

Ek−q − Ek =
~2

2m
(k2 − 2~k · ~q + q2)− ~2k2

2m

w −~2~k · ~q
m

(2.33)

f~k−~q − f~k = f~k − ~q · ~∇~kf~k + · · · − f~k
w −~q · ~∇~kf~k. (2.34)

Inserting this into the real part yields

1 w −Vq
∑
~k,i

qi
∂f
∂ki

~ω0 − ~2~k · ~q/m

w − Vq
~ω0

∑
~k,i

qi
∂f

∂ki
(1 +

~~k · ~q
mω0

)

= − Vq
~ω0

∑
k,i

qi
∂f

∂ki

~k · q
mω0

. (2.35)

Here ωq→0 = ω0. Partial integration gives

1 = Vq
q2

mω2
0

∑
~k

f~k

= Vq
q2N

mω2
0

=
4πe2

ε0q2L3

q2N

mω2
0

. (2.36)

Hence

ω2
0 =

4πe2n

m
= ω2

pl. (2.37)

This is identical to the result found with the plasma model.

11



CHAPTER 2. PLASMONIC NANOPARTICLES

2.2 Particle plasmons

If a metallic particle is so small that all points of the particle respond simul-

taneously to an incoming field, localized surface plasmons can be excited.

These resonant surface plasmons on the particle are also called particle plas-

mons.

2.2.1 Surface plasmon polaritons

Surface plasmons are the quanta of surface-charge-density oscillations. They

propagate at the interface between a dielectric and a conductor and are con-

fined in perpendicular direction. To describe surface plasmon polaritons we

have to look at the central equation of electromagnetic wave theory, which

can be obtained by Maxwell’s equations. In SI units [Jac98] the macroscopic

Maxwell’s equations in a linear and isotropic media have the following form

~∇× ~E(~r, t) = −∂
~B(~r, t)

∂t
(2.38)

~∇× ~H(~r, t) =
∂ ~D(~r, t)

∂t
+~j(~r, t) (2.39)

~∇ · ~D(~r, t) = ρ(~r, t) (2.40)

~∇ · ~B(~r, t) = 0. (2.41)

Here ~E(~r, t) is the electric field, ~D(~r, t) = ε0ε ~E(~r, t) the electric displace-

ment, ~H(~r, t) the magnetic field, ~B(~r, t) = µ0µ ~H(~r, t) the magnetic induc-

tion, ~j(~r, t) the current density, ρ(r, t) the charge density, ε is the dielectric

constant or relative permittivity, µ the relative permeability, ε0 is the electric

permittivity and µ0 the magnetic permeability of the vacuum. The wave

equation is obtained by combining the curls equations

~∇× ~∇× ~E = −µ0
∂2 ~E

∂t2
. (2.42)

12



2.2. PARTICLE PLASMONS

For the absence of ρ(~r, t) and ~j(~r, t) and negligible variation of the dielectric

profile one finds:

~∇2 ~E − ε

c2

∂2 ~E

∂t2
= 0. (2.43)

For a harmonic time dependence

~E(~r, t) = ~E(~r)e−iωt (2.44)

we get the Helmholtz equation

~∇2 ~E + k2
0ε
~E = 0 (2.45)

where k0 = ω
c

is the wave number of the propagating wave in vacuum. For

a one-dimensional problem ε depends only on one spatial coordinate. The

propagating waves can be described as

~E(x, y, z) = ~E(z)eiβx. (2.46)

Here β = kx is the propagation constant which corresponds to the compo-

nent of the wave vector in the direction of propagation. Inserting into the

Helmholtz equation yields

∂2 ~E(z)

∂z2
+ (k2

0ε− β2) ~E = 0. (2.47)

A similar equation exists for the magnetic field. To find explicit expressions

for the different field components we again use the curl equations. For a prop-

agation along the x-direction, and assuming homogeneity in the y-direction

and a harmonic time dependence, we arrive at:

∂Ey
∂z

= −iωµ0Hx (2.48)

∂Ex
∂z
− iβEz = iωµ0Hy (2.49)

iβEy = iωµ0Hz (2.50)

13



CHAPTER 2. PLASMONIC NANOPARTICLES

∂Hy

∂z
= iωε0ε0Ex (2.51)

∂Hx

∂z
− iβHz = −iωε0ε0Ey (2.52)

iβHy = −iωε0ε0Ez (2.53)

The system allows two sets of self-consistent solutions. The first set accounts

for transverse magnetic modes, where only the field components Ex , Ez and

Hy are nonzero,

Ex = −i 1

ωε0ε

∂Hy

∂z
(2.54)

Ez = − β

ωε0ε
Hy (2.55)

∂2Hy

∂z2
+ (k2

0ε− β2)Hy = 0. (2.56)

The second set accounts for transverse electric modes, where only the field

components Hx , Hz and Ey are nonzero,

Hx = i
1

ωµ0

∂Ey
∂z

(2.57)

Hz =
β

ωµ0

Ez (2.58)

∂E2
y

∂z2
+ (k2

0ε− β)Ey = 0. (2.59)

The simplest geometry where surface plasmon polaritons can exist is a single

flat interface between a dielectric, non-absorbing half space with positive real

dielectric constant ε2, and an adjacent conducting half space with dielectric

constant ε1(ω). Solutions for transverse magnetic modes for z > 0 become

Hy(z) = A2e
iβxe−k2z (2.60)

Ex(z) = iA2
1

ωε0ε2
k2e

iβxe−k2z (2.61)

Ez(z) = −A1
β

ωε0ε2
eiβxe−k2z. (2.62)

14



2.2. PARTICLE PLASMONS

Solutions for z < 0 become

Hy(z) = A1e
iβxek1z (2.63)

Ex(z) = −iA1
1

ωε0ε1
k1e

iβxek1z (2.64)

Ez(z) = −A1
β

ωε0ε1
eiβxek1z. (2.65)

ki is the component of the wave vector perpendicular to the interface. 1/|kz|
is the evanescent decay length. Now the boundary conditions at the interface

are used. They can be obtained by transforming the Maxwell equations to

integral forms by applying the theorems of Stokes and Gauss∫
∂S

~E(~r, t) · d~s = −
∫
S

∂

∂t
~B(~r, t) · ~nsda (2.66)

∫
∂S

~H(~r, t) · d~s =

∫
S

[~j(~r, t) +
∂

∂t
~D(~r, t)] · ~nsda (2.67)∫

∂V

~D(~r, t) · ~nsda =

∫
V

ρ(~r, t)dV (2.68)∫
∂V

~B(~r, t) · ~nsda = 0. (2.69)

da denotes a surface element, ns the normal unit vector to the surface, ds

a line element, ∂V the surface of the volume V , and ∂S the border of the

surface S. To find the boundary conditions the integral forms of Maxwell’s

equations are applied to a sufficiently small part of the considered boundary.

For a arbitrarily small area S the electric and magnetic fluxes through S

become zero but a surface current density K might be present. The boundary

conditions for the tangential field components are obtained from the first two

Maxwell’s equations

~n× ( ~Ei − ~Ej) = ~0 (2.70)

~n× ( ~Hi − ~Hj) = ~K. (2.71)

By using Maxwell’s third and fourth equations and considering an infinitesi-

mal rectangular box with volume V and the surface ∂V , the boundary con-
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CHAPTER 2. PLASMONIC NANOPARTICLES

ditions for the normal field components are obtained as

~n · ( ~Di − ~Dj) = σ (2.72)

~n · ( ~Bi − ~Bj) = 0. (2.73)

Here σ is the surface charge density. So Hy and εiEz has to be continuous

A1 = A2 (2.74)

k2

k1

= −ε2
ε1
. (2.75)

Confinement to the surface leads to

Re[ε1] < 0 ε2 > 0. (2.76)

Hy also has to fulfill the wave equation:

k2
1 = β2 − k2

0ε1 (2.77)

k2
2 = β2 − k2

0ε2. (2.78)

This yields the dispersion relation of surface plasmon polaritons which prop-

agate at the interface,

β = k0

√
ε1ε2
ε1 + ε2

. (2.79)

The wavevector kx is always large then the wavevector of light in free space

which means that a surface plasmon polariton on a plane interface cannot

be excited by light that propagates in free space. However it is possible

to excite surface plasmon polaritons in a three-layer system consisting of

a thin metal film sandwitched between two insulators of different dielectric

constants. Possible configurations are the Kretschmann and the Otto con-

figuration. We refer to [NH06] . It can also be shown that no surface modes

exist for transverse electric polarization. Therefore we consider

Ey(z) = A2e
iβxe−k2z (2.80)

16



2.2. PARTICLE PLASMONS

Hx(z) = −iA2
1

ωµ0

k2e
iβxe−k2z (2.81)

Hz(z) = A2
β

ωµ0

eiβxe−k2z (2.82)

for z > 0, and

Ey(z) = A1e
iβxek1z (2.83)

Hx(z) = iA1
1

ωµ0

k1e
iβxek1z (2.84)

Hz(z) = A1
β

ωµ0

eiβxek1z (2.85)

for z < 0. The boundary conditions lead to:

A1(k1 + k2) = 0. (2.86)

Confinement requires Re[k1] > 0 and Re[k2] > 0. So A1 and then also

A2 = A1 has to be zero, which means that no transverse electric modes exist.

