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Abstract

Bose-Einstein condensates (BECs) are macroscopic quantum objects, which can be
used for many different experiments and applications, the most prominent being matter
wave interferometry. Usually the BEC is trapped in a magnetic microtrap on an atom
chip and can be controlled externally by magnetic fields. Finding a suitable control field
that brings the BEC into a desired state is a challenging task. For most experiments it
is not possible to calculate an optimal control analytically. This is where simulation and
optimization become necessary.
The main goal of this thesis is to find and compare control strategies and algorithms

for BECs and applying them to relevant problems. In particular, we investigate different
variants of the Gradient Ascend Pulse Engineering (GRAPE) algorithm and Krotov’s
method and compare them by applying them to relevant problems like wave function
splitting or state inversion. Additionally, we use a combination of optimal control theory
and analytic calculation to find ways to produce and trap squeezed states of BECs, which
can improve the precision of matter wave interferometers significantly.
We find that although both GRAPE and Krotov’s method are well suited to solve most

BEC problems, GRAPE has certain advantages that make it more versatile and better
suited for experimental realization. Furthermore we report on a promising technique for
creating squeezed states called “parametric squeezing amplification”, and find controls
that produce very high squeezing values on short timescales.
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Introduction

This cumulative thesis is concerned with the optimal quantum control of Bose-Einstein
condensates (BECs). BECs are interesting macroscopic objects whose properties are
governed by quantum effects. They make it possible to utilize quantum physics for
many different applications or experiments. Their complex nature makes it, however,
very difficult to control them and theoretical simulation and optimization are often
necessary in order to work with them. This thesis will show several ways how to use
optimal control theory (OCT) in order to find means to manipulate BECs and showcase
some interesting experiments and applications that are possible with the use of OCT,
like twin atom beams or matter wave interferometry with precision beyond the classical
shot noise limit.
The structure of this thesis is as follows: Chapter 1 introduces in the field of BECs

and shows several theoretical models that can be used to describe them. Chapter 2 is
about one of the most prominent applications of BECs, namely matter wave interfer-
ometry. After a short introduction to conventional interferometry, the advantages and
challenges of matter wave interferometers are highlighted. Chapter 3 introduces differ-
ent techniques for implementing OCT, shows advantages and disadvantages and applies
those techniques to BECs. The main part of the thesis are chapters 4-7. Each of these
chapters is composed of a paper published or accepted in a refereed journal. Chapter
8 consists of a synopsis of the key aspects of these publications, puts them in scientific
context and provides a short outlook on possible future developments.
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CHAPTER 1. BOSE-EINSTEIN CONDENSATES

1. Bose-Einstein condensates

1.1. Introduction

A Bose-Einstein condensate (BEC) is a state of matter that occurs in a gas of bosons at
very low temperatures, where nearly all bosons are in the ground state of the system.
BECs are fascinating objects: In a way they are a link between the quantum and the
macroscopic world. While they show behavior typically associated with quantum objects,
like uncertainty, entanglement and the ability to interfere, they are macroscopic in size,
typically in the range of µm. This makes them very accessible for experimental and
technological purposes.

1.1.1. Basic principles

A basic property of all fermions, like electrons or quarks, is the Pauli exclusion principle.
It states that only one fermion can occupy a specific quantum state. If two fermions have
the same spatial probability distribution, for example, they must differ in some other
property, i.e. spin. Bosons are fundamentally different in that regard: An arbitrary
number of bosons can occupy the same quantum state. The most prominent consequence
of this is the appearance of a completely new state of matter: a Bose-Einstein condensate.
We are interested in (composite) bosons, i.e. atoms with integer spin, such as 87Rb, as

long as the average distance between two atoms is large compared to the size of the atoms.
In general, a gas of bosons at room temperature has properties very similar to those of
a fermion gas. The atoms are thermally distributed, some have more, some have less
energy. The fundamental difference between those two types of particles only becomes
apparent at very low temperatures, when the system approaches its ground state. Since
bosons are not limited by the Pauli exclusion principle, all bosons, even a macroscopic
number of them, can occupy the ground state of the system: A BEC is formed. All
the atoms are then in the exact same quantum state, they can essentially be described
by a single wave function. They all have the same spatial probability distribution,
and quantum effects, like interference and the uncertainty principle, become important.
Nevertheless the BEC’s extension is of macroscopic dimension, typically in the order of
µm. This makes BECs intriguing objects to study.
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CHAPTER 1. BOSE-EINSTEIN CONDENSATES

Figure 1.1.: Momentum distribution of a boson gas. For higher temperatures (left) many
states are occupied. Lowering the temperature (middle) leads to a domi-
nant occupation of low energy states. For temperatures below the critical
temperature (right), only the ground state of the system has a macroscopic
occupation. (Source: Based on a graphic from www.bec.nist.gov)

Although the most common picture of a BEC is a bosonic gas in the ground state of
the system, this is not the definition of a BEC. We call a gas consisting of bosons a BEC,
if one or more quantum states are macroscopically occupied, i.e. in the order of the total
number of atoms. BECs where only one state has a high occupation are called simple.
This state can be the ground state, but in principle it can also be any other state. BECs
where more than one state is macroscopically occupied are called fragmented.

The typical number of atoms of a BEC in a magnetic microtrap is between 1000 and
10000, and additional confinement leads to a “quasi condensate” (see section 1.1.4 for
details).

