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Abstract

Electron Energy Loss Spectroscopy EELS is a technique that has proven very useful
for exciting and mapping plasmons in metallic nanoparticles and phonons in ionic
nanoparticles. A monochromatic, atom-wide electron beam passes through or near
a probe. This bachelor thesis deals with EELS of a magnesium oxide nanocube.
A swift electron couples with phonon vibrations of the probe. The experiments are
simulated by means of Molecular Dynamics MD. A Matlab program calculates and
plots the swift electrons’ energy loss probability for a specific position of the electron
beam. The calculations of the interionic forces base on a particle-particle–particle-
mesh algorithm P 3M , whose computing time scales linearly with the number of unit
cells of the crystal n.
The results of the simulations, in good agreement with those previously obtained by
Dr. Hohenester and Dr. Trügler [4],[9], show a slight dependence of the vibrational
behavior of the probe from the size of the nanocube.
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Chapter 1

Introduction

1.1 Overcoming the diffraction limit of light

As indicated by the word ”micro” itself, it is not possible to observe nanostructures
using an optical microscope. Its resolution is fundamentally limited to approxi-
mately half of the wavelength of the incident light, corresponding to about 250 nm,
because of the diffraction limit of light. This represents also the lower limit for
light confinement. Fortunately, a way for circumventing the latter obstacle has been
discovered.
Under specific circumstances, light waves directed at the interface between a metal
and a dielectric can induce a resonant interaction with the the nearly free conduction
electrones at the surface of the metal. These coherent charge-oscillations are called
surface plasmons. This phenomenon is enhanced in nanoparticles and represents a
way for confining light at the nanoscale.
The applications of plasmonics are numerous, ranging from more efficient computer
chips to cancer treatment [2]. Nevertheless, visualizing plasmons by optical means
is not possible. For this purpose, electrons, which are also able to excite surface
plasmons in nanoprobes, are used instead of photons. Electron Energy Loss Spec-
troscopy EELS (a subfield of electron microscopy) can be schematically described as
follows: 1) an atom-wide, nearly monochromatic electron beam passes through or
near a nanoprobe, 2) the swift electrons excite plasmons by performing work against
the electric field of the probe, 3) by raster scanning the beam over the probe the
electron energy loss probability is measured and the shape of the plasmonic modes
can be determined.
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1.2. EELS OF A MGO NANOCUBE AND OVERVIEW

Figure 1.1: Schematic description of EELS for a metallic nanoparticle. a) the swift
electron (magenta line) passes near the nanoprobe, b) it excites plasmons, c) the
shape of the plasmonic modes is determined by raster scanning the beam over the
probe and measuring the electron energy loss probability. Taken from [3].

In ionic crystals, there is no free electron gas that can swing resonantly with an
external electric field. Instead, the swift electrons can bring the ions of the crystal
to oscillate and this results in phonon modes, with wavelengths typically belonging
to the infrared domain. This is also of great interest because understanding phonon
transport at the nanoscale is fundamental for many technological applications, like
building efficient thermoelectric devices, acoustic cloaking and many others [5]. This
work deals with phonon excitation in a Magnesium oxide nanocube.

1.2 EELS of a MgO nanocube and Overview

Electron Energy Loss Spectroscopy presents a lot of experimental difficulties, but
recently there have been many improvements (like the development of a new gen-
eration of monochromators) and M.J. Lagos and P.E. Batson [9],[4] have been able
to spatially map both surface and bulk vibrations in a single magnesium oxide
nanocube.

Figure 1.2: a) annular dark field (ADF) image obtained with a scanning transmission
electron microscope (STEM) of a 150-nm MgO cube. b) High-resolution ADF image
of a cube; the corners and edges are round. There is also a 1–2 nm in thick coating
layer. Taken from [4].
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1.2. EELS OF A MGO NANOCUBE AND OVERVIEW

The spatial resolution of the beam amounts to 1.5-2 Angstrom and the energy losses
of the electrons due to inelastic scattering were determined with a precision of 10
meV.

Figure 1.3: Normalized spectra acquired with the electron beam located in different
positions: green, the beam is located near a face; blue, the beam is located near a
corner; black, the beam passes through the probe. The red dots represent a zero-loss
peak (ZLP) profile, acquired in a vacuum. Regions with positive values represent
energy loss and regions with negative values represent energy gain. Taken from [4].

