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Abstract

The aim of this thesis is to find a model that describes the generation of twin-
atom beams emitted from a quasi Bose-Einstein condensate. Our work is moti-
vated by an experiment performed by a group from the Institute of Atomic and
Subatomic Physics at the Vienna University of Technology and was published
in [1].

Starting point for the generation of twin-atom beams is a one-dimensional,
degenerate Bose gas trapped in the ground state of an elongated magnetic
potential. This quasi-condensate is transferred to the first radial excited state
by shaking the trap. Subsequently, pairs of atoms with opposite momenta are
emitted from the source and propagate in longitudinal direction.

To model this behavior, we use a density matrix approach which is first ap-
plied to a simplified two-mode model of the emission process. We probe different
factorization schemes, a pseudospin-operator ansatz, and a coupled-cluster ap-
proach, and compare the results to the one obtained by the exact solution of
the full Schrödinger equation. Then we use the first-order approximation within
the density matrix approach and generalize it to a multi-mode model. We allow
several twin-modes to be populated and also imply the pumping-process in our
simulation, finding good agreement with the experiment.
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1 Bose-Einstein condensation

1.1 Definitions

Bose-Einstein condensation (BEC) occurs when a single quantum state be-
comes occupied in a macroscopic way. This is the definition made by A. Ein-
stein in 1924–25 considering ideal gases [2, 3]. With further investigation, also
of interacting and nonuniform Bose gases, a more precise formulation became
necessary.

If we formalize the original definition its deficiencies become obvious. As the
system shows BEC when the number of particles condensed in the ground state
N0 is proportional to the total number of particles N , in the thermodynamic
limit, the condition can be written as

lim
N→∞

N0
N

> 0. (1)

While for the ideal gas the macroscopically occupied single-particle state is well
defined, there is an ambiguity in the choice of a single-particle basis in the
case of interacting particles. Therefore the ground state and its occupation
number are not uniquely defined in this case [4]. Furthermore, this formulation
does not provide the occurrence of a fragmented BEC, where several states
become occupied macroscopically [5]. Penrose and Onsager [4] generalized this
criterion and made it applicable also to interacting particles. For that purpose,
the one-body density matrix

ρ(1)(r, r′) ≡ 〈Ψ̂†(r)Ψ̂(r′)〉 (2)

is defined, where Ψ̂†(r) (Ψ̂(r)) is the field operator creating (annihilating) a
particle at the point r. The boson field operators satisfy the usual commutation
relations [

Ψ̂(r), Ψ̂†(r′)
]

= δ(r− r′),
[
Ψ̂(r), Ψ̂(r′)

]
= 0 (3)

The eigenvalues γn of this matrix ρ(1) are defined by the solution of the eigen
equation ∫

ρ(1)(r, r′)ϕn(r′)dr′ = γnϕn(r). (4)

Now the criterion (1) can be rewritten in terms of the largest eigenvalue as

lim
N→∞

supn γn
N

> 0. (5)

Since the density matrix ρ(1) is well defined for both noninteracting and inter-
acting particles, this formulation is valid in either case.

An alternative way to formulate the condition for BEC is to require off-
diagonal long-range order (ODLRO). A system exhibits ODLRO if the one-
body density matrix ρ(1)(r, r′) has a non-vanishing value. Also at large values
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of separation |r− r′|. This can be written as the limit

lim
|r−r′|→∞

ρ(1)(r, r′) = Ψ∗0(r)Ψ0(r′) ≡ ρ0 > 0 (6)

where Ψ0(r) is called the condensate wave function or the order parameter and
ρ0 is the condensate density. Since the density matrix is hermitian, it can be
written in the diagonalized form

ρ(1)(r, r′) =
∑
n

γnϕ
∗
n(r)ϕn(r′). (7)

If Bose-Einstein condensation occurs, one single-particle state gets macroscop-
ically occupied. In the following, this state will be called ϕ0(r). In the above
expansion, the term containing this single-particle state ϕ0(r) and its corre-
sponding macroscopic eigenvalue γ0, provide the main contribution to that sum
and

ρ(1)(r, r′) ' γ0ϕ
∗
0(r)ϕ0(r′). (8)

Hence, the macroscopically occupied single-particle state can be identified with
the condensate wave function, i.e.

Ψ0(r) =
√
N0ϕ0(r) (9)

where N0 ≡ γ0 is the largest eigenvalue of the density matrix.
While in the case of an ideal gas, where ϕ0(r) is the zero-momentum state,

the condition for ODLRO (6) is fulfilled, it has to be weakened for confined
systems. This means, that both r and r′ must remain within the atomic cloud,
since all single-particle wave functions ϕn(r) tend to zero as r → ∞. Thus,
strictly speaking, finite sized systems do not show ODLRO.

1.2 The condensate wave function

An alternative way to deduce the condensate wave function starts with
writing the field operator in terms of the single-particle states ϕi as

Ψ̂(r) =
∑
i

âiϕi(r) (10)

where âi is the annihilation operator for a particle in the state ϕi, and â†i is the
corresponding creation operator. In Fock space these operators are defined as

â†i |n0, n1, ..., ni, ...〉 =
√
ni + 1|n0, n1, ..., ni + 1, ...〉 (11)

âi|n0, n1, ..., ni, ...〉 =
√
ni|n0, n1, ..., ni − 1, ...〉 (12)

where ni = 〈â†i âi〉 is the number of particles in the state ϕi and the operators
obey the commutation relations[

âi, â
†
j

]
= δij , [âi, âj ] = 0,

[
â†i , â

†
j

]
= 0. (13)
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If BEC occurs, the occupation number of one single-particle state (i = 0) be-
comes very large. In the expansion (10) the condensate contribution, containing
the corresponding single-particle wave function, can be separated out. Thus the
field operator can be written as

Ψ̂(r) = â0ϕ0(r) +
∑
i 6=0

âiϕi(r). (14)

Since the number of condensed particlesN0 ≡ 〈â†0â0〉 � 1 the non-commutativity
of â0 and â†0 can be neglected, which corresponds to replacing the operators â0
and â†0 by the c-number

√
N0. This approach, known as the Bogoliubov approx-

imation, allows one to write the field operator as

Ψ̂(r) = Ψ0(r) + Ψ̃(r), (15)

where the complex function Ψ0(r) =
√
N0ϕ0(r) is the wave function of the

condensate, as it was already stated in (9), and Ψ̃(r) describes the bosons
outside the condensate. From (14) one can see that, due to the Bogoliubov
approximation, 〈Ψ0(r)〉 6= 0, while for the non-condensate component 〈Ψ̃(r)〉 =
0. Thus

Ψ0(r) = 〈Ψ̂(r)〉. (16)

1.3 Gross-Pitaevskii equation

The Hamiltonian for a system of N interacting bosons, trapped by an ex-
ternal potential Vtrap reads

Ĥ =
∫
drΨ̂†(r, t)

[
− ~2

2m∇
2 + Vtrap(r, t)

]
Ψ̂(r, t)

+ 1
2

∫
dr
∫
dr′Ψ̂†(r, t)Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)Ψ̂(r, t), (17)

where Ψ̂(r, t) is the boson field operator and V (r−r′) is the two-body interaction
potential. Collisions of three or more particles can be neglected because of
the very low density of the gas. From this Hamiltonian we get the following
Heisenberg equation of motion for the field operator Ψ̂(r, t)

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂(r, t), Ĥ

]
=

=
[
− ~2

2m∇
2 + Vtrap(r, t) +

∫
dr′Ψ̂†(r′, t)V (r− r′)Ψ̂(r′, t)

]
Ψ̂(r, t), (18)

where the commutation relations (3) for the field operator have been used.
This equation in general cannot be solved. Therefore a mean-field approach
is taken, where one makes use of the decomposition (15). If the depletion of
the condensate is small, the non-condensate term ψ̃ can be neglected and the
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field operator in (18) can be substituted by the condensate wave function Ψ0.
However, the use of the interatomic potential V (r − r′) is no longer adequate
and has to be replaced by an effective soft potential that possesses the same
s-wave scattering length. The s-wave scattering length a is the parameter that
solely characterizes the interatomic interaction. This yields

i~
∂

∂t
Ψ0(r, t) =

[
− ~2

2m∇
2 + Vtrap(r, t)

+
∫
dr′Ψ†0(r′, t)Veff(r− r′)Ψ0(r′, t)

]
Ψ0(r, t). (19)

Since Ψ0 varies slowly on the length scales of the range of the interatomic force,
one can replace r′ by r in the argument of Ψ0 in the integral in the above
equation and one gets

i~
∂

∂t
Ψ0(r, t) =

(
− ~2

2m∇
2 + Vtrap(r, t) + g|Ψ0(r, t)|2

)
Ψ0(r, t), (20)

with the interaction coupling constant being fixed by the s-wave scattering
length a through g = 4π~2a

m . This equation is known as the Gross-Pitaevskii
equation (GPE) and was derived independently by Gross[6] and Pitaevskii [7] in
1961. Here the order parameter is normalized to the total number of particles,
i.e.

∫
dr|Ψ0|2 = N , and thus the condensate density is given by ρ(r) = |Ψ0(r)|2.

Within mean-field theory, the ground state of a BEC can be calculated from
the time-independent GPE, which is obtained by substituting

Ψ0(r, t) = Ψ0(r) exp
(
− iµt

~

)
(21)

for the condensate wave function into (20). The time evolution is fixed by the
chemical potential µ = ∂E

∂N . This leads to(
− ~2

2m∇
2 + Vtrap(r) + g|Ψ0(r)|2

)
Ψ0(r) = µΨ0(r), (22)

which is called the stationary Gross-Pitaevskii equation.

2 Bose-Einstein condensation in lower dimen-
sions

The investigation of Bose gases in lower dimensions is of great interest be-
cause the underlying physics is very different from that of a three-dimensional
gas. For example, the one-dimensional trapped gas of interacting bosons shows
quantum statistics which, depending on the temperature and the number of
atoms, can be of bosonic, classical or fermionic character [8].
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Experimentally such a highly anisotropic configuration can be realized by
choosing the shape of the trapping potential in a way that allows to tightly
confine the motion of the trapped atoms in one or two directions to zero point
oscillations. The first experimental realization of a BEC in lower dimensions
was done by Görlitz et al. in 2001 [9]. Based on a changed behavior of the
released atoms, a crossover from a 3D to a 2D and 1D condensate was observed.
For a reduced number of particles the aspect ratio changes and, unlike in 3D
condensates, the release energy no longer depends on the number of particles
but tends to a non-zero value in lower dimensions.

Long before the realization of these experiments condensation in lower-
dimensional Bose gases has already been investigated theoretically. Due to the
Mermin-Wagner-Hohenberg theorem [10, 11], a homogeneous one-dimensional
Bose gas cannot exhibit BEC at all temperatures [12], whereas a homogeneous
two-dimensional system only does at T = 0. For trapped Bose gases, however,
the situation is different and the criteria for BEC have to be redefined. In this
manner, a finite, inhomogeneous system can exhibit BEC because the trapping
potential changes the density of states [13].

In the case of an ideal Bose gas this can be easily understood: In the context
of the grand canonical ensemble the total number of particles of the uniform
d-dimensional Bose gas is given by

N =
∑

k

1
eβ(εk−µ) − 1

(23)

where β = 1
kBT

, εk = ~2k2

2m and µ is the chemical potential. This sum can be
written as an integral, which yields

N = N0 +
∫ ∞

0
dε

ρ(ε)
eβ(ε−µ) − 1

(24)

where ρ(ε) is the density of states, that is ρ(ε) ∝ εd/2−1, and N0 is the number
of particles condensed into the ground state, which is mentioned explicitly since
ρ(0) = 0. If at T = TC BEC occurs, this integral has a finite value at µ = 0.
It is easy to see that this integral diverges for small values of ε in the case of a
two-dimensional Bose gas, where the density of states is constant. A divergence
also occurs for the one-dimensional case, where the density is proportional to
1√
ε
. However, the density of states changes if the gas is no longer uniform. In

the presence of a harmonic potential the density of states is given by ρ(ε) ∝ εd−1

and the integral in (24) converges for the case of a two-dimensional system. But
the one-dimensional Bose gas cannot exhibit BEC even if there is a harmonic
confinement potential, because the integral in (24) is still divergent. This means
that in the thermodynamic limit, where N → ∞ and ω1D → 0 with Nω1D
kept fixed, the critical temperature tends to zero. In general experiments are
performed with a finite number of particles and the thermodynamic limit is
not fully justified. However, for finite systems one does not speak of a phase
transition. Yet, a quasi-condensation can occur, where the lowest single-particle
state is substantially occupied. A one-dimensional trapped Bose gas shows this
BEC-like behavior below a critical temperature of T 1D

C kB = ~ω1D
N

ln(2N) [14].
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Figure 1: Diagram of states for a trapped 1D gas at finite temperature taken
from [8].