1.1.2. Historical overview

The first notion relevant to BECs was in 1924, when Bose realized that quantum particles
are indistinguishable [1]. Shortly after, Einstein [2, 3] concluded that all bosons of a non-
interacting gas in its ground state must occupy the same state and that a Bose-Einstein
condensation must occur below a critical temperature.
At that point this research was purely theoretical. The critical temperature was far

beyond the reach of the experiments at that time. In the next decades new cooling
methods became available. The most important ones were laser cooling and evaporative
cooling. The principle behind laser cooling is to apply precisely tuned lasers from every
spatial direction. The lasers are set up in a way that utilizes the Doppler effect and
only interact with atoms that are moving towards them. On average, this cools the gas.
Evaporative cooling is achieved by trapping the gas in some form of potential. Then the
potential gets lowered, so that hot (= fast) atoms can escape and only the coldest stay
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CHAPTER 1. BOSE-EINSTEIN CONDENSATES

in the trap. These two techniques, combined with various other advancements, made
the creation of BECs possible, 70 years after their theoretical prediction. The first BEC
was produced in 1995 by Cornell and Wieman [4] by cooling rubidium atoms down to
170 nK. In the same year Ketterle demonstrated important BEC properties in a gas of
sodium atoms [5]. For their work on BECs the Nobel price was awarded to E. A. Cornell,
W. Ketterle and C. E. Wieman in 2001.

Figure 1.2.: Interference between two macroscopic BECs observed by Ketterle et at.
(Source: [6])

Between 1995 and today much progress has been made in the field of BECs. It became
possible to create BECs with many different types of atoms including helium, caesium
and lithium. Another important achievement, especially for matter wave interferometry,
was the coherent splitting of a BEC using magnetic fields, first performed by Schmied-
mayer et al. in 2006 [7]. Today the field is very active and many areas are investigated
by various groups.

8



CHAPTER 1. BOSE-EINSTEIN CONDENSATES

1.1.3. Current research and applications

Nowadays BECs can be produced in a convenient way on so-called atom chips [8, 9, 10].
These are micro-fabricated chips with wires that allow the generation and precise control
of magnetic fields. With these fields it is possible to trap and cool atoms; accurate control
allows many interesting experiments and applications.
One of those applications is quantum simulation. Thereby one uses a BEC to simulate

other systems. This is not only relevant in the field of solid state physics; even problems
in astrophysics or other areas can be mapped on a BEC, for example in the area of
gravitational waves [11].
Additionally BECs are often used for metrology and sensing. The wave-like nature

of BECs makes it possible to build a matter wave interferometer. Such interferome-
ters are widely investigated [12, 13, 14] and there are many different approaches like
Mach-Zehnder interferometers [15, 16], Michelson interferometers [17] or multimode in-
terferometers [18]. Using matter waves instead of light waves has various advantages, the
biggest one being that matter has a finite rest mass and is therefore sensitive to gravity.
Hence BECs can be used for many experiments that are not possible with conventional
interferometry. One prominent example is the detection of gravity waves [19], which
could be possible with a sensitive matter wave interferometer. Currently BEC experi-
ments also help in the search for dark energy: In [20] a matter wave interferometer was
used to probe the gravitational field of a spherical mass by individual atoms. This helped
constrain certain parameters for a large class of dark energy theories. On the other hand
BECs can provide alternative approaches to known problems and experiments. In [21] a
BEC was used to measure the value of the gravitational constant in an entirely new
way. This measurement was not only very precise, but can also help in identifying the
systematic errors of conventional techniques, which use macroscopic objects. The sec-
ond advantage of matter wave interferometry is that it is possible to use non-classical
states to improve the precision of an interferometer below the classical shot noise limit,
as demonstrated in [22]. Further advancements in this area might enable future matter
wave interferometers to outperform conventional ones in terms of accuracy.

1.1.4. BECs in lower dimensions

In a homogeneous system Bose-Einstein condensation is impossible in 1D and 2D [23],
since the density of states does not approach 0 for low energies. Nevertheless a 1 dimen-
sional (quasi-)BEC is possible inside magnetic micro traps. The trap fields constrict the
gas and change the density of states so that Bose-Einstein condensation can occur. For
most experiments reported on in this thesis a quasi-1D BEC is used. In such a BEC the
atoms are constricted to a cigar-like shape. Excitations are possible in the longitudinal
direction, the Bose-Einstein condensation occurs only in the radial direction, making the
BEC quasi 1-dimensional [23, 24, 25].

9



CHAPTER 1. BOSE-EINSTEIN CONDENSATES

1.2. Theory

In the following, different models to describe BECs are presented [26, 27, 28]. We will
start with the full Hamiltonian. However, since such a many-body Schrödinger equation,
with typically thousands of particles is nearly impossible to solve exactly, we will have to
rely on approximations. In a mean field approach, the Gross-Pitaevskii equation, we can
describe the orbitals very accurately, but cannot calculate many-body properties of the
BEC. In order to gain insight in such properties we can use the two-mode model, however
this model only works for BECs in double wells and it completely neglects the actual
shape of the orbitals. Methods beyond those two are the Bogoliubov approximation [29]
or a more sophisticated model called MCTDHB, which will be introduced in order to
tackle problems where both number and orbital dynamics are important.

1.2.1. Full Hamiltonian

A BEC consisting of N atoms, trapped in a magnetic microtrap at T = 0, can be
described by the many-body Schrödinger equation for N bosons:

i
∂Ψ(~r1, ~r2, . . . ~rN ; t)

∂t
= Ĥ(~r1, ~r2, . . . ~rN ; t)Ψ(~r1, ~r2, . . . ~rN ; t) (1.1)

Ĥ(~r1, ~r2, . . . ~rN ; t) =
N
∑

i=1

ĥ(~ri, t) + U3D
0

∑

k<q

δ(~rk − ~rq) (1.2)

U3D
0 is the contact potential between the atoms, dominated by s-wave scattering [26, 27]:

U3D
0 =

4π~2as
m

, (1.3)

with the atom mass m and the s-wave scattering length as. For 87Rb, for example,
as = 5.77 nm [30]. We also introduced the single-particle Hamiltonian ĥ

ĥ(~r, t) = − ~

2m
~∇2 + Vext(~r) , (1.4)

with the confinement potential Vext. Since we are dealing with bosons, the wave function
Ψ is symmetric.
An important concept we need to define are the so-called p-particle reduced density

matrices [31]:

ρ(p)(x1, . . . , xp|x′1, . . . , x′p; t) =
N !

