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Chapter 1

Introduction

Semiconductor quantum dots (QDs) are nanostructures in which carriers
are confined in all three spatial directions on a length scale comparable to
the de-Broglie wavelength |1, 2]. This results in a delta-like density of states
reminiscent of natural atoms. For that reason QDs occupied by neutral multi-
exciton complexes (i.e., multiple electron-hole pairs) are often referred to as
artificial atoms. Occupancies with different numbers of electrons and holes
result in charged exciton complexes which may be considered as artificial
tons. When a QD is placed in a field-effect structure it becomes possible to
charge the dot in a well controlled fashion. Because of the Coulomb blockade
mechanism an external bias voltage allows to transfer electrons from a nearby
n-type reservoir to the dot one after the other |3, 4].

These unique properties were exploited by Zrenner et al. [5] to fabri-
cate a QD based device which allows to create a single-electron photocurrent
through optical triggering. The schematic setup is depicted in Fig. 1.1:
A short laser-pulse coherently excites an exciton in a quantum dot embed-
ded in a field-effect structure; if the structure is properly designed, such
that tunneling occurs on a much shorter timescale than radiative decay, the
electron-hole excitation of the quantum dot decays into a separated elec-
tron and hole within the contacts, which is detected as the photocurrent.
Within this scheme it thus becomes possible to transfer optical excitations in
a deterministic way to electrical currents.

In this work we exploit this finding to propose a device which allows the
optically triggered creation of a spin-entangled electron pair. The proposed
structure (Fig. 1.2) is identical to the one used by Zrenner et al., with the
only exception that the dot is initially populated by a single surplus electron.
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n-type

Figure 1.1: Band diagram of the structure used by Zrenner et al. [5]. For
discussion see text.

This can be achieved by applying an external bias voltage such that an elec-
tron is transferred from a nearby n-type reservoir to the dot, where further
charging is prohibited because of the Coulomb blockade. Optical excitation
of this structure then results in the excitation of a charged exciton. Appro-
priate tuning of light polarization and frequency allows to selectively excite
the charged-exciton groundstate, where the two electrons have opposite spin
orientations. Since within the field-effect structure the charged exciton is
not a stable configuration, in a consequent step one electron and hole will
tunnel out from the dot to the nearby contacts; here, the system can follow
two pathways, where either the electron in the dot has spin-up and the one
in the reservoir spin-down orientation or vice versa. According to the laws
of quantum mechanics, the total state of the system thus becomes a super-
position of these two configurations; as will be proven in this work, n this
state the electron spins are mazimally entangled. Thus, the proposed device
is an optically triggered turnstile for spin-entangled electrons, which could be
used in future quantum information applications to establish entanglement
between spatially separated sites.

In a sense, our scheme is similar to the proposal of Benson et al. |6] in
which entangled photons are created in the cascade decay of a biexciton.
However, in the system of our present concern additional difficulties arise



n-type

(a)

Figure 1.2: (a) Schematic band diagram of the proposed structure. (b) Level
scheme of the spin-degenerate electron states |0 =t,J) and the charged-
exciton state |3) in the dot.

because the tunnel-generated electron and hole do not propagate freely (as

photons would in the corresponding scheme) but are subject to interactions
in the contact. The resulting scatterings of the entangled particles hamper
a straightforward interpretation of the functionality of the proposed device
and call for a careful theoretical analysis. It is the purpose of this work to
provide a comprehensible theory accounting for the complete cascade process
of: the buildup of three-particle coherence through tunneling; the swapping of
quantum coherence to spin entanglement through dephasing and relaxation
in the reservoirs; and finally the process of disentanglement through spin-
selective scatterings.

Within our theoretical approach we consider a QD interacting with its
environment (i.e., open system) where the carriers are subject to different
scattering channels. For low temperatures we can neglect phonon processes
in the dot, and the tunneling process where one electron and hole tunnel
out of the dot becomes the only relevant scattering. As for the electron in
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the reservoir, we assume that spin-unselective scattering processes take place
on a much shorter time-scale (~ps) than spin-selective scatterings (~mns |7]).
These different time-scales will allow us to separately describe these two pro-
cesses, where the first ones lead to dephasing and relaxation, whereas the
latter ones will destroy the spin entanglement. To account for such envi-
ronment interactions in this work we use the framework of density matrices
[8, 9], whose time evolution is computed through an unraveling of the master
equation, i.e., quantum-jump approach [10-12]. Since the main emphasis of
our work is on the identification of the basic schemes of the buildup and
decay of entanglement, we rely on a simplified description scheme of these
environment interactions, which will allow us to derive analytic expressions
throughout.

This work has been organized as follows: In Chapter 2 the basic concepts
of the density matrix approach, and of the solution of the master equation in
Lindblad form through unraveling will be introduced. Next, in Chapter 3 our
model of the interacting dot-reservoir system will be specified. In Chapter 4
we present the detailed analytic calculations. Finally, in Chapter 5 we give
a short summary. For brevity, the technical details and the more lengthy
calculations have been postponed to various appendices.



Chapter 2

Density-Operator Approach for
Open Systems

2.1 Density Operator

A system interacting with its environment (open system) no longer can be
described in terms of a pure wavefunction. Instead, a density-operator ap-
proach has to be adopted. It is the purpose of this chapter to introduce the
basic properties of such an approach. I will start with the definition of the
density operator and density matrix! for pure ensembles. Next, the defini-
tion of a density matrix for mixed ensembles will be introduced. Often it is
the case that one is only interested in the properties of a part of the total
system (i.e., subsystem), which can be described in terms of a reduced density
matriz. At last, I will derive the equation of motion for the density matrix in
the Schrédinger and interaction picture (Liouville-von-Neumann equation).

2.1.1 Density Operator for Pure Ensembles

A pure state [¢) is characterized by the coefficients ¢, of its expansion in a
complete set of vectors |u,) viz

) =" culu). (2.)

n

I This is a possible mathematical representation of the density operator.
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For a system in this state, an operator A has the expectation value
(A) = (V][A[0)
= Z Cn i (U | Alty,). (2.2)

nn!

From the knowledge of |¢)) we can define the density matrix

p= Y0l =" chealun)(unl, (2.3)

nn’

which has the matrix elements
P = (nlp|n) = cach. (2:4)

The diagonal matrix elements p,,, are the probabilities to find the system in
state |u,), whereas the off-diagonal elements account for the quantum coher-
ence. We emphasize that the density-matrix description remains valid when
the system under investigation interacts with its environment, in contrast to
the wavefunction description which is restricted to isolated systems.

With the help of the density operator expression (2.2) becomes

(A) =tr{pA} = tr{Ap}, (2.5)

where trB is the trace, i.e., the sum over the diagonal elements of 3:

tr B= Z(71|B|n). (2.6)
Here {|n)} denotes a complete set of orthonormal states, i.e.?
S ol =1

ZNote that the trace is independent of the basis

trB=> (nBln) =YY (n|m)(m|Bin)

n m

- Z Z<77I‘B|n><n‘m,> = Z<77Z|B|m>7

m

N

for {|n)} and {|m)} being two different basis sets.
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(lln)y = &4y (2.7)
Thus, Eq. (2.5) reads
(oAl = SNl = 3 Al ) = (A). 0.5)

n n

From the knowledge of the density operator we can calculate any expectation
value of a system’s observable. Quite generally, the restrictions on the matrix
elements p,, are |13]:

1. The condition that (B) is real for every Hermitian operator B requires
p to be Hermitian, i.e.,

p=r

*
Prn = Pppt-

S

The condition that the unit operator 1 has the mean value 1 requires
tr (1p)=tr p= Z'O"" =1.
n

Thus tr p = > pn, represents the total probability of finding the
system in any state.

