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1 Introduction

Quantum theory has been well established since its launch at the beginning of the 20th
century. Including not only describing processes and phenomena that have occurred
at that time (wave-particle duality, quantized observables, superposition of states...),
which have not been understood with the classical models of physics. It also helped to
understand the origin of the classical models. Newton’s classical equation of motion
has been proven to arise as a limiting case from quantum physics by the well known
Ehrenfest theorem, and electrodynamics, as a limit of relativistic quantum mechanics.
Such that two models that have been considered as two separate elementary models
have been generalized by an even more elementary model - quantum physics. Yet the
predictions of the quantum model have been so successful that up to now all experi-
mental data have been described properly by quantum mechanics.
So why should the model of quantum physics or at least its interpretation be unsat-
isfying or lacking? To answer this question one has to know what the properties of
a satisfying theory are. The goal of physics or any other natural science is to find
the most simple model to describe observations in a wide range of natural processes,
ideally all processes. The problem about the conventional model of quantum physics
is that it is divided in two elementary processes, whereby none of them can describe
the whole range of perceptions separately. One submodel is describing deterministic
processes by the linear Schrödinger equation.

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 , |ψ(t0)〉 = ψ0 (1)

With this equation, consisting of the initial state ψ0 and the Hamiltonian H of the
system one can calculate the state at any arbitrary time. Since the Schrödinger
equation is linear, any linear combination of different solutions presents a solution
too. The statistical interpretation connects the Schrödinger equation with a physical
observable: the probability density ρ(t), e.g. for the position-space wave function
the probability density is given by ρ(x, t) = |ψ(x, t)|2. So |ψ(x, t)|2dx describes the
probability to find a particle in the spatial interval (x, x+ dx).
Beside this we have the non-deterministic, irreversible so called ’collapse’. In the
measurement process the superposition of eigenstates reduces to a single eigenstate
of the measurement apparatus.

|Ψ〉 Measurement−−−−−−−−→ |ψn〉 (2)

With this prescription quantum mechanics does not predict the outcome of a single

1



event, but only the distribution of outcomes for a large number of identical tests.
In classical models probabilistic approaches are often related to predictions of out-
comes of practically indistinguishable tests, but not fundamental identical tests (like
the outcome of throwing a dice). This leads to the question whether the prepared
identical quantum systems with different outcomes are really completely identical or,
if we take a closer look at them, we would find something that distinguishes them
in a certain variable. This fundamental issue will be examined in the first chapters
about the EPR-paradox and Bell’s inequality.

The big puzzle about the collapse is how a nondeterministic process can emerge from
a deterministic process, as described by the Schrödinger equation. Furthermore it
raises the question why we can’t see superpositions in our daily life despite the fact
that the classical world is based on elementary "processes" which in principle do allow
superpositions.
One early launched and still widely accepted approach is the Copenhagen interpret-
ation, which solves this problem by introducing measurement as the key process for
the collapse. In this interpretation measurement is defined as the interaction of a
quantum system with a classical measuring device. The state of the measuring device
after measurement can only correspond to the state that has interacted with a single
definte state of the quantum system, since it cannot be in a superposition itself. Thus
it declares this state at the moment of measurement. On the one hand this defines the
classical world as the world of definite outcomes without superpositions of multiple
states. On the other hand it does not declare the boundary between these two worlds
- what behaves classical and what quantum like?
One obvious boundary between classical and quantum systems would be to distin-
guish by classifying them by macro- and microscopic systems. But as seen in many
experiments, especially in the past 20 years, quantum effects are not limited to mi-
croscopic scales.
A much more satisfying concept is the concept of decoherence. The following chapters
will show that decoherence helps us getting closer to understand the process of col-
lapse. It shows how superpositions vanish in a deterministic way, such that the system
is left with multiple but definte states.
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2 The EPR Paradox

2.1 Correct- and completeness of theories

The EPR-Paradox was published by Einstein, Podolsky and Rosen in 1935 [1] to
emphasize and to stimulate the discussions about the problems of the fundamental
basis on which the framework of quantum phyics rests.
In this paper they critically examine the definition of a satisfactory theory. There are
two properties that declare such a theory.

1. Correctness: ’is judged by the degree of agreement between the conclusion of
the theory and human experience’

2. Completeness: ’there is an element in the theory corresponding to each ele-
ment in reality’

So far there is no doubt about the sufficiently high correctness of the theory. But
Einstein, Rosen and Podolsky questioned the completeness of the theory by illustrat-
ive examples which is summarized by their following conclusion:
’In the case of two physical quantities described by non-commuting operators, the
knowledge of one precludes the knowledge of the other. Then either (1) the descrip-
tion of reality given by the wave function in quantum mechanics is not complete or
(2) these two quantities cannot have simultaneous reality.’
So for the momentum p and position x of a particle, the position can only be obtained
by measurement which alters the state such that it destroys the knowledge about the
momentum p. More important: The conclusion of quantum mechanics is that if p is
known x has no physical reality.
Since the wave function is assumed to contain a complete description of the physical
reality and quantities like the momentum and position are each measurable in reality
for a certain way of measurement, it is concluded that quantum theory is an incom-
plete theory.

One possibility to make the quantum theory complete is to introduce hidden variables.
To illustrate the idea of the hidden variables we consider an illustrative example of
entanglement.

2.2 Classical and quantum entanglement

Entanglement describes the physical phenomenon in which systems that also can
be locally separated from each other, are correlated in such a way that from the
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Figure 1: Classical entanglement Figure 2: Quantum entanglement

information of the property from one object a conclusion about the property from an
other object can be drawn. This phenomenon is not limited to quantum physics, but
also occurs in classical physics as one can see at a simple example.
We consider two classical objects, such as balls, one red and one white. Both are put
in a closed box and mixed, so we don′t know in which box the red or the white object
is. As soon as we open one of the boxes, we not only know the color of the opened
box, but also the one of the closed box. Thus we can conclude from the property of
one object the property of another. The objects, or the properties of the objects, are
entangled.
The same conclusion also applies to quantum objects. Instead of the property color
(red and white) one could consider the property spin (up and down) for two dis-
tinguishable particles. So for the initial state |ψ〉 = 1√

2 (|↑↓〉 + |↓↑〉 there are two
possibilities to measure. Either particle 1 has spin ′up′ and particle 2 has spin ′down′

which corresponds to state 1 → |↑↓〉 or vice versa state 2 → |↓↑〉 . After the meas-
urement of one of the spins the principle is the same as for the classical example.
Measuring the spin of one particle determines the spin of the other particle.