(N − p)!

∫

Ψ(x1, . . . , xp, xp+1, . . . , xN ; t)Ψ∗(x′1, . . . , x
′
p, xp+1, . . . , xN ; t)dxp+1 . . . dxN

(1.5)

The interpretation of these matrices is straight forward:
The diagonals ρ(p)(x1, . . . , xp|x1, . . . , xp; t) are proportional to the p-particle probability
distributions. The one-body density matrix is given by

ρ(~r, ~r ′; t) = 〈Ψ(t)|Ψ̂†(~r ′)Ψ̂(~r)|Ψ(t)〉 . (1.6)
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CHAPTER 1. BOSE-EINSTEIN CONDENSATES

This can also be written in terms of eigenvalues and eigenfunctions.

ρ(~r, ~r ′; t) =
∑

i

ni(t)φ
∗
i (~r

′; t)φi(~r; t) (1.7)

Here, the φi are the natural orbitals and the ni the natural occupations. The occupations
also tell us if the BEC is simple or fragmented. If only one eigenvalue is macroscopic
(i.e. of the order N), the BEC is simple, if there are more macroscopic eigenvalues, the
BEC is fragmented [32].
Higher reduced densities can be calculated according to (1.5), for example the often

used two-particle density matrix ρ(2) is given as

ρ(2)(x1, x2|x′1, x′2; t) =

N (N − 1)

∫

Ψ(x1, . . . , xN ; t)Ψ∗(x′1, x
′
2, x3, . . . , xN ; t)dx3 . . . dxN . (1.8)

We always assume zero temperature, which cannot be realized in experiments, but
the achieved temperatures are low enough so that finite temperature effects can often
be neglected. Another feature of most experiments is that we do not work with a 3-
dimensional BEC, but rather one of lower dimensionality, where additional longitudinal
excitations are possible (see section 1.1.4).

1.2.2. Gross-Pitaevskii equation

Another way to describe BECs is the Gross-Pitaevskii equation [33, 34, 35]. It is a mean
field approximation that is based on the assumption that all atoms are in the same state
and can therefore be described with the same wave function. This assumption is valid
for weakly interacting gases, if the gas is diluted enough that there is on average less
than one atom in the s-wave scattering length [33]. The Gross-Pitaevskii equation looks
very similar to the Schrödinger equation, but has an additional, nonlinear term that
describes the interaction between the atoms. It reads

i~Ψ̇(r, t) =

(

− ~
2

2m
∇2 + Vext(r) + κ |Ψ(r, t)|2

)

Ψ(r, t) , (1.9)

with some external potential Vext(r) (e.g. a magnetic microtrap) and the nonlinearity
parameter κ that describes the interaction between the atoms. This parameter κ can be
calculated within the Gross-Pietaevskii model and is also experimentally accessible.
The Gross-Pitaevskii equation can be derived from the Hartree ansatz of the full

system or by a variational principle.

Calculation of tunneling and charging energy

For a condensate in a double-well potential it is possible within the Gross-Pitaevskii
framework to calculate the tunneling energy Ω and the charging energy κ, both intro-
duced in section 1.2.3. In order to do this we start by the variational ansatz

Ψ(r, t) = ψ1(t)φl(r) + ψ2(t)φr(r) (1.10)
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CHAPTER 1. BOSE-EINSTEIN CONDENSATES

This means that the whole wave function Ψ(r, t) can be written in terms of the time
dependent parameters ψ1 and ψ2 and the two wave functions φl and φr, roughly describ-
ing the condensate in the left and right well, respectively. φl and φr can be calculated
from the gerade and ungerade states φg and φu, which are the exact symmetric and
antisymmetric stationary eigenstates of the Gross-Pitaevskii equation [36]:

φl(r) =
φg + φu√

2
, (1.11)

φr(r) =
φg − φu√

2
. (1.12)

This ensures
∫

φl(r)φr(r)dr = 0 . (1.13)

Using equations (1.10-1.13) in the Gross-Pitaevskii equation leads to the Boson Joseph-
son junction (BJJ) equations [36], and we also find expressions for the tunneling and the
charging energy:

κ = g0

∫

|φl/r|4dr, (1.14)

Ω ≃ −
∫
(

~
2

2m
(∇φl∇φr) + φlVextφr

)

dr , (1.15)

where g0 = 4π~2a/m, with the atomic mass m and the s-wave scattering length a [36].

1.2.3. Two-mode model

For BECs in double wells another simple approximation is possible: the two-mode model.
Here we view the left and the right well as two possible states of the system and neglect
the actual shape of the potential. Important features of the trap geometry are only
included via the parameters κ and Ω. This description has many similarities to Josephson
junctions [37] and is therefore often referred to as a Josephson model [38]. Each atom
of the BEC can either be in the left or in the right well of the trapping potential. If
the BEC consists of N atoms this would correspond to a spin N/2 system. By using the

annihilation and creation operators of states in the left and right well al/r and a†l/r we

can define pseudospin operators [39]:

Jx =
1

2

(

a†l ar + a†ral

)

(1.16)

Jy =
i

2

(

a†l ar − a†ral

)

(1.17)

Jz =
1

2

(

a†l al − a†rar

)

, (1.18)

These pseudospin operators are very similar to conventional angular momentum opera-
tors. However, they have a different interpretation in the context of double well BECs.
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CHAPTER 1. BOSE-EINSTEIN CONDENSATES

Jx exchanges an atom from the left and the right well, Jy measures the phase difference
between the left and right well and Jz the atom number imbalance. These operators can
also be used to write the Hamiltonian of the system as [40, 41]

H = −Ω Jx + 2κJ2
z , (1.19)

where Ω is the tunneling energy that describes the tunneling between the left and right
well and κ is the charging energy, accounting for the nonlinear interaction between
the atoms. Both these parameters can be approximated within the Gross-Pietaevskii
model [36] as shown in section 1.2.2. Within the two-mode model it is also possible to
represent each state of a double well BEC on the Bloch sphere.