It is also possible to establish a quantized form of surface plasmons. We refer

to [HT08a], [Trü07] and [EQ75].

2.2.2 Particle plasmons

Particle plasmons are non-propagating excitations of the conduction elec-

trons of metallic nanostructures coupled to the electromagnetic field. In the

discussion we will use the quasi-static approximation in which the particle is

much smaller than the wavelength of light in the sourrounding medium. The

phase of the harmonically oscillating electromagnetic field is practically con-

stant over the particle volume. The most convenient geometry for analyzing

the interaction of a particle with an electromagnetic field ~E = E0~z is a ho-

mogeneous, isotropic sphere located at the origin in a uniform, static electric

field where the dielectric response of the sphere is described by a dielectric

function. In the electrostatic approach, we look for a solution of the Laplace

17



CHAPTER 2. PLASMONIC NANOPARTICLES

equation for the potential

1

r

∂2

∂r2
(rφ) +

1

r2 sin θ

∂

∂θ
(sin θ

∂φ

∂θ
) +

1

r2 sin2 θ

∂2φ

∂φ2
= 0. (2.87)

It can be solved, if a product form for the potential

φ =
U(r)

r
P (θ)Q(φ) (2.88)

is assumed. By using such a product ansatz

PQ
d2U

dr2
+

UQ

r2 sin θ

d

dθ
(sin θ

dP

dθ
) +

UP

r2 sin2 θ

d2Q

dφ2
= 0. (2.89)

By multiplying with

r2 sin2 θ/UPQ (2.90)

we find

r2 sin2 θ[
1

U

d2U

dr2
+

1

r2 sin θP

d

dθ
(sin θ

dP

dθ
)] +

1

Q

d2Q

dφ2
= 0. (2.91)

The last term must be constant:

1

Q

d2Q

dφ2
= −m2. (2.92)

We find the following solutions for this last term:

Q = e±imφ. (2.93)

Again by separating the first term we find separate equations for P (θ) and

U(r):
1

sin θ

d

dθ
(sin θ

dP

dθ
) + [l(l + 1)− m2

sin2 θ
]P = 0 (2.94)

d2U

dr2
− l(l + 1)

r2
U = 0. (2.95)

18



2.2. PARTICLE PLASMONS

Here l(l+ 1) is a real constant. From the form of the radial equation we find

U = Arl+1 +Br−l. (2.96)

For a problem with azimuthal symmetry

m = 0. (2.97)

The general solution then is:

φ(r, θ) =
∞∑
l=0

[Alr
l +Blr

−(l+1)]Pl(cos θ). (2.98)

Here Pl(cos θ) are the Legendre-polynomials. For more details see for example

[Jac98] or [Has02] . For the solution of the potential inside and outside the

sphere we find:

φin(r, θ) =
∞∑
l=0

[Alr
l]Pl(cos θ) (2.99)

φout(r, θ) =
∞∑
l=0

[Blr
l + Clr

−(l+1)]Pl(cos θ) (2.100)

The coefficients can be determined by the boundary conditions

− 1

a

∂φin
∂θ
|r=a = −1

a

∂φout
∂θ
|r=a (2.101)

− ε0ε
∂φin
∂r
|r=a = −ε0εm

∂φout
∂r
|r=a (2.102)

φout = −E0z r →∞. (2.103)

We find B1 = −E0 , Bl = 0 for l 6= 1 and Al = Cl = 0 for l 6= 1 and therefore

we obtain for the potentials

φin =
−3εm
ε+ 2εm

E0r cos θ (2.104)

φout = −E0r cos θ +
ε− εm
ε+ 2εm

E0a
3 cos θ

r2
. (2.105)
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The potential outside the sphere is a superposition of a dipole located at the

particle center and the applied field. It can therefore be written with the

dipole moment ~p:

φout = −E0r cos θ +
~p · ~r

4πε0εmr3
(2.106)

~p = 4πε0εma
3 ε− εm
ε+ 2εm

~E0. (2.107)

Here a is the radius of the sphere. The polarizability

α = 4πa3 ε− εm
ε+ 2εm

(2.108)

defined via

~p = εmε0α~E0 (2.109)

experiences a resonant enhancement under the condition that |ε + 2εm| is a

minimum, which, for the case of small or slowly-varying Im[ε] around the

resonance, simplifies to

Re[ε(ω)] = −2εm. (2.110)

This is called the Fröhlich condition. The associated mode is the dipole

surface plasmon. The surface plasmon resonance depends on the particle

shape, the dielectric function of the metal, and on the dielectric function of

the environment. So metallic nanoparticles can be used for optical sensing.

Optical sensing

The electric fields are evaluated from the potentials:

~E = −~∇φ (2.111)

~Ein =
3εm

ε+ 2εm
~E0 (2.112)

~Eout = ~E0 +
3~n(~n · ~p)− ~p

4πεmε0

1

r3
. (2.113)
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The scattered field is identical to the electric field of a dipole:

~E =
1

4πε0εm
(k2(~n× ~p)× ~ne

ikr

r
+ [3~n(~n · ~p)− ~p]( 1

r3
− ik

r2
)eikr) (2.114)

~E =
3~n(~n · ~p)− ~p

4πε0εm

1

r3
kr � 1. (2.115)

Here k = 2π/λ and ~n is the unit vector to the point of interest. The illumi-

nation with a plane wave

~E(~r, t) = E0e
−iωt (2.116)

induces an radiating oscillating dipole

~p = ε0εmαE0e
−iωt (2.117)

which leads to a scattering of the plane wave. The corresponding scattering

and absorption cross sections are given by

Csca =
8π

3
k4a6| ε− εm

ε+ 2εm
|2 (2.118)

Cabs = 4πka3Im[
ε− εm
ε+ 2εm

]. (2.119)

The sum of scattering and absorption is the extinction.

Cext = Csca + Cabs. (2.120)

Csca and Cabs scale differently. The extinction and therefore the color depends

on the size of the particles. A nice illustration is given by the Lycurgus cup.

Because of the plasmonic excitation in the metallic particles in the glass of

the cup it absorbs and scatters blue and green light. When viewed in reflected

light, the plasmonic scattering gives the cup a green color, but if a white light

source is placed within the cup, the glass appears red because it transmits

only the longer wavelengths and absorbs the shorter ones 2.1 . We refer to

[NH06], [Mai07] and [Sqa02].
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2.3 Boundary element method

Boundary integral equations and the boundary element method are methods

for numerical analysis in science. There exist different implementations of

boundary integral methods. The direct methods relate the volume integra-

tion directly by using Green’s second theorem to a surface integration. The

indirect method is based on an ad-hoc solution with some auxiliary quantities

which are chosen such that the appropriate boundary conditions are fulfilled.

In the boundary element method the surface is approximated by small sur-

face elements of triangular or rectangular shape. In this section Gauss units

are used. We refer to [HK05] and [Wro02].

Direct method

The problem considered in this and the following sections is the solution of

the free Helmholtz equation

[~∇2 + k2ε(~r)]φ(~r) = 0. (2.121)

Here k is the photon wave vector in vacuum, φ(~r) is the scalar potential and

ε(~r) is the dielectric function. In the direct method the Helmholtz equation

and the equation for the Green functions Gj(~r, ~r′)

(~∇2 + k2
j εj)Gj(~r, ~r′) = −4πδ(~r − ~r′), ~r, ~r′ ∈ Ωj, (2.122)

are combined in such a way that φ(~r) can be computed from the knowledge

of φ and its surface derivative at the boundary. By using Green’s second

theorem we get:

4πφ(~r) =

∫
∂Ωj

d~s′~nj(~s′)[Gj(~r, ~s′)~∇s′φ(~s′)− φ(~s′)~∇s′Gj(~r, ~s′)]. (2.123)
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2.3. BOUNDARY ELEMENT METHOD

Here ~nj(~s) is the outer surface normal. φ and its surface derivative at the

boundary are determined in two steps. First, one performs the limit ~r → ~s

2πφ(~s) =

∫
∂Ωj

d~s′~nj(~s′)[Gj(~s, ~s′)~∇s′φ(~s′)− φ(~s′)~∇s′Gj(~r, ~s′)]. (2.124)

In the second step, this integral equation is combined with the boundary

conditions imposed by the Maxwell’s equations to obtain φ(~s) and ~nj(~s) ·
~∇sφ(~s).

(2.125)

Indirect method

Here the solution of the free Helmholtz equation is written in the ad hoc form

φ(~r) = φej(~r) +

∫
∂Ωj

d~sGj(~r, ~s′)σj(~s′), ~r ∈ Ωj, (2.126)

with φej(~r) a solution of the free Helmholtz equation and σj(~s) a surface

charge.

Retarded case

The following derivation is based on [GH02] and [GH98] . It starts from the

Maxwell’s equations in frequency space ω:

~∇ · ~D = 4πρ (2.127)

~∇× ~H + ik ~D =
4π

c
~j (2.128)

~∇ · ~B = 0 (2.129)

~∇× ~E − ik ~B = 0. (2.130)

Here k = ω/c is the wave vector, ~D = ε ~E is the electric displacement, and
~B = µ ~H is the magnetic induction. The electric and magnetic fields ~E and
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~H can be expressed in terms of scalar and vector potentials φ and ~A.