Furthermore, the inter-particle interactions play an important role. The case
of the trapped interacting Bose gas was investigated by Petrov et al [8]. They
identified three regimes of quantum degeneracy: that of a quasi-condensate
(with fluctuating phase), that of a true condensate and that of a trapped Tonks
gas, which is a gas of impenetrable bosons that shows a Fermi-gas density
profile.

3 Experimental realization of BEC

To understand how a BEC is created we take a look at the main steps of a
typical experiment. First, atoms are heated in an oven and emerge as a beam.
These hot, and thus very fast atoms are then slowed down in a so called Zee-
man slower. There the atoms absorb photons from a counter-propagating laser
beam and thereby reduce their velocity due to an exchange of momentum with
the photons. When the excited atoms re-emit the photons subsequently, they
do this in a random direction and so this process does not change the average
speed. Therefore, considering the total process of the atom absorbing and emit-
ting a photon, the average speed is decreased. Since the atoms’ velocities follow
a Maxwell distribution, only atoms with a certain velocity are resonant to the
photons frequency and can therefore be cooled (see figure 2). To achieve a cool-
ing even of the atoms with different velocities, an inhomogeneous magnetic field
induces a Zeeman shift of the atoms’ frequencies. The atoms leave the Zeeman
slower with a speed one order of magnitude smaller and are now slow enough
to be captured by a magneto-optical trap (MOT) [15] where they are further
cooled by the radiation pressure of several laser beams to temperatures of or-
der 100µK. To avoid diffusion of the atoms, a spatially varying magnetic field
and the accompanying Zeeman effect are used to generate a position-dependent
force that keeps the atoms inside the trap. The temperatures that can be
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reached with optical cooling are limited by the heating, caused by spontaneous
emission. To reach temperatures low enough to achieve BEC further cooling
is necessary. Therefore the laser beams of the MOT are turned off when a
sufficiently large number of atoms has accumulated and the atoms are trans-
ferred to a solely magnetic trap, where they are confined in a minimum and
the temperature can be further decreased by evaporative cooling. Within this
technique, the highest energy atoms are removed from the trap and the mean
energy, i.e. the temperature of the remaining atoms is reduced. Moreover also
the phase space density is increased by this process and finally the conditions
for BEC can be reached by this combination of laser cooling, magnetic trapping
and evaporative cooling.

Figure 2: Figure from the 1997 Nobel lecture by W. D. Phillips [16] showing
the velocity distribution of atoms before (dashed line) and after (solid line) laser
cooling at a fixed frequency.

To measure the density distribution of the atoms in the condensate, several
imaging techniques exist. The most popular method is absorption imaging [17],
where a laser beam, with a frequency resonant to an atomic transition, is passed
through the atomic cloud. Thereby an absorption profile occurs, which is mea-
sured with a CCD and gives information on the spatial density distribution. To
improve the spatial resolution, the cloud is released from the trap and freely ex-
pands before imaging, this is called a time-of-flight imaging technique. Another
technique, which also works for very low densities, is fluorescence imaging [18],
where the atoms of the expanding cloud are excited when falling through a thin
light sheet, and the emitted fluorescence photons are measured (see schematic
in figure 7). However, these kinds of measurements destroy the BEC and to ob-
serve a time-dependent process it is therefore necessary to make measurements
of different condensates released at different times.
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Figure 3: Schematic of the fluorescence imaging process (illustration from
[18]).

3.1 Atom chips

As already mentioned, it is possible to confine neutral atoms in magnetic
traps. These traps can be realized by nano-fabricated wires on semiconductor
substrates which are covered by an insulating layer and an overlaying, metallic
reflection layer realizing a mirror MOT, the so called atom chips [19]. In 2001
the first BECs were generated using atom chips by groups in Munich [20] and
Tübingen [21].

Magnetic trapping is possible due to the coupling of the atoms magnetic
dipole moment with an inhomogeneous external magnetic field which allows to
confine atoms in a minimum of the magnetic field. In a magnetic filed an atom
with a magnetic moment µ experiences the potential

V = −µ ·B ' −gFmFµB|B| (25)

where gF is the Landé factor, mF is the projection of the atoms total spin in
the direction of the external magnetic field, and µB is the Bohr magneton. The
approximation above is equivalent to assuming the magnetic moment following
the direction of the external field adiabatically. This is justified in the limit of
slow atomic motion in a strong magnetic field. Depending on the orientation of
the atomic magnetic moment to the external magnetic field, atoms are drawn
towards increasing fields (strong-field seekers) or towards regions of low fields
(low-field seekers). Since there are no local maxima of the magnetic field in
free space [22] only low-field seeking states can be trapped in minima of the
magnetic field. On an atom chip these magnetic fields are produced by current
carrying wires which are realized by conducting paths on the chip’s surface
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fabricated with lithographic techniques. The simplest micro-trap geometry is
that of a straight conducting wire combined with a homogeneous magnetic
field perpendicular to the wire (figure 4). In this configuration the external
magnetic field cancels with that of the wire in a line parallel to the conductor in
a certain distance d off the wire. There a minimum of the magnetic field occurs,
where the low-field seekers can be trapped. However, in regions of a vanishing
magnetic field the adiabatic approximation used in (25) is no longer valid, and
the internal atomic states can change. Thus low-field seekers can turn to strong-
field seekers and escape from the trap, this effect is known as Majorana loss and
can be avoided by adding an additional homogeneous magnetic field parallel to
the wire, what leads to a non-vanishing magnetic field in the minimum giving a
Ioffe-Pritchard type trap. One way to get such an additional parallel magnetic
field is to use a wire in Z-shape instead of a straight one (see [23] for an overview
of different trap types).

Figure 4: A simple magnetic trap, where the atoms accumulate in minimum of
the magnetic potential (dashed line), which forms in a straight line above the
conducting wire, where the external homogeneous magnetic field cancels with
that of the conducting wire (illustration from [23]).

The strength of the magnetic confinement depends on the field gradient
near the minimum, which increases as 1/d2 when reducing the distance d to
the wire as long as this distance is larger than the diameter of the wire. Hence
bringing atoms closer to the chip surface and making the wires smaller leads
to a stronger confinement, thus allowing faster evaporative cooling and a BEC
can be formed more quickly [24].

4 Twin-atom beams: The experiment

While in light optics a laser beam is an electromagnetic wave, propagating
in a single mode, the analogy in matter wave physics can, at least for bosons, be
realized by a BEC, where all atoms occupy a single mode. By the manipulation
of these BECs matter-wave optic experiments can be realized. One experiment
already accomplished is beam-splitting, for BECs, performed by the change
of a harmonic to a double-well trapping potential on an atom chip [25]. After
coherent splitting, the condensates are released an interference can be observed.
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Figure 5: Emission of a pair of twin-atoms from a quasi-BEC taken from [26].

Another experiment already established in light optics is the generation of
twin-photon beams [27]. In the experiment, which is the basis for the model de-
veloped within this thesis, the matter-wave analog, the generation of twin-atom
beams [1], was realized. The starting point for this twin-atom beam generation
is a one-dimensional quantum-degenerate Bose gas, which is generated from a
gas of neutral Rubidium 87 atoms on an atom chip with techniques described
in the previous sections. There are typically 700 atoms magnetically trapped in
a highly elongated potential, with a tight radial confinement (in the y,z-plane)
and a shallow confinement in the axial direction (νx = 16.3Hz). These atoms
are cooled to a temperature of T . 35nK ≈ hkB · 730Hz. In the radial plane
anharmonic potentials establish an effective two-level system consisting of the
ground state |0, 0〉 and the first excited state along the y-direction |1y, 0〉. The
potential in y-direction, along which the excitation takes place, can be approx-
imated by a quadratic polynomial of the form

Ey = h · 13.1Hz
(
r

r0

)4
+ h · 343Hz

(
r

r0

)2
(26)

and the one in z-direction, perpendicular to the excitation motion by

Ez = h · 10.4Hz
(
r

r0

)4
+ h · 793Hz

(
r

r0

)2
(27)

where r0 = 172nm is the mean radial ground state radius. The first excited
single-particle state |1y, 0〉, has an energy of E(1)

y,z = h · [1.83, 2.58]. The chemical
potential, that quantifies the mean-field interaction, is given by µ ∼ h·500Hz�
E

(1)
y . Because kBT, µ < hν⊥ and νx � ν⊥ the system is a one-dimensional,

weakly-interacting quasi-BEC [8].
This quasi-BEC in the radial ground state can be transferred to the first

excited state by transversal shaking of the trap. This happens with an efficiency
of 97% by displacing the radial trap minimum along an optimized trajectory.
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This trajectory is calculated numerically by using Optimal Control Theory of
the 1D-GPE, a technique already used before in theoretical works on transfer-
ring and splitting a BEC [28]. The one-dimensional approximation, performed
along the y-direction, is justified, as the dynamics in the axial direction is much
slower than in the radial ones, and the z-direction is not significantly affected
by the displacement of the minimum. Furthermore two-dimensional simulations
just lead to small deviations compared to the one-dimensional case.

Twin-atom beams

R. Bücker,1 J. Grond,1, 2, 3 S. Manz,1 T. Berrada,1 T. Betz,1 Ch. Koller,1

U. Hohenester,2 T. Schumm,1, 3 A. Perrin,1, 3 and J. Schmiedmayer1

1Vienna Center for Quantum Science and Technology, Atominstitut, TU Wien, 1020 Vienna, Austria
2Institut für Physik, Karl-Franzens-Universität Graz, 8010 Graz, Austria

3Wolfgang Pauli Institute, 1090 Vienna, Austria
(Dated: December 13, 2010)

We present highly efficient emission of twin-atom beams into a single transverse mode. As a source,
we use a one-dimensional degenerate Bose gas in the first excited state of a tight waveguide potential.
We observe the fluctuations in the population imbalance between the beams and find a suppression
by one order of magnitude below the classical shot noise limit. The necessary excitation of the
source is achieved by optimal control of the external wave function. Fundamental conservation laws
ensure relaxation into the correlated modes, which is enhanced by bosonic amplification, analogous
to an optical parametric oscillator for light.

Wave-particle duality is one of the most striking man-
ifestations of quantum physics [1]. Tremendous progress
has been made in exploring and exploiting the anal-
ogy of light and matter waves for fundamental investi-
gations and applications [2]. In contrast to photons, in-
teractions between massive particles lead to an intrinsic
non-linearity [3–5], a stepping stone towards non-classical
states and quantum optics. In light optics, twin-photon
beams [6] are a key element in providing the non-local
correlations and entanglement required for quantum ap-
plications like precision metrology and quantum commu-
nication [7]. Realizing a similar source for massive par-
ticles has so far remained elusive due to the multi-mode
character of the involved processes and a predominant
background signal [8–15].

Here, we present highly efficient generation of twin-
atom beams into a single transverse mode and report
non-classical suppression of fluctuations in the density
difference by one order of magnitude below shot noise.
As a matter wave source we use a one-dimensional,
quantum-degenerate Bose gas of neutral atoms [16] con-
fined in the first excited state of a tight magnetic waveg-
uide [17], where atom pairs can undergo collisional relax-
ation into the ground state. The restricted geometry en-
forces single-mode emission of pairs into the ground state
of the guide. We observe bosonic amplification without
the need for seeding [8] or modifying dispersion proper-
ties [9, 10]. As the population inversion that pumps the
source is based on motional states, it does not involve any
particular properties of the used atoms and hence is not
limited to a specific bosonic quantum system. Our results
underline the high potential of ultracold atomic gases as
sources for quantum matter wave optics and will enable
the implementation of schemes previously unattainable
with massive particles [7, 18–21].