The controversial part of this is, that there are two possibilities how it comes to this
result. Either it was determinated from the beginning which particle has which spin,
or the particle decides just at the moment of measurement whether it has spin up or
down. Quantum physics and its principle equation, the Schrödinger equation claims
the second case. This is becoming obvious in the von Neumann measurement scheme
which will be discussed in chapter 6: before the measurement the particles are in a
super position of both states until the measurement is taken and the system is in only
one state (collapse). There is no possibility to predict the state of the particle when
it is measured even though one knows all variables of the system. Einstein, Podolsky
and Rosen had problems with this view of nature. They claimed that there must be
hidden variables, which the equations of quantum physics do not include, but if they
were known one could predict the exact measurement.
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2.3 The Bell’s theorem

The EPR-paradox leads to the question whether there is an experiment to prove the
existence of hidden variables or not. In 1964 the northern Irish physicist John S. Bell
answered this question with his paper ’On the Einstein-Podolsky-Rosen-paradox’. [2]
John Bell considered an experiment in which a pair of spin one-half particles in the
singlet spin state

1√
2

(↑1↓2 − ↓1↑2) (3)

is measured. Quantum mechanics says that one cannot predict which combination
〈↑↓| or 〈↓↑| you get until you take the measurement. The realists’ point of view is that
this inability of prediction is caused by ignorance of a missing variable that has to be
taken into consideration. In Bell’s thought experiment he allowed to measure different
components of the spin. Particle 1 is measured in the direction of the normalized
vector ~a and particle 2 in direction of normalized vector ~b. For spin up we get the
value +1 for and for spin down the value −1 (both in units of ~2 ). Let the expectation
value of the product of the measured spins in dependence of the two direction ~a and
~b be called P (~a,~b). If we chose ~a = ~b we will get P (~a,~b) = P (~a,~a) = −1, since it
is a single state where the two particles always have two opposite spins ±1 thus the
product always becomes −1. The quantum mechanical expectation value in general
is corresponding to

P (~a,~b) = −~a ·~b (4)

The proof for this is found in the appendix.
To avoid both of the problems, incompleteness and nonlocality, according to the
EPR-Paradox there has to be so called hidden variables such that the result of the
measurement of the spin is completely deterimined by its complete state. We now
take the idea of hidden variables into consideration for an experiment in which an
electron-positron pair is created in the interaction of a photon with a nucleus or any
other neutral boson.[4] For the measured spins of particle A and particle B we get

A(~a, λ) = ±1 B(~b, λ) = ±1

In this case we already assumed that the result of the measured spins are dependent
on a hidden variable λ. The variables are assumed to be local, which means that if
the measurement setup is constructed in an appropriate way, the created particles
cannot interact anymore if the distance between them is large enough. Thus each of
the particles ’carries’ its fixed variable which determines the outcome of the future
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measurement.
If the spins of the two particles are measured in the same direction ⇒ ~a = ~b we get a
perfect anti-correlation between these two functions due to total spin conservation:

A(~a, λ) = −B(~a, λ) (5)

The expectation value of the product of the measured spins is

P (~a,~b) =
∫
ρ(λ)A(~a, λ)B(~b, λ)dλ. (6)

We introduced ρ(λ) as the probability density for the hidden variable, for which we
don’t have any further assumptions except that it is normalized.

Since equation (5) applies, we can write down the expression completely in terms of
the function for particle A.

P (~a,~b) = −
∫
ρ(λ)A(~a, λ)A(~b, λ)dλ

Now we substract this expression by the expectation value for a third abitary direction.

P (~a,~b)− P (~a,~c) = −
∫
ρ(λ)[A(~a, λ)A(~b, λ)−A(~a, λ)A(~c, λ)]dλ

And with [A(b, λ)]2 = 1 follows

P (~a,~b)− P (~a,~c) = −
∫
ρ(λ)[1−A(~b, λ)A(~c, λ)]A(~a, λ)A(~b, λ)dλ.

Since −1 ≤ [A(~a, λ)A(~b, λ)] ≤ +1 and ρ(λ)[1−A(~b, λ)A(~c, λ) ≥ 0 we get

|P (~a,~b)− P (~a,~c)| ≤
∫
ρ(λ)[1−A(~b, λ)A(~c, λ)]dλ,

which is the same as

|P (~a,~b)− P (~a,~c)| ≤ 1 + P (~b,~c). Bell inequality (7)

But this is incompatible with equation (4), based on the predictions of quantum
mechanics. To show that the result of Bell’s inequality is not satisfied for every
arbitrary directions of measurement one can find one example which does not satisfy
it.
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For this example we chose ~c such that it forms an angle of 45◦ with ~a and ~b and insert
the general results of quantum mechanics, P (~a,~b) = 0, P (~a,~c) = P (~b,~c) = −~a · ~c =
−~b · ~c = −0.707 into Bell inequality.
Thus one can directly see the contradiction with Bell’s inequality.

⇒ 0.707 � 1− 0.707 = 0.293

Bell assumed a theory with local hidden variables and showed that there is a contra-
diction with a general result of quantum mechanics.
So the final conclusion of Bell’s inequality is that if quantum physics has hidden vari-
ables, they must be non-local.