~E = ik ~A− ~∇φ (2.131)

~H =
1

µ
~∇× ~A (2.132)

By using the Lorentz gauge

~∇ · ~A = ikεµφ (2.133)

the first two Maxwell equations can be rewritten

(~∇2 + k2εµ)φ = −4π(
ρ

ε
+

1

4π
~D · ~∇1

ε
) (2.134)

(~∇2 + k2εµ) ~A = −4π

c
(µ~j − 1

4π
[iωφ~∇(εµ) + c ~H × ~∇µ]). (2.135)

where σs = + 1
4π
~D~∇1

ε
and m = − 1

4π
[iωφ~∇(εµ)+c ~H× ~∇µ] can be understood

as additional charges and currents on the interfaces of the dielectric bodies.

The general solutions are

φ(~r) =
1

εj(ω)

∫
d~r′Gj(|~r − ~r′|)ρ(~r′) +

∫
Sj

dsGj(|~r − ~s|)σj(~s) (2.136)

~A(~r) =
µj(ω)

c

∫
d~r′Gj(|~r − ~r′|)~j(~r′) +

∫
Sj

d~sGj(|~r − ~s|)~hj(~s) (2.137)

with Sj the boundary of the medium, and Gj(r) = eikjr

r
the Green function

of the wave equation [~∇2 + k2
j ]Gj(r) = −4πδ(~r). The boundary conditions

and the gauge conditions lead to:

G1σ1 −G2σ2 = φe2 − φe1 (2.138)

G1
~h1 −G2

~h2 = ~Ae2 − ~Ae1. (2.139)

Here

φej(~s) =
1

εj(ω)

∫
d~r′Gj(|~s− ~r′|)ρ(~r′) (2.140)
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and
~Aej(~s) =

µj(ω)

c

∫
d~r′Gj(|~s− ~r′|)~j(~r′) (2.141)

are equivalent boundary sources that scale linearly with the external per-

turbation. Because of the boundary conditions the tangential derivatives

of all components of the vector potential and the normal derivative of the

tangential vector potential must be continuous in the nonmagnetic case.

(~ns~∇) ~A− i~nskεµφ (2.142)

has to be continuous. By inserting the general solutions in this last relation

we find:

H1
~h1 −H2

~h2 − ik~ns(G1ε1µ1σ1 −G2ε2µ2σ2) = ~α (2.143)

~α = (~ns · ~∇)( ~Ae2 − ~Ae1) + ik~ns(ε1µ1φ
e
1 − ε2µ2φ

e
2) (2.144)

with

Hj(~s, ~s′) = lim
η→0+

~ns · ~∇sGj(|~s∓ η~ns − ~s′|)

= ~ns · ~∇sGj(|~s− ~s′|)± 2πδ(~s− ~s′) (2.145)

~ns · ~∇sGj(|~s− ~s′|) =
~ns(~s− ~s′)
|~s− ~s′|3

(ikj|~s− ~s′| − 1)eikj |~s−~s′|. (2.146)

For magnetic materials the tangential part takes the form

(~ns∂iG1 − ~tisH1)
1

µ1

· ~h1 − (~ns∂iG2 − ~tisH2)
1

µ2

· ~h2 = [~ns∂i − ~tis · (~ns · ~∇s)]

× (
~Ae2
µ2

−
~Ae1
µ1

). (2.147)

Here ~t1s and ~t2s are two independent tangential vectors and the derivative

∂i is taken along the direction ~tis. The continuity of the normal electric

displacement

ε~ns · (ik ~A− ~∇φ) (2.148)
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leads to

H1ε1σ1 −H2ε2σ2 − ik~ns(G1ε1~h1 −G2ε2~h2) = De (2.149)

De = ~ns · [ε1(ik ~Ae1 − ~∇sφ
e
1)− ε2(ik ~Ae2 − ~∇sφ

e
2)]. (2.150)

The boundary charges and currents needed for the general solutions can be

calculated self-consistently.

Non retarded case

In the non retarded limit, k → 0, the Green function reduces to the non-

retarded Coulomb interaction 1/r. φej becomes independent of j. ~Aej and ~α

vanish. Hence

De = (ε2 − ε1)f (2.151)

with

f(~s) =

∫
d~r′F (~s, ~r)

ρ(~r′)

ε(~r′, ω)
(2.152)

F (~s, ~s′) = −~ns · (~s−
~s′)

|~s− ~s′|3
(2.153)

the external electric field normal to the interface. The continuity of the

tangential electric field and the normal magnetic induction at the interface

and the gauge condition are satisfied by ~hj = 0 and σ1 = σ2 = σ. For the

continuity of the normal electric displacement we get

Λσ(~s) = f(~s) +

∫
S

d~s′F (~s, ~s′)σ(~s′) (2.154)

with

Λ = 2π
ε2 + ε1
ε2 − ε1

. (2.155)

From this equation the induced surface charge can be calculated self-consistently.

The induced potential is given in terms of the induced interface charge

φind(~r) =

∫
d~s

σ(~r)

|~r − ~s|
. (2.156)
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2.4 Plasmon dynamics

The boundary element method can be used to study the plasmon dynamics

of a metallic nanoparticle illuminated by a plane wave. In the non retarded

case the solution for φ(~r) is given by

φ(~r) =

∫
∂Ω

G(~r, ~s′)σ(~s′)ds′ + φext. (2.157)

For using the boundary condition of the continuity of the tangential electric

field the surface derivative on both sides of the boundary has to be taken.

One finds

lim
~r→~s

φ′(r) =

∫
∂Ω

F (~s, ~s′)σ(~s′)± 2πσ(~s) + φ′ext(~s) (2.158)

with

φ′ = (n̂ · ~∇)φ (2.159)

and

F (~s, ~s′) = (n̂ · ~∇)G(~s, ~s′). (2.160)

By approximating the surface of the nanoparticle by surface elements, the

integral equation reduces to two matrix equations:

φ′m = (F + 2π1)σ + φ′ext (2.161)

φ′b = (F − 2π1)σ + φ′ext. (2.162)

Then by using the boundary condition

εmφ
′

m − εbφ
′

b = 0 (2.163)

the equation for the surface charge can be calculated

σ = −[2π(εm + εb)1̂ + (εm − εb)F̂ ]−1(εm − εb)φ
′

ext (2.164)

Λσ = Fσ + φ
′

ext (2.165)
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with

Λ = 2π
εb + εm
εb − εm

. (2.166)

For a given σ the induced dipole moment d =
∑

i siσi can be computed.

Further one finds the following eigenvalue equations

Fσk = λkσk (2.167)

σ̃kF = λkσ̃k, (2.168)

where λk are real eigenvalues and σk and σ̃k are the left and right eigenvec-

tors. For a symmetric matrix the left and the right eigenvectors are just its

transpose [Pre07] . In [MZM02] [MFZ05] [FM03] it is shown that they are

biorthogonal. They can be used for an expansion of the surface charge

σ(s, t) =
∑
k

ak(t)σk(s) (2.169)

ak(t) =

∫
∂Ω

σ̃k(s)σ(s, t)ds. (2.170)

We find:

(Λ− F )
∑
k′

ak′σk′ = φ
′

ext (2.171)

∑
k′

ak′(Λ− λk′)σk′ = φ
′

ext. (2.172)

Then by multiplying with ∫
∂Ω

dsσ̃k(s) (2.173)

we find an expression for the expansion coefficient which reveals the dynamics

of the localized surface plasmon

ak(ω) =
1

Λ(ω)− λk

∫
∂Ω

σ̃k(s)φ
′

ext(s, ω)ds. (2.174)
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2.5 Electric dipole interactions

The properties of local surface plasmon resonances depend on interparticle

coupling. We consider an exciting system consisting of a metallic nanoparticle

coupled to a molecule with a certain dipole moment in a given direction,

d = f(ω)E. (2.175)

Then

E = Einc + EMNP
inc + EMNP

dip (2.176)

is the sum of the electric field of the external source and the electric field of

the metallic nanoparticle and

f(ω) = (
q

m
)(

1

ω2
0 − iγ0ω − ω2

) (2.177)

is the dipole response function which is found from the equation of motion

~̈x(t) + γ0~̇x(t) + ω2
0~x(t) =

q

m
( ~E(t)). (2.178)

Hence we find

d = f(ω)(Einc + EMNP
inc + dEMNP

dip ) (2.179)

d(1− EMNP
dip ) = f(ω)(Einc + EMNP

inc ) (2.180)

d =
f(ω)(Einc + EMNP

inc )

(1− EMNP
dip )

. (2.181)

Complex structures often yield multi-featured resonance spectra. This can

be seen as the result of a hybridization of elementary plasmons of simpler

substructures. Another effect which appears at hybrid structures is the non-

linear Fano effect. It is caused from the interference between the external

field and the induced internal field. Then the absorption intensity can have

a strongly asymmetric shape. We refer to [KG08] and [ZG06] .
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Results

Figure 2.2 shows the approximation of different types of metallic nanoparti-

cles with triangles within the boundary element method. In the most simple

form, the surface charges are at the center of each triangle and the matrices

Gij and Fij connect the different surface elements. Figure 2.3 shows dipole

surface plasmon eigenmodes for a spherical gold nanoparticle with the di-

ameter a = 10 nm. For gold the dielectric function of [JC72] and for the

background dielectric function water with εout = 1.332 was used. Figure 2.4

shows the scattered normalized intensity of spherical metallic nanoparticles

with diameter a = 10 nm computed within the nonretarded approach. For

gold the drude dielectric function was used. For the background the dielec-

tric functions of glass εout = 1.52, water εout = 1.332 and vacuum εout = 1

were used. The conversion factor between energy eV and λ nm is given by

E = h c
λ
→ E eV= 1239.84 1

λ nm. A redshift of the resonance is observed if

the dielectric constant of the environment is increased. In figure 2.5 the nor-

malized scattered intensity for a coupled system consisting of a spherical gold

nanoparticle and a dipole in x-direction with length η = 1 · 10−9 nm which

is excited with x-polarized light from the x-direction is shown. The different

plots distinguish between the different positions of z = 1 · d, z = 1.2 · d and

z = 1.4 · d, where d is the diameter of the nanoparticle, of the dipole. The

resonance energy of the dipole was chosen at 2.4 eV . The diameter of the

nanoparticle was chosen at 10 nm. For gold the drude dielectric function

and for the background the dielectric function of glass εout = 1.52 was used.