3. The condition that every operator with non-negative eigenvalues has a
non-negative expectation value, requires p to be positive definite:

Pnn > 0.

4. For pure ensembles p is idempotent, p?> = p, but in general holds

tr /)2 = Z |pnn’|2 S L.

nn'

2.1.2 Density Operator for Mixed Ensembles

When a system is in contact with its environment (open system), the density
matrix can no longer be described by one pure state. Following the frame-
work of statistical physics we introduce a description in terms of incoherent
superpositions of pure states |¢/;) with statistical weights p;

p= D il o] = O (29)
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The density matrix elements are

Prnt = Zpl- Cry €y = Ch) Cppe (2.10)
;

To each pure state corresponds an expectation value, (A); = (¥;|.A|¢;), which
results for the mixed ensemble in

= > il AlY) = D pidA)i = tr{pA}. (2.11)

where the last expression is completely analogous to that of the previous
section.

The restrictions for the density matrix elements are the same as discussed
before, but in general

= Z Zpipj|¢i)<z/;i|¢j><¢,j| £

tr p* < 1,if p; # 0 for more than one . (2.12)

Therefore, the criterion for a pure state is tr p> = 1, and tr p? < 1 otherwise.

2.1.3 Reduced Density Operator

Assume that the total system is composed of two subsystems 1 and 2, with
complete sets of orthonormal states {|n);} and {|m),}, respectively. Then
any pure state for the total system can be expanded as (see Appendix B)

[0) = cumn)i[m)s, (2.13)

with

Z |Com|? = 1. (2.14)

n,m

The corresponding density matrix is

p=[U) Z Z Crm Coig 1) 1[MY2 2(m |1 (1] (2.15)

n,m n' 1’71
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In many cases we are only interested in the properties of system 1, whereas
those of system 2 are irrelevant. In such cases, we can trace over system 2
viz

pL=1try p= Z CamCoim )1 1(1]. (2.16)

n,n’m

p1 is called the reduced density matriz of system 1.

Making a measurement on solely system 1 corresponds to an observable A
which only acts on system 1. The expectation value of A is

(A) = tri{pr A} = tritra{pA}. (2.17)
This expression shows that the knowledge of p; fully suffices to compute (A).

In general holds ,0% # p1. Only for a factorized state, i.e., ¢,,, = a,b, with

Z |an|? =1, Z b |* = 1 (2.18)

n m

pt = p1 holds. Otherwise p; represents the density matrix of a mixed ensem-
ble.

Thus, even when the total system is in a pure state (2.13) p; might be
represented by a mixed ensemble.

2.1.4 Liouville-Von-Neumann Equation
Liouville-Von-Neumann Equation in the Schrédinger Picture

In the last section we have seen that any quantum system can be described
by a density operator p. Next, we derive its equation of motion.

To this end, we start from the time derivative of the density operator

0 ,
) = gewo)
= OO+ DO, (219
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where an analogous expression would hold for mixed ensembles. This can be
cast with the Schrédinger equation (H = HT is a Hermitian Hamiltonian)

0 . |

i (1)) = H]w (1) (2.20)

()] = ()| 221
to the final form

2 p(t) = —[H. (1) (222)

o\ T TRt AL =

This is the Liouwville-von-Neumann equation (also referred to as the von-
Neumann equation), which is the quantum mechanical analog of the Liouville-
equation in classical statistical mechanics.

The density operator evolves in time according to the unitary time-evolution
operator U, i.e., UTU = UU' = 1. This can be seen from the formal solution
of the Schrédinger equation

[6(8)) = e T (t0)) = Ut to) |[¢:(to)), (2.23)

which results in
p(t) = Ul(t,t)p(to) U (t,ty), (2.24)

where p(ty) = |1(tg)) (¥ (to)] is the initial density operator.

We now focus on the case that the total system can be separated into two
parts S and R, where S is the system we are interested in, and R is the reser-
voir which will be traced over. Correspondingly, we divide the Hamiltonian
into the parts

H=Hq¢+ Hp+ H,, (2.25)

where Hg and Hp are the Hamiltonians for S and R, respectively, and H,
is the interaction between them. The reduced density operators of S and R,
ps(t) and pg(t), can be extracted from p(t) by tracing over the undesired
parts of the Hilbert space viz

ps(t) =tre p(t)
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pr(t) = trs p(t). (2.

They obey the master equations

[S]
[S]
D

i

pslt) =~ tra {H.p(0)]}

pult) =~ trs {[H. ()]} (2.27)

Liouville-Von-Neumann Equation in the Interaction Picture

It is often convenient to change from the Schrodinger to the interaction pic-
ture. We first rewrite the Hamiltonian (2.25) as

H=H,+H, (2.28)

where Hy = Hg + Hp.

The density operator in the interaction picture p!(t) is obtained from p(t)
via the unitary transformation

pl(t) = et p(t) em I, (2.29)

as discussed in more detail in Appendix A. Differentiating this equation with
respect to time

(1) = e S{Hy p ()] + () et (2.30)

and making use of the relation between operators in the Schrédinger and
interaction picture

p(t) = e~ wHol pl(t) e%HOI’, (2.31)
we obtain the equation of motion
i

() = 1L (1), ' (1) (2.32)

In comparison to the Schrédinger picture the density operator in the inter-
action picture evolves only due to the interaction-Hamiltonian H(t) .
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Lowest Order Perturbation Theory

Next, we show how to formally solve Eq. (2.32) in lowest order perturbation

theory. We formally integrate the Liouville-von-Neumann equation (2.32).
and obtain

i

p'(t) = p'(to) — 5/t dt'[Hi (1), p" (t')]. (2.33)

Substituting back to (2.32) gives

1) = U0 0] = 13 [ RO OL (23

If the system is composed of two parts S and R, and we are interested only in
system S, we can trace over the variables of system R to get for the reduced
density operator of the system S

hlt) = == / At o {[HL (). [HL(E), o' ()]}, (2.35)

‘0

In the last step we have assumed that

tre {[H] (t), p' (to)]} = 0, (2.36)

which is justified when at time t = ¢, there is no correlation between systems
S and R (e, ol (to) = phlto) © pl(to) ).

To evaluate the double commutator in (2.35) we make some assumptions.
Let us expand p!(#) under the integral in (2.35) in a Taylor series around
# =t
() =p'(t) + (' = )p(t 2.37
p(t)=p(t prt)+ ..., (2.37)

and assume that p!(#') varies sufficiently slow in the time interval of integra-
tion, we can replace p!(t') by its most recent value pf(t)

Oy R AT HONCHENAO (2.38)
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For this reason the procedure is sometimes known as the short memory or
Markov approzimation * |8, 9| .

Our strategy to derive a master equation for systems coupled to reservoirs
thus is: start with the Liouville-von-Neumann equation to lowest order in
perturbation theory, trace over the reservoir, perform the Markov and adia-
batic approximations (i.e., let ty in equation (2.35) approach negative infinity,
limty - —o0), and switch then to the Schrédinger picture.

2.2 Lindblad Operator

In section 2.1.4 we derived the master equation for a reduced density opera-
tor. In general, the master equation can be written as

= —{Hs. ] + Ll (2.30)

where p describes system S, Hg is the Hamiltonian acting on S, and L[]
describes all environment couplings [14, 15]. A special form of L[p] is the

Lindblad form?