It is important to emphasize that a non-local interaction would allow deterministic
theories, such as the De Broglie-Bohm theory is, (see chapt. 6). The problem is
that such non-locality might violate the principles of special relativity. Whereby an
important issue is whether locality in special relativity addresses to finite velocity of
signal propagation or causal propagation, since a non-local quantum theory would not
necessarily violate signal locality.[10] So far the results of the above mentioned ex-
periment agreed with the results of the quantum theory (in particular with equation
(4)), such that one has to give up at least the idea of local hidden variables in the
theory of quantum mechanics. Nevertheless there is even criticism about that con-
clusion arguing that the experiments have crucial problems, that are often referred to
as ’loopholes’ for the Bell inequality.
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3 Decoherence and its mathematical tools

In quantum physics there are some a priori introduced postulates that have to be as-
sumed to build up the theory. The main equation, the Schrödinger equation, explains
the dynamics of an isolated system. The equation can have many or infinitely many
solutions |φi〉 and since it is linear any superpositions of these solutions gives a valid
solution as well.

|ψ〉 =
∑
i

ci |φi〉

The Schrödinger equation does not describe a system in the moment of measurement,
since this implies interaction with another system such that it is no isolated system
anymore. There are two processes which the Schrödinger equation for the isolated
system does not explain, which leads to the failure of describing the measurement.

1. The process of the transition from a state including superpositions of eigenstates
to a state consisting of only definite eigenstates without superposition.

2. The so called "collapse" from a range of eigenstates to one single definite eigen-
state.

The first process seems to lead to a contradiction. The main property that charac-
terizes and distinguishes the two models is that there is superposition in quantum
physics but not in classical physics. In other words, we can’t see superpositions in
everyday life. As an illustrative picture of that paradox, Erwin Schrödinger came
up with the gedankenexperiment of ’Schrödinger’s cat’, in which a cat is put into a
box and its’ fate is dependend on whether a single radioactive atom is decayed or
not. If the nuclei of the atom decays the cat is killed by a linked mechanism. As
long as the state of the whole system is not measured, the state of the nucleus is in
a superposition of |decayed〉 and |not− decayed〉 According to quantum physics the
cat thus would be in a superposition of the two states |dead〉 and |alive〉, since the
two systems are entangled. Though this behaviour of a classical object, such as the
cat is, does not fit to our experience. This chapter will help us to understand and get
closer to the solution for this problem.

The idea of decoherence, which we will introduce in this chapter, is treating one of the
two processes namely the vanishing superpositions (process (1)) but does not explain
the collapse (2). The main idea of decoherence is to include the environment of a
system. As we will see, the environment will lead to a state with definite eigenfunc-
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tions of the system of interest without superpositions. In the following section we will
introduce the mathematical tool of the density operator. It will help us to work with
a composite system, consisting of two subsystems, e.g. the system of interest and the
environment. And further to express and characterize the superpositions of states in
mathematical terms.

3.1 The density operator

3.1.1 The density operator for a pure state

For an abitrary state |ψ〉 we define the density operator:

ρ(t) = |ψ(t)〉 〈ψ(t)| Density operator (8)

Mathematical properties

There are three important mathematical properties that follow from this definition.

• ρ(t) = ρ(t)† is positive hermitian operator

• ρ(t) = ρ(t)2 is a idempotent operator

• Tr(ρ(t)) = 1

Physical properties

The physical relevant and measurable property is the expectation value of an observ-
able. We can extract this from the density operator.
Therefore we start from the definition of the expectation value of the operator A to
the corresponding observable with eigenvalue Ai in quantum mechanics:

〈A〉 = 〈ψ|A |ψ〉 =
∑
n

〈ψ|A |n〉 〈n| |ψ〉 =
∑
n

〈n| |ψ〉 〈ψ|︸ ︷︷ ︸
ρ(t)

A |n〉

⇒ 〈A〉 = Tr(ρ(t)) (9)

Another physical meaning of the density operator gets obvious if we take a look at
the elements of the density operator.
With |ψ〉 =

∑
n cn |n〉 we get

ρ = |ψ〉 〈ψ| = (
∑
n cn |n〉)(

∑
m c
∗
m 〈m|) =

∑
n

|cn|2 |n〉 〈n|︸ ︷︷ ︸
diagonal terms

+
∑
m 6=n

cnc
∗
m |n〉 〈m|︸ ︷︷ ︸

off-diagonal terms

.
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Even more illustrative is the matrix representation of the density operator. For ex-
ample for a two-state system in the form of
|ψ〉 = α |0〉+ β |1〉,
we get the density matrix

|ψ〉 〈ψ| = |α|2 |0〉 〈0|+ αβ∗ |0〉 〈1|+ α∗β |1〉 〈0|+ |β|2 |1〉 〈1|

=
(
|α|2 α∗β

α∗β∗ |β|2

)
.

(10)

As we can see the diagonal elements of the density matrix can be interpreted as the
probabilities of the basis state, while the off-diagonal elements represent the coherence
of the basis states. These off-diagonal terms are the reason for the problem for
the measurement process, since they apply equally to measurement outcomes as the
definte diagonal terms.

3.1.2 The density operator for a mixed state

So far we considered an isolated system described by a simple wavefunction. Real
systems can never be isolated perfectly, since even very small perturbations in the
environment affect the system. But there are too many degrees of freedom in the
environment to consider them all. So one has to introduce the mixed state which tells
us the probability pi to find the system in the state |ψi〉. This probability distribution
on pure states is called mixed state: {(|ψ1〉 , p1), (|ψ2〉 , p2), ...., (|ψd〉 , pd)}
The density matrix for such a mixed state is

ρ =
d∑

k=1)

pk |ψk〉 〈ψk| (11)

We can demonstrate an analogy to the density operator of the pure state by showing its
same physical and partly mathematical properties as we had before. Most importantly
the expectation value for an observable is also given by the density matrix. For a pure
state given by |ψ〉 =

∑
α cα︸︷︷︸
〈φα|ψ〉

|φα〉 the expectation value of the observable B is given

by
bi = 〈ψi|B |ψi〉 =

∑
α,α′

c∗αcα 〈φα|B |φα′〉

Since each of the states |ψi〉 occurs only with probability pi we get the expectation
value for the composite system as
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〈B 〉 =
∑
i

pibi =
∑
i

pi
∑
α,α′

c(i)∗α c(i)α︸ ︷︷ ︸
〈φα|ψ〉〈ψ|φ′

α〉

〈φα|B |φα′〉

=
∑
α′

〈φα′ |
∑
i

pi |ψi〉 〈ψi|︸ ︷︷ ︸
ρ

∑
α

|φα〉 〈φα|︸ ︷︷ ︸
1

B |φα′〉

=
∑
α′

〈φα′ | ρB |φα′〉

= Tr(ρB)

(12)

As shown, one can extract physical observables from the density operator even for
mixed states, so the state of a quantum mechanical system is completely defined by
its density operator. Also it is independent of any specific probabilistic mixtures, thus
states with identical density matrices are indistinguishable. But another very crucial
fact is that the mixture setting up the density operator is not definite. In other words
many different mixtures can lead to the same density operator.