The Bloch sphere

The Bloch sphere [42, 43] is a very intriguing representation of two level quantum me-
chanical systems. It is well known in the field of qubits, but can also be used to visualize
double well BECs. Each state of the system is represented by a distribution on the
Bloch sphere. The interpretation is quite intuitive in the case of double well BECs. A
state where all the atoms are in the left well is represented on the north pole of the
sphere, a state where all atoms are in the right well is on the south pole. States where
the atom number imbalance is zero are on the equator. The y-axis tells us about the
relative phase between the two wells. Additionally to the mean values of the number
imbalance n and the relative phase φ, also the variance of those values, ∆n and ∆φ can
be seen, as shown in Fig. 1.3. These values are especially important for squeezed states
and quantum interferometry, as will be shown in section 2.3.

13



CHAPTER 1. BOSE-EINSTEIN CONDENSATES

Figure 1.3.: Bloch sphere representation of a double well BEC. States where all atoms are
in the left/right well are represented at the poles. States with zero number
imbalance, like the one depicted, are centered around the equator. Also the
variance of the number imbalance and the relative phase, ∆n and ∆φ, are
visible.

Gerade-ungerade basis

In the previous sections we always described the BEC in the left-right basis, meaning
that the two orbitals that we built our two-mode model upon are the right orbital,
located in the right well, and the left orbital, located in the left well. While this basis
is very easy to understand, it has certain disadvantages. Often it is more convenient
to use the ground state of the system as one of our orbitals as well as the first excited
state. This has the great advantage that most of the time one of these states will have
a much higher occupation than the other one. Additionally, the ground state is always
gerade, while the first excited state is always ungerade. This is an important feature
and can simplify many calculations. We call this basis the gerade-ungerade basis. There
is a simple relation between the orbitals of the left-right and gerade-ungerade basis [44].
The ground state of a system without nonlinear interaction is always gerade, the BEC
density is distributed symmetrically in the left and right well. This state corresponds
to a superposition of the right and the left orbital. The first excited state, which is
ungerade, is a superposition with opposite sign, i.e. φg − φu. Additionally there could

14



CHAPTER 1. BOSE-EINSTEIN CONDENSATES

also be a relative phase between the left and the right orbital, which needs to be taken
into account. We arrive at

φl =
1√
2
(φg + f̃φu) (1.20)

φr =
1√
2
(φg − f̃φu) , (1.21)

where f̃ = f/|f | is the relative phase between the orbitals, with

f =

∫

θ(x) φ∗g(x)φu(x) dx . (1.22)

θ(x) is the Heaviside step function, meaning that we only integrate over half of the
position space. If we want to use the pseudospin operators that were defined in 1.2.3, we
have to rewrite them with the creation and annihilation operators of the gerade-ungerade
basis.
This leads to

Jx =
1

2

(

a†gag − a†uau

)

(1.23)

Jy =
i

2

(

f̃∗a†uag − f̃a†gau

)

(1.24)

Jz =
1

2

(

f̃∗a†uag + f̃a†gau

)

(1.25)

The gerade-ungerade basis is of special importance for the MCTDHB model, explained
in more detail in section 1.2.4.

1.2.4. MCTDHB

The Gross-Pitaevskii model is very accurate in describing the wave function of a BEC.
However, since it is only a mean field approach, certain important properties like num-
ber squeezing can not be described at all. The two-mode model on the other hand can
calculate those properties, yet the shape of the orbitals is only implicitly included in the
parameters κ and Ω. In some cases neither of those models is enough to accurately de-
scribe a BEC. Especially for parametric squeezing amplification, a method for producing
squeezed states introduced in section 2.3, the shape of the orbitals changes so much that
it influences the tunneling and charging energy in a way that cannot be ignored. As will
be shown in chapter 7, a more sophisticated approach is necessary, one that accounts for
both number and wave function dynamics. A suitable model is the MCTDHB model.
MCTDHB [45, 46] stands for multi configurational time dependent Hartree method

for bosons and was introduced by Alon et al. [47] in 2008. It is based on the multi
configurational time dependent Hartree method (MCDTH) developed by H.-D. Meyer
et al. [48] in 1990.

The main ansatz of MCTDHB is to expand the states into modes according to

Ψ̂(r) =

m
∑

i=1

âi(t)φi(x, t) , (1.26)
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where both the modes or orbitals φi and the occupation ai are time dependent. For
m → ∞ this is not an approximation, but only a general expansion. However, a very
effective approximation is possible here: The computational effort of calculations rises
exponentially with the number of modes m. This means that truncating the sum at a
finite m greatly improves performance. Especially for BECs this works very well. In
an ideal BEC only one state is macroscopically occupied and it would even be possible
to truncate the sum at m = 1. We would arrive at the Gross-Pitaevskii equation.
However, in a realistic description of a BEC more than one state can be occupied and
it is necessary to include more modes. In principle it is possible to include an arbitrary
number of modes, but since the computational effort rises exponentially it is often best
to use m = 2 for the description of BECs.

A general state can be written as a superposition of symmetrized states. Form orbitals
this can be written as

|~n; t〉 = 1√
n1!n2! . . . nm!