2

1 ,
Ll = -3 > (LiLip+pLiLi) + ) LipL!. (2.40)

where the L;’s are system operators, called Linblad operators. The summa-
tion goes over different scattering channels for the system under investigation.

The Liouvillian L[p] describes the non-unitary evolution of the system due
to its coupling to the reservoir, and is responsible for decoherence and dissi-
pation.
With Eq. (2.40) we obtain for the master equation (2.39)

i

p=—3 (Heap = pHly) + Linmplp]. (2.41)

31n lowest order perturbation theory this is a reasonable assumption since an interaction
of systems with reservoirs leads to damping which quickly destroys the memory of the past.

1Open quantum systems in the Markov limit (yielding to a master equation) are com-
monly described by density operators which evolve according to a master equation in
Lindblad form.
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with the non-Hermitian effective Hamiltonian

Ha—ts— 2SI (2:42)

2

and the ‘jump’ Liouvillian
Lijumplp] = Z Li/)LI- (2.43)

We will see below that the evolution of the reduced density operator can be
split into a Schrodinger-like part governed by the effective Hamiltonian H.g,
and a ‘quantum jump’ part resulting from L,,,[p]-

2.3 Unraveling of the Master Equation

In recent years a number of techniques has been developed for the solution of
the master equation in Lindblad form (unravelings of the master equation).
The most common are:

- The quantum-jump approach or Monte Carlo wavefunction method

[10-12).
- The quantum-state diffusion (QSD) approach [16].

All this methods base on the wavefunction (‘quantum trajectories’ [17]) to
describe a system coupled to the reservoir. I will treat the first one because
it is more simple, and well suited for the solution of the problem studied in
this work. Remind that the density operator is a statistical mixture of state
vectors,

p=>_ pilva)uil. (2.44)

where the summation over i results from a statistical average over the various
pure states |¢;). As a next step, we insert (2.44) into the master equation
(2.41) to obtain for each contribution |¢;)(¢;|

1

i) (il + [ (il = =5 (Heni)(vil = ) (i | H )

(]
+ Y Lyl (uilL]. (2.43)
J
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Restricting ourselves to a single state vector |¢)) in the mixture, we rec-
ognize that the first term on the right-hand side can be interpreted as a
non-Hermitian (but Schrédinger-like) evolution of [¢/) under the influence of

Heﬁ"a

1) = Hel). (2.46)

In contrast, the second term represents a discontinuous time evolution where
the state [} is projected — or ‘jumps’ — onto one of the possible states

[V) = [¥); = Lj|v). (2.47)
This is the motivation for calling Liumplp] @ ‘quantum jump’ Liouvillian.

The decomposition of the evolution of the state vector |¢') into a Schrodinger-
like part and a quantum-jump part suggests an elegant way to solve the mas-
ter equation.

We will now show how to calculate the change of the wavefunction
(1)) = [o(t + 6t))

due to the Schrodinger-like and quantum-jump part, respectively. For suf-
ficiently small time intervals, the time evolution according to H.g is given

by
[0+ 1)) = (1 — 3 Hand) [01) (2.18)

Note that H.g is non-Hermitian, and consequently [¢/(f 4 &t)) is not normal-

ized. The square of its norm” is

| (G + ) (¢ + S = (D (¢ + 6t) (e + o1))
= ((O(1 + 5 Hlydt) (1= 5 Herdt) (1))

= (U0 (1 4 £ (Hlgdt — Hadt) + O(57)) (1)
—1—dp, (2.49)

5Which is the probability to be in the state |1/ (¢ + at)).
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where to lowest order in ot
op = ()| Hor — High(1))
= 0t ) (COILIL;|U®0) =) op;. (2.50)
J J
The full master equation evolution has to preserve the norm. Apparently, the
lack of norm conservation results from the fact that so far we have ignored
the effects of Liumplp]-

The ‘missing norm’ dp must therefore be brought in by the states |¢);, which
result from the jump parts of the evolution. L,u,,[p] projects the system
onto the state |¢); = L;|¢), with probabilities dp;, and ). dp; = dp.

Recapitulating |14, 15],

e if no jump occurs then

(1= tHadt) o)
U(t+ ot)) = L , 2.51
) = T e o) =

e if a jump occurs, according to the relative probability among the various
possible types of jumps, P; = dp;/dp with 3, P; =1, then

_ L) _ L)
LI =

|¢(t +dt))

(2.52)

2.3.1 Decomposition of the Density Operator

According to this discussion, the time evolution of the density operator
p = |[V)(¢| can be decomposed into two parts

p(t) = p(t+ At) = (1 = AP)[vo)(to| + AP[Y1) (], (2.53)
i.e., a part of no scattering with probability (1 — AP) and a part of scattered

states (‘jumps’) with probability AP. For that reason, the different parts of
pin Eq. (2.53) are often referred to as conditional density operators.
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To proof this decomposition, we express the normalized state vector for a
jump, according to Eq. (2.52), as

) = 510, (2.5
and for no jumps, according to Eq. (2.51)%, the state evolves with
) = = 10) (255)
This leads to
po= AP ]+ (1= AP)[¢) {0l
= At L |0 LY+ (1 —i Heg At) [0\ (1 +i Hepp At)
~ )] — i A [Hs, ) (0] — A [V ) (el
+ At L |0)(| LT+ O((At)). (2.56)

Neglecting terms of order (At)?, and taking the ‘time-derivative’ of the den-
sity operator
Ap . 1 , , I
e 1 A0 I A YO R A2 2.57)
we recover the initial master equation (2.39), which finally proofs our decom-
position (2.53).

SHenceforth we set h = 1.
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Chapter 3

System-Reservoir Model

In this chapter we specify our model system introduced in Chapter 1, which
consists of a quantum dot (QD) coupled to nearby reservoirs (treated as Fermi
seas of noninteracting electrons and holes). Neglecting at first environment
interactions, this system is described by the total Hamiltonian

H = HY +Hp+Vyp
= Hy+Vr, (3.1)

where Hy = HP + Hp denotes the Hamiltonian of the QD and of the reser-
voirs, whereas Vi describes the tunnel process from the QD into the reser-
VOITS.

For low temperatures and appropriate optical excitation, the unperturbed
Hamiltonian of the dot system can be restricted to (see Fig. 1.2 b)

HP =3 colo) (o] + cal3)(3). (3.2)

o

Here, the sum goes over the possible spin orientations ¢ =t,] of the elec-
tron in the dot; |o) denotes the spin-degenerate electron ground states with
energy ¢,; and |3) is the ground state ! of the negatively charged exciton,
with energy €5. The charged exciton X~ is a Coulomb renormalized complex
consisting of two electrons and a hole.

'The dot basis fulfills the completeness relation and is orthonor-

mal: 3, [0)(a] + [3)(3] = 1, {olo”) = oo, (0]3) = 0.

19
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The unperturbed Hamiltonian of the reservoirs R consists of a continuum
of quantum states for electrons and holes (which are orthogonal to the dot
states). We describe the corresponding states in terms of electron and hole
creation operators CZJ and dz, respectively (and annihilation operators ¢y,

and d). Within this framework the reservoir Hamiltonian is of the form

Hp = Z ezgczacko + Z eZ‘dde, (3.3)

ko k
where the sum runs over the spin orientation ¢ and quantum numbers k (e.g.
wavevector and band index). Note that for simplicity we do not explicitely
indicate the hole spin. Since we assume fast hole relaxation, below we will
trace out the hole degrees of freedom in the reservoir and solely focus on
the entanglement of the two electrons after tunneling and scatterings in the
reservoir.