3.1.3 The reduced density matrix

Now we found a mathematical tool to describe the composite system consisting of
multiple subsystems. But what if we want to examine an observable of only one sub-
system. In other words the observables of interest. Therefore we need to define the
’system observable’:
Bs = B(s)⊗1(e) where B(s) only acts in the Hilbertspace of system S and 1(e) in the
Hilbert space of the environment E . Now we calculate the expectation value of this
observable.

〈Bs〉 = Tr(ρ(s,e)B(s) ⊗ 1(e))

=
∑
m,n

〈m|(s) ⊗ 〈n|(e) ρ(s,e)B(s) ⊗ 1(e) |m〉(s) ⊗ |n〉(e)

=
∑
m

〈m|(s)
∑
n

〈n|(e) ρ(s,e) |n〉(e)B(s) |m〉(s)
(13)

This can be written in the same form as the expectation value for the composite
system:

〈Bs 〉 = Trs(ρ(s)B(s)) (14)

with the new defined reduced density operator for system observables:
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ρ(s) = Tre(ρ(s,e)) =
∑
n

〈n|(e) ρ(s,e) |n〉(e) (15)

If we resubstitute ρ(s,e) in Eqs. (15) we get

ρ(s) =
∑
n

∑
kk′

ckc
′∗
k |k〉

(s) 〈k′|(s) 〈n|(e) |k〉(e) 〈k′|(e) |n〉(e) (16)

As we will see the decoherence effect will cancel the off-diagonal terms of the envir-
onmental system. So the environmental states |en〉 can be assumed as orthogonal.

→ ρ(s) =
∑
k

|ck|2 |k〉(s) 〈k|(s) (17)

That the environmental states are assumed as orthogonal is reasonable since one ex-
pects macroscopic distinguishability. For measurements this means that the pointer
is supposed to be found in a definite state. Therefore we refer to the environmental
states as the pointer states from now on.

By evaluating the reduced density operator with a mixed state, containing states
of the system as well as environmental states one sees that the state of the system
of interest is dephased - the off-diagonal terms decay. The diagonal density matrix
which is left looks like a classical ensemble of S-states. It can be interprated as a
statistical mixture, where each of the definte states |k〉(s) is found with probability
|ck|2 but the probability is zero to find a superposition of these states. It is important
to distinguish between statistical mixture and coherent superposition.
Yet, the state of the system is not collapsed. It is just said to be in a definite state,
but not in which one.

3.2 The measurement problem

The measurement problem arises from the apparent inconsistency between the results
of quantum mechanics and our perception. This problem can be divided in two
seperate questions. (A) Why do we always see particular observables in definite
states? - ’the preferred-basis problem’. (B) Why do we only measure a single value
as an outcome? - ’the problem of outcomes’.[5]
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3.2.1 The preferred-basis problem

So far we don’t know how it comes to orthogonality, such that the conclusion from
eqs. (16) to (17) is valid. And further if the pointer states get orthogonolized in any
basis. There is no special assumption for the basis, so the given result is valid for
any arbitrary basis. This leads to a problem with the physics that is described by
this orthogonalization. Let us therefore consider an illustrative example. A system
S of spin-1/2 particles with spin states |↑z〉S and |↓z〉S , which are the eigenstates of
an operator σz that measures whether the spin points up or down along the z-axis.
The system is measured by an aparatus A with eigenstates |↑z〉A and |↓z〉A. There
is a SA-entanglement such that if the system S is in state |↑z〉S then the aparatus A
ends up in |↑z〉A and the system is in |↓z〉S . We now suppose that the state directly
before the measurement is |ψ〉S = 1√

2
(|↑z〉S - |↓z〉S). Thus we get for the entangled

system-aparatus-state

|ψ〉SA = 1√
2

(|↑z〉S |↑z〉A − |↓z〉S |↓z〉A) (18)

So one can doubtlessly claim that the aparatus A measured σz at the end. But the
main point about the preferred basis problem is that the entangled state |ψ〉SA can
be written in any other basis |↑n〉S , |↓n〉A. For example

|ψ〉SA = 1√
2

(|↑x〉S |↑x〉A − |↓x〉S |↓x〉A) (19)

Now one would claim that σx is appearently measured, thus the aparatus A has
measured σz as well as σx. But those two observables are non-commuting observables
and Heisenberg’s uncertainty does not allow to measure both of them simultaneously.
The solution to this problem lies in decoherence. Decoherence is called the process in
which the superpositions of a state are vanishing, such that only the diagonal terms
of the density matrix as an classical statistical ensemble are left. Decoherence causes
this orthogonalization only in certain bases - the ’preferred basis’.

Appearently it is not sufficient to consider the System-Aparatus entanglement SA,
since the state is decohering in any basis of the pointer. The key point that leads
to decoherence is to include the environment E to the System-Aparatus system. The
main advantage of the idea of decoherence is that it is evolving from the determin-
istic Schrödinger equation, but not an a priori induced process. To understand the
deterministic process, the evolution in time of the mixed states will be discussed in
the next chapter.