(

a†1(t)
)n1

(

a†2(t)
)n2

. . .
(

a†m(t)
)nm

|0〉 . (1.27)

The whole configuration can now be described by the vector ~n = (n1, n2, . . . , nm). Every
state can be written as

|Ψ(t)〉 =
∑

~n

C~n(t) |~n; t〉 (1.28)

We now have two sets of time dependent parameters. On the one hand we have the modes
{φi(x, t)}, which describe the shape of the orbitals, on the other hand the occupation
of those orbitals, described by the coefficients {C~n}. The time dependency of those
parameters can be found via variational calculus. One uses a Lagrange formalism and
formulates an action (~ = 1)

S[{C~n(t)}, {φi(x, t)}] =
∫

dt







〈Ψ|(Ĥ − i
∂

∂t
)|Ψ〉 −

m
∑

j,k=1

µik(t)[〈φi|φk〉 − δik]







. (1.29)

The first term guarantees that the Schrödinger equation is satisfied, the second term
ensures orthonormality of the orbitals. For m = 1 this variation reproduces the Gross-
Pitaevskii equation. The more interesting case, however, is m = 2. The two orbitals we
use are the gerade orbital φg and the ungerade orbital φu. Their time dependency can
be calculated by variational calculus [45]. Starting with (1.29) we perform a variation
with respect to the orbitals. For this it is convenient to write the Hamiltonian in second
quantized form. Performing the variation and eliminating the Lagrange multipliers by
using the orthogonality relation of the orbitals yields

iφ̇g = P̂
[

ĥφg + (fgg|φg|2 + fug |φu|2)φg + f̃gφ
∗
gφ

2
u

]

iφ̇u = P̂
[

ĥφu + (fuu|φg|2 + fgu|φg|2)φu + f̃uφ
∗
uφ

2
g

]

. (1.30)
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The coefficients f, not to be confused with the previously introduced phase f , are given
by the elements of the one-body and two-body reduced densities:

fgg = U0{ρ}−1
gg ρgggg (1.31)

fuu = U0{ρ}−1
uuρuuuu (1.32)

fug = U0{ρ}−1
gg ρgugu (1.33)

fgu = U0{ρ}−1
gg ρugug (1.34)

f̃g = U0{ρ}−1
gg ρgguu (1.35)

f̃u = U0{ρ}−1
uuρuugg (1.36)

The projector P̂ = 1 − |φg〉〈φg| − |φu〉〈φu| in (1.30) guarantees orthonormality of the
orbitals.

The number distribution C has the following time dependency, found by performing
a variation of (1.29) with respect to C:

i
∂C(t)

∂t
= HC , (1.37)

with

H = −ΩJx +
1

2

∑′

k,q,l,m

â†kâ
†
qâlâmWkqlm . (1.38)

In section 1.2.3 we already rewrote Jx in the gerade-ungerade basis and arrived at

Jx = 1
2

(

a†gag − a†uau

)

. Ω is given as Ω = 〈φu|ĥ|φu〉 − 〈φg|ĥ|φg〉 in the gerade-ungerade

basis. The two-body matrix elements are

Wkqlm = U0

∫

dxφ∗k(x)φ
∗
q(x)φl(x)φm(x) . (1.39)

We now have two non-linear, coupled equations: (1.30) and (1.37). These can be
solved in parallel.
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(e.g. a half silvered mirror) splits the beam into a sample beam (SB) and a reference
beam (RB). The reference beam then hits a mirror right away, while the sample beam
first passes a sample and interacts with it. In the end the two beams hit a second half
silvered mirror before reaching the two detectors.

2.2. Interferometry with BECs

Matter wave interferometry is based on the same principles as light wave interferome-
try. In the following we will introduce the matter wave equivalent of a Mach-Zehnder
interferometer as well as the so-called Time-of-flight (TOF) interferometer.
In order to perform any kind of interferometric experiment, the BEC must first be

created and prepared on an atom chip [8, 9, 10]. The wires on the atom chip are designed
in such a way that they produce a magnetic field that traps the atoms in an elongated
cigar shape, as depicted in Fig. 2.2.

Figure 2.2.: Cigar shaped BEC on an atom chip. The magnetic fields produced by the
atom chip trap the atoms in this specific shape. (Source: based on a graphic
from http://atomchip.org)

The direction that is of interest to us is the radial direction: We ignore the longitudinal
direction of the BEC and use the high symmetry of the z-y-plane to reduce the problem
to one dimension, in which the 1-d quasi-BEC is located [23]. Fig. 2.3 depicts a possible
wire setup of an atom chip: The combination of B-fields in x and in y direction trap the
BEC and allow to control it. An radio frequency field is necessary in order to produce
a double well potential in the otherwise radially symmetric trap. This RF field can also
be used to introduce anharmonicity and anisotropy into a single well trap.
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The main stages of the interferometer are the same:

1. Preparation

2. Beam splitting

3. Phase acquisition

4. Recombination

5. Readout

First of all the BEC needs to be trapped and prepared on an atom chip. It needs to
be split into two coherent waves which are spatially separated. In the context of matter
waves this is done by changing the trapping potential from a single to a double well.
This can be done adiabatically, so that the BEC remains in the ground state at all
time, or even faster with the use of optimal control theory (see chapter 3). After that
separation the BEC density has two maxima, one in the right and one in the left well of
the trapping potential.
Next we need some kind of beam splitter that should play the same role as a half

silvered mirror in the original design of a Mach-Zehnder interferometer. This cold atom
beam splitter is realized by decreasing the barrier height between the two BECs and
allowing tunneling.
In the next stage of the experiment one of the BECs is modified in some way. For

example one can tilt the potential, so that it accumulates a phase due to the gravitational
potential.
After this accumulation stage, the recombination stage begins. In a conventional