Starting point of our investigations is a dilute, quan-
tum degenerate gas of neutral 87Rubidium atoms mag-
netically trapped in a tight waveguide potential with an
added shallow axial harmonic confinement (νx = 16.3Hz)
on an atom chip [17]. Our scheme relies on an effec-

FIG. 1. Schematic of the excitation and emission process.
(a) The quasi-BEC is transferred from the ground state |0, 0〉
into |1y, 0〉, the first excited state of the trapping potential
along the radial y-direction. This is accomplished by means of
fast non-adiabatic movement of the potential minimum along
an optimized trajectory (inset). The excited state decays by
emission of twin atoms into the radial ground state modes
|0,±k0〉. (b) After excitation and pair emission, the cloud
is released from the trapping potential and imaged during
expansion. The central part of the system clearly shows the
spatial structure of the radially excited state. Two clouds
containing the twin atoms are emitted.

tive two-level system in the radial eigenstates of the
waveguide. This is accomplished by creating unequal
level spacings in the radial y, z-plane by radio frequency
dressing [22, 23], which introduces anharmonicity and
anisotropy. The resulting single-particle first and sec-

ond excited state energies are E
(1)
y,z = h · [1.83, 2.58] kHz

and E
(2)
y,z = h · [3.82, 5.22] kHz. Due to the increasing

level spacings, the ground state |0, 0〉 and the first ex-
cited state along y, |1y, 0〉 have the lowest energy spacing
among all possible combinations. A closed two-level sys-
tem is established by those.

Using standard techniques we generate a Bose gas of
typically 700 atoms at a temperature T . 35 nK ≈
h/kB ·730Hz (estimated from fits to the residual thermal
fraction [24]). The thermal occupation of state |1y, 0〉 is
below 1%, and the chemical potential, quantifying the

mean-field interaction is µ ∼ h · 500Hz ≪ E
(1)
y . Our Rb
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Figure 6: Schematic of the excitation and emission process from [1].

After excitation atom pairs undergo collisional relaxation. Due to parity
conservation, relaxation is just possible into a single transverse state, namely
the radial ground state, and because of momentum conservation the atoms
obtain a momentum of ±k in axial direction. Twin-atoms in the |0,±k〉 modes
are created, depleting the first excited state |1y, 0〉 (see figure 6). 3

FIG. 3. Atom cloud image analysis. (a) Typical experimental
image of ∼ 700 atoms released from the trap 7ms after start-
ing the excitation sequence. The cloud is allowed to expand
for 46ms, making the initial momentum distribution acces-
sible. The quasi-BEC in the excited state |1y, 0〉 is clearly
distinct from the emitted clouds at momenta ±~k0. Units
are photons per pixel. The blue box indicates the integra-
tion range for the data shown in figure 2b. (b) Average over
≈ 1500 images similar to (a). The colour scale is logarith-
mic (dB referenced to peak density). The regions used for
correlation analysis are indicated as red boxes. (c) Normal-
ized, radial momentum distributions of the central (blue) and
emitted (red) clouds. Average of 50 images of clouds released
6ms after starting the excitation sequence. As comparison,
the distribution of a non-excited cloud is shown (black, aver-
age over 100 images). (d) Normalized profile of (b) along kx
(red dots) and three-peak Lorentzian fit (black line).

integration regions of the emitted clouds and interactions
with the the mean field of the quasi-BEC in the |1y, 0〉
state.

From the axial position of the side peaks (figure 3d),
we can deduce an emitted atom momentum of k0 =
2π · 0.883(3) µm−1, equivalent to ǫ = h · 1.78(1) kHz,
in perfect agreement with the value determined from the
beating fit (figure 2c). At a momentum corresponding to
ǫ′ ≈ h · 3.9 kHz, very weakly populated additional atom
clouds (. 1 atom per image) are observed on an aver-
aged picture (see figure 3b), most likely due to a small
population of the second radially excited state |2y, 0〉 dur-
ing the control sequence, which directly decays into the
radial ground state. In the following analysis, they are
merged with the atoms originating from |1y, 0〉.

The non-classical correlation in the emitted twin-atom
beams is revealed by a sub-binomial distribution of the
number imbalance n = N1−N2 between atoms detected
at ±k0. The variance of n can be expressed as σ2

n = ξ2N̄ ,
where N̄ denotes the mean total atom number in the
emitted clouds. The noise reduction factor ξ2 quantifies
the suppression of σ2

n with respect to a binomial distri-

FIG. 4. Correlation analysis. (a) Histogram of observed signal
imbalances s between the emitted clouds, in units of the bino-
mial standard deviation σbin = (p̄S̃)1/2. The curves indicate
normal distributions corresponding to the experimental result
of ξ2 = 0.11(2) (black, solid), the limits of perfect correlation,
where only detection noise remains (red, solid), of uncorre-
lated signals, defining the reference point for ξ2 (blue, solid),

and a binomial distribution for p̄S̃ trials (black, dashed). (b)
Corrected (black crosses, (σ2

s − σ2
d)/p̄) and raw (red circles,

σ2
s/p̄) signal imbalance variances for data bins corresponding

to different total signal in the emitted clouds S̃. Error bars
are the standard error. Red lines indicate values of ξ2.

bution, and thus the amount of correlation between the
populations N1 and N2.

In our fluorescence images, we count photons in regions
encompassing the emitted clouds. For given atom num-
bers N1,2, the expectation values for the photon numbers
are S1,2 = p̄N1,2+ b̄/2, where p̄ = 12.3(9) denotes the av-
erage number of photons per atom and b̄/2 accounts for
background events. Our main observable is the variance
σ2
s of the signal imbalance s = S1 − S2. Its expecta-

tion value for a binomial distribution of atoms is given
by σ2

bin = p̄S̃, where S̃ = S̄1 + S̄2 − b̄. From those re-
lations we can calculate an uncorrected reduction factor
ξ2u = σ2

s/σ
2
bin = 0.37(3). However, a significant contri-

bution to σ2
s does not originate from the atom number

fluctuations, but from the detection process itself. This
can be accounted for by subtracting a correction σ2

d from
σ2
s before relating it to σ2

bin, for which a lower bound
can be readily estimated from photon shot noise and de-
tection background (see supplementary material). The
result of ξ2 = (σ2

s − σ2
d)/σ

2
bin = 0.11(2) is illustrated in

figure 4a. It is equivalent to an intensity squeezing of
≈ −9.6 dB in the sense of [6, 26]. In strong contrast to
the suppressed relative fluctuations, applying an analo-

Figure 7: Momentum distribution of about 700 atoms, 7 ms after starting the
excitation sequence from [1].

The atoms in the |0,±k〉 can be observed by single-atom-sensitive fluores-
cence imaging (see chapter 3). In figure 7, the momentum distribution of about
700 atoms, 7 ms after starting the excitation sequence is shown. It is calculated
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from the information gained by using fluorescence imaging on the atom cloud
after 46 ms of expansion. From measurements at different release times also
the time-dependence of the population of the emitted clouds can be calculated,
what is shown in figure 8. Since the model, taking only spontaneous processes
into account, is obviously not adequate to describe the emission process, a bet-
ter approach has to be found, as will developed in this thesis.

Figure 8: Measured population of the wing states (red line) and theoretical
estimation for spontaneous processes only (black line) from [1].

Also the number fluctuation between the beams was measured and a non-
classical suppression was observed.

5 General theory of many-body physics

5.1 The general many-body Hamiltonian

A system of N spinless, pairwise interacting bosons can be described by a
Hamiltonian, which in second quantized form reads

Ĥ =
∫
drΨ̂†(r)h(r, t)Ψ̂(r) + 1

2

∫
dr
∫
dr′Ψ̂†(r)Ψ̂†(r′)V (r− r′)Ψ̂(r)Ψ̂(r′) (28)

where Ψ̂(r, t) is the boson field operator, V (r− r′) is the two-body interaction
potential and

h(r, t) = − ~2

2m∇
2 + Vtrap(r) (29)

is the one-body Hamiltonian containing the kinetic energy and the trapping
potential Vtrap(r). The field operators obey the usual bosonic commutation
relations and can be written as the expansion

Ψ̂(r) =
∞∑
k=1

âk(t)φk(r, t) (30)

where the set {φk} of single-particle functions, which in this context are called
orbitals, form an orthonormal basis and âk (â†k) are the corresponding anni-
hilation (creation) operators obeying the equal-time commutation relations for
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bosons. The field operators in the many-body Hamiltonian are now substituted
by their expansions giving

Ĥ =
∑
k,q

â†k(t)âq(t)hkq(t) + 1
2
∑
k,s,q,l

â†k(t)â
†
s(t)âq(t)âl(t)Vksql(t), (31)

with

hkq(t) =
∫
drφ∗k(r, t)h(r, t)φq(r, t) (32)

Vksql(t) =
∫
dr
∫
dr′φ∗k(r, t)φ∗s(r′, t)V (r− r′)φq(r, t)φl(r′, t). (33)

In the case of an effectively weak atom-atom interaction, which is dominated
by s-wave scattering, only binary collisions have to be considered and the in-
teraction potential can be approximated by

V (r− r′) = gδ(r− r′), (34)

where the coupling constant is fixed by the s-wave scattering length. In this
approximation, the interaction matrix elements are given by

Vksql(t) = g

∫
drφ∗k(r, t)φ∗s(r, t)φq(r, t)φl(r, t). (35)

5.2 Density-matrix formalism

To calculate the dynamics of a N -particle system we can introduce the re-
duced single-particle density matrix (SPDM) ρ with the elements ρij = 1

N 〈â
†
i âj〉

and calculate their time evolution by setting up the Heisenberg equations of
motion i ddtρij = 〈

[
â†i âj , Ĥ

]
〉. For a non-linear Hamiltonian these equations

also depend on the two-particle density matrix ∆ij,kl = 1
N2 〈â†i â

†
j âkâl〉. The

equations of motion for the two-particle density matrix similarly depend on
the three-particle density matrix and so on. The arising hierarchy is known
as the BBGKY (Bogoliubov-Born-Green-Kirkwood-Yvon) hierarchy of equa-
tions of motions and is finite for a system with a fixed finite number of par-
ticles. Since the number of particles N can be huge, a truncation of the hier-
archy becomes necessary to obtain a closed set of equations. To lowest order,
the two-particle density matrix elements can be approximated by products of
single-particle matrix elements what is achieved by applying the factorization
〈â†i â

†
j âkâl〉 ' 〈â

†
i âk〉〈â

†
j âl〉 − δjk〈â†i âl〉 to the two-particle density matrix ele-

ments. This truncation corresponds to a mean-field approach. In some cases,
this is not sufficient to describe a system adequately as we will notice in the
following sections and will therefore have to apply a higher order approximation.
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6 Twin-atom beams: The theory

6.1 The model

The system under consideration is a one-dimensional, weakly interacting
quasi-BEC [1] that is formed by a magnetic trap providing tight radial (x-y-
plane) and weak axial confinement (x-direction). A quasi-BEC in the radial
ground state with zero momentum along the longitudinal direction is prepared
(g, 0) and subsequently excited into the radial first excited state (e, 0) by trans-
verse shaking of the trap. The shaking is realized by a displacement of the
trap-minimum along the y-direction. This is implemented by a time-dependent
potential Vy(y − y0(t)). Since the potential is sufficiently anisotropic also in
the radial plane, the z-direction is not significantly affected by the movement.
Hence, the state (e, 0) is the first excited state along the y-direction. Once ex-
cited in the (e, 0) state, atoms in the quasi-BEC undergo collisional relaxation
into the radial ground state. Thereby, two-particle collisions create twin atoms
in the modes (g,±p), with opposite finite momenta along the longitudinal di-
rection. In a first approach we will assume that, due to energy conservation,
these are states with energies Eg,±p = Ee,0. Hence we are left with a two-mode
model for the emission process, including only the states (e, 0) and (g,±p).
This is implemented in chapter 6.3. Furthermore, in section 6.6, we will de-
velop a multi-mode model which takes into account the scattering to several
modes (g,±pi) with energies Eg,±pi ' Ee,0, according to what is observed in
the experiment.

6.2 Calculating the ground state

To calculate the coupling between the states (e, 0) and (g,±p), as described
in equation (35) in section 5.1, we need the corresponding wave functions, which
we can approximately calculate from the stationary GPE when we neglect the
non-condensate contributions. In terms of the single-particle wave function φ(r)
the stationary GPE (introduced in section 1.3) reads(

− ~2

2m∇
2 + Vtrap(r) + gN |φ(r)|2

)
φ(r) = µφ(r), (36)

since Ψ0(r) =
√
Nφ(r), with N being the number of particles in the condensate.