13



3.2.2 The problem of outcomes

Later we will see that decoherence can reduce the possible outcomes of the SA-system
by dephasing the density matrix. The dephased matrix can be interpreted as a clas-
sical ensemble of potential measurement outcomes with definite probabilities. This
interpretation is based on the probabilistic interpreteation of the state vector, e.g.
the state vector |Ψ〉 to be found in the state |φ〉 with probability | 〈φ|Ψ〉 |2, which
already includes the assumption of a wavefunction ’collapse’. So decoherence does not
solve the whole measurement problem. But it already reduces the number of possible
outcomes. The possible outcomes which are left are definite states, thus it helps to
understand the transition from a quantum to a classical state.

|α|
2 α∗β α∗γ

αβ∗ |β|2 β∗γ

αγ∗ βγ∗ |γ|2


︸ ︷︷ ︸

Quantum state

Decoherence−−−−−−−−→

|α|
2 0 0

0 |β|2 0
0 0 |γ|2


︸ ︷︷ ︸

Classical Ensamble

Collapse−−−−−→

1 0 0
0 0 0
0 0 0


︸ ︷︷ ︸

Single definite outcome
(20)

4 Decoherence in detail

Since the dephasing process is not a spontaneous process but is evolving continuously
in time, in the following we are going to study the time evolution of the density
operators which describe systems and composite system.

4.1 The Von Neumann-equation

To examine the time evolution we substitute the results of the Schrödinger equation in
the definition of the density operator, thus we get the famous Von Neumann-equation.

i~ ˙ρ(t) =
∑
i

pi[(H |ψi〉) 〈ψi| − |ψi〉 〈ψi|H]

i~ρ̇(t) = [H, ρ]
(21)

If we want to be able to calculate the density operator at an abitrary time, given by
the initial density operator, we need to find an expression in the form ρ(t) = f

(
ρ(t0)

)
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From the Von Neumann-equation equation it is hard to extract this for a general
subsystem. This leads to the Krauss-Representation

4.2 The Krauss representation

To understand the behaviour of a part of a bipartite system, we examine the evolution
of the reduced density matrix. In our case the bipartite system consists of the system
of interest S and the environment E . Now we let the initial density matrix of the
composite system be a tensor product of the two subsystems.

ρ = ρS ⊗ ρE

ρ = ρS ⊗ |0〉 〈0| (22)

The time evolution of a density matrix is obtained by a unitary time operator →
ρ(t) = U(t, 0)(ρS ⊗ |0〉 〈0|)U†(t, 0). Furthermore the environment is ’traced out’ as it
was shown at the introduction of the reduced density matrix to finally get the time
dependent evolution of the subsystem S.

ρS(t) =
∑
b

〈b|U(t, 0) |0〉︸ ︷︷ ︸
≡Mb(t)

ρS 〈0|U∗(t, 0) |b〉︸ ︷︷ ︸
≡M†

b
(t)

(23)

Such we get

$(ρS) ≡ ρS(t) =
∑
b

Mb(t)ρs(0)M†b (t). (24)

This introduced map $ is called a ’superoperator ’ since it maps linear operators to
linear operators. Another important property about the Krauss operators Mb which
we will need later is

∑
b

M†b (t)Mb(t) = 1. (25)

4.3 The Master equation

For isolated systems the Hamiltonian in the Schrödinger equation describes the evolu-
tion over an infinitesimally small time interval. Such one gets the state at an abitrary
time by intergrating the differential equation over the time. This leads to the well
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known equation
|Ψ(t)〉 = e−

i
~Ht |Ψ(t0)〉 . (26)

The question is whether one can find a differential equation for non-isolated systems
of the same form.

ρ(t) = eLtρ(t0), (27)

where L is called the Liouville-operator or Lindbladian.

4.3.1 The Markov approximation

Whether one can find a differential equation in the same form as the Schrödinger
equation is (first order), depends on which process we are looking at. To be more
specific, there is only such a differential equation if the evolution of the quantum
system is "Markovian". Markovian processes are processes in which the state in the
future ρ(t+dt) only depends on the present state ρ(t), but is indepentent on the states
before (how it has come to the present state). In a bipartite system (e.g. System-
Environment) in general one could expect other situations, where the present state
also depends on earlier states. The environment can retain information of earlier
states for a certain time and transform it back to the system. [11]
But if we chose the time scale of our examined process the right way, it becomes a
Markovian process and we avoid the environmental feedback. Therefor following time
scales are defined:

δtD... characteristic time scale of the description of the evolution
δtE ... time scale in which the environmental reservoir ’forgets’ the inform-
ation it gained from the system
δtS ... characteristic time scale in which the system interacts with the en-
vironment

So if we chose the time scale δtD such that it is much larger than δtD, the environment
has no ’memory’ about the earlier states of the system and the process is markovian.
Furthermore we require the time scale to be much smaller than δtS so the high
frequency components of the motion of the systems are filtered.[6]

δtE � δtD � δtS (28)

16



4.3.2 Lindblad equation

The Lindbladian corresponds to the Hamiltonian of an open system. It describes
Markovian but non-unitary evolution. The non-unitarity comes from the interaction
with the environment. To derive the Lindbladian one applies the Markov approxim-
ation for the Krauss representation. Using this approximation is necessary to find an
operator which fullfills eq. (27) .
Since from the Markovian approximation we get

ρ(δt) = ρ(0) +O(δt), (29)

we can conclude about the form of the terms of the Kraussrepresentation.

=⇒ M0(δt) = 1+O(δt)

Mb(δt) = O(
√
δt)

(30)

Further we are using new operators K and L to express this condition.

M0(δt) = 1+ ( i
~
H +K)δt

Mb(δt) = Lb(
√
δt)

(31)

These expressions for the Krauss operators can now be substituted in eq. (25) and
one gets the relation between K and L and after further calculation steps finally the
differential equation for non-unitary evolution in a bibartite system.