The energy shifts and broadens for different interparticle distances. The shift

depends on polarization of the exciting light as well. We refer to [KB07] and

[HK05] .
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Figure 2.2: Different shapes of metal nanoparticles approximated by a set of
triangles.
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Figure 2.3: Here the dipole surface plasmon eigenmodes for a spherical gold
nanoparticle with the diameter a = 10 nm are shown. For gold the dielectric
function of [JC72] was used.
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Figure 2.4: The scattered intensity of a spherical gold nanoparticle in different
environments is shown. For the background the dielectric functions of glass
εout = 1.52, water εout = 1.332 and vacuum εout = 1 were used. A redshift
of the resonance is observed if the dielectric constant of the environment is
increased.

Figure 2.5: Scattered intensity for a coupled system consisting of a spherical
metallic nanoparticle and a dipole in x-direction with length η = 1 · 10−9 nm
which is excited with x-polarized light from the x-direction is shown. The
different plots distinguish between the different positions of z = 1·d, z = 1.2·d
and z = 1.4 · d, where d is the diameter of the nanoparticle, of the dipole.
The resonance energy of the dipole was chosen at 2.4 eV . The diameter of
the nanoparticle was chosen at 10 nm. For gold the drude dielectric function
and for the background the dielectric function of glass εout = 1.52 was used.
The energy shifts and broadens for different interparticle distances. The shift
depends on polarization of the exciting light as well.
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Chapter 3

Carbon nanotubes

Figure 3.1: In this figure the three different types of carbon nanotubes are
shown. The integers n and m of the chiral vector ~C = (n,m) define the tubes.
(n, 0) are called zigzag, (n, n) are called armchair and (n,m) are chiral tubes.
source: www.nanoscienceworks.org
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3.1 Carbon nanotubes

Carbon nanotubes are cylinders of graphite sheets [Iij91]. Two possible meth-

ods to synthesize them are the laser vaporization and the carbon arc synthe-

sis. Carbon nanotubes have a diameter of some nanometers and a length

of some millimeters. Because of their special structure they have certain

properties that make them potentially useful in many applications in nan-

otechnology. For example, they have the highest strength to weight ratio of

any known material and can penetrate membrances such as cell walls which

makes them usefull in material science and medical applications. We refer to

[Rei03], [Sai99], [CBR07] and [Zar08].

3.1.1 Electronic structure of graphene

The characteristic band structure of a solid can be studied from two differ-

ent limiting cases. In combining free atoms to a crystal the discrete atom

levels split up in groups and the influence of a lattice potential breaks the

continuous spectrum of a free electron gas. The tight binding method is

an approximation method which starts by expressing the Bloch functions as

a linear combination of atomic orbitals. This and the following sections a

mainly based on [Zar08].

Tight binding

As already mentioned in the tight binding method the Bloch functions are

written as a linear combination of atomic orbitals

φst(~k, ~r) =
1√
N

N∑
l

ei
~k·~Rlsψt(~r − ~Rls), t = 1, . . . , n. (3.1)

Here ψt(~r − ~Rls) is the atomic wave function in state t, ~Rls is the position

vector of the sth atom in the lth primitive unit cell, n is the number of atomic

wave functions in the unit cell, andN is the number of unit cells of the crystal.

The eigenfunctions of the solid are expressed as linear combinations of the
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Bloch functions

Ψj(~k, ~r) =
∑
s

Cjs(~k)φs(~k, ~r) (3.2)

with the expansion coefficients Cjs(~k). To find the eigenfunctions and eigen-

values of a Hamiltonian the coefficients are chosen such that the expectation

value of the Hamiltonian with these functions takes a minimum. This is done

by solving the so called secular equation

det[Ĥ − E~kŜ] = 0. (3.3)

Here the elements of the Hamilton matrices Ĥ are given by

Hjj′(~k) = 〈φj(~k, ~r)|Ĥ|φj′(~k, ~r)〉

=
1

N

∑
st

ei
~k·(~Rsj′−~Rtj)〈ψ(~r − ~Rtj)|Ĥ|ψ(~r − ~Rsj′)〉. (3.4)

For the overlap matrices one finds:

Sjj′(~k) = 〈φj(~k, ~r)|φj′(~k, ~r)〉

=
1

N

∑
st

ei
~k·(~Rsj′−~Rtj)〈ψ(~r − ~Rtj)|ψ(~r − ~Rsj′)〉. (3.5)

Tight binding of graphene

In this section the tight binding method is used to calculate the dispersion

relation of graphene. With the dispersion relation of graphene and zone fold-

ing the dispersion relation of a single wall carbon nanotube can be calculated.

Graphene is a one-atom-thick planar sheet of sp2-bonded carbon atoms that

are densely packed in a honeycomb crystal lattice. In graphene each carbon

atom has three 2sp2 electrons and one 2p electron. The 2sp2 electrons form

the three bonds in the plane of the sheet and the pz orbital perpendicular

to the sheet forms π covalent bonds, which are responsible for the electronic

properties. For a discussion of the physics of atoms and molecules we refer to

[HW05] . The unit cell of graphene has two carbon atoms. Its wave function
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can be written as a sum of two Bloch functions

Ψj(~k, ~r) =
∑
A,B

Cjs(~k)φs(~k, ~r). (3.6)

The general form of the secular equation is found by the Schrödinger equation

ĤΨj(~k, ~r) = Ej(~k)Ψj(~k, ~r). (3.7)

Written with the Bloch functions it takes the following form:

CjA(~k)ĤφA(~k, ~r) + CjB(~k)ĤφB(~k, ~r) = CjA(~k)Ej(~k)φA(~k, ~r)

+ CjB(~k)Ej(~k)φB(~k, ~r). (3.8)

Now multiplying with φA(~k, ~r) and φB(~k, ~r) the secular equation is found:∣∣∣∣∣ HAA(~k)− Ej(~k)SAA(~k) HAB(~k)− Ej(~k)SAB(~k)

H∗AB − Ej(~k)S∗AB(~k) HAA(~k)− Ej(~k)SAA(~k)

∣∣∣∣∣ = 0. (3.9)

Using the tight binding method the overlap matrix is

HAB(~k) =
1

N

∑
st

ei
~k·(~RsB−~RtA)〈ψ(~r − ~RtA)|Ĥ|ψ(~r − ~RsB)〉. (3.10)

Changing the variable of integration from ~r to ~r′ = ~r − ~RtA and after that

dropping the prime, one obtains

HAB(~k) =
1

N

∑
st

ei
~k·(~RsB−~RtA)〈ψ(~r)|Ĥ|ψ(~r − (~RsB − ~RtA))〉

=
1

N

∑
tl

ei
~k·~bAl 〈ψ(~r)|Ĥ|ψ(~r −~bAl )〉

=
3∑
l=1

e−i
~k·~bAl 〈ψ(~r)|Ĥ|ψ(~r +~bAl )〉

= γ0f(~k) (3.11)

HBA(~k) = H∗AB(~k). (3.12)
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Here ~bAl , l = 1, 2, 3 are the nearest-neighbor carbon atom vectors with the

bond length |~bAl | = a/
√

3,

f(~k) =
3∑
l=1

e−i
~k·~bAl

= e−ikxa/
√

3 + 2eikxa/2
√

3 cos(kya/2), (3.13)

and

γ0 = 〈ψ(~r)|Ĥ|ψ(~r +~bAl )〉 (3.14)

is the transfer integral. In similar way the other matrix elements become

HAA(~k) = HBB(~k)

=
1

N

∑
st

ei
~k·(~RsA−~RtA)〈ψ(~r)|Ĥ|ψ(~r − (~RsA − ~RtA))〉

≈ 〈ψ(~r)|Ĥ|ψ(~r)〉

= ε2p. (3.15)

The overlap matrices read

SAB(~k) = S∗Ba(
~k)