The model for our system-reservoir interaction, the tunnel-Hamiltonian, can
be written as

/TT = — Z [tkk’.o Cza ([;2, |5><3| + h.(:.], (34)
kk! o

where h.c. stands for Hermitian conjugate, and @ is the opposite (antiparal-
lel) spin orientation of o. The first term on the right-hand side of (3.4) reads
from right to left as follows: The tunnel process destroys the charged exciton
and creates instead an electron in the QD and a hole plus an electron in the
reservoirs. The matrix elements ¢4, are the strengths for tunneling out of
the dot. The various spin-unselective and spin-selective scatterings will be
treated within the framework of Lindblad operators, as will be described in
more detail in the following chapter.

The main emphasis of our work is on the identification of the basic
schemes underlying the buildup and decay of entanglement through envi-
ronment interactions. Here, the main questions to be answered are:

e How are the quantum properties of the charged exciton transferred to
the separated electrons and hole after tunneling?

e How is spin entanglement affected by spin-unselective scatterings?

e Do spin-selective scatterings in the reservoir act as quantum measure-
ments, which allow to control the spin state of the dot electron?



Chapter 4

Tunneling, Decoherence, and
Disentanglement

4.1 The Tunnel Process

4.1.1 Derivation of the Master Equation

First, we introduce some further simplifications to bring the tunneling Hamil-
tonian into a more convenient form. We assume that the matrix elements
tiw o depend only on the electron and hole energies viz

lka/‘U = Zt(EZU 62/). (41)
In addition, we introduce the field operators for electrons and holes
Co(w) = cred(w — €;,) (4.2)
k
D(w) =Y did(w — ). (4.3)
k

respectively. These operators depend only on the electron and hole energies.
They will allow us to answer the questions of the last chapter for a prototyp-
ical (although simplified) description of the various scattering channels.

Because electrons and holes are fermions they obey the usual anticommutator
relations

[Co (@), Cor ()] = [CH(w), CL ()] = 0

21
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[Cg(w),C’i, (W4 = dperd(w — w') g (w) (4.4)
[D(), D], = [D'(w), DI ()], = 0
[D(e). D)y = 5l — ') ). (45)

Here, we have introduced the density of states for electrons and holes

go(w) Z5w—e
Z5w—ek (4.6)

respectively, where 0(w) is Dirac’s §-function.'

Note that the electron field operators C' and C'T anticommute with the hole
operators D and DT,

Using the above quantities the tunneling Hamiltonian (3.4) becomes
Z / dwedwy [H(we,wn) CHw,.) DY (wn) |5)(3] + hoc].  (4.7)

To derive a master equation we proceed as follows. First, we suppose that at
the initial time ¢, the dot system is described by a density operator pp(ty).
We assume that initially there is no correlation between dot and reservoir

p(to) = po(te) @ pr(to)- (4.8)

This is justified if we assume that at early times the dot is populated by a
single surplus electron, and at time ¢y a short laser pulse excites the charged
exciton (such that no tunneling takes place during optical excitation).

!Equation (4.6) makes only sense if integrated over it, fgf dwd(w — €1 ), because of the
d-functions. If the energy e, of a state lies within the range of integration the integral
over §(w — €;) gives unity. If the energy e, lies outside the range of integration, on the
other hand, there is no contribution because the weight of the §-function is concentrated
entirely at w = €. Thus the integral gives 1 for all states in the range F; < ¢ < Ey and
zero for those outside. Performing the sum, we see that it adds up to the total number of
states between E; and FE5. Therefore the name ‘density of states’.
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To go further in our analytical calculations, we consider the Liouville-von-
Neumann-equation for the total density operator of the system in lowest
order perturbation theory and within the interaction picture, as discussed in
Sect. 2.1.4,

§) = - / 07 (VA1) [V, o (1] (4.9)

to

To evaluate the integral (4.9) we consider the tunnel-Hamiltonian in the
interaction picture?

VEHE) = — Z / dw.dwy, [f(we, W) eilwetwn)l
Cl(w.) DY(wy) €= |G)(3] 4 h.c.], (4.10)
and use the adiabatic approximation; here, we let the initial time ¢, approach

negative infinity,

¢
lim / dt e ~ 71 §(Q). (4.11)

tp——o0 to )

Note that we have neglected Cauchy’s principal part, which is a reasonable
assumption since we are only interested in the scattering dynamics and not
in energy-renormalization effects [18].

This yields to a new expression without explicit time-dependence

lim ftz dt V() = —7 6(w. +wh + €5 — €3) X

tp——o0

>, /dwedwh [f(we,wh‘) Ci(w.) D' (wy) |a)(3]

+ " (we,wn) D(wy) Cy(w,) |3><5|]
— 4, (4.12)

For convenience, we next transform back to the Schrédinger picture. This
task is accomplished by the following procedure. Differentiating

pl(t) = et p(t) e~ ot (4.13)

2Note that we set i = 1 in all our calculations.



24 CHAPTER 4. TUNNELING, DECOHERENCE, AND ...

with respect to time we get

pL(t) = et (p(t) 4 i[Hy, p(t)]) et (4.14)
Thus

—ilHy. p(0)] + e~ (1) ¢ = (). (415)

Performing the adiabatic approximation in (4.9) and inserting the resulting
expression

P =~ A o] |
[ Vi (t) e [Ag, e p(t) 0] (1.16)

into (4.15), we get the equation of motion for the density operator in the
Schrédinger picture

p(t) = —i[Ho, p(t)] = [Vr(t), [e70" Ag €7 p(t)]]. (4.17)

For evaluating the term e ot Ap ol pnote that due to the §-function we
can put

e~ ol d(we + wp, + €, — €3) C;(we) DT(wh) |7) (3| et Hot
= 0(we +wh + €5 — €3) Cl(we) D (wy) 7)(3] (4.18)

(i.e., the energies in the oscillatory terms sum up to zero).

In what follows we shall assume a fast relaxation of the hole in the reservoir.
This can be achieved if the field-effect structure is designed such that the hole
enters with sufficiently high excess energy into the reservoir and immediately
suffers an inelastic scattering. In turn, it stays in the reservoir and cannot
tunnel back to the dot. Within our approach, this assumption implies that
we neglect all terms which would give expressions of the form

try{pDTD} ~ 0, (4.19)

i.e., the expectation value of the hole number operator N, = DD is taken
as zero in all our calculations.
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[N}
t

Calculating (4.17) without executing the commutator and neglecting terms
of the form C'C, CTCT,DD, D'Df, we get the equation of motion for the
density operator in the Schrédinger picture

p(t) = —i[Hy, p(t)] — Z / dw.dwpdw! dw), 7™ §(w. + wy, + €5 — €3) X

oo’

r
>

€,

)
+ (W) D(wy) Corlwr) [3)

[

(&) CL(wl) DY (wh) 18")(3] *(w) Diwy

— (&) CL(wl) DN (wh) 18')(3] p(t) £*(w) D(wn) Colwe) 13)(5]
— (W) D(w}) Corlwr) 13)(@'] p(t) Hw) CHwe) D' (wn) [7)(3]
— H(w) Cl(we) DYwn) [7)(3] p(t) (') D(w},) Cor(w) [3)(5']
— '(w) D(wa) Calwe) 13)(] p(t) (o) CL(wl) Di(wy) 13")(3]
) 12)(3] #*(w') D(w}) Cor(wr) 13)
(w) '

+ p()i(w) Cl(we) D¥(wn) lo)
+ p(t) #'(w) D(ws) Colw,) [3)(a] H(o
where t(w) = t(w,,wp).