ρ̇(t) = Lρ = − i
~

[H, ρ(t)] +
∑
b

(Lbρ(t)L†b −
1
2L
†
bLbρ(t)− 1

2ρ(t)L†bLb (32)

Lindbladian equation

In the Lindbladian equation one can clearly see that the first term is in the same form
as the Von Neumann-equation, thus we clarify H as the Hamiltonian H (the operator
was already called H in the wise foresight of this result). This term appearently
represents the unitary evolution of the system, while the other terms are representing
the non-unitary evolution. The Lb operators are called Lindblad operator or quantum
jump operator, because each of the Lbρ(t)L†b-terms represents an environment induced
quantum jump to the system S. The two other terms 1

2L
†
bLbρ(t) and 1

2ρ(t)L†bLb do
normalize the case in which no jumps occur. [6]
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4.4 Example of Decoherence

In this section an explicit example of decoherence will be examined.[6] The goal is to
show that indeed the environment causes vanishing off-diagonal terms in the reduced
density matrix of the observed system. Furthermore we will see how long it takes for
a state to decohere.

The system of interest in the following example can be considered as a heavy "classical"
particle, initially being in the superposition of position eigenstates |x〉 and |−x〉 (in
our notation |0〉A and |1〉A) . The particle is imagined to be exposed to light, such
the incident photons represent the interacting environment. Since we are not able
to monitor all the scattering photons the quantum state is represented by a density
operator. For evaluating the time evolution we use the Krauss-representation:

$(ρS) =
∑
b

MbρsM
†
b (33)

with Mb = 〈b|U |0〉 , and U is a unitary evolution operator.
In this example the unitary evolution operator of the density operator is not given
as usual in terms of time units, but in terms of the amount of interactions with the
environment. It is given by

|0〉A |0〉E −→
√

1− p |0〉A |0〉E +√p |0〉A |1〉E
|1〉A |0〉E −→

√
1− p |1〉A |0〉E +√p |1〉A |2〉E

(34)

Here the state of the system A (the position of the particle) is never disturbed by
the environment. Only the environmental states are kicked into higher states with
probability p with each interaction. The photon is kicked from its initial state |0〉E ,
into |1〉E if the system A is in the state |0〉A and into |2〉E if the system A is in the
state |1〉A.

Krauss operators
Now given the unitary evolution operator we can write down the Krauss operators:

M0 =
√

1− p 1, M1 = √p
(

1 0
0 0

)
, M2 = √p

(
0 0
0 1

)
(35)

To evaluate the time evolution of the state the Krauss operators are inserted into
eq. (33). Let the density operator thereby be in the initial state in the form of
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(
ρ00 ρ01

ρ10 ρ11

)
, thus we get

$(ρS) = M0ρAM0 +M1ρAM1 +M2ρAM2 =
(

ρ00 (1− p) ρ01

(1− p) ρ10 ρ11

)
. (36)

Appearently the diagonal terms stay invariant while the off-diagonal terms vanish if
the interaction between the system and the environment is repeated again and again.
To translate this process into a time-dependent process we introduce Γ as the number
of scattering events per unit time, such that p = Γ∆t � 1. The density matrix
after time t is given by $(ρS)n, such that its off-diagonal terms are suppressed by
(1− p)n = (1− Γ∆t) t

∆t
∆t→0−−−−→ e−Γt. After a long enough time (γt� 1) the reduced

density matrix takes the form describing a classical ensemble as sketched in eq. (20).
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5 Information perspective of quantum physics

When studying the difference between the classical and quantum world we already
found out that quantum entanglement is a critical property that distinguishes those
two worlds. But entanglement is not the only phenomenon with this capability. An-
other phenomenon is gained from information theory and is called ’quantum discord’.
Therefore the next chapter is going to introduce the quantum entropy, an important
measure to build up the field of quantum information. This is followed by the usage
of information theory to find a new way to classify non-classical correlations.

5.1 Missing Information - Entropy

By applying the markovian approximation to derive the master equation one included
that the concerned time scale is long enough that the environment ’forgets’ informa-
tion about the system S. This implies a loss of information, at least for the subsystem.
In this chapter this process is examined in a more formal way. In particular we will re-
late this loss of information with the classical concept of the thermodynamical entropy.

As we have seen the physical state of a system is completely defined by its density
operator. But what also appeared is the fact that the mixture of states that build up
a given mixed state is not definite - e.g. the same density operator can be obtained
by two different mixture states.

The same property occurs in classical thermodynamics, where the temperature de-
scribes certain physical observations, independend on how the velocity distribution
of the particles (microstates) is. There are many ways to actualize the same temper-
ature by different velocity distributions. In classical thermodynamics the entropy is
correlated with the number of possible distribution to actualize the same macrostate.
The more ways there are, the higher the entropy.
The same concept can be applied for quantum systems. On the basis of classical
definition of the entropy

S = −kb
∑
i

pi ln pi, (37)

one can write the generalized definition of the quantum entropy, also called the von
Neumann entropy:

S(ρ) = −Tr
(
ρ ln ρ

)
(38)
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Since the summands of the trace of the density operator are the eigenvalues of the
density operator this further leads to

S(ρ) = −
∑
i

λi lnλi. (39)

Now we examine the entropy of a mixed and a pure state.

• Mixed state
for a maximal mixed state the density operator is given by

ρmix = 1
d
1d.

So the corresponding quantum entropy is

S(ρmix) = −Tr
(
ρmix ln ρmix

)
= −Tr

(1
d
1d ln 1

d
1d
)

= −
∑
i

1
d

ln 1
d

= ln d.

The entropy can be normalized such that
0 ≤ S(ρ) ≤ 1.

• Pure state
The entropy for the pure state vanishes since the eigenvalues of its diagonalized
density matrix always is 1 or 0.

→ S(ρ) =
∑
i

λi lnλi = 0

So we can classify following cases:

• 0 ≤ S(ρ) ≤ 1 General state

• S(ρ) = 1 Maximal mixed

• S(ρ) = 0 Pure state

Since the process of decoherence is the transition from pure to mixed states an in-
crease of entropy comes along with decoherence. To point out this increase of entropy
from another point of view we once again consider the state as ρ =

∑
i pi |φi〉 〈φi|

which is found in the state |φi〉 〈φi| with probability pi and
∑
i pi = 1. Assuming the

initial state to be in a pure state the density operator consists of only one term with
p1 = 1, such one knows the whole information about the system. If the state starts to
decohere due to the environmental coupling, the pure state evolves to a mixed state
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and the whole event space {pi} is spread to more and more pi. The uncertainty about
which state the system is found in increases, or in other words one loses information
about the system.