Assuming Vtrap(r) = Vx(x) + Vy(y) + Vz(z) for the confinement potential and
approximating the wave function by the factorization φ(r) = φx(x)φy(y)φz(z)
we obtain three coupled equations, from which those for φy(y) and φz(z) are
solved in the approximation of no interaction, what is justified due to the high
anisotropy of the trap. Using the ground states in y- and z-direction we can
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Figure 9: Effective potential in x-direction (black) with the longitudinal ground
φ0 (blue) and one particular, longitudinal excited twin-beam state φi (red).

write for the longitudinal direction(
− ~2

2m∇
2
x + Vx(x) + gN |φx(x)φy(y)φz(z)|2

)
φx(x)φy(y)φz(z) =

= µφx(x)φy(y)φz(z), (37)

which, multiplied by φ∗y(y)φ∗z(z) and integrated with respect to y and z, gives(
− ~2

2m∇
2
x + Vx(x) +Nκ|φx(x)|2

)
φx(x) = µφx(x) (38)

where κ = g
∫
dy|φy(y)|4

∫
dz|φz(z)|4 is the one-dimensional interaction param-

eter, depending on the 3D interaction parameter g. The single-particle wave
functions φy(y) and φz(z) are the ground state solutions in y- and z-direction.
Hence, φx(x) satisfies a non-linear Schrödinger equation with the Hamiltonian

Ĥx = −1
2∇

2
x + Vx(x) +Nκ|φx(x)|2 (39)

from which the longitudinal ground state can be calculated self-consistently by
employing imaginary time propagation (see figure 9). This leads to an effective
potential in x-direction for which also the wave functions of the excited states
can be calculated which will be used in the multi-mode description in section
6.6 to compute the coupling matrix elements κij as well as the energies of the
corresponding modes Eg,i.
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6.3 Two-mode model

6.3.1 The Hamiltonian

As already mentioned in the introduction of this chapter, a simple model for
the generation of twin-atom beams has to include the mode (g, 0) which is the
longitudinal and radial ground state of the trap, the radial excited state (e, 0),
and the wing states which are the longitudinal excited modes that are in the
radial ground (g,±p) and excited (e,±p) state. This is sufficient to describe
the excitation of the quasi-condensate from the (radial and longitudinal) ground
state (g, 0) of the trap to the state (e, 0) by shaking of the condensate and the
subsequent pairwise scattering of atoms from (e, 0) to the longitudinal ground
states (g,±p).

Instead of describing the shaking of the condensate by a time-dependent
confinement potential V (y − y0(t)) a transformation to a frame moving with
y0(t) is accomplished, leading to a static potential and an additional excitation
term −℘ẏ0 where ℘ is the momentum operator.

Using the formalism introduced in the previous chapter 5.1, we obtain the
Hamiltonian

Ĥ0 =
∑

k=0,±p

∑
i=e,g

Ei,kâ
†
i,kâi,k − ℘egẏ0

(
â†e,kâg,k + â†g,kâe,k

) , (40)

which governs the single-particle dynamics, with ℘eg = ℘ge being the momen-
tum matrix element between the states (e, 0) and (g, 0). For the Hamiltonian,
describing the atom-atom interaction we get

Ĥ ′ = κ
(
â†g,pâ

†
g,−pâe,0âe,0 + â†e,0â

†
e,0âg,pâg,−p

)
(41)

where
κ = g

∫
φ∗e(x)2φg(x)2dx

∫
φ∗g(y)2φe(y)2dy

∫
|φg(z)|4dz (42)

is the product of the coupling constant g and the wave function overlap ma-
trix elements, cf. (35). Here the φg and φe are the single-particle states in
longitudinal (x) and radial (y and z) direction for the ground (g) and excited
(e) modes obtained as described in section 6.2. For simplicity, all other terms
resulting from atom-atom interactions have been neglected because we are just
interested in the contributions due to the atom-pair production.

6.3.2 Full solution of the Schrödinger equation

The resulting problem for the emission process in the real two-mode model
can be accomplished by a numerical solution of the full Schrödinger equation.
This allows the validation of the density matrix approach we will make in sec-
tion 6.3.3. Therefore, in the following we solely consider the emission pro-
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cess, i.e. the generation of atom pairs, due to scattering processes in the ex-
cited quasi-condensate, which can be described by the non-linear Hamiltonian
Ĥ ′ = κâ†g,pâ

†
g,pâe,0âe,0 + κâ†e,0â

†
e,0âg,pâg,p.

In general, the many-body wave function of a system of N identical bosons
occupying M orbitals {φ1, ..., φM} can be written as

|Ψ〉 =
∑
~n

C~n|n1, n2, ..., nM 〉, (43)

where the vector ~n contains the occupation numbers of the single orbitals ~n =
(n1, n2, ..., nM ) with n1 + n2 + ... + nM = N and the sum running over all
possible configurations [29].

Hence, to model the emission process, we use the many-body wave function

|Ψ〉 =
N∑
m=0

Cm|n0 = N −m,np = m〉, (44)

where n0 is the number of particles in the excited state (e, 0) and np is the sum of
particles in the modes (g,+p) and (g,−p). (Due to the Hamiltonian Ĥ ′, which
allows only for the annihilation and creation of atom pairs, the coefficients Cm
vanish, when m is odd.)

Applying the Hamiltonian Ĥ ′ on a certain configuration |n0, np〉 yields

Ĥ ′|n0, np〉 =κ
√

(np + 1) (np + 2)
√
n0 (n0 − 1)|n0 − 2, np + 1〉+

κ
√

(n0 + 1) (n0 + 2)
√
np (np − 1)|n0 + 2, np − 1〉. (45)

In an analogous manner we can calculate the expectation values of the one- and
two-particle density matrices, what gives

ρee,0 = 〈â†e,0âe,0〉 = 〈Ψ|â†e,0âe,0|Ψ〉 =
N∑
m=0

(N −m) |Cm|2 (46)

ρgg,p = 〈Ψ|â†g,pâg,p|Ψ〉 =
N∑
m=0

m|Cm|2 (47)

and

〈â†e,0â
†
e,0âe,0âe,0〉 = 〈â†e,0âe,0â

†
e,0âe,0〉 − ρee,0 =

N∑
m=0

(N −m)2 |Cm|2 − ρee,0

(48)

〈â†g,pâ†g,pâg,pâg,p〉 = 〈â†g,pâg,pâ†g,pâg,p〉 − ρgg,p =
N∑
m=0

m2|Cm|2 − ρgg,p (49)

For the simulation we start with the quasi-condensate being entirely in the
(e, 0) state, and hence, with the total wave-function being |Ψ〉 = |n0 = N,np =
0〉 and approximate the coupling constant through κ = 1/n. We calculate the
time-evolution of the wave-function by solving the Schrödinger equation, using
the Crank-Nicolson method. The results are shown in figure 10.



6 TWIN-ATOM BEAMS: THE THEORY 18

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ms)

P
op

ul
at

io
n

 

 

ρ
ee,0

2 * ρ
gg,p

Figure 10: Occupation density of the states (e, 0) and (g,±p) for the exact
solvable two-mode model of the emission process

6.3.3 Density matrix approach

Alternatively we could consider the time evolution of the operators âi,k, or
better examine that of the direct observable quantities 〈â†i,kâj,k〉 what we will
do in the following. The expectation values define the single-particle density
matrices ρij,k =

〈
â†i,kâj,k

〉
, with their time evolution given by the Heisenberg

equations of motion iρ̇ij,k =
〈[
â†i,kâj,k, Ĥ0 + Ĥ ′

]〉
. Through Ĥ ′ the time evo-

lution of the expectation values of the single-particle density matrices do also
depend on the two-particle density matrices ∆ij,kl =

〈
â†i,pâ

†
j,−pâk,0âl,0

〉
which

accounts for the correlation, induced by scattering processes where two atoms
in (e, 0) are scattered to the final states (g, p) and (g,−p).

Setting up the Heisenberg equations of motion for the one-particle density
matrices, we get

iρ̇ee,0 = −i℘egẏ02 Im ρeg,0 − 4iκ Im ∆gg,ee (50a)
iρ̇gg,p = i℘egẏ02 Im ρeg,p + 2iκ Im ∆gg,ee. (50b)

Similarly we obtain the Heisenberg equation of motions for the two-particle
density matrices, which through Ĥ ′ couple to a three-particle density matrix,
what is in accordance to the BBGKY hierarchy of interacting many particle
systems (see 5.2). So we see, e.g., from the time evolution of the two-particle
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density matrix ∆gg,ee

i∆̇′gg,ee =
〈[
â†g,pâ

†
g,−pâe,0âe,0, Ĥ

′
]〉

=

=2κ
〈
â†g,pâ

†
g,−p

(
â†e,0âg,pâg,−pâe,0 + âe,0â

†
e,0âg,pâg,−p

)〉
+

− κ
〈(
âg,−pâ

†
g,−p + â†g,pâg,p

)
â†e,0â

†
e,0âe,0âe,0

〉
, (51)

the dependence on the three-particle density matrices. In order to obtain a
closed set of equations of motions this hierarchy has to be truncated.

First-order approximation

In lowest-order, the three-particle density matrices can be approximated by
products of two-particle density matrices, which in the case of the three-particle
density matrix

〈
â†g,pâ

†
g,−pâ

†
e,0âg,pâg,−pâe,0

〉
arising in (51) takes the form〈

â†g,pâ
†
g,−pâ

†
e,0âg,pâg,−pâe,0

〉
'
〈
â†g,pâg,p

〉〈
â†g,−pâg,−p

〉〈
â†e,0âe,0

〉
= ρ2

gg,pρee,0. (52)

Applying this truncation scheme to the equation of motion for the two-particle
density matrix ∆gg,ee we obtain

i∆̇′gg,ee ' 2κρ2
gg,p (2ρee,0 + 1)− κ (2ρgg,p + 1) ρee,0 (ρee,0 − 1) (53)

due to Ĥ ′ and the terms resulting from Ĥ0 can be derived in complete analogy
to (50), what gives

i∆̇0
gg,ee =

〈[
â†g,pâ

†
g,−pâe,0âe,0, Ĥ0

]〉
=

= 2∆gg,ee (Ee,0 − Eg,p)− 2℘egẏ0 (∆gg,eg −∆eg,ee) . (54)

Analogously all further equations for the time evolution of the one- and two-
particle density matrices can be calculated. The complete set of equations is
listed in appendix A.1.1. This closed set of equations can be solved in parallel,
the results are shown in figure 11. For the simulation a coupling constant of
κ = 1/n and the initial conditions

ρee,0 = 0
ρgg,p = N (55)
∆gg,ee = 0 (56)

have been used. Where N = 700 is the total number of particles. For the
energies the experimental values of Eg,0 = h · 1.83, Ee,0 = Eg,±p = h · 2.58
and Ee,±p = h · 5.16 are used. The trajectory of the potential minimum for
the transverse shaking of the trap for the first 5 ms of excitation is described
by V (y) = V (y − 0.022 sin(Ee,0t)) and the momentum matrix element is set as
℘eg = −2.45.
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Figure 11: Populations of the ground and excited sates with zero and finite
momenta, while shaking up the condensate with V (y − 0.02 sin(Ee,0t)) in the
first 5 ms and subsequent emission of atom pairs into the longitudinal modes.

Comparison

In figure 12 we compare the exact results for the emission process from
section 6.3.2, which result from the numerical solution of the full Schrödinger
equation, to those described in the last paragraph, obtained from the density
matrix approach and the approximation of the three-particle density matrices
by products of one-particle density matrices, i.e. 〈ABC〉 ' 〈A〉〈B〉〈C〉.

Since in this approximation, we have neglected all coupling terms between
one- and two-particle density matrices we will truncate the hierarchy of equa-
tions of motion at one level deeper and see if we can get better agreement with
the exact solution. This is the topic of the next paragraph.