The green, blue and black peaks in fig.1.3 correspond to the various phonon modes
of the probe.
For simulating the experiment, several techniques have been used. The one that
will be presented in this work is the Molecular Dynamics (MD) technique. I used a
program previously written by Ulrich Hohenester and Andreas Trügler for simulating
larger nanocubes (number of unit cells n = 64) than those that were previously
simulated (nmax = 32) in order to analyze whether/how the dimension of the cube
affect its vibrational modes and also for coming closer to the size of the cubes used
in the experiments (n > 240).
This work is organized as follows:

• In Chapter 2 the formula for the electron energy loss probability is derived and
the MD method is explained. The latter is then compared with the Lattice
Dynamics (LD) and Local Dielectric Description (LDD) methods.

• In Chapter 3 the software used for the MD simulation is described together
with the applied Particle-Particle–Particle-Mesh (P 3M) algorithm.

• In Chapter 4 I present and analyze my results and compare them with the
ones of ref.[9] and [4].

• In Chapter 5 I point out some technological applications that base on phonon-
controlling at nanoscales.

• In Chapter 6 I discuss my results.
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Chapter 2

Theory and Simulation of EELS

2.1 Electron Energy Loss Spectroscopy

As we have seen, what is needed for describing the vibrational behavior of the
nanoprobe is a formula for the electron energy loss probability. The derivation of
the formula follows [3] and [9], in which Gaussian units are used.
This formula describes the probability for a swift electron to lose a certain amount
of energy, due to interactions with the probe. These losses can then be interpreted
as bulk or surface, phonon or phonon-polariton excitations. The ions in the MgO
crystal (Mg2+ and O2−) are described as point-like particles carrying an effective
charge. The second assumption made is that the thermal energy is zero i.e. that
the ionic system resides in its ground state.
The schematic steps of the electron energy loss spectroscopy are shown in fig.1.1.
We label re(t) the position of the electron and E[re(t)] and B[re(t)] respectively the
electric and the magnetic field at this position. Note that E[re(t)] does not include
the field generated by the electron itself. By expressing the infinitesimal propagation
distance as dl = vdt we can write the work performed by the swift electron against
the electric field as:

dW = −e
(
E[re(t)] + v ×B[re(t)]

)
· vdt = −eE[re(t)] · vdt (2.1)

Here e is the elementary electrical charge. We can see that the magnetic field cannot
perform work because (v×B)·v is always equal to zero. The total amount of energy
lost by the electron is then calculated by integrating over its entire trajectory,

∆E = e

∫ ∞
−∞

E[re(t)] · vdt (2.2)

We assume that the trajectory of the electron, because of its large kinetic energy
(typically of the order of 100 keV), is not influenced by the field of the probe. For
an electron traveling in the positive z-direction, we can write its trajectory as

re(t) = R0 + ẑvt (2.3)

with R0 = (x0, y0) being the impact parameter. Actually, in the experiment, the
energy losses are calculated by measuring the electrons’ velocity changes at the
detector, but in the theoretic model those losses are already described in eq.2.2. We
can decompose ∆E into its frequency components via Fourier transform:

E(r, t) =

∫ ∞
0

e−iωtE(r, ω)
dω

2π
(2.4)
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2.2. MOLECULAR DYNAMICS

with ω being the angular frequency. The last thing we need to do is to decompose
∆E into loss contributions h̄ω and assign to every loss energy h̄ω a loss probability
ΓEELS.

∆E =

∫ ∞
0

h̄ωΓEELS(R0, ω)dω (2.5)

Now by inserting eq.2.4 into eq.2.2 we get

ΓEELS(R0, ω) =
e

πh̄ω

∫ ∞
−∞
<{e−iωtv · E(re, ω)}dt (2.6)

For the upcoming calculations it is convenient to express the EELS probability as
function of the induced polarization current in the crystal Jind.

ΓEELS(R0, ω) =
1

πh̄ω

∫
<[E∗el(r, ω) · Jind(r, ω)]d3r (2.7)

In the next section, I will describe the MD technique and how it allows calculating
Jind.

2.2 Molecular Dynamics

Substantially, for our case with the MD technique we want to solve Newton’s equa-
tions of motion for the crystal’s ions when the swift electrons pass by in order to
calculate the induced polarization current Jind.
First of all, the ground state of the crystal has to be computed by relaxation. As
mentioned before, the ions are represented as point-like particles, with masses Mj

and charges eZj at the positions Rj. In practice, it is impossible to account for
the exact interaction of every ion with all the other ones, since this task becomes
computationally prohibitive already for a small number of ions. Instead, a Particle-
Particle–Particle-Mesh algorithm (P 3M), in which the interactions are divided into
interatomic forces (for near ions) and smooth Coulomb forces for distant ions, is
applied. This algorithm will be described in sec.3.1. Here I only want to mention
that it allows an accurate interionic force calculation and that the computing time
scales linearly with the number of ions.
The equations of motion have the following shape

MjR̈j +∇Rj

∑
j′

Vjj′(Rj −Rj′)− γMjṘj = eZjEel(Rj, t) (2.8)