Tracing over the hole degrees of freedom in the reservoir and using cyclical
permutation of D under the trace we get the master equation for the reduced
density operator

try, p(t) = —i try[Ho, p(t)] — Z/dwedwéd@ To(we + @+ €, —€3) X

ool

g"(@) [ #(Wl®) Colw) [3)(a'Hwe, @) Cl(we) 17)(3] ps(t)
(

|
+ pS(t> 2: (we,@) Ca

Here, we have neglected all terms tr,{pDD} in accordance to our assump-
tion regarding fast hole relaxation. Note that we put

0= wp = wy, (4.22)
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and use [Eq. (4.3) and (4.6)]

tr,{DD'p} = try,{D"pD} = try{pDD'} = ¢". (4.23)
In the following we introduce the reduced density operator

ps(t) =try p(t), (4.24)
where S solely describes the electrons in the dot and contact.

Let us simplify the master equation (4.21). For this purpose we combine the
transition matrix elements ¢ and ¢* with the hole density of states ¢"(w) to
one expression

T (o) = /d@ (@) B (w0, D) (@) 7 (w43 + s —€). (4.25)

Thus, the master equation for the reduced density operator pg(t) becomes

s(t) = —i try[Hy, p(t)] — Z/dwedw; Ty (we,w!) x

[ (W)
Ch () 13')(3] ps(t) Co we ) 13)(@
Cawe) [7)(3] PS( we) 13)¢

) 13)(@'| C’*(w ) 1) (3] ps(t)

’ |
) 7'l

+ ps(t) Colwe) [3)(@ IC' ( ) 1803l

(4.26)

Our next step will be to bring this master equation to the Lindblad form
: ‘ 1
ps = —i[Hs, ps] — ) Z fi(LiLips + psLiL;) + Z fiLipsL].  (4.27)

The sum runs over the various scattering channels ¢ of the system, whose
scattering strength is given by f;.
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4.1.2 Determination of the Linblad Operators

We start by considering the scattering channel for tunneling. Comparison
of the master equation (4.26) with the general form (4.27) reveals that our
Lindblad operators are

L= Z/dwe Clw.) |7)(3] (4.28)
and

Lt = Z/dwe Cy(we) [3)(a]. (4.29)

The effective Hamiltonian is described by the system’s Hamiltonian Hg plus
the non-Hermitian part

Hoy = Hg — %f LiL. (4.30)
Apparently, the function f is twice the expression (4.25), i.e.,
f=2Ts(we.u). (4.31)

Finally, the system’s Hamiltonian Hg is the sum of the QD Hamiltonian, Eq.
(3.2), and the part of the reservoir Hamiltonian, Eq. (3.3), for electrons

Hg = HP + Z ezaczgcka. (4.32)
ko

4.1.3 Unraveling of the System’s Master Equation

The aim of this section is the solution of the master equation, which we
achieve by means of unraveling.

We start with the initial state of a charged exciton in the dot, |3), and no
additional electron in the reservoir, |0)g,

Vo) = 13) @ [0} = [3)[0) . = |0)£]3)- (4.33)
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Acting with the Lindblad operator from the left-hand side gives
L) = 3 [ deClwln)B)on
= ) / dw.Cl(w.)|7)]0) 5. (4.34)

Further action of % f L' on the last expression and use of the relation

Co(wl) CHwe) 0V = ) cwab(w! — €huy) chy6(we — €4y) [0}

'k
= D 0wl —wd) 8w — i) 10)n
k
= O(w, —w.) go(we) [0)r, (4.35)

then results in

]. ! T li / —/| =
3 FL LI = 3 [ o el Tolernisd) Cole) 3 9)CEe) 100

oo’

S / duoy do Ty, [3) Co(w!) Ceon) [0V
= Y [ e Tl B) g5le) 100
1
= 32 A 30, (4.36)
with the abbreviation A,
Ay = 2/dwe 95 (we) Ty(we,w,). (4.37)

The probability for a ‘jump’ (i.e., tunneling) is the squared norm of the state
vector. Therefore the probability for scattering in the time interval At is

AP = At (3] 5(0] f LTL [0)x]3) = ALY A = At A, (4.38)

with >~ _ A, = A the total scattering rate for tunneling. The probability that
no scattering occurs in time interval [0, ¢] is the complement 1 — AP. Let us
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discretize the time interval [0,¢] into n steps %, and let the number of steps
approach infinity.

With the help of the relation

lim (1+ ﬁ)n = e (4.39)
n

n—ro0

the equation for the probability for no scattering becomes

n—oo \

. t n —
lim (1 — ~ D A" =Tt = Ry(t). (4.40)

Eq. (4.40) gives the probability that up to time ¢ no scattering has occurred.

But what is the probability p(¢) that a scattering occurs at time ¢7 The
answer is provided by

p(t) = %(1 —Ry(t) =) e ' Eot = Ne (4.41)

This can be proven through

t t
/0 dt'p(t') = /0 dt'N\e™" = —e7| =1 Py(t). (4.42)

With these results we are now able to determine the time evolution of the
density operator subject to tunneling:

ps(t) = Po(t)py + A /0 0F Po(F) U(L,F) p1 U(F,1). (4.43)

The first term describes the conditional density operator for no scattering,
with the time-dependent probability Py(t) = e 2s* = ¢~ In other words,
this term describes how the probability for the initial state |)(¢q| decays
with time.

The second term is the scattering term. This part exhibits the time evolu-
tion of the initial density operator under the influence of the tunnel process.
U(t,t) is the time evolution operator for the free propagation of the system
due to Hg when no further interactions with the reservoir occur; more re-
alisticly, the system propagates in presence of scatterings in the reservoir,
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described by U(t,t). The explicit form of p;, which is the density operator

immediately after the tunneling process, is

fLpo L
= 4.44
M W F Lo LTy (444

Evaluating the denominator of p; gives (note that tr{LpyLT} = tr{LTLp,} =
tr{poLL'})

tr{fL/)oLT} = tr{2 Z/dwedw; Tg(we,w;) X

oo'!

)CL ) I00R #(01C, () (71}
= 2% [ e, Tl tr{CHDI00R n(OIC ()}

Y (4.45)

Finally, the density operator describing our system under the influence of the
tunnel process, reads

t _ Ta e )
ps(t) = e_M|3>|O>R R<0|<3|+)\/ dt e~ M Z/([wgdwé. (Cu)\7bue) X
0

U(t,t) o) @ CL(w!) 10)r #(0] Colwe) @ (a] U(t,1).
(4.46)

Most importantly, the term
Y10y 0 Chw) 10y =) 10" @ o")a (4.47)

reflects the spin entanglement of the electron in the dot-state |') and the
electron in the reservoir-state C'i, (wW!) |0)r = |0') g with spin orientation o,
(see discussion in Appendix C).

We see that the tunnel process leads to entanglement of the electrons in the
dot and reservoir, respectively. Thus our first point in Chapter 3 is answered.
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4.2 First Scattering in the Reservoir

The considerations in the previous sections will help us to answer our second
question regarding the influence of spin-unselectiv scattering in the reservoir
on the spin entanglement.

First we choose our Lindblad operators in a convenient way

CH ()
=T Z (o) >_LT(%) (4.48)

with T the scattering rate, and C}(w,)C,(w.) the number operator for elec-
trons with spin o and energy w.. Eq. (4.48) is a simplified description model
that accounts for elastic scattering processes (e.g., due to phonons). Despite
its simplicity we believe that it is general enough to answer our question re-
garding decoherence, and that more sophisticated interaction models would
not drastically alter the conclusions of this section.