=
1

N

∑
st

ei
~k·(~RsB−~RtA)〈ψ(~r)|ψ(~r − (~RsB − ~RtA))

= s0f(~k) (3.16)

with s0 = 〈ψ(~r)|ψ(~r +~bAl )〉, l = 1, 2, 3 the overlap integral. Hence

SAA(~k) = SBB(~k) =
1

N

∑
st

ei
~k·(~RsA−~RtA)〈ψ(~r)|ψ(~r − (~RsA − ~RtA))〉

= 〈ψ(~r)|ψ(~r)〉

= 1. (3.17)

Using the following shorthand notation

E0 = HAASAA, E1 = SABH
∗
AB +HABS

∗
AB, (3.18)
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E2 = H2
AA −HABH

∗
AB, E3 = S2

AA − SABS∗AB, (3.19)

the solution of the secular equation is given by

Ej(~k) =
−(−2E0 + E1)±

√
(−2E0 + E1)2 − 4E2E3

2E3

. (3.20)

This can be rewritten in

Ej(~k) =
ε2p ± γ0|f(~k)|
1± s0|f(~k)|

, j = v, c (3.21)

|f(~k)| =

√
3 + 2 cos(kya) + 4 cos(

kya

2
) cos(

√
3kxa

2
). (3.22)

The three parameters ε2p, γ0 and s0 are determined empirically. Using the

eigenenergies the corresponding normalized eigenvectors can be calculated

v(~k) = (CvA, CvB) =
1√
2

(− f(~k)

|f(~k)|
, 1) (3.23)

c(~k) = (CcA, CcB) =
1√
2

(
f(~k)

|f(~k)|
, 1). (3.24)

3.1.2 Electronic structure of carbon nanotubes

The chiral vector of a nanotube (see figure 3.1) is given by

~C = n~a1 +m~a2

≡ (n,m). (3.25)

Here

~a1 = (

√
3

2
,
1

2
)a ~a2 = (

√
3

2
,−1

2
)a a = |~a1| = |~a2| = 2.46Å (3.26)

are the real space translational vectors of graphene and n and m are integers

which define a particular tube. (n, 0) are called zigzag, (n, n) are called

armchair and (n,m) are called chiral tubes. The diameter of a tube is given
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by

dt =
L

π
(3.27)

where

L = |~C|

= a
√
n2 +m2 + nm (3.28)

is the circumferential length of the carbon nanotube. The chiral angle θ is

defined as the angle between ~C and ~a1

cos(θ) =
~C · ~a1

|~C||~a1|

=
2n+m

2
√
n2 +m2 + nm

. (3.29)

The translational vector ~T is parallel to the nanotube axis and normal to the

chiral vector. It is the unit vector of a 1D carbon nanotube

~T = t1~a1 + t2~a2

≡ (t1, t2). (3.30)

t1 and t2 are given by

t1 =
2n+m

dR
, t2 = −2m+ n

dR
. (3.31)

Here dR is the greatest common divisor of (2n+m) and (2m+n). Its length

is found by

T = |~T | =
√

3L

dR
. (3.32)

The number of hexagons per unit cell is given by

N =
|~C × ~T |
|~a1 × ~a2|

=
2(n2 +m2 + nm)

dR
=

2L2

a2dR
. (3.33)

41



CHAPTER 3. CARBON NANOTUBES

There are 2N carbon atoms in each unit cell of a single wall carbon nanotube.

Using ~Ri · ~Kj = 2πδij we can introduce the reciprocal lattice vectors of the

nanotube
~K1 = c1

~b1 + c2
~b2 (3.34)

~K3 = c3
~b1 + c4

~b2. (3.35)

Calculating
~C · ~K1 = 2π, ~T · ~K1 = 0, (3.36)

~C · ~K2 = 0, ~T · ~K2 = 2π. (3.37)

we find:

c1 = − t2
N
, c2 =

t1
N

(3.38)

c3 =
m

N
, c4 = − n

N
. (3.39)

Hence the reciprocal lattice vectors are given by:

~K1 =
1

N
(−t2~b1 + t2~b2) (3.40)

~K2 =
1

N
(m~b1 − n~b2). (3.41)

Tight binding of carbon nanotubes

The electronic structure of a single wall carbon nanotube tube is given by

zone folding the Brillouin zone of graphene

Eµ(~k) = Eg(k
~K2

| ~K2|
+µ ~K1), µ = 0, . . . , N − 1, −π

T
< k <

π

T
. (3.42)

This means that the wave vector in the circumferential direction is quantized.

If the cutting line passes through a K point we have a metallic, otherwise a

semiconducting carbon nanotube. The condition for a metallic nanotube is

~Y K =
2n+m

3
~K1, (3.43)
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which means that (2n + m) has to be a multiple of 3. Taking ε2p = s0 = 0

and ignoring curvature effects the nonzero Hamiltonian elements are

HAB(~k) = γ0f(~k), HBA(~k) = H∗AB(~k), (3.44)

f(~k) =
3∑
l=1

e−i
~k·~bAl

= e−ikxa/
√

3 + 2eikxa/2
√

3 cos(kya/2) (3.45)

kx = K1 cos(α)−K2 sin(α) (3.46)

ky = K1 sin(α) +K2 cos(α) (3.47)

where α = π/6− θ. The energy eigenvalues are a function of α, K1 and K2.

Ec,v(~k) = ±γ|f(~k)| (3.48)

|f(~k)| =
√

3 + 2 cos(kya) + 4 cos(kya/2) cos(
√

3kxa/2) (3.49)

Kµ
1L = 2πµ, µ = 0, . . . , N − 1, (3.50)

− π/T ≤ K2 ≤ π/T (3.51)

For a zigzag carbon nanotube with α = π/6 we find

kx =
1

2
(
√

3K1 −K2) (3.52)

ky =
1

2
(K1 +

√
3K2) (3.53)

Ec,v(k) = ±γ0

√
3 + 2 cos(

2πµ

n
) + 4 cos(

πµ

n
) cos(

√
3K2a

2
). (3.54)

For a armchair nanotube with α = 0 we find

kx = K1 (3.55)
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ky = K2 (3.56)

Ec,v(k) = ±γ0

√
3 + 2 cos(K2a) + 4 cos(

πµ

n
) cos(

K2a

2
) (3.57)

For a known band-structure it is possible to calculate the electronic density

of states.

3.1.3 Electric dipole vector of carbon nanotubes

In this section we mainly follow [Zar08] and [ZP09]. The electric dipole

matrix element is given by

~dc~k′,v~k = −e〈Ψc(~k
′, ~r)|~r|Ψv(~k, ~r)〉. (3.58)

Here v and c label the valence and conducting bands and Ψv,c(~k, ~r) are

the eigenfunctions of the unperturbed Hamiltonian with the eigenenergies

Ev,c(~k). This can be rewritten in

〈Ψc(~k
′, ~r)|~r|Ψv(~k, ~r)〉 =

1

Ec(~k′)− Ev(~k)
〈Ψc(~k

′, ~r)|[Ĥ, ~r]|Ψv(~k, ~r)〉. (3.59)

Ψv,c(~k, ~r) can be expanded in Bloch functions which, in turn, can be expanded

in atomic functions

〈Ψc(~k
′, ~r)|Ĥ~r|Ψv(~k, ~r)〉 =

∑
ij

C∗ci(
~k′)Cvj(~k)

× 〈φi(~k′, ~r)|Ĥ~r|φj(~k, ~r)〉

=
1

N

∑
ij

C∗ci(
~k′)Cvj(~k)

∑
st

e−i
~k′·~Rsiei

~k·~Rtj

× 〈ψ(~r − ~Rsi)|Ĥ~r|ψ(~r − ~Rtj)〉

=
1

N

∑
ij

C∗ci(
~k′)Cvj(~k)

∑
st

e−i
~k′·~Rsiei

~k·~Rtj

× 〈ψ(~r − ~Rsi)|Ĥ|ψ(~r − ~Rtj)〉~Rtj. (3.60)
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In the last expression we have used that the atomic orbitals are eigenfunctions

of the coordinate operators. 〈~rĤ〉 can be calculated in a similar way. Hence

〈Ψc(~k
′, ~r)|~r|Ψv(~k, ~r)〉 =

1

Ecv(~k′, ~k)

1

N

∑
ij

C∗ci(
~k′)Cvj(~k)

∑
st

e−i
~k′·~Rsiei

~k·~Rtj

× 〈ψ(~r − ~Rsi)|Ĥ|ψ(~r − ~Rtj)〉(~Rtj − ~Rsi). (3.61)

Here Ecv(~k
′, ~k) = Ec(~k

′) − Ev(~k). By changing the variable of integration

from ~r to ~r′ = ~r − ~Rsi and after that dropping the prime, we obtain

〈Ψc(~k
′, ~r)|~r|Ψv(~k, ~r)〉 =

1

Ecv(~k′, ~k)

1

N

∑
ij

C∗ci(
~k′)Cvj(~k)

∑
st

e−i
~k′·~Rsiei

~k·~Rtj

× 〈ψ(~r)|Ĥ|ψ(~r − (~Rtj − ~Rsi))〉(~Rtj − ~Rsi). (3.62)

Considering graphene with two different atoms A and B in a unit cell we find

〈Ψc(~k
′, ~r)|~r|Ψv(~k, ~r)〉 =

1

Ecv(~k′, ~k)