Here the force splitting isn’t explicitly given, it is contained in Vjj′ , the potential
between two ions j and j’. The last term of the lefthand side of the equation is a
dissipative term, which accounts for various couplings with the environment, like
small thermal excitations. To solve these equations, a Verlet algorithm [17] with a
time step of 1 fs is used. Once the ion trajectories have been obtained, the induced
polarization current can be expressed as follows

Jind(r, t) =
∑
j

ṘjeZkδ(r−Rj) (2.9)

Finally we can compute the Fourier Transform of the induced current

Jind(r, ω) =

∫ ∞
0

J(r, t)dt (2.10)

and insert it into Eq. 2.7 to calculate the electron energy loss probability.
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2.3. LATTICE DYNAMICS AND LOCAL DIELECTRIC DESCRIPTION

2.3 Overview of Lattice Dynamics and Local Di-

electric Description

In this section, the basic ideas underlying two alternative/complementary techniques
for simulating the EELS experiment will be pointed out. I will be brief because my
work mainly deals with MD. Both techniques are exhaustively described in [9].

2.3.1 Lattice Dynamics

The main difference between MD and Lattice Dynamics LD is that in the latter the
probe is approximated by an infinite crystal. In this way no surface effects have to
be considered and it’s possible to exploit the perfect symmetry of the crystal for
the calculations, lowering considerably the computational effort, in comparison to
MD. One of the disadvantages of LD is that of course excitations occurring on the
surface of the crystal cannot be reproduced.
Both MD and LD are useful descriptions for the case in which the beam passes
through the crystal (intercepting geometries). In cases in which the beam passes
near the probe (aloof geometries), the Local Dielectric Description can be applied.

2.3.2 Local Dielectric Description

The idea is to find a dielectric description of the MgO probe and then to solve
Maxwell’s equations for the quasistatic approximation (see the appendix). One
possibility is to use a Lorentzian oscillator model

ε(q −→ 0, ω) = ε∞

[
1 +

ω2
LO − ω2

TO

ω2
TO − ω(ω + iη)

]
(2.11)

Here ω2
TO and ω2

LO are the frequencies of the transversal and the longitudinal optical
phonons respectively, ε∞ the high-frequency permittivity of the crystal and η a
damping constant. An additional term has to be introduced for describing bulk
losses.
The reason this description doesn’t work well for intersecting geometries is that the
long wavelength approximation doesn’t account for short-wave phonon excitations.
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Chapter 3

Software Description

3.1 The P3M Algorithm

As explained in sec 2.2, in the MD method we want to calculate the motion of
the crystal’s ions by solving Newton’s equations of motion. For such many-particle
problems, the Particle-Particle–Particle-Mesh (P 3M) algorithm is very convenient.
A comprehensive explanation of the P 3M algorithm can be found in [7]. It is a
combination of the particle-particle (PP) and the particle-mesh (PM) algorithms.
In the PP algorithm, all the forces between the particles are computed one by one.
This is conceptually easy but computationally impracticable. In fact the CPU time
scales with 10N2

p , with Np being the total number of considered particles.
In the PM algorithm, the interactions between the particles are described by a
smooth potential, which is defined only on certain discrete mesh points. This mesh
is called the charge-potential mesh. The forces are computed by deriving the mesh-
defined potential with respect to the position variable and by interpolating on the
particle positions. This method is computationally less demanding than the PP
method, but also less accurate.
In the P 3M algorithm we want to combine the high precision of PP with the high
speed of PM. The particles’ trajectories are integrated forwards in time using the
leapfrog scheme [11]:

xn+1
i = xn

i +
P

n+1/2
i

mi

DT (3.1)

P
n+1/2
i = P

n−1/2
i + (Fi)DT (3.2)

Here xn
i and Pn

i are the position and the momentum, respectevely, of the i-th particle
at the time step n and DT is a descrete time difference.
As anticipated, the force gets split in a short-range force and a long-range, smooth
varying force (see the appendix for a simple example of force-splitting).

Fi = Fsr
i + Fm

i (3.3)

The key point here is obviously to find an optimal balance between the PP and the
PM contributions.
We define a certain cutoff radius re and establish that only particles whose distance
is smaller than re contribute to Fsr

i . Both the CPU time and the accuracy are
proportional to the magnitude of re. For a two-dimensional particle distribution,
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3.1. THE P3M ALGORITHM

finding which particles contribute to Fsr
i would require N2

p tests. In order to over-
come this problem, a second mesh, called chaining mesh, is used. The side of the
chaining mesh is usually three-four times larger than the one of the charge-potential
mesh. Typical relative sizes of re, the charge-potential mesh and the chaining mesh
are represented in the image below.