Second-order approximation

In the following we will also include the coupling terms between one- and
two-particle density matrices. The three-particle density matrices are then
approximated by 〈ABC〉 ' 〈AB〉〈C〉 + 〈A〉〈BC〉 + 〈AC〉〈B〉 − 2〈A〉〈B〉〈C〉.
For the equation of motion for the two-particle density matrix ∆gg,ee, we hence
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Figure 12: Comparison of the population of the states (e, 0) and (g,±p) of the
two-mode model of the emission process for the exact solvable (solid line) and
the density matrix approach with the truncation scheme 〈ABC〉 ' 〈A〉〈B〉〈C〉
(dashed line).

get

i∆̇gg,ee = 〈
[
â†g,pâ

†
g,−pâe,0âe,0, Ĥ

′
]
〉 ' 4κ〈â†g,pâ

†
g,−pâg,pâg,−p〉〈â

†
e,0âe,0〉+

+ 8κ〈â†g,pâg,p〉〈â†g,pâ
†
e,0âg,pâe,0〉 − 8κ〈â†g,pâg,p〉2〈â

†
e,0âe,0〉+

+ 2κ〈â†g,pâ
†
g,−pâg,pâg,−p〉 − 4κ〈â†e,0â†g,pâe,0âg,p〉〈â

†
e,0âe,0〉+

− 2κ〈â†g,pâg,p〉〈â
†
e,0â
†
e,0âe,0âe,0〉+ 4κ〈â†g,pâg,p〉〈â

†
e,0âe,0〉

2+

− κ〈â†e,0â
†
e,0âe,0âe,0〉. (57)

The equations of motion for the other two-particle density matrices involved
are calculated in the same way and the results are listed in appendix A.1.2.
The equations of motion for the one-particle density matrices are not affected
by this new factorization scheme and remain the same as in equation (50).
If we solve the occurring system of coupled differential equations we still see
the inconsistency between the exact solution of the Schrödinger equation and
that obtained from the density matrix approaches, that already occur at early
times (see figure 13). For later times the new factorization gives an even worse
approximation. To find out why this is the case, we will, in section 6.4, compare
our results to those obtained by Anglin and Vardi in [30, 31] for the problem
of a two-mode model of a condensate in a double well trap.
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Figure 13: Occupation density of the states (e, 0) and (g,±p) of the emission
process for the exact solvable two-mode model (solid line) and the density ma-
trix approach applying the truncation scheme 〈ABC〉 ' 〈AB〉〈C〉+ 〈A〉〈BC〉+
〈AC〉〈B〉 − 2〈A〉〈B〉〈C〉 (dashed line).

6.3.4 Pseudospin-operator approach

In the following section we apply the approach developed by Anglin and
Vardi to calculate the dynamics of a condensate in a double-well trap, that is
mapped onto a two-mode model [30, 31] to the generation of twin-atom beams.
Within this approach, not the evolution of the expectation values 〈â†i âj〉 is calcu-
lated, but that of the angular momentum operators in the Bloch representation
which are defined as

L̂x ≡
â†e,0âg,p + â†g,pâe,0

2 (58a)

L̂y ≡
â†e,0âg,p − â†g,pâe,0

2i (58b)

L̂z ≡
â†e,0âe,0 − â†g,pâg,p

2 (58c)

and
L̂+ ≡ L̂x + iL̂y = â†e,0âg,p L̂− ≡ L̂x − iL̂y = â†g,pâe,0 (59)

are the cooresponding ladder operators. In terms of these SU(2) generators the
two-mode Hamiltonian reads

Ĥ ′ = κ

2
(
â†g,pâ

†
g,pâe,0âe,0 + â†e,0â

†
e,0âg,pâg,p

)
= κ

2
(
L̂2
− + L̂2

+

)
= κ

(
L̂2
x − L̂2

y

)
. (60)

We are especially interested in the value of the operator L̂z because it represents
the number difference of atoms in the excited state (e, 0) and that of atoms in
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the wing-states (g,±p). So we calculate the corresponding Heisenberg equations
of motion for this angular momentum operator giving

d

dt
L̂z = −i

[
L̂z, Ĥ

′
]

= 2κ
(
L̂xL̂y + L̂yL̂x

)
. (61)

Again, the expectation values 〈L̂iL̂j〉 can, in lowest order, be approximated
by the product of first order expectation values by 〈L̂iL̂j〉 ≈ 〈L̂i〉〈L̂j〉. Here
this approximation is insufficient, since if all the atoms are initially in the
excited state (e, 0) only the expectation value 〈L̂z〉 is different from zero in
the beginning, and time derivation of all three angular momentum operators
vanishes. This is why we have to go one level deeper and instead also consider
the time evolution of the second order moments and apply the approximation

〈L̂iL̂jL̂k〉 ≈ 〈L̂iL̂j〉〈L̂k〉+ 〈L̂i〉〈L̂jL̂k〉+ 〈L̂iL̂k〉〈L̂j〉 − 2〈L̂i〉〈L̂j〉〈L̂k〉. (62)

Implementing this truncation we get for the time evolution of the second order
moment 〈L̂xL̂y〉

d

dt
〈L̂xL̂y〉 '

' −6κ〈L̂x〉〈L̂xL̂z〉 − 4κ〈L̂z〉〈L̂xL̂x〉 − 2κ〈L̂x〉〈L̂zL̂x〉+ 8κ〈L̂x〉〈L̂x〉〈L̂z〉+
− 6κ〈L̂y〉〈L̂zL̂y〉 − 4κ〈L̂z〉〈L̂yL̂y〉 − 2κ〈L̂yL̂z〉〈L̂y〉+ 8κ〈L̂y〉〈L̂y〉〈L̂z〉.

(63)

and derive the remaining equations analogously. Here we see that we also need
the time evolution for the operators L̂x and L̂y, which are calculated like that
for L̂z in (61). The whole system of equations of motions is listed in appendix
A.1.3. We solve these equations in parallel, analogously to those in section
6.3.3. From these results we can calculate the population of the excited (e, 0)
and wing states (g,±p) by

Np = N

2 − 〈L̂z〉 (64)

since
〈L̂z〉 = N0 −Np

2 and N = N0 +Np (65)

whereN is the total number of particles. In figure 14 we show the corresponding
plot. The comparison with the results from section 6.3.3 and the plot in figure 12
respectively, shows accordance to a large extent what means that the truncation
scheme 〈ABC〉 ' 〈A〉〈B〉〈C〉 applied in 6.3.3 is as good as the approximation
applied within the pseudospin-operator approach in equation (62).

For a more intuitive understanding for the phase and particle number fluc-
tuations we define the single-particle Bloch vector

~S ≡ (Sx, Sy, Sz) =
(

2〈L̂x〉
N

,
2〈L̂y〉
N

,
2〈L̂z〉
N

)
(66)

and visualize the dynamics on a Bloch sphere.
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Figure 14: Occupation density of the states (e, 0) and (g,±p) of the emission
process for the exact solvable two-mode model vs. the pseudospin-operator
approach.
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Figure 15: The generation of twin-atom beams visualized on the Bloch sphere
with time increasing from left to right.

Visualization on the Bloch sphere

For a two-mode N-particle system we can apply the principles for the visu-
alization of an assembly of two-level atoms in quantum optics from [32]. An
atomic coherent state |θ, φ〉 is obtained by rotations of the ground state which,
in the case of the two-mode model, we chose to be the |N, 0〉 where all atoms
are in the excited state (e, 0), what can be written as

|θ, φ〉 = Rθ,φ|N, 0〉 (67)

where the rotation matrix is given by Rθ,φ = e−iθ(Ĵx sinφ−Ĵy cosφ). The probabil-
ity distribution for the states |C〉 obtained by the time-evolution corresponding
to Ĥ ′ is given by |〈θ, φ|C〉|2 what is illustrated in figure 15 where the number
difference is plotted on the z-axis and the phase on the y-axis. For the twin-
atom beam generation, one can furthermore see that the number and density
fluctuations (which are represented by the widths in z- and y-direction) increase
and subsequently decrease again.
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6.4 Truncation of the hierarchy of expectation value equa-
tions of motion

In equation (57) we applied a truncation scheme on the hierarchy of equa-
tions of motion for the density matrices, from which we expected to obtain bet-
ter agreement with the exact solution of the full Schrödinger equation but that
was not the case (see figure 13). Namely we have factorized the three-particle
density matrix elements like 〈ABC〉 ' 〈AB〉〈C〉 + 〈A〉〈BC〉 + 〈AC〉〈B〉 −
2〈A〉〈B〉〈C〉 instead of neglecting the coupling terms between one- and two-
particle density matrices and factorizing the three-particle density matrix as
〈ABC〉 ' 〈A〉〈B〉〈C〉 which is applied in equation (53). To understand why
this new factorization does not give a better approximation we compare our
results to those obtained by Anglin and Vardi [30, 31] for the two-mode model
realized by a condensate in a double well trap. In the following section which
we will shortly retrace the corresponding calculations.

6.4.1 Two-mode model of a condensate in a double well trap

For the condensate in a double well trap we have two modes which we will
call left and right mode. If â†L,R and âL,R are the creation and annihilation
operators for the corresponding modes, we can define the angular momentum
operators as

L̂x ≡
â†LâR + â†RâL

2 (68a)

L̂y ≡
â†LâR − â

†
RâL

2i (68b)

L̂z ≡
â†LâL − â

†
RâR

2 . (68c)

In terms of these angular momentum operators the Hamiltonian, describing a
condensate in a double well trap, takes the form

Ĥ = −ωL̂x + η

2 L̂
2
z (69)

where ω labels the tunnel coupling and η the interaction strength between the
two modes.

Like in section 6.3.3 the equations of motion for the expectation values of
the angular momentum operators can be calculated from d

dt〈L̂i〉 = −i〈[L̂i, Ĥ]〉
and depend on the second order moments ∆ij ≡ 〈L̂iL̂j + L̂jL̂i〉 − 2〈L̂i〉〈L̂i〉.
Due to the BBGKY hierarchy the second order moments depend on third
order moments. This is the point where we apply the different factoriza-
tions 〈L̂iL̂jL̂k〉 ' 〈L̂i〉〈L̂j〉〈L̂k〉 and 〈L̂iL̂jL̂k〉 ' 〈L̂iL̂j〉〈L̂k〉 + 〈L̂i〉〈L̂jL̂k〉 +
〈L̂iL̂k〉〈L̂j〉− 2〈L̂i〉〈L̂j〉〈L̂k〉. Based on the resulting sets of equations of motion
for the first and second order expectation values we can run simulations (see
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Figure 16: Comparison between the two factorization schemes 〈L̂iL̂jL̂k〉 '
〈L̂i〉〈L̂j〉〈L̂k〉 (fact 2) and 〈L̂iL̂jL̂k〉 ' 〈L̂iL̂j〉〈L̂k〉+ 〈L̂i〉〈L̂jL̂k〉+ 〈L̂iL̂k〉〈L̂j〉 −
2〈L̂i〉〈L̂j〉〈L̂k〉 (fact 1) against the exact solution of the Schrödinger equation
(exact) for a condensate in a double well.

figure 16, similar to those already used for the calculation of the twin-atom
beam generation. Here we start with the condensate being initially entirely in
the left mode what is implemented by the use of the following initial conditions

〈L̂z〉 = N

2

∆xx = ∆yy = N

2 (70)

〈L̂x〉 = 〈L̂y〉 = ∆xy = ∆xz = ∆yz = ∆zz = 0.

6.4.2 Comparison of the two-mode models of a condensate in double
well versus that of twin-atom beam generation

In figure 16 we compare the results obtained by the two different factoriza-
tion schemes, and see much better agreement of the factorization which includes
the coupling between first and second order moments to the exact solution. This
is what we have also expected for the simulation of the generation of twin-atom
beams, but there we obtained better results with the application of the factoriza-
tion 〈ABC〉 ' 〈A〉〈B〉〈C〉 as shown in figure 13. This may be the case since the



6 TWIN-ATOM BEAMS: THE THEORY 27

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time

 

 

eigenvalue 1
eigenvalue 2

Figure 17: Eigenvalues of the RSPDM for a condensate in a double well.

factorization 〈L̂iL̂jL̂k〉 ' 〈L̂iL̂j〉〈L̂k〉+〈L̂i〉〈L̂jL̂k〉+〈L̂iL̂k〉〈L̂j〉−2〈L̂i〉〈L̂j〉〈L̂k〉
is a perturbative approximation in f , where f and 1 − f are the eigenval-
ues of the reduced single particle density matrix (RSPDM) with the elements
Rij = 〈â†i âj〉/N and therefore only valid if f is small, what is related to mildly
fragmented condensate [30]. For the problem of a condensate in a double well
this condition is fulfilled as we can easily check by plotting the eigenvalues of
the RSPDM (see figure 17) but it is not the case for the problem of twin-atom
beam generation, where the first eigenvalue of the RSPDM equals the popula-
tion of the excited state (e, 0) and the second one that of the wing state (g,±p).

6.5 Coupled-cluster approximation

In the previous chapters we have probed different truncation schemes within
the density-matrix approach and obtained a good approximation, already close
to the exact result (see figure 12). Nevertheless, in the following section, we
want to apply a different approach, namely the coupled-cluster theory, to see if
we can get even better results.

6.5.1 Basics of the coupled-cluster theory

Coupled-cluster theory was first suggested in the context of the many-body
problem of nuclear physics by Coester [33] and Coester and Kümmel [34] and
applied to a system of bosons in external traps by Cederbaum et al [35]. Within
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the coupled-cluster approach the full many-body wave function is obtained
from a ground configuration |φ0〉 by the application of an exponential oper-
ator exp (T̂ )

|Ψ〉 = eT̂ |φ0〉. (71)

Whereas in the case of nuclear dynamics the ground configuration |φ0〉 is a
Slater determinant, we will focus in the following on the system of N bosons,
where the ground configuration naturally is given by the state where all particles
remain in a single orbital ϕ1. This state can be written as

|φ0〉 = 1√
N !