1

N
(C∗cA(~k′)CvB(~k)

∑
st

e−i
~k′·~RsAei

~k·~RtB

× 〈ψ(~r)|Ĥ|ψ(~r − (~RtB − ~RsA))〉(~RtB − ~RsA)

+ C∗cB(~k′)CvA(~k)
∑
st

e−i
~k′·~RsBei

~k·~RtA

× 〈ψ(~r)|Ĥ|ψ(~r − (~RtA − ~RsB))〉(~RtA − ~RsB)).(3.63)

With ~RtB = ~RsA +~bAl and ~RtA = ~RsB +~bBl , where ~bAl and ~bBl (l = 1, 2, 3) are

the nearest-neighbor carbon atom vectors, and |~bBl | = |~bBl | = a/
√

3 the bond

length, one finds

〈Ψc(~k
′, ~r)|~r|Ψv(~k, ~r)〉 =

1

Ecv(~k′, ~k)

1

N
(C∗cA(~k′)CvB(~k)

∑
s

3∑
l=1

e−i(
~k−~k′)·~RsAei

~k·~bAl ~bAl

× 〈ψ(~r)|Ĥ|ψ(~r −~bAl )〉

+ C∗cB(~k′)CvA(~k)(~k)
∑
s

3∑
l=1

e−i(
~k−~k′)·~RsBei

~k·~bBl ~bBl

× 〈ψ(~r)|Ĥ|ψ(~r −~bBl )〉). (3.64)
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By defining the atomic dipole vectors

~vA(~k) = −
3∑
l=1

e−i
~k·~bAl ~bAl , ~vB(~k) = −

3∑
l=1

e−i
~k·~bBl ~bBl (3.65)

and replacing ~bAl and ~bBl by −~bAl and −~bBl we find the general form of the

electric dipole matrix element

~dc~k′,v~k =
−eγ0

NEcv(~k′, ~k)
(C∗cA(~k′)CvB(~k)

∑
s

ei(
~k−~k′)·~RsA~vA(~k)

+ C∗cB(~k′)CvA(~k)
∑
s

ei(
~k−~k′)·~RsB~vB(~k)) (3.66)

with γ0 = 〈φ(~r)|Ĥ|φ(~r +~bA,Bl ).

Parallel polarization

For parallel polarization, where the direction of the electric field is along the

nanotube axis Z, all A(B) atoms have the same Z component of the atomic

dipole vector ~vA, (~vB)

dZ
c~k′,v~k

=
−eγ0

Ecv(~k′, ~k)
(C∗cA(~k′)CvB(~k)vZA(~k) + C∗cB(~k′)CvA(~k)vZB(~k))δ~k′,~k. (3.67)

Using ~bl = ~bAl = −~bBl and therefore

vZB(~k) = −vZ∗A (~k) (3.68)

vZB(~k) = −
3∑
l=1

e−i
~k·~blbZl =

1

iγ0

d

dK2

HAB(~k) (3.69)

we find:

dZc,v(
~k) =

−eγ0√
3Ecv(~k)

(C∗cA(~k)vZA(~k) + CcA(~k)vZ∗A (~k)). (3.70)
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With the Hamiltonian elements one arrives at

vZA(k) =
a√
2

sinα(e−ikxa/
√

3

− eikxa/2
√

3 cos(kya/2)) + iaeikxa/2
√

3 cos(α) sin(kya/2) (3.71)

C∗cA(k)vZA(k) =
1

√
2|f(~k)|

a√
3

(sin(α)(1− ei
√

3kxa/2 cos(kya/2)

+ 2e−i
√

3kxa/2 cos(kya/2)− 2 cos(kya/2)2)

+ i
√

3 cos(α) sin(kya/2)(ei
√

3kxa/2 + 2 cos(kya/2))).(3.72)

Then the electric dipole vector for parallel polarization is found

dZc,v(k) =
2eaγ2

0√
3E2

cv(k)
(sin(α)(cos kya− cos

√
3kxa

2
cos

kya

2
)

+
√

3 cosα sin
kya

2
sin

√
3kxa

2
). (3.73)

Perpendicular polarization

In the case of perpendicular polarization it is useful to work with right and

left handed operators v± = vx ± ivy

vAx (φj) =
1

2
[eiφjvA0

+ (~k) + e−iφjvA0
− (~k)] (3.74)

vAx (φj) =
−i
2

[eiφjvA0
+ (~k)− e−iφjvA0

− (~k)] (3.75)

vAx (φj) =
−1

2
[eiφjvB0

+ (~k) + e−iφjvB0
− (~k)] (3.76)

vAx (φj) =
i

2
[eiφjvB0

+ (~k)− e−iφjvB0
− (~k)]. (3.77)

Here φj = 2πj/N, (j = 0, 1, . . . , N − 1) is the phase difference between two

A or two B sites. With these atomic dipole vectors the x and y components

47



CHAPTER 3. CARBON NANOTUBES

of the electric dipole matrix element are given by

dX
c~k′,v~k

=
−eγ0δ ~K2, ~K′2

2Ecv(~k′, ~k)
[(C∗cA(~k′)CvB(~k)vA0

+ (~k)

− C∗cB(~k′)CvA(~k)vB0
+ (~k))δµ′=µ+1

+ (C∗cA(~k′)CvB(~k)vA0
− (~k)

− C∗cB(~k′)CvA(~k)vB0
+ (~k))δµ′=µ−1], (3.78)

dY
c~k′,v~k

=
ieγ0δ ~K2, ~K′2

2Ecv(~k′, ~k)
[(C∗cA(~k′)CvB(~k)vA0

+ (~k)

− C∗cB(~k′)CvA(~k)vB0
+ (~k))δµ′=µ+1

− (C∗cA(~k′)CvB(~k)vA0
− (~k)

− C∗cB(~k′)CvA(~k)vB0
+ (~k))δµ′=µ−1]. (3.79)

The next step is to find vA0
± and vB0

± . Therefore we have to look at the

positions of the A and B atoms of graphene 3.2 and obtain:

Figure 3.2: Unrolled and rolled-up positions of an A atom and its three
nearest B atoms [ZP09].
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bA0
ix = R cos(θi)−R, i = 1, 2, 3 (3.80)

bA0
1y = R sin(θ1), bA0

2y = −R sin(θ2), bA0
3y = −R sin(θ3) (3.81)

bB0
ix = −bA0

ix , bB0
iy = −bA0

iy . (3.82)

Here the angles of the three nearest neigbor atoms are given by

θ1 =
SA0B1

R
=

π(n+m)

n2 +m2 + nm
(3.83)

θ2 =
SA0B2

R
=

πm

n2 +m2 + nm
(3.84)

θ3 =
SA0B3

R
=

πn

n2 +m2 + nm
. (3.85)

For the x and y components of atomic dipole vectors we get:

vA0
x = −

3∑
l=1

ei
~k·~bA0

l bA0
lx

= −R(e−ikxb[cos(θ1)− 1] + eikxb/2−ikyb
√

3/2[cos(θ2)− 1]

+ eikxb/2+ikyb
√

3/2(cos(θ3 − 1))) (3.86)

vA0
y = −

3∑
l=1

ei
~k·~bA0

l bA0
ly

= R(e−ikxb sin(θ1)− 1] + eikxb/2−ikyb
√

3/2 sin(θ2)

+ eikxb/2+ikyb
√

3/2 sin(θ3)) (3.87)

vB0
x,y = −vA0∗

x,y . (3.88)

The right and left handed operators are therefore given by

vA0
± = vA0

x ± ivA0
y (3.89)
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vA0
± = R(e−ikxb(1− e±iθ1) + eikxb/2−ikyb

√
3/2(1− e∓iθ2)

+ eikxb/2+ikyb
√

3/2(1− e∓iθ3)) (3.90)

vB0
± = −vA0∗

± = −R(eikxb(1− e∓iθ1) + e−ikxb/2+ikyb
√

3/2(1− e±iθ2)

+ e−ikxb/2−ikyb
√

3/2(1− e±iθ3)). (3.91)

They can be rewritten in the following form:

vA0
± = −vB0∗

± = |vA0
± |eiψ± (3.92)

with

ψ± = arctan(X±/Y±) (3.93)

X± = − sin(b1)[1− cos(θ1)]∓ sin(θ1) cos(b1)

+
3∑
i=2

(sin(bi)[1− cos(θi)]± sin(θi) cos(bi)) (3.94)

Y± =
3∑
i=1

(cos(bi)[1− cos(θi)]∓ sin(θi) sin(bi)). (3.95)

With the atomic dipole vectors the final form of the electric dipole matrix

elements are found:

|dx
c~k′,v~k
| = |dY

c~k′,v~k
| =

eγ0|vA0
± |δ ~K2

~K′2

2Ecv(~k′, ~k)
| sin[

2ψ±(~k)− ψc(~k′)− ψv(~k)

2
]|δµ′=µ±1

(3.96)

ψc,v = arctan(
2 cos(kyb

√
3/2) sin(kxb/2)− sin(kxb)

2 cos(kyb
√

3/2) cos(kxb/2)− cos(kxb)
). (3.97)

50



Chapter 4

Imaging excitons in carbon

nanotubes with plasmonic

nanoparticles

Figure 4.1: In this figure an exciton in a semiconducting single wall carbon
nanotube is shown.