Figure 3.1: Representation of typical relative sizes of the cutoff radius re, the charge-
potential mesh and the chaining mesh. Taken from [7].

From this picture, we can see that particles contributing to Fsr
i have to be searched

only inside the central cell q and in the eight cells adjacent to it. This means that
for finding those particles we have to perform only 9NCNp tests, with NC being the
number of particles contained in one cell. This is much less than N2

p tests because
NC � NP . Exploiting Newton’s third law this number can be halved. The same
procedure for three dimensions leads to Ntests ' 13NCNp. A scheme of the P 3M
algorithm is presented in the figure below.
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3.2. THE DEMOVERLET.M FILE

Figure 3.2: schematic representation of the key steps of the P 3M Algoritm. Taken
from [7].

Overall, the CPU time for the P 3M algorithm scales linearly with the number of
simulated particles.

3.2 The demoverlet.m File

In this section, the Matlab file ”demoverlet.m” used for the MD simulation will be
presented and explained. It computes and plots the electron energy loss probability
for the electron beam passing at a specific position. This main file calls many
functions defined in other files, and that allows this relatively complex program to
occupy less than 70 lines. I will use parentheses for referring to a specific code line,
for example (2) means line 2.

1 % DEMOVERLET1
2

3 atomicun i t s ;
4 % number o f un i t s c e l l f o r cube
5 n = 4 ;
6 % MgO cube
7 cube = mgocube ( n ) ;
8 % groundstate
9 t o l = 1e−4;

10 u0 = groundstate2 ( cube , t o l ) ;

In this first part of the program, some constants for the use of atomic units are
imported (3), the number of unit cells n is chosen (5), the cube is generated (7) and
the groundstate u0 is calculated (10) with a certain tolerance tol (9).
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3.2. THE DEMOVERLET.M FILE

11

12 % po s i t i o n s and i n d i c e s o f atoms
13 [ pos , ind ] = f u l l ( cube ) ;
14 % mass and charge
15 mass = repmat ( reshape ( cube .m( ind ) , [ ] , 8 ) , 1 , 1 , 3 ) ;
16 q = reshape ( cube . q ( ind ) , [ ] , 8 ) ;
17 % impact parameter
18 imp = ( 0 .25 ∗ [ 1 , 1 ] + n / 2 ∗ [ 1 , 1 ] ) ∗ cube . a0 ∗ bohr ;
19 % e l e c t r on beam
20 beam = electronbeam ( imp / bohr ) ;
21 % e l e c t r on v e l o c i t y ( atomic un i t s )
22 ve l = beam . ve l / f i n e ;
23 % e l e c t r i c f i e l d o f e l e c t r o n beam
24 e = e f i e l d 0 ( beam , reshape ( pos + u0 , [ ] , 3 ) ) / ve l ;
25 f r c = reshape ( bsxfun ( @times , e , q ( : ) ) , s i z e ( pos ) ) ;
26

27 % p l o t t i n g o f cube and impact parameter
28 % you may l i k e to comment the f o l l ow i n g l i n e s
29 p lo t ( cube , u0 ) ; hold on
30 p lo t3 ( imp( 1 ) , imp( 2 ) , max( pos ( : , 3 ) ) ∗ bohr + 0 . 1 , ’ k+’ ) ;
31 view ( 0 , 90 ) ;

The most important part of this code lines is the choice of the impact parameter
(18), which is the position at which the beam passes. With this input, the electric
field of the beam is calculated (24). Finally, a slice of the crystal orthogonal to the
beam is plotted together with the impact parameter (29-31).

Figure 3.3: Crystal lattice plotted for n = 8 and the beam (depicted by the cross
symbol) passing through the middle of a cell. The blue dots represent the magnesium
atoms and the red dots the oxygen atoms.

32 % time step
33 % 1 fs , s e e Chalopin et a l . , Appl . Phys . Lett . 100 , 241904 (2012) .
34 dt = 1 / tun i t ;
35 % l o s s e n e r g i e s and damping
36 ene = l i n s p a c e ( 20 , 120 , 200 ) ∗ 1e−3 / har t r e e ;
37 gamma = 2e−3 / har t r e e ;
38

39 % number o f time s t ep s
40 n i t = 2500 ;
41 time = ( 1 : n i t ) ∗ dt ;
42 % a l l o c a t e output
43 vv = ze ro s ( s i z e ( time ) ) ;
44

45 % i n i t i a l d i sp lacements and v e l o c i t i e s

15



3.2. THE DEMOVERLET.M FILE

46 [ u , v ] = dea l ( u0 , f r c . / mass ) ;
47 a = f o r c e ( cube , u ) . / mass ;

In this part, the time steps for Newtons’ equations are chosen (34), together with
a damping term accounting for interactions with the environment (37). The en-
ergy range for which the EELS probability should be calculated is also defined (36).
Eventually, the initial displacements and velocities are set up (46-47).