Mach-Zehnder interferometer this is again done by a half silvered mirror. For matter
waves the goal of this process is to convert the relative phase of the condensates into an
atom number difference. Several ways have been proposed to do this. One possibility is
to use phase dependent heating caused by merging of two condensates [53], a different
approach would be to use a quarter of a Josephson oscillation [54, 55]. Another way,
presented in [15] is to abruptly decrease the well distance and the barrier height, so that
the condensates are accelerated towards each other. Afterwards the wells are separated
again to make it possible to count the atoms.
At the beginning of the readout stage the wells get separated even further on a short

timescale. This gives the atoms in different wells opposite momenta. The magnetic fields
are then switched off, so that the atoms fall down in the gravitational field. Then they
can be counted by a fluorescence detector. The atom number difference is the final result
of this experiment and gives information about the relative phase of the BECs and thus
about the interaction that occurred.
The main steps of a matter wave Mach-Zehnder interferometer are depicted in Fig. 2.5.
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Figure 2.5.: Stages of a matter wave Mach-Zehnder interferometer:
1) A BEC is prepared in a double well.
2) Increasing the tunnel coupling works as a beam splitter.
3) A phase shift is applied.
4) Increasing the tunnel coupling works as a beam splitter
and transforms phase information into a population difference.
5) The population difference can be read out by counting atoms.

When working with matter waves there is also a second important type of interferom-
eter: the time-of-flight (TOF) interferometer. The principle behind it is slightly different
from that of a Mach-Zehnder interferometer, since there are no beam splitters. In the
preparation stage a BEC is trapped in a double well potential, similar to the first step of
the Mach-Zehnder interferometer. Then a phase shift is applied, for example by tilting
the trap potential. In the next stage the trap potential is abruptly switched off and the
condensates are released. During their free fall they interfere and a fringe pattern can
be observed and measured. From this pattern, information about the phase shift can be
extracted.
The stages of a TOF interferometer are depicted in Fig. 2.6.

Figure 2.6.: Stages of a TOF interferometer:
1) A BEC is prepared in a double well.
2) A phase shift is applied.
3) The condensates are released.
4) The condensates interfere and fringe patterns can be observed.
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2.3. Quantum interferometry

2.3.1. Squeezed states

A big advantage of matter wave interferometry is that non-classical states can be used
to increase the precision of measurements [22]. In every interferometer experiment one
measures either the atom number in each well or the relative phase between the two
wells. The precision of such a measurement is influenced by the quantum uncertainties
of the number and the phase ∆n and ∆φ. However, when measuring the atom number,
the phase fluctuations ∆φ may be arbitrarily large, which leads to the idea to decrease
one of those uncertainties at the cost of increasing the other. In principle this is possible
due to the Heisenberg uncertainty relation [56]

∆n∆φ &
1

2
. (2.1)

For a binomial state ∆n =
√
N/2 and ∆φ = 1/

√
N leading to the standard quantum shot

noise limit [57]. States where either ∆n or ∆φ are smaller than for a binomial state are
called squeezed states. States with lower number uncertainty are called number squeezed
states, while states with lower phase uncertainty are called phase squeezed states. In
order to quantify how much the squeezing can lower the shot noise, several quantities
can be introduced. The so-called number squeezing ξn is defined as ξn = 2∆n/

√
N . This

means that a binomial state has ξn = 1 and number squeezed states have ξn < 1. There
is a similar quantity for the phase uncertainty called phases squeezing ξφ. It is defined
as ξφ = ∆φ

√
N . The Bloch sphere representation of such squeezed states can be seen in

Fig. 2.7.

Figure 2.7.: Squeezed states: a phase squeezed (a) and a number squeezed (b) state
depicted on the Bloch sphere

However, these two quantities completely neglect coherence, a very important concept
for interferometry. Not every number squeezed state improves precision. A simple
example is a Fock state with given occupation of the left and right well. In such a

23



CHAPTER 2. INTERFEROMETRY

system the number squeezing would be very high, since the atoms could not tunnel from
one well to the other. Nevertheless interferometry would not be possible with such a
system, because of the loss of coherence. This is why it is important to include coherence
in squeezing factors. This is often done with the so-called coherence factor [56, 58].

α =
2

N

√

〈Jx〉2 + 〈Jy〉2 = 〈cosφ〉 , (2.2)

It is 1 for a coherent state and 0 for an incoherent state that can not be used for inter-
ferometry. Including this factor in the previously introduced squeezing factors leads to
the most important squeezing quantity, the so-called useful (or coherent) spin squeezing
factor [56]:

ξS =
∆n

(
√
N/2)α

=
ξn
α
, (2.3)

In the following we will always use the coherent spin squeezing factor unless specifically
stated otherwise. We refer to a state with a low squeezing factor as “highly squeezed”.
It is very simple to see how much precision improves when using the coherent spin

squeezing ξS . A binomial state has ξS = 1 and a minimal phase error of 1/
√
N , while

using a squeezed state leads to a reduced error of ξS/
√
N [59]. The lower limit of shot

noise is the so-called Heisenberg limit ∆φ = 1/N . Another way of seeing how much pre-
cision improves is by giving the squeezing ξ2S in dB. A squeezing value of 0.1 corresponds
to ξ2S = 10 log(0.12) = −20 dB and gives direct insight into the improvement.

Additionally to the improved precision, squeezed states have also other advantages.
For example number squeezed states are very robust against dephasing effects [14]. In-
tuitively this can be understood on the Bloch sphere. Dephasing effects are stronger
near the poles of the Bloch sphere and curl the distribution around the x-axis (see
Fig. 2.8). A number squeezed state is mainly on or near the equator, where such effects
are suppressed.
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Figure 2.8.: Dephasing on the Bloch sphere: The distribution gets curled around the
x-axis. As can be seen from the Hamiltonian (1.19) the nonlinear interac-
tion is proportional to the square of Jz, which measures the atom number
imbalance. The absolute atom number imbalance is zero on the equator of
the Bloch sphere and increases towards the poles.