The initial state is now the entangled state appearing in (4.46)

= Z/dweCi(we) |5) @ |0) &. (4.49)

The vector is not normalized, and the scalar product

<m>=2/mm5wmmwm@mw3

oo’

. Z/dwedw #(01Co () CH(w) 0)
= 3 [ o sl (4.50)

with
r{0]Co (W) C(we)I0)r = d(w; — we)gs(we), (4.51)

provides the appropriate norm factor. The normalized initial state vector
then reads

|60) Z/dw 2 5 (w.))"F Cl(w.) |7) @ [0) (4.52)
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Remember that the initial state vector for the conditional evolution of ‘no
jumps’ evolves in the unraveling-method of the master equation with the
effective Hamiltonian

Heyy = Hg — 5/deT( w) L(w), (4.53)

where we have integrated over all possible scattering channels with energy
w.

The product of the two Lindblad operators for the first scattering in the
reservoir is

L (w, FZ

Acting with the effective Hamiltonian H.g on the entangled state |¢)

Heg|po) = Z/dwe(Q g5 (we)) ™7 {(& +w)Clw.) 18) @ [0)n
Z/(]u d(/u W X

ss!

— N w) Oy (we) L (W) Cor (W) (4.54
PACALAT 5 (we)Ca(we) O (we ) Cor (). (4.54)

Cl(@)Calwe) CL (W) Cu (@) Chlwe) |o) @ 0)r},  (4.55)
terms arise which can be simplified by using
Cor(@) CHwe) [0)r = 0grgd(we — &) g5 (we) 10)r
and
Ca(@e)CL(@) [0} = buwrd(@e = r) g5 () 10) - (4.56)
This yields to

H.gt|do) = Z/dwe (2 gi(we))_% (6 +w, —7> Cl(we) 7)Y |0) . (4.57)

&

We next assume that the electron energy is independent of the spin orienta-
tion €, = €, i.e, the energy for the electron with spin-up is the same as for
spin-down. Thus, Eq. (4.57) gets

Hegi|do) =~ Z/dwe (2 g% (we)) "7 (e+w —7) Cl(we) [7)@|0)p. (4.58)

V4]
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The next task is to evaluate the probability for a jump, i.e., the elastic
scattering event in the reservoir (again, (1 — i H.gAt)[t)) accounts for the
evolution of the state |/} if no jump occurs). For short time intervals

1 —i HugAt o~ ¢7 Her & (4.59)
and the conditional density operator evolves as

L I Y [ s

~ Z/douedw 4g(r We)go.( e)) 7 o ilwe—wl—iD)t o
Clwe) o) @10}k #(0] @ (0'] Cor (). (4.60)

The probability of this configuration decays as

1

gl = 3 [ e (4 g5l () e
r(Cl(e) [0} (0] Cole)} (161)
Using
r{CH () 10)r 1 0] Colw)} = g2 ()bl — ) (162

we obtain

tr{|do){(do|} = e~ (4.63)

This is the probability for the conditional evolution of no jumps. As ex-
pected, it leads to a decay of the initial density operator in time, and with
the scattering rate I'.

For one scattering channel (energy w.) the action of the Lindblad operator
on the entangled state reads

‘r We _1
L(w.)|éo) = VT ZC(—%)()/dwé@gi/(wé)) P X

-9
Ch(wl) 17) @ |0y

= > (%)7 Clwe) [7) @ [0) . (4.64)

o
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The corresponding density operator is

|p1)(o1] = /dwe L(w.)|do) o] L(w.)!
= Z/dwe T (4 g5 (g (we) 7 x

Cl(w,) o) @ |0)g r{0] @ (¢’ C(we). (4.65)

As a result of the first scattering in the reservoir, we observe that the term
Cl(w,) |8)(5"| Cy(w.) becomes diagonal in energy (i.e., dephasing), whereas
the spin components are not affected. With this our second question in Chap-
ter 3 is answered.

With the help of
tr {Cl(w.) [7)|0)r R(O[(5"] Cor(we)}
= > (slo)(@'ls) tr{Ci(w) 10} r(0] Cor(we)}

= 265& 656” g;(we) 50’0” (4.66)
we get the norm of the operator |¢){o|
tr{|on)oi [} =T. (167)
The probability for scattering in the time interval At is
AP = At <¢0|L(we>TL<we)|¢0> (468)

Using (4.56) and the relation

[

Lol = X (25E) 7 i) o) o o (1.69)

o

we get
AP = AtT. (4.70)

We see that each scattering channel has the same probability, which is due to
our simplified description of scatterings in the environment. The probability
for no scattering in the time interval [0, ] is

t_. ;
lim (1 - =T)" =e™"" = Pyp(t). (4.71)

n—00 n
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Finally, with the help of

t —
(1 — Pyr(t)) :/ dt T e ', (4.72)
0
we express the conditional density operator as

|<59><‘59|
tr{|do) (ool }

[01){01]

mU(f, t). (4.73)

t .
plt) =e + F/ dt e " U(t,1)
0

We can identify the first term as a part for no scattering with probability

e~'!, and the second term as a part for scattering with probability

fot dtT e "t =1—e1,

Putting together all our results we obtain

L
5

p(t) = e—FtZ/dwedwé (4 g5 (we)gl(wl)) 7 et

oo'!

CHwe) |5) @ [0)r r(0] @ (a"| Cor(wr)

t oo 1
# 0[N OD Y [ (4 gl ) x
0

oo’

Cl(w.) 13) @ |0)r r(0] @ (5'] Cor(we) U(E ). (4.74)

This is the expression for the density operator due to the elastic spin-unselective
scattering event in the reservoir. Next, we replace

S [ ety T iy el ) ul0] ol (o] TR

oo’

from equation (4.46) by the density operator (4.74). Performing this replace-
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ment we get the somewhat lengthy expression

1
310 #(0[(3] -|—/\/ at M (e — 1)
0

ps(t) = e
{ !
= ¢M3)]0)5 R(O|(3|+)\/ dt' e x

0
/ , _ 1 . / /
{e_m_‘ ) Z/dwedw; (4 g5 (we) gl (wl))? e Hwemwe ) (1) o

oo’

Ciwe) 16) 2 10)n (0] & (] Cor(e)
# 0 [areen Y [ o (s @)

t

)=

X

oo’

Cl{we) 17) @ 0) g 1 (0] @ (7] Cor(iee) T(E: t)}. (4.75)

The first term accounts for the damping of our initial density operator (de-
scribing the charged exciton and no additional electron in the reservoir) due
to tunneling. The second term is the conditional density operator for the
system after tunneling but before the first scattering in the reservoir. The
third term is the conditional density operator after scattering, and responsi-
ble for the loss of coherence® in our system. Note that the second and third

term describe both spin entanglement.

4.3 Spin Relaxation in the Reservoir

To investigate the disentanglement due to spin scatterings in the reservoir we
will introduce the Pauli spin matrices. Because we have assumed equal scat-
tering strengths for all interaction channels, in the following we are allowed
to integrate over all electron energies viz

[ ety e) 00 0] Coriod) = Pe (4.76)

The initial density operator for our system S after decoherence thus has the
form

foen| = e e w7

3As mentioned before, Eq. (4.2), only dephasing of the orbital degrees of freedom
occurs (and not of the spin ones).




4.3. SPIN RELAXATION IN THE RESERVOIR 37

Remind that P,, acts on the reservoir only, whereas |5)(d'| acts only on the
dot system.

With the help of the Pauli spin matrices (for the detailed calculation see

Appendix D) we get
po= 2{2ug(@ x d") — (ay @" —ag d') x d

@] @ — (@ @) @ — (@ @) @)} @, (4.78)

where p = uyl + i &. It follows that!