48 multiWaitbar ( ’ Ver l e t ’ , 0 , ’ Color ’ , ’ g ’ ) ;
49 % Ver l e t loop
50 f o r i t = 1 : n i t
51 % update di sp lacement
52 u = u + v ∗ dt + 0 .5 ∗ ( a − gamma ∗ v ) ∗ dt ˆ 2 ;
53 v = v + 0 .5 ∗ ( a − gamma ∗ v ) ∗ dt ;
54

55 % update v e l o c i t y
56 a = f o r c e ( cube , u ) . / mass ;
57 v = ( v + 0 .5 ∗ a ∗ dt ) / ( 1 + 0 .5 ∗ gamma ∗ dt ) ;
58

59 vv ( i t ) = sum( f r c ( : ) .∗ v ( : ) ) ;
60

61 i f mod( i t , 50 ) == 0 , multiWaitbar ( ’ Ver l e t ’ , i t / n i t ) ; end
62 end
63 % c l o s e waitbar
64 multiWaitbar ( ’ C lo seAl l ’ ) ;

Here Newton’s equations are solved for obtaining the trajectories of the particles,
accounting for the force generated by the polarization current induced by the beam
(50-57). Additionally, a wait bar showing the progress of the calculation with a step
of 2% is set up (48,61) and closed at the end of the process (64).

65 f i g u r e
66

67 prob = r e a l ( vv ∗ exp ( 1 i ∗ time ( : ) ∗ ene ) ∗ dt ) . / ( p i ∗ ene ∗
har t r e e ) ;

68 p lo t ( ene ∗ har t r e e ∗ 1e3 , prob ) ; hold on

Finally, with the results of the calculations performed above, the electron energy
loss probability (formula 2.7)) is computed (67) and plotted for energies between 20
and 120 meV (68).

Figure 3.4: a output plot of the EELS probability for n = 4
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3.3. RESTRICTIONS TO THE INPUT PARAMETERS

3.3 Restrictions to the input parameters

As discussed in sec.2.2, a rigid ion approximation is applied. This approximation is
valid only if the beam doesn’t pass to close to an atom, because in that case, the
electron ”feels” the whole charge of the atom and not only its effective charge.

(a) (b)

Figure 3.5: (a) Lattice with beam passing too close to an oxigen atom. (b) Corre-
sponding EELS probability

Another aspect to be considered when choosing the impact parameter is that the
beam should pass through the crystal and not near it (for aloof geometries a LDD
is used, see sec. 2.3.2). I also found that, in order to get meaningful results (at least
according to the interpretation of the EELP peaks given in [9]), the beam should
pass through one of the central unit cells.

(a) (b)

Figure 3.6: (a) Lattice with beam passing throug the middle of a unit cell located
in a corner of the crystal. (b) Corresponding EELS probability.
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Chapter 4

Data Evaluation

First of all, I have checked whether the computational time scales linearly with the
number of atoms in the crystal, as we would expect from the P 3M algorithm. This,
of course, corresponds to an n3 scaling, since the crystal is three-dimensional.

Figure 4.1: computing time as a function of n3. The circles represent the measured
times and the red fit shows the linear growth. The last dot right corresponds to
n=32.

Following [9], I will interpret the electron energy loss probability peaks between 35
meV and 50 meV as acoustic phonon excitations, those between 60 and 80 meV
as lying in the reststrahlenband of the MgO cube associated with surface phonon
polaritons excitation and those above 80 meV as excitations of optical phonons (see
the glossary). For simplifying comparisons, I have chosen the same labeling for the
impact parameters as in [9].
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4.1. INCREASING THE SIZE OF THE CRYSTAL FOR A FIXED IMPACT
PARAMETER

Figure 4.2: impact labeling. The center of the crystal cell correspond to the impact
parameter = C. Taken from [9].

4.1 Increasing the size of the crystal for a fixed

impact parameter

I have chosen C (the center of the crystal cell) as the impact parameter and have
run the simulation for n = 4, n = 8, n = 16, n = 32 and n = 64. The results are
shown below.
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4.1. INCREASING THE SIZE OF THE CRYSTAL FOR A FIXED IMPACT
PARAMETER

(a) n = 4 (b) n = 8

(c) n = 16 (d) n = 32

(e) n = 64

Figure 4.3: plots of the swift electrons’ energy loss probability for five different sizes
of the crystal
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4.2. VARYING THE IMPACT PARAMETER

We can note a slight decrease of all the peaks when increasing the size of the crystal,
except for the one at about 105 meV. This means that the optical phonons get more
predominant for big crystals. Of course, the overall energy loss probability is bigger
for bigger crystals, since there are more ions the swift electron can interact with.
What is relevant though is the relative height of the peaks to one another. I have
plotted these 5 results together.