5.2 Quantum discord

Systems with no entanglement still can have unique quantum correlation. To quantify
this quantumness of correlations the measure δ(A|B), called ’discord’, is introduced.
It is defined by the difference between two different expressions for the mutual in-
formation (one representing general systems and one representing classical systems)
for a bipartite system SA.

δ(A|B) = I(A : B)− J (A : B) (40)

For the case of general mutual information I(A : B) one can write down following
expression:

I(S : B) = S(A) + S(B)− S(A,B), (41)

where S(A) and S(B) express the entropies for the single systems A and B, and
S(A,B) expresses the joint entropy of the two systems. This formular is justified
when looking at two special cases:

• There is no correlation between the two subsystems S(A,B) = S(A)+S(B) and
the mutual information vanishes. ⇒ I(S : B) = 0

• There is maximum correlation between the systems such S(A,B) = S(A) =
S(B) = I(S : B).

In the classical case the mutual entropy of a bipartite system can be written as

S(A,B) = S(A) + S(A|B). (42)

Where S(A|B) is the conditional entropy for a bipartite system - the entropy of the
system A given the state B. Eq. (42) tells us that if one knows everything about
state B Information about A is still missing. This relation for the classical mutual
entropy also can be derived in a formal way. [7]
With this expression one can substitute S(A,B) in the formular for general mutual
information, thus one obtains the expression for the classical mutual information.

J (S : B) = S(A) + S(B)−
(
S(A) + S(A|B)

)
(43)
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For quantum physics the words ’...given the state B...’ in the definition of the con-
ditional entropy has crucial consequences. The state of an object can only be given
after measurement. Since this measurement is basis-dependent in quantum physics
the conditional entropy for quantum systems must also be basis dependent.

S|bi〉(A,B) =
(
S(A) + S(A|B)

)
|bi〉

(44)

Now there can be a discord between mutual information for general systems I(S : B)
and for pure classical systems J (S : B). Such the difference can be considered as the
non-classical, quantum part of mutual information. A measure for quantumness is
found, which can be independent of the degree of entanglement.

δ|bi〉(A|B) = I − J =
(
S(A) + S(A|B)

)
|bi〉
− S(A,B) (45)

There is also a way to express the discord in a basis-independent way by finding a
basis-independent conditional entropy in the form of the von Neumann entropy S(ρ)
(introduced in the previous section). Therefore one calculates the von Neumann en-
tropy for the conditional density operator ρA|ΠB

j
, where the set of projection operators

{ΠB
j } defines in which basis the measurement of B was taken. By minimizing this

entropy over the possible measurements on B one can find the measurement that
disturbs least the quantum state of A. If the minimum discord with the correspond-
ing basis is vanishing, a basis is found in which the system is classically accessible
through the subsystem B. [3] For pure states δ|bi〉(A|B) > 0 in all bases, whereas for
the decohered state δ|bi〉(A|B) = 0 for the preferred basis. Thus we found another
approach to show the classical aspects of a decohered state, namely the informational
aspect.

Beside the boost of understanding the foundations of the quantum-classical border,
quantum discord has an important meaning in quantum computation, where the
’quantum-advantages’ are supposed to be used to achieve more efficient algorithms
to solve problems. For a long time entanglement seemed to be the key-resource for
quantum information processing (QIP). The problem about the entanglement-based
quantum computing is that it is a very demanding task to create and manipulate
entangled states. Especially because of their fragility concerning the environment
induced decoherence, as seen in the section ’Example of decoherence’. In contrast to
quantum entanglement, discord is much more robust against environmental influences,
thus it is a promissing concept which can be used for quantum computation in the
future.[8]
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6 Alternative Interpretations

For a thorough examination of the interpretation of quantum mechanics different as-
pects and questions of the physical model have to be considered. Here are the most
crucial aspects that distinguishes the different interpretations.

Determinism or randomness?: Do processes happen deterministically or randomly?
Is the so far observed randomness of nature due to ignorance or is it ’true’ random-
ness. The discussion about the EPR-paradox and the Bell theorem is the historical
basis for this question in quantum physics.

The measurement problem: This already introduced problem (section 3.2) is one
of the key questions, especially because it raises the question how the classical world
which we observe in our everyday life arises. Are there two separate worlds that can-
not be combined in a unifying modell? Or does classical mechanics and its properties
(definite outcomes, classical measurement, collapse) arise from fundamental principles
of quantum physics.

Locality: The principle of locality implies the impossibility of instantaneous action-
at-distance. Is a physical model of reality satisfying the principle of locality?

In the following we give a brief overview over alternative ways of quantum interpreta-
tion and their relation to the above mentioned aspects. The sketched interpretations
are chosen because of there completely different approaches to describe quantum
physics.

6.1 The orthodox and the Copenhagen interpretation

The main element of the orthodox interpretation is the collapse postulate. It states
that the measurement of a system leads to a collapse or projection of the state into
an eigenstate of the measurment observable. This interpretation is the common ver-
sion for standard textbooks, but it lacks the definition of what a measurement is
fundamentally. Measurement is just introduced in words without specifying the exact
physical process or the basis in which the state collapses. The preferred basis thus is
just ’chosen’ freely by the observer who sets up the experiment.
In the Copenhagen interpretation the measurement is more specified. According to
its postulate of measurement, which is again declared in words, a quantum state is
measured whenever it interacts with a classical system. Thereby the interpretation
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never clarifies what ’classical’ means and such implies a quantum-classical dualism,
where two separate models are required to describe nature. Here is where decoherence
takes it role of the interpretation: By clarifying the characteristic property of clas-
sical states to be the ones with no coherence, the process of environmental induced
decoherence lets classical systems arise from quantum mechanical principles.