4.1 Excitons

An exciton can be formed by exciting an electron from the valence band into

the conducting band via a photon. In this way a hole in the valence band
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is formed to which the electron is bound via the Coulomb force. Excitons

describe excitations of the valence electrons in semiconductors. There are two

types of limiting cases. If the screening reduces the Coulomb force between

the electron and the hole the result is an exciton with a large radius, known

as Mott-Wannier exciton. If the Coulomb interaction between the electron

and the hole is very strong an exciton with a small radius is formed, which

is known as Frenkel exciton.

4.1.1 Elementary excitations

An important concept in solid-state physics and nanophysics is the concept

of elementary excitations. The main elementary excitations in plasmonics

are the plasmons. They are collective excitations which correspond to a

collective motion of the system as a whole. Surface plasmon polaritons are

normal modes in solids which propagate as electromagnetic waves. The other

class of elementary excitations are quasiparticles which correspond to single

particles whose motions are modified by interactions with the other particles

in the system. Examples are electrons and holes in a solid. The bound state

of an electron and a hole via the Coloumb attraction known as exciton is

another elementary excitation. For a more detailed discussion of the concept

of elementary excitations we refer to [Mad96] and [Mah90].

4.1.2 The interband polarization

This section is based on [HK09]. The polarization ~P (t) is defined as the

expectation value of the electric dipole operator e~r

~P (t) =
∑
s

∫
d3r〈Ψ̂†s(~r, t)e~rΨ̂s(~r, t)〉

=
∑
s

∫
d3rtr[ρ0Ψ̂†s(~r, t)e~rΨ̂s(~r, t)]. (4.1)

ρ0 is the equilibrium statistical operator and Ψ̂†s(~r, t) and Ψ̂s(~r, t) are field

operators which are linear combinations of the creation and destruction op-
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erators. They are thus operators in the occupation-number Hilbert space

Ψ̂(~r) =
∑
k

Ψk(~r)ck (4.2)

Ψ̂†(~r) =
∑
k

Ψk(~r)
†c†k. (4.3)

For spin-1
2
-fermions the wave functions have two components

Ψk(~r) =

[
Ψk(~r)1

Ψk(~r)2

]
= Ψk(~r)α α = 1, 2. (4.4)

Field operators fulfill the following commutation and anti-commutation re-

lations for bosons and fermions, respectively:

[Ψ̂α(~r), Ψ̂†β(~r′)]∓ =
∑
k

Ψk(~r)αΨk(~r′)
∗
β = δαβδ(~r − ~r′) (4.5)

[Ψ̂α(~r), Ψ̂β(~r′)]∓ = [Ψ̂†α(~r), Ψ̂†β(~r′)]∓ = 0. (4.6)

The upper sign refers to bosons and the lower sign refers to fermions. Hamil-

tonian operators can be written with this operators. These expressions look

like the expectation value of a Hamiltonian taken between wave functions,

therefore this is often called second quantization. We refer to [Sak67] and

[WF03] . In a spatially homogeneous system the field operators can be ex-

panded in a series of Bloch functions Ψλ(~k, ~r)

Ψ̂s(~r, t) =
∑
λ,~k

aλ,~k,s(t)Ψλ(~k, ~r). (4.7)

Here λ is the band index. Inserting this expansion in the equation of the

polarization yields

~P (t) =
∑

s,λ,λ,~k,~k′

〈a†
λ,~k,s

aλ′,~k′,s〉
∫
d3rΨ∗

λ,~k
(~r)e~rΨλ′,~k′(~r). (4.8)
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By calculating the integral∫
d3rΨλ,~k(~r)e~rΨλ′,~k′(~r) w δ~k,~k′

~dλλ′ (4.9)

we obtain the polarization in a spatially homogeneous system

~P (t) =
∑

~k,s,λ,λ′

〈a†
λ,~k,s

(t)aλ′,~k,s(t)〉~dλλ′

=
∑

~k,s,λ,λ′

Pλλ′,~k,s(t)
~dλλ′ . (4.10)

Here

Pλλ′,~k,s(t) = 〈a†
λ,~k,s

(t)aλ′,~k,s(t)〉 (4.11)

is the pair function. Choosing λ = v and λ′ = c and suppressing the spin

index s we find

Pv,c,~k(t) = 〈a†
v,~k

(t)ac,~k(t)〉. (4.12)

The interaction Hamiltonian between the semiconductor electrons and the

electric field is given by

HI =

∫
d3rΨ̂†(~r)[−e~r] ~E(~r, t)Ψ̂(~r). (4.13)

If the electric field has a monochromatic space dependence

~E(~r, t) = ~E(t)
1

2
[ei~q·~r + c.c.] (4.14)

and assuming a spatially homogeneous system we get

HI w −
∑
~k

E(t)(a†
c,~k
av,~kdcv + h.c.). (4.15)

The Coulomb and kinetic contributions are described by

Hel =
∑
λ,~k

Eλ,ka
†
λ,~k
aλ,~k +

1

2

∑
~k,~k′,~q 6=0,λ,λ′

Vqa
†
λ,~k+~q

a†
λ′,~k′−~q

aλ′,~k′aλ,~k. (4.16)
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For a two-band model we restrict ourselves to λ, λ′ = c, v.

Hel =
∑
~k

[Ec,ka
†
c,~k
ac,~k + Ev,ka

†
v,~k
av,~k]

+
1

2

∑
~k,~k′,~q 6=0

Vq[a
†
c,~k+~q

a†
c,~k′−~q

ac,~k′av,~k

+ a†
v,~k+~q

a†
v,~k′−~q

av,~k′av,~k + 2a†
c,~k+~q

a†
v,~k′−~q

av,~k′ac,~k] (4.17)

with

Ec,k = ~εc,k = Eg + ~2k2/2mc (4.18)

Ev,k = ~εv,k = ~2k2/2mv. (4.19)

Here mc is the electron mass, mv is the hole mass and Eg is the energy gap.

The full Hamiltonian is given by

H = HI +Hel. (4.20)

The equation of motion for the interband polarization is obtained by inserting

it into the Heisenberg equation of motion.

~[i
d

dt
− (εc,k − εv,k)]Pvc,~k(t) = [nc,k(t)− nv,~k(t)]dcvE(t)

+
∑
~k′,~q 6=0

Vq[〈a†c,~k′+~qa
†
v,~k−~q

ac,~k′ac,~k〉

+ 〈a†
v,~k′+~q

a†
v,~k−~q

av,~k′ac,~k〉

+ 〈a†
v,~k′
a†
c,~k′−~q

ac,~k′ac,~k−~q〉

+ 〈a†
v,~k
a†
v,~k′−~q

av,~k′ac,~k−~q〉] (4.21)

nλ,~k = 〈a†
λ,~k
aλ,~k〉 (4.22)
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By using the random phase approximation the equation for the interband

polarization pair function is found:

~[i
d

dt
− (ec,k − ev,k)]Pvc,~k(t) = [nc,~k(t)− nv,~k(t)](dcvE(t) +

∑
~q 6=~k

V|~k−~q|Pvc,~q)

(4.23)

with

eλ,k = ελ,k + Σexc,λ(k) (4.24)

~Σexc,λ(k) = −
∑
q 6=k

V|~k−~q|nλ,~q. (4.25)

the renormalized frequencies eλ,k and the exchange self-energy ~Σexc,λ(k).

Wannier equation

In the situation of quasi-equilibrium and an unexcited crystal we get

nc,~k(t)→ fc,k and nv,~k → fv,k (4.26)

fc,k ≡ 0 and fv,k ≡ 1. (4.27)

The Fourier transform of the equation of motion for the interband polariza-

tion is given by

(~(ω + iδ)− Eg −
~2k2

2mr

)Pvc,~k(ω) = −[dcvE(ω) +
∑
~q 6=~k

V|~k−~q|Pvc,~q(ω)]. (4.28)

Here 1/mr = 1/mc − 1/mv is the inverse reduced mass. By multiply-

ing with L3

(2π)3

∫
d3k . . . from the left and using a Fourier transform f(~r) =

L3

(2π)3

∫
d3qf~qe

−i~q·~r we find:

[~(ω + iδ)− Eg +
~2~∇2

r

2mr

+ V (r)]Pvc(~r, ω) = −dcvE(ω)δ(~r)L3. (4.29)
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Pvc can be expanded into the solution of the corresponding homogeneous

equation,

[
−~2~∇2

r

2mr

− V (r)]Ψλ(~r) = EvΨλ(~r) (4.30)

known as Wannier equation. This equation can be seen as a two-particle

Schrödinger equation for the relative motion of a hole and a electron inter-

acting via the attractive Coulomb potential.