(
â†1

)N
|0〉 with 〈φ0|φ0〉 = 1 (72)

where |0〉 is the vacuum state and â†1 the creation operator corresponding to the
orbital ϕ1. The cluster operator T̂ is defined as the sum of excitation operators
T̂i

T̂ =
N∑
n=1

T̂n (73)

where the excitation operator T̂1 generates a single excitation, T̂2 a double
excitation and so on. These excitation operators can be written as

T̂n = t̂n (â1)n (74)

with

t̂n =
M∑

i1,...,in=2
ci1,...,in â

†
i1
· · · â†in (75)

where m is the number of orbitals ϕi and the âi and â†i are the corresponding
annihilation and creation operators. Since the creation operators in (75) com-
mute, the oder of the coefficients’ indices is irrelevant. The cluster amplitudes
ci1,...,in are yet unknown and can be calculated from the coupled-cluster equa-
tions. These coupled-cluster equations are obtained from the time-dependent
Schrödinger equation

HeT̂ |φ0〉 = i
∂

∂t
eT̂ |φ0〉 (76)

which, multiplied with the operator exp (−T̂ ) from the left, gives

e−T̂HeT̂ |φ0〉 = ie−T̂
∂

∂t
eT̂ |φ0〉 (77)
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and the projection onto the different possible excited configurations yields the
following set of coupled equations

〈φ0|e−T̂HeT̂ |φ0〉 = i〈φ0|e−T̂
∂

∂t
eT̂ |φ0〉 (78a)

〈φ0|â†1âie
−T̂HeT̂ |φ0〉 = i〈φ0|â†1âie

−T̂ ∂

∂t
eT̂ |φ0〉, i = 2, 3, . . . ,M (78b)

〈φ0|
(
â†1

)2
âiâje

−T̂HeT̂ |φ0〉 =

= i〈φ0|
(
â†1

)2
âiâje

−T̂ ∂

∂t
eT̂ |φ0〉, i ≥ j = 2, 3, . . . ,M (78c)
...

consisting of
(M+N−1

N

)
independent equations to calculate the

(M+N−1
N

)
cluster

amplitudes ci1,...,in [35]. Since, even for a modest number of orbitals included,
the size of this system of equations is enormous and an approximation becomes
necessary.

The approximation is achieved by a truncation of the cluster operator T̂ .
If, for example, the a CCSD approach is chosen, only single (S) and double (D)
excitations operators are included, i.e. the cluster operator is approximated by
T̂ ≈ T̂1 + T̂2 and the number of cluster amplitudes reduces drastically to M − 1
coefficients ci and M(M − 1)/2 coefficients cij (cf. (75)).

6.5.2 Application of coupled-cluster theory to the generation of
twin-atom beams

In the last chapter we have reproduced the formalism of coupled-cluster
theory for systems of bosons. In the following we apply this this theory to
the two-mode approximation of the generation of twin-atom beams out of an
excited degenerate Bose gas. This process is described by the Hamiltonian

Ĥ ′ = κ
(
â†g,pâ

†
g,pâe,0âe,0 + â†e,0â

†
e,0âg,pâg,p

)
(79)

which we are already familiar to.
As in 6.5.1 we write the exact wave function as

|Ψ〉 = eT̂ |φ0〉 (80)

where here the ground configuration is chosen to be the state where all bosons
are in the excited mode (e, 0), which is

|φ0〉 = 1√
N !

(
â†e,0

)N
|0〉 with 〈φ0|φ0〉 = 1. (81)

Since in this system always pairs of atoms are generated in the longitudinal
(g,±p) modes, the cluster operator can only consist of double excitation oper-
ators or multiples of it. To demonstrate the underlying calculations we choose
the following truncation of the cluster operator

T̂ = T̂2 + T̂4. (82)
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Figure 18: Occupation density of the wing states (g,±p) of the emission pro-
cess for the exact solvable two-mode model and the two-mode coupled-cluster
approach with different truncations of the cluster operator T̂ .

Since in our model we only have to deal with two modes, namely the (e, 0) and
(g,±p) modes, here we simply label the occurring cluster amplitudes as t2 and
t4 which, in our time-dependent problem are the quantities depending on time.
So we can write the cluster operator as a sum of the two operators T̂2 and T̂4
which generate one and two pairs of atoms respectively. We can write them as

T̂2 = t2(t)
(
âe,0â

†
g,p

)2
= t2(t)Ŝ2 (83a)

T̂4 = t4(t)
(
âe,0â

†
g,p

)4
= t4(t)Ŝ4 (83b)

where we have used the operator Ŝ ≡ âe,0â†g,p. In this manner we can write the
cluster operator in the compact form

T̂ = t2(t)Ŝ2 + t4(t)Ŝ4. (84)

To make up the coupled-cluster equations, which we will use to calculate the
cluster amplitudes t2 and t4, it is useful to write the Hamiltonian of this two-
mode model also in terms of the operator Ŝ that yields

Ĥ = κ
(
â†g,pâ

†
g,pâe,0âe,0 + âe,0âe,0â

†
g,pâ

†
g,p

)
= κ

[(
Ŝ†
)2

+ Ŝ2
]

(85)

which is in analogy to what we already had in (60). Due to the truncation of
the cluster operator T̂ (see (82)) we get two independent, coupled equations for
the variables t2 and t4 which are

i〈φ0|
(
Ŝ†
)2
e−T̂

∂

∂t
eT̂ |φ0〉 = 〈φ0|

(
Ŝ†
)2
e−T̂HeT̂ |φ0〉 (86a)

i〈φ0|
(
Ŝ†
)4
e−T̂

∂

∂t
eT̂ |φ0〉 = 〈φ0|

(
Ŝ†
)4
e−T̂HeT̂ |φ0〉. (86b)
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To evaluate these equations we will make use of the expansion

˙̂
A ≡ e−T̂ ÂeT̂ = Â+ 1

1!
[
Â, T̂

]
+ 1

2!
[[
Â, T̂

]
, T
]

+ . . . (87)

what for the term on the right hand side gives

e−T̂
∂

∂t
eT̂ = e−T̂

˙̂
TeT̂ = ˙̂

T = ṫ2(t)Ŝ2 + ṫ4(t)Ŝ4 (88)

since the commutator [ ˙̂
T, T̂ ] vanishes. And the coupled-cluster equations sim-

plify to

i〈φ0|
(
Ŝ†
)2 ∂

∂t
T̂ |φ0〉 = 〈φ0|

(
Ŝ†
)2
e−T̂HeT̂ |φ0〉 (89a)

i〈φ0|
(
Ŝ†
)4 ∂

∂t
T̂ |φ0〉 = 〈φ0|

(
Ŝ†
)4
e−T̂HeT̂ |φ0〉. (89b)

Also for the terms on the left hand side, equation (87) gives an exact expression
and the coupled-cluster equations finally yield

iṫ2〈φ0|
(
Ŝ†
)2
Ŝ2|φ0〉 =

= κ〈φ0|
(
Ŝ†
)2
Ŝ2|φ0〉+ κt4〈φ0|

(
Ŝ†
)4
Ŝ4|φ0〉+

+ 1
2κt2

2〈φ0|
(
Ŝ†
)4
Ŝ4|φ0〉 − κt22〈φ0|

(
Ŝ†
)2
Ŝ2
(
Ŝ†
)2
Ŝ2|φ0〉 (90a)

iṫ4〈φ0|
(
Ŝ†
)4
Ŝ4|φ0〉 =

= κt2t4〈φ0|
(
Ŝ†
)6
Ŝ6|φ0〉 − κt2t4〈φ0|

(
Ŝ†
)4
Ŝ2
(
Ŝ†
)2
Ŝ4|φ0〉+

− 1
2κt2

3〈φ0|
(
Ŝ†
)4
Ŝ2
(
Ŝ†
)2
Ŝ4|φ0〉 − κt2t4〈φ0|

(
Ŝ†
)4
Ŝ4
(
Ŝ†
)2
Ŝ2|φ0〉+

+ 1
2κt2

3〈φ0|
(
Ŝ†
)4
Ŝ4
(
Ŝ†
)2
Ŝ2|φ0〉+ 1

6κt2
3〈φ0|

(
Ŝ†
)6
Ŝ6|φ0〉. (90b)

Now this system of coupled differential equations can be easily solved numeri-
cally, since the expectation values of excitation operators of the form
〈φ0|(Ŝ†)2Ŝ2|φ0〉 can be calculated (they are listed in appendix B.1).

If the cluster-amplitudes are calculated the wave function can be evaluated
at the different time-steps of the simulation with equation (80). The expecta-
tion value of the pseudo-spin operator L̂z then gives the population density of
the state (g, p) as already implemented in section 6.3.4. The result for a simula-
tion of a system of N = 100 atoms is shown in figure 18 where it is compared to
further truncations of the cluster operator, namely T̂ = T̂2 and T̂ = T̂2 + T̂4 + T̂6
and the exact solution obtained from the Schrödinger equation. The compar-
ison shows that with the coupled-cluster theory we just obtain a perturbation
series and that this approach is not a better alternative to the density matrix
formalism applied in section 6.3.3.
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6.6 Multi-mode model

Since we have tested different approaches for a two-mode model of the twin-
atom beam generation, we found out that a first-order approximation within
the density-matrix approach provides the best results and therefore, we will
generalize this formalism to a multi-mode model in the following section. 3

FIG. 3. Atom cloud image analysis. (a) Typical experimental
image of ∼ 700 atoms released from the trap 7ms after start-
ing the excitation sequence. The cloud is allowed to expand
for 46ms, making the initial momentum distribution acces-
sible. The quasi-BEC in the excited state |1y, 0〉 is clearly
distinct from the emitted clouds at momenta ±~k0. Units
are photons per pixel. The blue box indicates the integra-
tion range for the data shown in figure 2b. (b) Average over
≈ 1500 images similar to (a). The colour scale is logarith-
mic (dB referenced to peak density). The regions used for
correlation analysis are indicated as red boxes. (c) Normal-

FIG. 4. Correlation analysis. (a) Histogram of observed signal
imbalances s between the emitted clouds, in units of the bino-
mial standard deviation σbin = (p̄S̃)1/2. The curves indicate
normal distributions corresponding to the experimental result
of ξ2 = 0.11(2) (black, solid), the limits of perfect correlation,
where only detection noise remains (red, solid), of uncorre-
lated signals, defining the reference point for ξ2 (blue, solid),

Figure 19: Results from the twin-atom beam experiment [1] which show mo-
mentum distributions of about 700 atoms released from the trap 7 ms (in (a),(b)
and (d)) and 6 ms (in (c)) after starting the excitation sequence. (a) Momen-
tum distribution gained by fluorescence detection (in photons per pixel). (b)
Average of approximately 1500 images similar to (a). (c) Normalized, radial mo-
mentum distributions of the central (blue) and emitted (red) clouds (averaged
over 50 images) in comparison to the distribution of a non-excited cloud (black).
(d) Normalized profile of (b) along the x-direction (red dots) and three-peak
Lorentzian fit (black line).