1
ly = 51‘7() =0, (4.79)

V4

where tr(.) means the trace of the right-hand side of Eq. (4.78) .

This 1s a crucial result which shows that spin scatterings in the reservoir
cannot affect the population in the dot.

Consider now the Lindblad operator

L =VT(1+kas), (4.80)

where I" denotes a phenomenological damping constant, x is a scalar factor,
and o3 denotes the Pauli matrix. According to Eq. (D.13) we identify that
ag = \/1:, and @ = VT k é3, where é5 is the unit vector in z-direction. With
this choice the vector @ and the scalar factor ay only have real parts

a=d
C—ill — 0
all = 0. (4.81)

To calculate the density operator we have to evaluate

d

%(J F) = =2[a*i- (@ a) ad)é, (4.82)

“Note that there is no 1 on the right-hand side of equation (4.78), and the trace of the
unit operator is 2.
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where @ = ujé; + uséy + usés. It follows that

g = =2 &% uy sy (4.83)
and

ug = 0. (4.84)
Integrating (4.83) with respect to time gives

9,2 Ty
uiz(t) = upp(0) e 1. (4.85)
The density operator (4.77) after spin-selective scattering in reservoir has
thus the final form

p(t) = SN Pos + [N [P ) (=[P + [ (P},

T2
(4.86)

The first two terms show that the diagonal terms, i.e., the populations of
the density operator, do not change, whereas an exponential decay of the
coherence terms leads to disentanglement. Thus, in our calculations any spin-
selective scattering forces the spins with equal probability to one of the two
orientations. As a consequence, to experimentally detect spin entanglement
in the proposed scheme both electrons have to be monitored.



Chapter 5

Sumimary

In conclusion, we have proposed a scheme for an optically triggered spin
entanglement of electrons in semiconductors. It consists of a single-electron
doped quantum dot embedded in a field-effect structure. Optical excitation
of an additional electron-hole pair (charged exciton) is transferred through
tunneling to a photocurrent, where the spins of the electrons in the dot and
reservoir are maximally entangled.

Using a density-operator approach in Lindblad form we have derived an-
alytic expressions for the whole cascade process of: the tunneling decay of
the charged exciton to the freely propagating electron and hole in the reser-
voirs, respectively, and the electron in the dot; dephasing and relaxation
of the carriers in the contacts; and finally disentanglement through spin-
selective scatterings. This analysis has revealed that the quantum properties
of the charged exciton state are transferred through tunneling to the spa-
tially separated carriers in the dot and reservoir, where the spin part of the
electronic wavefunction is a maximally entangled state. This entanglement
is not destroyed by spin-unselective dephasing and relaxation mechanisms,
and is therefore of robust nature.

The proposed device might be useful in future quantum information ap-
plications to establish entanglement between spatially separated sites, where
one could benefit from the extremely long spin lifetimes of electrons in semi-
conductors.

39
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Appendix A

Schrodinger Picture vs.
Interaction Picture

In this appendix I give a short overview about the relation between the
Schrédinger picture and the interaction one.

A.1 Schrodinger Picture

In the Schrodinger picture any state |[¢)(t)) evolves in time according to the
Schrodinger equation

N, ,
() = H]v (1) (A1)
which can be formally solved to

(1)) = U(t, to) ¢ (to))- (A-2)

Here U(t,ty) is the time evolution operator. If the Hamiltonian H does not
depend on time Eq. (A.2) becomes

() = e~ 70 ) (2), (A.3)
where
Ut ty) = e wh(i=to), (A.4)

In the Schrodinger picture the states are time-dependent whereas the oper-
ators of the physical observables are time-independent (except for a possible
explicit time-dependency).

41
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A.2 Interaction Picture

When the Hamiltonian H of the system can be separated into a time-independent
part Hy and a possibly time-dependent perturbation V(t)

H=Hy+V(t) (A.5)

the use of the interaction picture is convenient. We label the interaction
picture with the superscript I, and do not explicitly indicate states and
operators in the Schrédinger picture. Thus, we express states and operators
through,

(1)) = erfU= (1)), (A.6)
and!
Al(t) = entlolt=t0) A(p) ¢=wlloli=to) (A7)

At time ¢y Schrédinger-states coincidence with the interaction ones, |¢(ty)) =
|¢(t))!. Without loss of generality we set ¢y = 0.

To get the appropriate equation of motion in the interaction picture we have
to differentiate (A.6). This gives

0 i i .
G L) = e (2 Holob (1) + [¢(1)) (A8)
ot h
which can be cast with the Schrodinger equation to
0 i ) 1
S = R (L H(0) — £ Hy + VOll(0). (A9)

Using (A.6) we finally obtain

9, |
iho-0 (1) = VIO ()'. (A.10)

Note that
VI(t) = entol V() emwtol, (A.11)

'Note that ¢*® A e P = A+ a [B,A]+ 57 [B,[B,A]] + ...
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The equation of motion for operators in the interaction picture is

d ;... 1 IR d ...

— t) = —|Ho. t = t). A2
th() h[OA()]+0tA() ( )
As one can see from Eqs. (A.10) and (A.12 ), the time evolution of the states
is governed by V/(¢), and that of the operators by Hy. The last term in

(A.12) appears only if the operator A is explicitly time-dependent.
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Appendix B

Direct Product and
N-Particle-States

Let v, i = 1,..., Ng, be elements of a Ng-dimensional vector space (Hilbert
space) S and 'U]B, J = 1,..., Ng, elements of a Ng-dimensional vector space
R. Then the direct product U;-g’va is neither an element of S nor of R, but

spans a Ng X Ng-dimensional space, the product space G = S @ R.

Consider operators Ag acting in space S (with states |s)), and correspond-
ingly operators Ap acting in space R (with states |r)). Then the operators
Ag @ Apg act in the direct product space of the states

|s) @ |r) =|s,7) =|s)|r) = |r)|s), with the prescription (B.1)
(s,r|Ag @ Ag|s', 7"y = (s|As|s")(r| Ag|r'). (B.2)
An operator Ag corresponds in this product space to Ag @ Iy, and Ap corre-

sponds to Ar @ Ig; here I; is the unity operator in the space ¢ = S, R. Note
that

AgBg 2 CrDp = (A-S () CR) (BS 2 DR) . (B3)

Let |a;), ¢ = 1,2,..., N, be N orthonormal one-particle states, then a N-
particle state may be written as the direct product of these states

|()Zl, A9y uny (1’N> = |O¢’l>|OZ2>...|OJN>. (B4)
The ortho-normality relations read

(g, g, oy |al, d..dy) = 8(an, af)...0(an, oy). (B.5)
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Where,

S(lag,a)) = Slag — o))
i.e., 0- function, in the case of unproper states, and
dlar,a)) = oy

i.e.,  Kronecker-Delta, for discrete states. (B.6)

The last equation predicates that a set of states {|s)} and {|r)}, which build
an orthonormal basis in S and R, respectively, constitutes also an orthonor-
mal basis in the product space {|sr) = |s)|r)},

(sr|s'r"y = (s|s")(r|r") = d(s,s")d(r,r"). (B.7)



Appendix C

Entangled States

An entangled state has no classical analog. The important criterion for an
entangled state is the fact that such a state cannot be factorized. For a better
understanding I give an example.