4.2 The interband polarization for carbon nan-

otubes

To find the interband polarization for a carbon nanotube we consider the

following many-body hamiltonian in the two-band approximation, where we

restrict the treatment to one electron and one hole band

H0 =
∑
i=e,h

∫
ψ†i (~r)(−

~∇2

2mi

+ Vi(~r))Ψi(~r)dτ

+

∫
Veh(~r, ~r′)Ψ

†
e(~r)Ψe(~r)Ψ

†
h(
~r′)Ψh(~r′)dτdτ

′. (4.31)

Here ψ†(~r) and Ψ(~r) are the field operators. For sufficiently low densities we

can ignore Vee and Vhh. For the optical coupling in rotating wave approxi-

mation we have:

Hop = −
∫

(Ω(~r, t)Ψ†e(~r)Ψ
†
h(~r) + Ω∗(~r, t)Ψh(~r)Ψe(~r))dτ (4.32)

with

Ω = ~d · ~E(~r, t) (4.33)

the Rabi energy. We refer to [IY99] [MW95] [SZ97] . In the rotating wave

approximation the terms which oscillate rapidly were neglected. To derive

the equation of motion for the interband polarization

~dp(~r, ~r), (4.34)
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with the pair function

p(~re, ~rh) = 〈Ψh(~rh)Ψe(~re)〉, (4.35)

and d the dipole matrix element we use the Heisenberg equation of motion:

[Ψe(~r), H0] = (−
~∇2

2me

+ Ve(~r))Ψe(~r) +

∫
Veh(~r, ~r′)nh(~r′)Ψe(~r)dτ

′ (4.36)

[Ψh(~r), H0] = (−
~∇2

2mh

+ Vh(~r))Ψh(~r) +

∫
Veh(~r, ~r′)ne(~r′)Ψh(~r)dτ

′ (4.37)

[Ψe(~r), Hop] = −Ω(~r, t)Ψ†h(~r) (4.38)

[Ψh(~r), Hop] = Ω(~r, t)Ψ†e(~r) (4.39)

with ni(~r′) = 〈Ψ†i (~r′)Ψi(~r′)〉. Hence, we find for the time evolution of the

pair function:

iṗ(~re, ~rh) = (−
~∇2
e

2me

−
~∇2
h

2mh

+ Ve(~re) + Vh(~rh))p(~re, ~rh)

+

∫
[Veh(~re, ~s)〈Ψh(~rh)nh(~s)Ψe(~re)〉

+ Veh(~s, ~rh)〈Ψh(~rh)ne(~s)Ψe(~re)〉]ds

− Ω(~re, t)〈Ψh(~rh)Ψ
†
h(~re)〉+ Ω(~rh, t)〈Ψ†e(~rh)Ψe(~re)〉. (4.40)

With

Ψh(~rh)Ψ
†
h(~re) = δ(~re − ~rh)−Ψ†h(~re)Ψh(~rh) (4.41)

[Ψh(~rh), nh(~s)] = δ(~rh − ~s)Ψh(~rh) (4.42)

and considering a low density limit we get

iṗ(~re, ~rh) = (−
~∇2
e

2me

−
~∇2
h

2mh

+ Ve(~re) + Vh(~rh) + Veh(~re, ~rh))p(~re, ~rh)

− δ(~re − ~rh)Ω(~re, t). (4.43)

58
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For an exciton without a confinement potential the following equation of

motion holds:

(−
~∇2

2µ
+ Veh(~ρ))φ0(~ρ) = ε0φ0(~ρ). (4.44)

Here µ is the reduced mass and ~ρ is relative coordinate. In the rigid-exciton

approximation the center-of-mass and the relative coordinates are decoupled

p(~re, ~rh) = P (~r)φ0(~ρ). (4.45)

~r is the center of mass coordinate and ~ρ the relative coordinate. Hence

iṖ (~r)φ0(~ρ) = (−
~∇2

2M
+Ve(~re)+Vh(~rh)+ε0)φ0(~ρ)P (~r)−δ(ρ)Ω(~r+

~ρ

2
, t). (4.46)

This can be rewritten in

iṖ (~r) = (−
~∇2

2M
+ V (~r))P (~r)− φ0(0)Ω(~r, t), (4.47)

with

V (~r) =

∫
(Ve(~r +

~ρ

2
) + Vh(~r −

~ρ

2
) + ε0)φ2

0(~ρ)dρ (4.48)

the center-of-mass potential. We refer to [ZGR97]. The polarization becomes

~dp(~r, ~r) = ~dφ0(0)P (~r). (4.49)

Considering different exciton polarizations λ, with the same exciton wave-

function φ0, and one spatial dimension z in the direction of the nanotube

axis, we have:
~P (z) = φ0(0)

∑
λ

~dλPλ(z) (4.50)

iṖλ(z) = (− ∂2
z

2M
+ V (z))Pλ(z)− Ωλ(z, t) (4.51)

Ωλ(z) = φ0(0)~dλ ~E(z, t). (4.52)

The interaction with the electromagnetic field is described through a dyadic

Green function Ĝ = Ĝ0 + Ĝrefl, where Ĝ0 is the dyadic Green function of
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vacuum and Ĝrefl describes the reflection at the metallic nanoparticle. The

Green function provides the link between the current source and the electric

field. If the electric field depends on the orientation of the source the Green’s

function must account for all possible orientations and it has to be a tensor.

We refer to [Che99]. Hence

Ωλ(z) = φ0(0)~dλ ~Einc(z) + φ2
0(0)

∫ ∑
λ′

~dλĜrefl(z, z
′)~dλ′Pλ′(z

′)dz′. (4.53)

Here ~Einc is the incoming field and Ĝrefl is the part which is associated with

the reflection at the metallic nanoparticle. We find:

ωPλ(z) = (− ∂2
z

2M
+ V (z))Pλ(z)− ~d′λ

~Einc(z)

−
∑
λ′

∫
~d′λĜrefl(z, z

′)~d′λ′Pλ′(z
′)dz′ (4.54)

with
~d′λ = φ0(0)~dλ. (4.55)

To find the normalization of the wavefunction

φ0 = xe−c, (4.56)

with

c =

√
s2

k2
+
z2

k2
' r

k
(4.57)

where k is a variational parameter used to minimize the energy and is found

to be close to 0.5 we calculate

x22π

∫ ∞
0

re−4rdr = x2π

8
!

= 1 (4.58)

and get

x = 2

√
2

π
=

√
8

π
. (4.59)
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Hence

φ0(0) =

√
8

π
. (4.60)

We refer to [Kam07] and [Ped03]. By solving

ωPλ(z) = (− ∂2
z

2M
+ V (z))Pλ(z)− ~d′λ

~Einc(z)

−
∑
λ′

∫
~d′λĜrefl(z, z

′)~d′λ′Pλ′(z
′)dz′ (4.61)

for Pλ(z) the polarization of the carbon nanotube can be calculated.

Results

Figure 4.2 shows the first 10 wave functions and the confinement poten-

tial of the excitons. Figure 4.3 shows the normalized scattered intensity for

z-polarized light propagating in the x-direction and exciting a system consist-

ing of a (1, 0) zigzag carbon nanotube in z-direction and a spherical metallic

nanoparticle with different x-positions relative to a the nanotube. The diam-

eter of the nanoparticle was chosen 2.5 nm. For gold the dielectric function

of [JC72] and for the background the dielectric function of water εout = 1.52

was used. The positions of the metallic nanoparticle which were studied

were (10, 0, 0) nm , (10, 0, 100) nm and (10, 0, 150) nm . Here (0, 0, 0) is the

center of the nanotube. The energy gap of the carbon nanotube was given

by 2.3 eV. The damping of the excitons in the carbon nanotube was given

by γ = 0.1 · 10−3 eV and the exciton mass was given by 2 me. The dipole

moment of the excitons along the three spatial directions for the (1, 0) zigzag

carbon nanotube was given by e · ~r = e · [0, 0, 0.142028] nm . The resonance

energy and amplitude of the scattered intensity of the coupled system shifts

for the different positions of the metallic nanoparticle relative to the carbon

nanotube.
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Figure 4.2: This figure shows the first 10 wave functions and the confinement
potential of the excitons.

Figure 4.3: Scattered intensity for z-polarized light propagating in the x-
direction and exciting a system consisting of a (1, 0) zigzag carbon nanotube
in z-direction and a spherical gold nanoparticle with different x-positions
relative to a the nanotube. The diameter of the nanoparticle was chosen
2.5 nm. The positions of the metallic nanoparticle which were studied were
(10, 0, 0) nm , (10, 0, 100) nm and (10, 0, 150) nm . Here (0, 0, 0) is the cen-
ter of the nanotube. For gold the dielectric function of [JC72] and for the
background the dielectric function of water εout = 1.52 was used. The en-
ergy gap of the carbon nanotube was given by 2.3 eV. The damping of the
excitons in the carbon nanotube was given by γ = 0.1 · 10−3 eV and the
exciton mass was given by 2 me. The dipole moment of the excitons along
the three spatial directions for the (1, 0) zigzag carbon nanotube was given
by e · ~r = e · [0, 0, 0.142028] nm .
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Conclusion

We studied the imaging of excitons in single-walled carbon nanotubes with

plasmonic nanoparticles. We investigated the scattered intensity for differ-

ent positions of the metallic nanoparticle relative to the carbon nanotube.

In particular, we considered a system consisting of a (1, 0) zigzag carbon

nanotube coupled to a gold nanoparticle. The same procedure can be used

for other types of carbon nanotubes with other parallel and perpendicular

electric dipole matrix elements.
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