Figure 4.4: combination of the five plot shown in fig. 4.3.

This plot can be misleading if we look at the peaks below 100 meV, which seem to
increase with the size of the crystal (which they actually don’t, as explained above
and can be seen in fig.4.3). What this plot shows us, is that the energy at which
the main peak occours is the same for every crystal size, at about 105 meV. This,
according to the interpretation given in ref.[9], means that, independently from the
crystal’s size, optical phonons with an eigenenergy about 105 meV will be excited.

4.2 Varying the impact parameter

We have already seen how the size of the crystal affects energy loss probability for
the beam passing at the center of the crystal cell. Now I want to investigate those
effects for different impact parameters. This had already been done in ref.[9] and I
report their result below.
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4.2. VARYING THE IMPACT PARAMETER

Figure 4.5: swift electrons’ energy loss probability for 4 different impact parameters
for n=8, done by Hohenester et al. Taken from [9].

Figure 4.6: choosen impacts. Taken from [9].

I have run the simulations for the same impact parameter but for the following sizes
of the crystal: n = 4, 8, 16. The results are shown below.
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4.2. VARYING THE IMPACT PARAMETER

(a) n = 4

(b) n = 8

(c) n = 16

Figure 4.7: swift electrons’ energy loss probability for 4 different impact parameters
and 3 different sizes of the crystal.
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4.2. VARYING THE IMPACT PARAMETER

From this plots we can se that, as was found in [9], the closer the beam gets to an
ion, the more energy losses between around 30 and 90 meV are detected. These 3
plots also seem to show that the crystal’s size doesn’t strongly influce its vibrational
behaviour. Nevertheless, for n = 16 the peaks between 60 and 80 meV are somewhat
smaller than they are for n = 4 and n = 8. Recall that these correspond to phonon
polariton excitations localised on the surface of the cube. It sounds reasonable
that, as the surface/volume ratio of the crystal decreases (by raising n), also the
surface excitations loose importance. This seems to hint that, for large crystals,
the MD and LD (in which no surface excitations can be accounted for) results tend
to converge, at least to a certain extent. This doesn’t mean that surface phonon
polariton excitations are negligible for the crystals used in experiments (n > 240);
in fact they have been found also experimentally [9],[4]. It only seems to justify the
use of LD.
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Chapter 5

Applications

For this chapter, I will use [5] as my main source.
The purpose of the EELS is to determine the vibrational behavior of different probes.
But why is this important?
In ref.[5], Maldovan points out, that the great technological development that has
occurred in the last decades is mainly based on our ability to control electrons and
photons. Being able to manipulate phonons, the particles associated with mechan-
ical vibrational energy, in a similar way, would give a new push to technological
innovation.
Phonons are responsible for both the transmission of sound and heat. The main
difference between this two everyday phenomena is that heat is characterized by
high frequencies and short propagation distances, while by contrast sound waves
have low frequencies and can cover long distances.

Figure 5.1: scale of the frequencies of sound and heat. Taken from [5].

Let’s now have a look at two interesting innovations based on phonon control.

5.1 Nanoscale heat transport and thermoelectrics

Thermoelectrics are materials that can convert heat into electricity. They are of
great importance since by turning waste thermal energy into valuable electric en-
ergy they represent an alternative source of energy for the future. The efficiency of
thermoelectric materials is measured by the so-called thermoelectric figure of merit
ZT = S2σT/κ. Here S is the Seebeck coefficient (see the glossary), σ the electric
conductivity, T the temperature and κ the thermal conductivity. From this formula,
we can deduce that in order to enhance thermoelectrical properties the thermal con-
ductivity has to be reduced. This can be achieved by adding interfaces at which
phonons get scattered, which limits their ability to propagate. Various nanostruc-
tures have proven themselves as very useful for accomplishing phonon scattering. In
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5.2. ACOUSTIC INVISIBILITY CLOAKS BY METAMATERIALS

[1] for example, ErAs nanoparticles were placed into In0.53Ga0.47As, a semiconduc-
tor crystal and the thermal conductivity was reduced by a factor of 2.
The EELS technique allows optimizing the shapes and dimensions of nanomaterials
in order to make them exhibit low phonon excitations when current flows through
them. This is exactly what is needed for manufacturing highly efficient thermo-
electrics.