Consider a system consisting of two subsystems, e.g., two particles (photons,
electrons,...), with state vectors

|)1 = ay|a) + B1|b) for particle 1 , and

[t)9 = ay|a) + B2|b) for particle 2. (C.1)

{|a), |b)} build an orthonormal basis, and a and 3 correspond to the prob-
ability amplitudes to be in state |a) or |b), respectively. If the two particles
are uncorrelated then the total state vector is

IX) = [V)i])e = aras|a)|a) + 51 52[b)|b) + ar Bzl a)[b) + Bras|b)|a). (C.2)
For a correlated state instead we have an entangled state
[X) = aras|a)|a) 4+ 51 5a[0)[b) # [¢1)] ). (C.3)

which cannot be factorized. For a maximum entangled state a; = as and

B1 = [ holds.
The nature of entanglement is such that the properties (such as polarization

or momentum) of each individual particle are indeterminate and undefined
(until the particle is measured). Measuring one entangled particle, however,
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determines not only its properties but at the same instant those of its partner
(even if they are very far apart). Due to the fact that the two particles are en-
tangled, measurement of the one causes an instantaneous effect on the other.
This means that entangled particles cannot be measured independently.

To make a link to our calculations we introduce for the dot and reservoir

states of our basis {| 1), | |)} the relation {|0),|1)}

[ 1) =101
| 1)k =10)2
|4y =111
| TR = [1)2.

According to Eq. (C.3) the normalized maximum entangled spin state of the
electron in the dot and reservoir is

) = %{|o>1|0>2+|1>1|1>2}
- %{|oo>+|11>}. (C.4)

Now, going back to the representation {| 1),| J)} to obtain

|x>=%{IT D+l 1) (C.5)

for the entangled state in our spin convention.



Appendix D

Pauli Spin Matrices

To derive Eq. (4.78) consider that the spin-up |+) and the spin-down |—)
state of our basis can be represented in a matrix notation by the spinor

v, = (é) (D.1)
SH (‘f) (D2)

respectively. The outer product of the two spinors in this representation
gives, e.g Po

Piy ox ( (:.l) 8 ) (D.3)

or Py_

The next task is to represent the Pauli spin matrices in terms of P. Because
of the restriction

tr{Poo} = tr{ / Ao (g% (we) gl (we)) T2 CH(we) [0)r /(0] Cor(we)}
1 (D.5)

and
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we can put

o = ((1) (1)>='P++77+

oy = (? _()i>=—¢(73+_—1>_+)

o3 = ((1) _01)=77++—7?

1 = (é (1’):79+++73__. (D.6)

Note that for Pauli matrices

tro; =0 (D.7)
holds, and
0;0; = 051 + icijop, (D.8)

with ¢ the fully antisymmetric tensor of third rank. We can write the initial
density operator (4.77) thus in the form

Zo-a’ 7)0'0" |0><U,|
t1{2 0o Poor|7) (0"}

ZE{HNHO+%)+%ﬁFH1—@)
+ ) (=l (o1 +i0a) + [=)(+] (01 —ion)}. (D.9)

€0)(&o| =

The most general form for a density operator in terms of Pauli spin matrices
is

p=ugl +1 7, (D.10)

where g is a scalar, @ describes a vector and & is the vector of Pauli matrices.
The part of the master equation which is responsible for scatterings is

1
) = LipL! — Z[LIL:. pl4)., D.11
where L; are the generic Lindblad operators acting in the reservoir. Rewriting

this equation in terms of commutators

[LILi,ply = LiLip+ pLIL;



[Lip, LI} + [Li, pL{) = LipL{ = L{Lip + LipL} — pL{L;,

we get

p=5 3 ([Lip L+ 1L L), (D.12)

k3

Consider now one scattering channel with the appropriate Lindblad operator
L, in the same general form as (D.10),

L=al+3dé (D.13)

The time evolution of p is now given by the corresponding commutator rela-
tions for Pauli matrices

[0’,’, O'j] =21 €ijkOk- (D14)

The next calculations refer to the evaluation of the commutators appearing

in (D.12).

[Lp,LT] = [L(ugl + i &), LT
wy[L, L'] + [Li &, L]

[L, L')(ugl 4 i &) + L[it &, L] (D.15)
L. LY = [al +@ G, aj1+3" &
= [@d.d 3 (D.16)

BN
S
2y

*
sl

(03,07) a:
= 21 Eijk A; (L;- O
= 2i(@xa)é. (D.17)

With the decomposition of the complex vector @ into real and imaginary part
d=d +iad' (D.18)
we get for (@ x @*):

=/

@+id)yx@—id)=-2id xa (D.19)
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Thus, the commutator of the Lindblad operators is

[L,LT]=4 (@ xad") &, (D.20)
and the first term on the right-hand side (rhs) of Eq. (D.15) is

[L, LT)(ugl 4@ &) = 4 (@' x @") & (ugl + i &), (D.21)
with the expression for (@ &) (l_; 7):

[(@ x d") 7] (@d)=(a' xad")dl1+i[(@ xad)xida. (D.22)
We evaluate the next commutator

Lli ¢, L] = LJ[id ajl+ad"

= 2iL(uxa")a. (D.23)
With
L(b3) = (al+dd)(ba)
= ay b+ (ad)ba)
= ag (b3)+(Ab)1+i(@ixb)d (D.24)
and b= i x a*, Eq. (D.23) gets
Lii G, L1 = 2iay(@ixa)d+2ila(ixa)]l
=2 [@x (uxa’)]a (D.25)

Thus, the first term on the rhs of Eq. (D.12) is

5[Lp, LT = 2@ xad") (ug 1+ 1)+2i[(@ xad")x ] &
') & +id (it x @) 1
C—I»*

The second commutator in Eq. (D.12) can be written as

[L,pLT) = p [L, LT+ [L,p] LY, (D.27)
with

(ugl + i G)[L, LT = (ugl + i 3)4(@ x ") &

4a x a") (ugdl+a 1)
+4i[i x (@' x d")] &, (D.28)



and
[L,i &) LT

[@ &, Lt

2 (@ x @) ¢ LT

% a (@ x i) & +2i [0 (@ x )] 1

=2 [(@xu)xa']d. (D.29)
To obtain this result we used the relation
b)) Lt = (b&) (ah 1+3d* 3)
= ay (b3)+ (b 3) (@ d)
= ay (bF)+(a"b)1+i(bxa")a. (D.30)
Finally!,
% [L,pLT] = 2(@ xa")(ug G1+i 1) —2i [(@ xad") xi] &
—iay (Uxd)d—ila (ixa)]l
—[@* x (@ x @)] a. (D.31)
Thus the master equation (D.12) becomes
p = 4@ xd")ugd+ilay (@xa)—ay(ixad)d
—ldx (uxa')+ad x(ixdad)a. (D.32)
With
ag @' —ayd = (ag+iag)(d —id") — (ag — iag)(d +id")
= —2i(ayd" — agd'), (D.33)
and for @ x (i@ x @*):?
Eijk A Skim W Ay = Ekij Ekim G U A
= |a@*a—(aa)a (D.34)
and
ix(@xa)+a x(@xad) = 2afi-(ai)a — (@ aa
20|@|* i@ — [(@ +dad") @)@ —ia")
—[(@ —@") a)(a +ia")

e id

a u

2(|@|* @ — (@ @) @ — (@' @) @"]{D.35)

LG (it x @) = @ (@* x @) = 2i (@ x a@") .

2
Ekij Ekim = 0it0jm — OimJj1
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we get for (D.32)

po= 22up(@ x @) — (ay @ —al @) x it
—ap @ - @ a) @ — (@ @) a')} é. (D.36)

This is the master equation |derived from Eq. (D.12) with the help of Eqgs.
(D.10) and (D.13)| which we use in (4.78).
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