Figure (19) shows that a two-model with just a single longitudinal mode
|g,±p〉 being populated by the emitted atoms is not sufficient to describe the
experiment adequately, but a variety of modes with energies centered around
Ee,0 has to be depicted. While an extension of the full Schrödinger equation (in
section 6.3.2) to a multi-mode model is impracticable, due to the exponentially
increasing size of the Hilbert space, the generalization of the density matrix
approach (in section 6.3.3) is straightforward and the multi-mode Hamiltonian
for the non-linear coupling, describing the emission-process, takes the form

Ĥ ′ = 1
2
∑
ij

κij
(
â†g,iâ

†
g,j âe,0âe,0 + â†e,0â

†
e,0âg,iâg,j

)
(91)

where the coupling matrix element between the source and the longitudinal
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modes κij can be expressed as

κij = g

∫
φ∗i (x)φ∗j (x)φg(x)2dx

∫
φ∗g(y)2φe(y)2dy

∫
|φg(z)|4dz (92)

which is simply the generalization of equation (42). The wave functions
φi(x)φg(y)φg(z) are those corresponding to the several longitudinal excited
modes which are populated during emission. Since κij = κji momentum
conservation is fulfilled, and due to the symmetry of the single-particle wave
functions also parity is conserved. Considering only this non-linear part of
the Hamiltonian the equations of motion for the one-particle density matrices
ρe,0 = 〈â†e,0âe,0〉 and ρg,ij = 〈â†g,iâg,j〉 yield

i
(
ρ̇00
ee

)′
= 〈
[
â†e,0âe,0, Ĥ

′
]
〉 = −2i

∑
ij

κij Im ∆ij
gg,ee (93a)

i
(
ρ̇ijgg

)′
= 〈
[
â†g,iâg,j , Ĥ

′
]
〉 =

∑
k

(
κjk∆ik

gg,ee − κik∆∗
jk
gg,ee

)
, (93b)

where ∆ij
gg,ee = 〈â†g,iâ

†
g,j âe,0âe,0〉 is the two-particle coherence, whose time evo-

lution is

i
(
∆̇ij
gg,ee

)′
'
(
2ρ00

ee + 1
)∑

kl

κklρ
ik
ggρ

jl
gg − κijρ00

ee

(
ρ00
ee − 1

)
+

− ρ00
ee

(
ρ00
ee − 1

)∑
k

(
κikρ

jk
gg + κjkρ

ik
gg

)
. (94)

To gain a complete description of the twin-atom beam generation process
we also have to formulate the free time-evolution and the pumping process in
terms of our multi-mode model which is covered by the Hamiltonian

Ĥ0 =
∑
µ=g,e

Eµ,0â
†
µ,0âµ,0 +

∑
i

Eg,iâ
†
g,iâg,i+

− ℘egẏ0
(
â†e,0âg,0 + â†g,0âe,0

)
− ℘egẏ0

∑
i

(
â†e,iâg,i + â†g,iâe,i

)
(95)

where the index i runs over the longitudinal excited modes with
Eg,i ' Ee,0 and ℘ is the momentum matrix element between the longitu-
dinal ground and excited state.

Taking also into account the free evolution and the pumping, we additionally
have to calculate the system of equations for the time evolution due to Ĥ0, which
for the single-particle density matrices yields

i
(
ρ̇00
ee

)0
= −i℘ẏ02 Im ρ00

eg (96a)

i
(
ρ̇ijge

)0
= (−Eg,i − Ee,j) ρijge − ℘egẏ0

(
ρijgg − ρijee

)
(96b)

and

i
(
∆̇ij
gg,ee

)0
=
〈[
â†g,iâ

†
g,j âe,0âe,0, Ĥ0

]〉
= (97)

= ∆ij
gg,ee (2Ee,0 − Eg,i − Eg,j)− ℘egẏ0

(
2∆ij

gg,eg −∆ij
eg,ee −∆ij

ge,ee

)
.
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Figure 20: Simulation for one (left) and five (right) wing modes where the values
for the coupling constants κij and energies are calculated from the effective
potential used in the experiment and a dephasing of T2 = 2ms for the two-
particle density matrices is considered.

for the two-particle density matrix, just to name a few. The complete set of
equations of motion for the one- and two-particle density matrices is listed in
appendix A.2.

In figure 20 a simulation for one and five wing modes (g, i) respectively is
shown, where the corresponding energies Eg,i and the coupling matrix elements
κij are calculated from the effective Hamiltonian obtained in section (6.2). Ad-
ditionally a dephasing of T2 = 2ms of the two-particle density matrix is taken
into account. For the displacement of the potential minimum, responsible for
the transfer of the condensate from the transversal ground (g, 0) to the first
excited state (e, 0), a trajectory of y0(t) = −0.022 sin(Ee,0t) active at the first
5ms of the simulation, was used and a value of ℘eg = −2.45 for the momentum
matrix element was used. The simulation was run for N = 700 particles.

6.7 Conclusion and outlook

Within this thesis a model for the generation of twin-atom beams, emitted
from a one-dimensional degenerate Bose gas in the first radial excited state of
an elongated trap, was developed. In a first approach, a two-mode model is
used to describe the population of a single twin-mode by atom-pairs emitted
from the quasi-BEC. This problem allows a full numerical solution of the cor-
responding Schrödinger equation, which is compared to the results obtained
from a density matrix and a coupled-cluster approach. For the density matrix
approach different factorization schemes to truncate the BBGKY hierarchy of
equations of motion are probed. The density matrix approach is then applied to
a multi-mode model, where several twin-modes are populated. Also the pump-
ing process, where the quasi-condensate is transferred from the ground to the
first excited state of the waveguide potential, is modeled in this approach.

Furthermore, the effect of the thermal occupation of the twin-modes as
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seeds for the emission, as well as an adequate treatment of the non-condensed
particles in the GPE, including the corresponding changes of the interaction
matrix elements, and the energies of the modes could be investigated.
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Appendices

A Heisenberg equations of motion

We calculate the time evolution of the one- and two-particle density ma-
trices ρ and ∆ trough the Heisenberg equations of motion iρ̇ = 〈[ρ, Ĥ]〉 and
i∆̇ = 〈[∆, Ĥ]〉 respectively. The Hamiltonian Ĥ = Ĥ0 + Ĥ ′ with Ĥ0, con-
taining the free time evolution and the pumping process, and Ĥ ′, describing
the atom-atom interaction responsible for the emission of the twin-atom beams.
Through Ĥ ′ the time evolution of the one-particle density matrices depends on
the two-particle density matrices and that of the two-particle density matrices
on the three-particle density matrices and so on. To obtain a closed set of
equations, we approximate the three-particle density matrices by products of
one-particle density matrices (see A.1.1) and, alternatively, by a sum of prod-
ucts of one- and two-particle density matrices (see A.1.2).

A.1 Two-mode model

The process of the emission of twin-atom beams is mapped onto a two-mode
model, where only a single longitudinal excited mode (g,±p) with Ee,0 = Eg,p
can be populated. This model contains the transversal excited state (e, 0) and
the twin-atom states (g,±p). Additionally, the states (g, 0) and (e,±p) are
included, since also the pumping process is taken into account.

A.1.1 First-order approximation

In this approach the three-particle density matrices are factorized according
to 〈ABC〉 ' 〈A〉〈B〉〈C〉, where A, B and C are pairs of creation and annihila-
tion operators.

One-particle density matrices

iρ̇gg,0 =
〈[
â†g,0âg,0, Ĥ0 + Ĥ ′

]〉
= i℘egẏ02 Im ρeg,0 (98a)

iρ̇ee,0 = −i℘egẏ02 Im ρeg,0 − 4iκ Im ∆gg,ee (98b)

iρ̇eg,0 = (Eg,0 − Ee,0)ρeg,0 − ℘egẏ0(ρee,0 − ρgg,0)− 2κ∆gg,eg (98c)
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iρ̇gg,p = i℘egẏ02 Im ρeg,p + 2iκ Im ∆gg,ee (98d)

iρ̇ee,p = −i℘egẏ02 Im ρeg,p (98e)

iρ̇eg,p = (Eg,p − Ee,p)ρeg,p − ℘egẏ0(ρee,p − ρgg,p) + κ∆eg,ee. (98f)

Two-particle density matrices

i∆̇gg,ee '
〈[
â†g,pâ

†
g,−pâe,0âe,0, Ĥ0

]〉
=

= 2∆gg,ee (Ee,0 − Eg,p)− 2℘egẏ0 (∆gg,eg −∆eg,ee) +
+ 2κρ2

gg,p (2ρee,0 + 1)− κ (2ρgg,p + 1) ρee,0 (ρee,0 − 1) (99a)

i∆̇gg,eg ' ∆gg,eg (Ee,0 + Eg,0 − 2Eg,p)− ℘egẏ0 (∆gg,gg + ∆gg,ee − 2∆eg,eg) +
+ 2κρ2

gg,pρeg,0 − κ (2ρgg,p + 1) ρee,0ρeg,0 (99b)

i∆̇gg,gg ' 2∆gg,gg (Eg,0 − Eg,p)− 2℘egẏ0 (∆gg,eg −∆eg,gg) +
− κ (2ρgg,p + 1) ρ2

eg,0 (99c)

i∆̇eg,ee ' ∆eg,ee (2Ee,0 − Eg,p − Ee,p)− ℘egẏ0 (2∆eg,eg −∆gg,ee −∆ee,ee) +
+ 2κρeg,pρgg,p (2ρee,0 + 1)− κρeg,pρee,0 (ρee,0 − 1) (99d)

i∆̇eg,eg ' ∆eg,eg (Ee,0 + Eg,0 − Eg,p − Ee,p) +
− ℘egẏ0 (∆eg,gg + ∆eg,ee −∆gg,eg −∆ee,eg) +
+ 2κρeg,pρgg,pρeg,0 − κρeg,pρee,0ρeg,0 (99e)

i∆̇eg,gg ' ∆eg,gg (2Eg,0 − Eg,p − Ee,p)− ℘egẏ0 (2∆eg,eg −∆gg,gg −∆ee,gg) +
− κρeg,pρ2

eg,0 (99f)

i∆̇ee,ee ' 2∆ee,ee (Ee,0 − Ee,p)− 2℘egẏ0 (∆ee,eg −∆eg,ee) +
+ 2κρ2

eg,p (2ρee,0 + 1) (99g)

i∆̇ee,eg ' ∆ee,eg (Ee,0 + Eg,0 − 2Ee,p)− ℘egẏ0 (∆ee,gg + ∆ee,ee − 2∆eg,eg) +
+ 2κρ2

eg,pρeg,0 (99h)

i∆̇ee,gg = 2∆ee,gg (Eg,0 − Ee,p)− 2℘egẏ0 (∆ee,eg −∆eg,gg) (99i)
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A.1.2 Second-order approximation

Here we also include the coupling terms between one- and two-particle den-
sity matrices in the factorization and approximate the three-particle density
matrices by

〈ABC〉 ' 〈AB〉〈C〉+ 〈A〉〈BC〉+ 〈AC〉〈B〉 − 2〈A〉〈B〉〈C〉. (100)

Within this approach we just consider the emission process and hence solely
the time evolution of the density matrices due to Ĥ ′. While for the one-particle
density matrix ρee,0 the equation of motion stays unchanged, that of the two-
particle density matrix ∆gg,ee becomes

〈
[
â†g,pâ

†
g,−pâe,0âe,0, Ĥ

′
]
〉 ' 4κ〈â†g,pâ

†
g,−pâg,pâg,−p〉〈â

†
e,0âe,0〉+ (101)

+ 8κ〈â†g,pâg,p〉〈â†g,pâ
†
e,0âg,pâe,0〉 − 8κ〈â†g,pâg,p〉2〈â

†
e,0âe,0〉+

+ 2κ〈â†g,pâ
†
g,−pâg,pâg,−p〉 − 4κ〈â†e,0â†g,pâe,0âg,p〉〈â

†
e,0âe,0〉+

− 2κ〈â†g,pâg,p〉〈â
†
e,0â
†
e,0âe,0âe,0〉+ 4κ〈â†g,pâg,p〉〈â

†
e,0âe,0〉

2+

− κ〈â†e,0â
†
e,0âe,0âe,0〉

and now depends on further two-particle density matrices for which the time
evolution is given by

〈
[
â†g,pâ

†
g,−pâg,pâg,−p, Ĥ

′
]
〉 ' 2κ〈â†g,pâg,p〉〈â†g,pâ

†
g,−pâe,0âe,0〉+ (102a)

+ κ〈â†g,pâ
†
g,−pâe,0âe,0〉 − 2κ〈â†g,pâg,p〉〈â

†
e,0â
†
e,0âg,pâg,−p〉+

− κ〈â†e,0â
†
e,0âg,pâg,−p〉

〈
[
â†g,pâ

†
e,0âg,pâe,0, Ĥ

′
]
〉 ' κ〈â†e,0âe,0〉〈â

†
g,pâ

†
g,−pâe,0âe,0〉+ (102b)

+ 2κ〈â†g,pâg,p〉〈â
†
e,0â
†
e,0âg,pâg,−p〉 − κ〈â

†
e,0âe,0〉〈â

†
e,0â
†
e,0âg,pâg,−p〉

〈
[
â†e,0â

†
e,0âe,0âe,0, Ĥ

′
]
〉 ' −4κ〈â†e,0âe,0〉〈â†g,pâ

†
g,−pâe,0âe,0〉+ (102c)

− 2κ〈â†g,pâ
†
g,−pâe,0âe,0〉+ 4κ〈â†e,0âe,0〉〈â

†
e,0â
†
e,0âg,pâg,−p〉+

+ 2κ〈â†e,0â
†
e,0âg,pâg,−p〉.
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A.1.3 Pseudospin-operator approach

Within this approach we solely model the emission process and consider the
expectation values of the pseudospin-operators