2.3.2. Production of squeezed states

There are many different ways of producing squeezed states. The simplest one is to
split the trap quasi adiabatically from a single to a double well. This leads to reduced
tunneling and the BEC becomes number squeezed. However, this process is relatively
slow.
A method that can produce squeezed states much faster is the so-called two parameter

optimization method [60, 61, 44]. Similar to adiabatic splitting the BEC is brought from
a single to a double well state not in a linear fashion, but according to

Ω(t) = Ω0

(

1− Ωc

Ω0

)

exp

(−t
tc

)

+Ωc , (2.4)

This means that there will be a splitting stage, starting with a tunnel coupling of Ω0 at
t = 0, followed by a stage where the tunnel coupling approaches the final value Ωc. The
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ratio between those two stages is determined by the time tc, which can be optimized
analytically to produce the best squeezing [62].
A more sophisticated way to produce squeezed states is called parametric squeezing

amplification. It is based on modulating the tunnel coupling at a certain resonance
frequency to increase number or phase squeezing. In order to understand how parametric
amplification works we first have to look at the Hamiltonian of the system [40, 41].

H = −Ω Jx + 2κJ2
z , (2.5)

with the tunneling energy Ω and the charging energy κ. We can rewrite this Hamiltonian
in terms of the particle imbalance n and the relative phase φ. Jz measures the particle
imbalance 〈Jz〉, and Jx measures the relative phase, so they correspond to n and cosφ,
respectively. We arrive at a model Hamiltonian

H = −Ω cosφ+ 2κn2 (2.6)

At least in the coupled regime, where we expect very small φ, it is possible to approximate
cosφ as 1− φ2/2 and neglect higher orders of φ. This leads to the following, simplified
Hamiltonian:

H =
Ω

2
φ2 + 2κn2 , (2.7)

which looks very similar to the Hamiltonian of a harmonic oscillator

HHO =
p2

2m
+

1

2
mω2x2 (2.8)

The only difference is that the momentum and position operators are replaced by φ and
n. Indeed, if we look at the commutator relation of the spin operators we find that φ and
n are canonically conjugate variables and obey [φ, n] = i, much like the momentum and
position operator of the harmonic oscillator [63]. Therefore we can describe a BEC in a
double well similar to the way we describe a harmonic oscillator. We can even identify
properties like the mass m and the frequency ω. If we compare (2.7) and (2.8) we find
that m = 1/Ω and ω = 2

√
κΩ . This frequency is identical to the Josephson frequency.

Now that we know that our system is similar to a harmonic oscillator with frequency ωJ

we can use this to produce squeezed states.
In general, the amplitude of a harmonic oscillator can by increased by two mechanisms.

One way would be to simply apply a force and thereby produce a driven oscillator. An
example for such a process would be pushing a child on a swing: the amplitude increases
because of an applied force. However, this process is not well suited for a BEC system
and we have to rely on a different method: The second way to increase an oscillators
amplitude is by parametric amplification. It occurs when parameters of the oscillator
(like frequency) change at twice the frequency of the oscillator. In our mechanical picture
that corresponds to “pumping” on a swing. Also here the parameters of the system
(i.e. the center of mass) are changed periodically and the amplitude increases without
an external force. There are two main differences between a driven and a parametric
oscillator. First of all parametric amplification requires non-zero amplitude to work.
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Secondly, in order to get a resonance, the modulation of a parameter must occur at
twice the natural frequency of the system.
This way of driving a harmonic oscillator can be used for BECs. It is only necessary

to change the parameters of the system periodically, in particular its frequency ω. Since
ω is directly related to the tunneling energy Ω, which in turn can be easily controlled
by the distance between the two wells, we can indeed modulate it very easily. Also
the initial amplitude that is needed for parametric amplification is no problem in the
context of BECs. Simply changing the distance between the wells fast enough so that
the BEC leaves the ground state induces a breathing mode, the BEC rotates on the
Bloch sphere around the x-axis, changing from a number to a phase squeezed state.
This small oscillation serve as a starting point for parametric amplification. Note that
there is an important difference to the mechanical picture: In the mechanical picture the
expectation values of some observables oscillate and become amplified, here we do not
amplify the expectation values but the fluctuations. Fig. 2.9 shows parametric squeezing
amplification on the Bloch sphere.

Figure 2.9.: Parametric squeezing amplification: The distribution rotates around the
x-axis and the squeezing increases over time.

Details and results of this process are reported in chapter 7 as well as a way to use
OCT in order to trap those squeezed states.
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3. Optimal control theory

3.1. Introduction

Optimal control theory (OCT) [64, 65, 66] is a powerful mathematical tool that can
be used for many different problems, like optimizing production processes or finding
solutions to economic problems. Additionally OCT has many applications in physics.
Interesting areas in which it was particularly successful are semiconductors [67], control-
ling atoms [68, 69] or quantum chemistry [70, 71, 72].
In general OCT can solve so-called inverse problems. The difference between an inverse

and a conventional problem is what we are interested in. For conventional problems
we know the system at the initial time T0 and know how it develops over time (in
form of some differential equations, boundary conditions or other information). We are
interested in the state of the system at a terminal time T . For inverse problems the
situation is different. Again we know the system at an initial time T0, but we also have a
desired state at time T . The question is now how the system transitions from one state
to the other. In general inverse problems are more difficult to solve. They may have no
solution at all or even more than one.
The main idea of OCT is to find a time development of the system that brings it as

close as possible to the desired state. This time development is often described by one
or more parameters that can be controlled externally, called “control” or “control field”
λ. These parameters can be time dependent factors in the Hamiltonian of the system or
more general concepts. In order to rate the success of each control mathematically, the
so-called cost functional maps every control to a real number, called the “cost”. A cost
of 0 means that the desired and the achieved state are identical, higher costs mean that
there is some kind of deviation. The actual form of the cost functional is different for
each problem, and there are many different ways to define a cost functional for a given
problem, although some are better suited than others.
In the following chapter the general structure of OCT is first shown, and several ways

to implement OCT are then introduced. Finally the application to a real BEC problem
is discussed for two OCT methods.