5.2 Acoustic invisibility cloaks by metamaterials

Acoustic cloaking means rendering an object invisible to sound waves. This means
that the propagation of the sound waves should not be affected by the object it hits
i.e. the incoming waves should be restored at the back of the object.
For achieving this, the object must be surrounded by an engineered metamaterial
(see the glossary), which is in general difficult to manufacture. One way to develop
such a material is to exploit the similarities between sound waves and electromag-
netic waves. The propagation of electromagnetic waves on transmission lines can be
described by the telegrapher’s equations [16]. According to this equations, the wave
patterns are dependent on the inductances and capacities they encounter. Follow-
ing this so-called LT (line transmission) model, an aluminium plate, consisting of 16
homogeneous concentric cylinders was used as an acoustic cloaking shell by Zhang
et al., [8]. It is shown in the image below.

Figure 5.2: Configuration of the acoustic cylindrical cloak synthesized by an acoustic
transmission line, namely, inductors and capacitors. Taken from [8].

The cavities act like acoustic capacitors and the connecting channels as acoustic
inductances. A probe surrounded by this cloak was put into water and irradiated
by ultrasound frequencies in a range of (40-80 kHz). It was shown that, thanks to
the cloak, the waves were restored nearly unaltered.
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5.2. ACOUSTIC INVISIBILITY CLOAKS BY METAMATERIALS

Figure 5.3: The scattering patterns of a mere steel cylinder put in a water tank
and illuminated with a point ultrasound source at frequencies of (a) 60 kHz (b) 53
kHz, and (c) 64 kHz. The scattering patterns of a steel cylinder surrounded by the
above-described cloak at (d) 60 kHz (e) 52kHz, and (f) 64 kHz. Taken from [8].

Heat cloacking bases on similar principles and is also being developed, as described
in [6].

27



Chapter 6

Conclusions

The Electron Energy Loss Spectroscopy EELS is a powerful method for determin-
ing the vibrational behavior of a probe. It can be efficiently be simulated by the
Molecular Dynamics method MD based on a Particle-Particle–Particle-Mesh (P 3M)
algorithm.
I found that the MD simulation works also for crystals with n > 32 and that the
CPU time scales linearly with the number of atoms of the crystal (fig.4.1) as ex-
pected for the P 3M algorithm. When running the ”demoverlet1.m” program, the
impact parameter has to be distant enough from the ions (as explained in [9]) and
also located in one of the central cells (see sec. 3.3).
The results of sec. 4 are in good agreement with those of [9] and [4],1.3. These show
that the vibrational behavior of the MgO nanocube is not strongly dependent on the
size of the cube. However, the plots of the EELS probability for n = 4, 8, 16, 32, 64
show the general trend of a slight decrease of the peaks up to 80 meV. For the peaks
between 60 and 80 meV, this can be interpreted as a consequence of the decrease of
the surface/volume ratio of the cube when its size increases.
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Appendix

Quasistatic approximation of Maxwell’s Equations

The general form of Maxwell’s equations in matter is the following:

∇ ·D = ρf (1) ∇× E = −∂B

∂t
(2)

∇ ·B = 0 (3) ∇×H = Jf +
∂D

∂t
(4)

For static systems, like for steady currents, these equations can be decoupled into
electrostatic equations and magnetostatic equations. In cases in which only the
change of either the E-field or the B-field are important, we can use the quasistatic
approximation of the equations, which are then easier to solve than the full Maxwell
equations.
In the electro-quasistatic case (the energy of the E-field is dominant over the energy
of the B-field) eq.(2) becomes ∇× E = 0.
In the magneto-quasistatic case (the energy of the B-field is dominant over the
energy of the E-field) eq.(4) becomes ∇×H = Jf .
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Glossary

• acoustic phonon: coherent oscillation of the atoms of a crystal around their
equilibrium position. The atoms can oscillate parallel to the propagation direc-
tion of the phonon, like soundwaves (longitudinal acoustic phonons) or perpen-
dicularly to it, like electromagnetic waves (transverse acoustic phonons),[13].

• optical phonon: the name ”optical” phonon comes from the fact that in
ionic crystals, those type of lattice vibration is excited by infrared radiation.
Optical phonons are vibrations in which the neighboring atoms move in op-
posite directions. They can be excited only if the base of the crystal contains
at least two atoms. The adjacent positive and negative ions swinging against
each other generate an electric dipole moment which varies in time, [13].

• polariton: bosonic quasiparticle arising from the strong coupling of em waves
with an excited state (like a phonon), which carries an electric or a magnetic
dipole. It should not be confused with a polaron, which is a fermionic quasi-
particle. See ref.[14].

• metamaterial: material engineered in such way that it gains properties which
materials found in nature do not show. Usually, special properties of meta-
materials arise from the shape, geometry, orientation, and size of the repeated
units they are build of. They are often utilised for manipulating electromag-
netic waves or sound waves in devices like for example superlenses or seismic
shielding devices, [12].