L̂x ≡
â†e,0âg,p + â†g,pâe,0

2 (103a)

L̂y ≡
â†e,0âg,p − â†g,pâe,0

2i (103b)

L̂z ≡
â†e,0âe,0 − â†g,pâg,p

2 (103c)

instead of the one-particle density matrices. The equations of motion for this
angular momentum operators are given by

d

dt
L̂x = −i

[
L̂x, Ĥ

′
]

= −κ
(
L̂yL̂z + L̂zL̂y

)
(104a)

d

dt
L̂y = −i

[
L̂y, Ĥ

′
]

= −κ
(
L̂xL̂z + L̂zL̂x

)
(104b)

d

dt
L̂z = −i

[
L̂z, Ĥ

′
]

= 2κ
(
L̂xL̂y + L̂yL̂x

)
(104c)

and also depend on the second order moments, for which the time evolution is
given by

d

dt
〈L̂xL̂z〉 = −i〈

[
L̂xL̂z, Ĥ

′
]
〉 ' (105a)

' 6κ〈L̂x〉〈L̂xL̂y〉+ 4κ〈L̂y〉〈L̂xL̂x〉+ 2κ〈L̂x〉〈L̂yL̂x〉 − 8κ〈L̂x〉〈L̂x〉〈L̂y〉+
− 3κ〈L̂z〉〈L̂yL̂z〉 − 2κ〈L̂y〉〈L̂zL̂z〉 − κ〈L̂zL̂y〉〈L̂z〉+ 4κ〈L̂z〉〈L̂z〉〈L̂y〉

d

dt
〈L̂yL̂z〉 ' (105b)

' 6κ〈L̂y〉〈L̂yL̂x〉+ 4κ〈L̂x〉〈L̂yL̂y〉+ 2κ〈L̂y〉〈L̂xL̂y〉 − 8κ〈L̂x〉〈L̂y〉〈L̂y〉+
− 3κ〈L̂z〉〈L̂xL̂z〉 − 2κ〈L̂x〉〈L̂zL̂z〉 − κ〈L̂zL̂x〉〈L̂z〉+ 4κ〈L̂x〉〈L̂z〉〈L̂z〉

d

dt
〈L̂xL̂y〉 ' (105c)

' −3κ〈L̂x〉〈L̂xL̂z〉 − 2κ〈L̂z〉〈L̂xL̂x〉 − κ〈L̂x〉〈L̂zL̂x〉+ 4κ〈L̂x〉〈L̂x〉〈L̂z〉+
− 3κ〈L̂y〉〈L̂zL̂y〉 − 2κ〈L̂z〉〈L̂yL̂y〉 − κ〈L̂yL̂z〉〈L̂y〉+ 4κ〈L̂y〉〈L̂y〉〈L̂z〉

d

dt
〈L̂xL̂x〉 ' (105d)

' −2κ〈L̂x〉〈L̂zL̂y〉 − 2κ〈L̂x〉〈L̂yL̂z〉 − 2κ〈L̂z〉〈L̂xL̂y〉 − 2κ〈L̂z〉〈L̂yL̂x〉+
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− 2κ〈L̂y〉〈L̂xL̂z〉 − 2κ〈L̂y〉〈L̂zL̂x〉+ 8κ〈L̂x〉〈L̂y〉〈L̂z〉

d

dt
〈L̂yL̂y〉 '

d

dt
〈L̂xL̂x〉 (105e)

d

dt
〈L̂zL̂z〉 ' (105f)

' 4κ〈L̂x〉〈L̂yL̂z〉+ 4κ〈L̂x〉〈L̂zL̂y〉+ 4κ〈L̂y〉〈L̂xL̂z〉+ 4κ〈L̂y〉〈L̂zL̂x〉+
+ 4κ〈L̂z〉〈L̂xL̂y〉+ 4κ〈L̂z〉〈L̂yL̂x〉 − 16κ〈L̂x〉〈L̂y〉〈L̂z〉,

if we apply the factorization 〈L̂iL̂jL̂k〉 ≈ 〈L̂iL̂j〉〈L̂k〉+〈L̂i〉〈L̂jL̂k〉+〈L̂iL̂k〉〈L̂j〉−
2〈L̂i〉〈L̂j〉〈L̂k〉 for the third order moments.
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A.2 Multi-mode model

Here the two-mode model of the emission process is generalized to a multi-
mode model in which the twin-atom beams can populate several modes (g, i)
with energies centered around Ee,0.

A.2.1 Pumping and free time evolution

The Heisenberg equations of motion for the free time evolution and the
time-dependent excitation (pumping) of the one-particle density matrices are
given by

i
(
ρ̇00
gg

)0
=
〈[
â†g,0âg,0, Ĥ0

]〉
= i℘egẏ02 Im ρ00

eg (106a)

i
(
ρ̇00
ee

)0
= −i℘egẏ02 Im ρ00

eg (106b)

i
(
ρ̇00
eg

)0
= (Eg,0 − Ee,0)ρeg,0 − ℘egẏ0

(
ρ00
ee − ρ00

gg

)
(106c)

i
(
ρ̇ijgg

)0
= (Eg,i − Eg,j) ρijgg + ℘egẏ0

(
ρijeg −

(
ρjieg

)∗)
(106d)

i
(
ρ̇ijee

)0
= (Ee,j − Ee,i) ρijee − ℘egẏ0

(
ρijeg −

(
ρjieg

)∗)
(106e)

i
(
ρ̇ijeg

)0
= (Eg,j − Ee,i) ρijeg − ℘egẏ0

(
ρijee − ρijgg

)
. (106f)

In the same manner the equations of motion for the two-particle density
matrices can be calculated what gives

i
(
∆̇ij
gg,ee

)0
=
〈[
â†g,iâ

†
g,j âe,0âe,0, Ĥ0

]〉
= (107a)

= ∆ij
gg,ee (2Ee,0 − Eg,i − Eg,j)− ℘egẏ0

(
2∆ij

gg,eg −∆ij
eg,ee −∆ji

eg,ee

)

i
(
∆̇ij
gg,eg

)0
= ∆ij

gg,eg (Eg,0 + Ee,0 − Eg,i − Eg,j) + (107b)

− ℘egẏ0
(
∆ij
gg,gg + ∆ij

gg,ee −∆ij
eg,eg −∆ji

eg,eg

)

i
(
∆̇ij
gg,gg

)0
= ∆ij

gg,gg (2Eg,0 − Eg,i − Eg,j) + (107c)

− ℘egẏ0
(
2∆ij

gg,eg −∆ij
eg,gg −∆ji

eg,gg

)
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i
(
∆̇ij
eg,ee

)0
= ∆ij

eg,ee (2Ee,0 − Eg,j − Ee,i) + (107d)

− ℘egẏ0
(
2∆ij

eg,eg −∆ij
gg,ee −∆ij

ee,ee

)

i
(
∆̇ij
eg,eg

)0
= ∆ij

eg,eg (Eg,0 + Ee,0 − Eg,j − Ee,i) + (107e)

− ℘egẏ0
(
∆ij
eg,gg + ∆ij

eg,ee −∆ij
gg,eg −∆ij

ee,eg

)

i
(
∆̇ij
eg,gg

)0
= ∆ij

eg,gg (2Eg,0 − Eg,j − Ee,i) + (107f)

− ℘egẏ0
(
2∆ij

eg,eg −∆ij
gg,gg −∆ij

ee,gg

)

i
(
∆̇ij
ee,ee

)0
= ∆ij

ee,ee (2Ee,0 − Ee,i − Ee,j) + (107g)

− ℘egẏ0
(
2∆ij

ee,eg −∆ij
eg,ee −∆ji

eg,ee

)

i
(
∆̇ij
ee,eg

)0
= ∆ij

ee,eg (Eg,0 + Ee,0 − Ee,i − Ee,j) + (107h)

− ℘egẏ0
(
∆ij
ee,gg + ∆ij

ee,ee −∆ij
eg,eg −∆ji

eg,eg

)

i
(
∆̇ij
ee,gg

)0
= ∆ij

ee,gg (2Eg,0 − Ee,i − Ee,j) + (107i)

− ℘egẏ0
(
2∆ij

ee,eg −∆ij
eg,gg −∆ji

eg,gg

)
.
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A.2.2 Twin-atom beam generation

The equations of motion for the one-particle density matrices due to Ĥ ′,
describing the emission process, are given by

i
(
ρ̇00
gg

)′
=
〈[
â†g,0âg,0, Ĥ

′
]〉

= 0 (108a)

i
(
ρ̇00
ee

)′
= −2i

∑
ij

κij Im ∆ij
gg,ee (108b)

i
(
ρ̇00
eg

)′
= −

∑
ij

κij∆ij
gg,eg (108c)

i
(
ρ̇ijgg

)′
=
∑
k

(
κjk∆ik

gg,ee − κik
(
∆jk
gg,ee

)∗)
(108d)

i
(
ρ̇ijee

)′
= 0 (108e)

i
(
ρ̇ijeg

)′
=
∑
k

κjk∆ik
eg,ee. (108f)

For the two-particle density matrices the equations of motion due to Ĥ ′ are
given by

i
(
∆̇ij
gg,ee

)′
=
〈[
â†g,iâ

†
g,j âe,0âe,0, Ĥ

′
]〉

= (109a)

'
(
2ρ00

ee + 1
)∑

kl

κklρ
ik
ggρ

jl
gg − κijρ00

ee

(
ρ00
ee − 1

)
+

− ρ00
ee

(
ρ00
ee − 1

)∑
k

(
κikρ

jk
gg + κjkρ

ik
gg

)

i
(
∆̇ij
gg,eg

)′
' ρ00

eg

∑
kl

κklρ
ik
ggρ

jl
gg − κijρ00

egρ
00
ee+ (109b)

− ρ00
egρ

00
ee

∑
k

(
κjkρ

ik
gg + κikρ

jk
gg

)

i
(
∆̇ij
gg,gg

)′
' −

(
ρ00
eg

)2∑
k

(
κjkρ

ik
gg + κikρ

jk
gg

)
− κij

(
ρ00
eg

)2
(109c)
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i
(
∆̇ij
eg,ee

)′
'
(
2ρ00

ee + 1
)∑

kl

κklρ
ik
egρ

jl
gg+ (109d)

− ρ00
ee

(
ρ00
ee − 1

)∑
k

κjkρ
ik
eg

i
(
∆̇ij
eg,eg

)′
' ρ00

eg

∑
kl

κklρ
ik
egρ

jl
gg − ρ00

eeρ
00
eg

∑
k

κjkρ
ik
eg (109e)

i
(
∆̇ij
eg,gg

)′
' −

(
ρ00
eg

)2∑
k

κjkρ
ik
eg (109f)

i
(
∆̇ij
ee,ee

)′
'
(
2ρ00

ee + 1
)∑

kl

κklρ
ik
egρ

jl
eg (109g)

i
(
∆̇ij
ee,eg

)′
' ρ00

eg

∑
kl

κklρ
ik
egρ

jl
eg (109h)

i
(
∆̇ij
ee,gg

)′
= 0, (109i)

where the factorization scheme 〈ABC〉 ' 〈A〉〈B〉〈C〉 is used to approximate
the three-particle density matrices.
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B Coupled-cluster theory

B.1 Expectation values of excitation operators

The expectation values of the excitation operators, which appear in the
cluster equations and are necessary to solve the system of coupled differential
equations are

〈φ0|
(
Ŝ†
)2
Ŝ2|φ0〉 ' 2N(N − 1) (110a)

〈φ0|
(
Ŝ†
)4
Ŝ4|φ0〉 ' 4!N(N − 1)(N − 2)(N − 3) (110b)

〈φ0|
(
Ŝ†
)2
Ŝ2
(
Ŝ†
)2
Ŝ2|φ0〉 ' 4N2(N − 1)2 (110c)

〈φ0|
(
Ŝ†
)6
Ŝ6|φ0〉 ' 6!N(N − 1)(N − 2)(N − 3)(N − 4)(N − 5) (110d)

〈φ0|
(
Ŝ†
)4
Ŝ2
(
Ŝ†
)2
Ŝ4|φ0〉 ' 12 · 4!N(N − 1)(N − 2)2(N − 3)2 (110e)

〈φ0|
(
Ŝ†
)4
Ŝ4
(
Ŝ†
)2
Ŝ2|φ0〉 ' 2 · 4!N2(N − 1)2(N − 2)(N − 3), (110f)

where N is the total number of particles, |φ0〉 = |N, 0〉 and Ŝ = âe,0â
†
g,p.
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