6.2 The relative-state interpretation

The motivation for the relative-state interpretation lies in the goal of physical models
to be built up by one fundamental process, but not by two separate processes (unitary
evolution and measurement) as it is done in the orthodox interpretation. Indeed the
concept of environment induced decoherence does provide a description for vanishing
superpositions, but it always concerns open systems, where degrees of freedom of
a larger system are disregarded. Considering the whole universe, there is no larger
system or environment, such the evolution must be unitary and superpositions of
universe-states do exist.
In 1957 the english physicist Hugh Everett III introduced a completely new inter-
pretation, in which quantum physics is universal valid - no extra ’collapse postulate’
is necessary. The postulate was replaced by postulating ’that observer perceives the
state of the rest of the Universe relative to his own state’. [12] To illustrate the idea
behind this approach we consider the von Neumann measurement scheme.
The von Neumann measurement scheme models the (non-collapse) quantum meas-
urement process of a system-aparatus interaction SA, whereat the aparatus is not
a classical device, but also considered as quantum. The initial state of SA has the
seperable form

|Ψ〉 = |ΨS〉 ⊗ |a0〉 =
(∑

k

λk |sk〉
)
⊗ |a0〉 . (46)

When the state evolves in time the S and A start to interact with each other, such
they are in a nonseperable entangled state:

|Ψ(t)〉 =
∑
k

λk(t) |sk〉 ⊗ |ak(t)〉 (47)

This expression models the so-called ’premeasurement’. The origin of this naming is
the fact that it describes a state which is still 1) non-collapsed and 2) evolving unitar-
ily. The relative-state interpretation states that the measurement is already described
by eq. (47). Therefore one has to include the observer him/herself and ask the ques-
tion "Why can’t the observer see the whole range of states, but only one (collapsed)
state?". The answer according to the interpretation is that the observer is perceiving
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the universe that is consistent with the memory records. To put it another way, if the
universe is in the state |U〉 and the observer’s state is |Oi〉, after the measurement the
state of the entire universe ’collapses’ to one certain state. For example it collapses
to 〈O42|U〉 - a state which is consistent with the observer’s state |O42〉.[12]
Even though the relative state interpretation provides a universal valid quantum
framework, it leaves and launches some questions. First it does not explain, why the
classical observer practically never superpositions. But this problem is again resolved
by the environment induced superselection.
Another question is which role the probabilistic nature in quantum physics (summar-
ized in Born’s rule) plays in the interpretation. Since the publication of Everett many
papers have occured, in which Everett’s idea was attempted to be reconstructed and
extended in its approaches. Examples for most popular interpretations among those
are the many-worlds, many-minds or many-histories theories.

6.3 Bohmian mechanics

The approach suggested by Bohm is a highly deterministic and non-local model of
nature. It reinterpretates the particle-wave dualism in a completely new way by
assigning the Schrödinger equation the role of a "guiding equation" which determines
the dynamics of a particle. Such the motion of a particle has no probabilistic behaviour
but follows a deterministic trajectory. One might ask how this is possible, when Bell
proved that there can’t be hidden variables that determine its deterministic path. But
Bell was refering to local hidden variables, so the dynamics of Bohm’s description still
can imply non-local hidden variables. The main problem of Bohmian mechanics when
applying it, is the explanation of quasiclassical trajectories thus this interpretation
does not belong to the most supported interpretations among physicists.
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Conclusion

In this thesis we have seen that even though the today most fundamental model of
nature - quantum physics - seems to be a sufficient tool to predict a wide range of
processes in nature, it still lacks in some of its interpretational perspectives. For
example whether quantum physics is a theory of processes that are deterministic or
if there is true randomness. Or how our classical world, consisting of only definite
states, can arise from a fundamental law which allows superpositions. Within the
Bell’s inequality and the process of environment induced decoherence we have seen
those two interpretational, philosophical problems can be turned into a problem which
can be, at least partly, resolved within physical methods. Therefore an important step
was to classify definitely the properties of classical systems, such as the entanglement
and the quantum discord. Still we are left with open puzzles: Are there hidden non-
local variables in quantum physics? Bohmian mechanics could give the answer in
the future to this question. Whereas the relative-state theory can possibly reveal the
mystery about the collapse and where all the potential states are.
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Appendix

In the singlet state
|00〉 = 1√

2
(↑1↓2 − ↓1↑2)

we next show that the spin correlation becomes

〈SA · SB〉 = −~
2

4 cos(Θ)

with SA/B the spin of particle A/B and Θ the angle between measured components
of SA and SB

To make the calculation easier, we calculate in spherical coordinates. We chose the
cordinate system such that whereas ~a ‖ ~ez and ~b are both in the x − z -plane. This
leads to SA = Sz and SB = cos(Θ)Sz + sin(Θ)Sx

SASB |00〉 = 1√
2

[Sz(cos(Θ)Sz + sin(Θ)Sx](↑↓ − ↓↑)

= 1√
2

[(Sz ↑)(cos(Θ)Sz ↓)− (Sz ↓)(cos(Θ)Sz ↑ + sin(Θ)Sx ↑)]

= 1√
2

(~2 ↑)[cos(Θ)(−~2 ↓) + sin(Θ)((~2 ↑)− (−(−~2 ↓))[cos(Θ)(−~2 ↑) + sin(Θ)((~2 ↓)]

= ~2

4 [cos(Θ) 1√
2

(− ↑↓ + ↓↑) + sin(Θ) 1√
2

(↑↑ + ↓↓)]

= ~2

4 [− cos(Θ) 〈00|+ sin(Θ) 1√
2

(〈11|+ 〈1− 1|)]

(48)
So,

〈SaSb〉 = 〈00|SaSb |00〉

= ~2

4 〈00| [− cos(Θ) |00〉+ sin(Θ) 1√
2

(〈11|+ 〈1− 1|)]

= −~
2

4 cos(Θ) 〈00| |00〉

= −~
2

4 cos(Θ)

(49)

Thus in units of ~2 we get

〈S1
aS

2
b 〉 = − cos(Θ) = −~a ·~b
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