• Seebeck coefficient: indicator of the magnitude of the electric voltage in-
duced in a specific material by a temperature difference as a consequence of
the Seebeck effect. Its unit is Volt per Kelvin (V/K). For conductors, the
coefficient will be positive if the moving charge-carriers are electron holes and
negative if they are electrons, [15].

• Inelastic scattering: scattering process in which the kinetic energy of the
incident particles is not conserved. Similarly, in mechanical collision processes,
inelastic collisions are those in which part of the kinetic energy of the collid-
ing particles is not conserved, for instance because of some dissipative effects.
However, inelastic scattering can also arise from an elastic collision, for exam-
ple in the case of the Compton scattering. When an electron collides with a
probe (like in the EELS), most of the scatterings will be elastic and only a
small fraction will be inelastic, [10].

30



Bibliography

[1] W. Kim et al. “Thermal Conductivity Reduction and Thermoelectric Figure of
Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors”.
In: Physical Review Letters 96, 045901 (2006).

[2] H. A. Atwater. “The Promise of Plasmonics”. In: Scientific American 56 (207).

[3] Ulrich Hohenester. Handbook of Metamaterials and Nanophotonics. to be pub-
lished. Chap. Plasmon excitation by fast electrons.

[4] M. J. Lagos et al. “Mapping vibrational surface and bulk modes in a single
nanocube”. In: Nature 543 (2017).

[5] M. Maldovan. “Sound and heat revolutions in phononics”. In: Nature 503
(2013).

[6] S. Narayana and Y. Sato. “Heat Flux Manipulation with Engineered Thermal
Materials”. In: Physical Review Letters 108, 214303 (2012).

[7] J.W. Eastwood R.W. Hockney. Computer Simulation Using Particles. Adam
Hilger, 1998.

[8] N. Fang S. Zhang C. Xia. “Broadband Acoustic Cloak for Ultrasound Waves”.
In: Physical Review Letters 106, 024301 (2011).

[9] U.Hohenester et al. “Inelastic vibrational bulk and surface losses of swift elec-
trons in ionic nanostructures”. In: Phys. Rev. B 97, 165418 (2017).

[10] Wikipedia. Inelastic scattering. 2017. url: https://en.wikipedia.org/

wiki/Inelastic_scattering.

[11] Wikipedia. Leapfrog Integration. 2017. url: https://en.wikipedia.org/
wiki/Leapfrog_integration.

[12] Wikipedia. Metamaterial. 2018. url: https://en.wikipedia.org/wiki/
Metamaterial.

[13] Wikipedia. Phonon. 2018. url: https://en.wikipedia.org/wiki/Phonon.

[14] Wikipedia. Polariton. 2018. url: https://en.wikipedia.org/wiki/Polariton.

[15] Wikipedia. Seebeck coefficient. 2018. url: https://en.wikipedia.org/

wiki/Seebeck_coefficient.

[16] Wikipedia. Telegrapher’s equations. 2018. url: https://en.wikipedia.org/
wiki/Telegrapher27s_equations.

[17] Wikipedia. Verlet Integration. 2018. url: https://en.wikipedia.org/wiki/
Verlet_integration.

31

https://en.wikipedia.org/wiki/Inelastic_scattering
https://en.wikipedia.org/wiki/Inelastic_scattering
https://en.wikipedia.org/wiki/Leapfrog_integration
https://en.wikipedia.org/wiki/Leapfrog_integration
https://en.wikipedia.org/wiki/Metamaterial
https://en.wikipedia.org/wiki/Metamaterial
https://en.wikipedia.org/wiki/Phonon
https://en.wikipedia.org/wiki/Polariton
https://en.wikipedia.org/wiki/Seebeck_coefficient
https://en.wikipedia.org/wiki/Seebeck_coefficient
https://en.wikipedia.org/wiki/Telegrapher27s_equations
https://en.wikipedia.org/wiki/Telegrapher27s_equations
https://en.wikipedia.org/wiki/Verlet_integration
https://en.wikipedia.org/wiki/Verlet_integration

	Introduction
	Overcoming the diffraction limit of light
	EELS of a MgO nanocube and Overview

	Theory and Simulation of EELS
	Electron Energy Loss Spectroscopy
	Molecular Dynamics
	Lattice Dynamics and Local Dielectric Description
	Lattice Dynamics
	Local Dielectric Description


	Software Description
	The P3M Algorithm
	The demoverlet.m File
	Restrictions to the input parameters

	Data Evaluation
	Increasing the size of the crystal for a fixed impact parameter
	Varying the impact parameter

	Applications
	Nanoscale heat transport and thermoelectrics
	Acoustic invisibility cloaks by metamaterials

	Conclusions