3.2. General structure

Suppose we have a dynamic variable Ψ(t) governed by an equation i Ψ̇ = F (Ψ) and a
boundary condition Ψ(0) = Ψ0. The goal of our optimization is now to bring Ψ to the
desired state Ψdes at a terminal time T . We can control the time development of Ψ
due to a control field λ(t). To rate the success of each control, a cost functional J is
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introduced. In general, J will depend on the dynamic variable Ψ and the control field
λ. In order to guarantee that the equation of motion is satisfied at all times we use a
Lagrange multiplier p.

L(Ψ, λ, p) = J (Ψ, λ) + p
(

iΨ̇− F (Ψ)
)

(3.1)

Deriving this functional with respect to each function, and demanding that these deriva-
tives vanish, leads to three equations that need to be satisfied simultaneously in order
to find and optimal control. An OCT implementation for BECs will be discussed in 3.4.
In general it is not possible to find such solutions analytically and one has to resort to
numerical techniques.

3.3. Optimization methods

3.3.1. Gradient Ascend Pulse Engineering

One of the most widely used and versatile OCT algorithms is called “gradient ascend
pulse engineering” (GRAPE). As the name suggests, it is based on calculating the gra-
dient of a given control and then “ascend” towards a better (=lower) cost. It should be
noted that GRAPE, like most other OCT methods, is only able to find local minima
and in general it is hard to prove that such a minimum is a global minimum. However,
especially in the field of quantum physics it can be shown that the minima of the control
space have usually the same cost, and there are very few traps, i.e. local minima with a
suboptimal cost [73].
The first step in using GRAPE is defining a control parameter λ and a cost functional

J (λ). In the context of BECs, λ is often the shape or time-dependency of a magnetic
field, but in general λ can describe anything that can be controlled and influences the
system in some way. The cost functional J (λ) now maps every λ to a real number, i.e.
the cost. A cost of 0 means that the goal or target is perfectly reached, higher costs
indicate worse success. Naturally, the goal is to find a control that produces a cost that
is as low as possible. In many cases a cost of exactly zero can not be achieved, however,
one can always find a control that corresponds to a local minimum. This control is called
optimal control.
In order to find this optimal control, one has to perform functional derivatives of J (λ)

with respect to all the functions it depends on. Demanding that those derivatives equal
zero leads to a set of equations that all need to be satisfied simultaneously. In general,
finding a control that does that is not trivial. One can, however, start with an initial
guess for λ and use the derivatives of J (λ) to find the gradient of the control λ. This
gradient has information about the direction along which one has to change λ in order
to improve it and find a better control. The new, improved control can in turn be used
to obtain a gradient again. This iterative process can be continued until convergence is
reached and an optimal control is found.
The crucial step in this process is updating the control. One can only calculate the

gradient of the control field, the step size must be chosen by other means. There are
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many different ways to perform this update, the most common ones will be shown in
the next sections.

Choosing a step size

The proper choice of the step size is very important for reaching fast convergence. A
small step size makes convergence very slow, while a too big step size may even lead
to a failure of the numerical minimization algorithm. In general, the optimal step size
can change between two iteration steps by several orders of magnitude, which makes
choosing a perfect step size even more difficult. One way to circumvent this problem is
by determining the step size in each iteration step by a line search. In its simplest form
the update can be written as

λn+1 = λn + s∆λn , (3.2)

with the gradient ∆λn and the step size s. The line search now consists of using different
s, calculating the cost of the resulting control, and finding a minimum of this cost with
respect to s. This optimal step size is then used to calculate a new control and in turn
a new gradient. For the next iteration step a new line search is performed that most
likely results in a different optimal step size. This method can be very time consuming,
especially if evaluating the cost of a given control is computationally difficult. On the
other hand the optimization of the step size via a line search can be done with arbitrary
precision and a well optimized step size can drastically decrease the number of iterations
that are needed for convergence.

Steepest descend

The simplest method of updating the control field λ is “steepest descend”. The idea
behind it is to always change λ in the direction of the largest gradient. For a simple
2 dimensional control space this method works very well, as shown schematically in Fig.
3.1. However, for a control space of higher dimensionality this method is not well suited.
Especially if the control space has complicated features, like flat areas or saddle points,
steepest descend works very poorly. Implementation of this method is, however, very
simple and also computationally cheap.
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Figure 3.1.: Steepest descend for a simple 2d control space. The minimum is found by
always updating the control in the direction of the largest gradient. For
simple problems this technique is very successful.

Conjugate gradient

A more sophisticated way to update λ is using the conjugate gradient method [74]. It is
similar to steepest descend but tries to avoid going in the same direction twice. This is
done by utilizing the previously used update directions. Conjugate gradient converges
faster than steepest descend, as illustrated in Fig. 3.2.
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Figure 3.2.: Steepest descend (green) needs 5 steps to find the minimum. By utilizing
information from the first search direction, conjugate gradient (red) can find
a better update direction than the direction with the largest gradient, and
can find the minimum in only 2 steps.

While this method works very well with many OCT problems it has similar problems
with high dimensional, complicated control spaces. For some problems the control space
has a shape similar to a half pipe, where the direction of the steepest descent is nearly
orthogonal to the direction of the minimum. Especially for high-dimensional problems
the conjugate gradient method can converge very slowly.

BFGS

The Broydon-Fletcher-Goldfarb-Shanno (BFGS) method [75, 76, 77, 78, 79] solves the
aforementioned problems by calculation of additional information from the gradients
collected during the iterative process. In particular, BFGS approximates the Hessian.
This information about the second derivative of the control speeds up convergence signif-
icantly. Especially for complicated control spaces the second derivative can help finding
an update direction that is much better than steepest descend. Half pipe shaped ar-
eas do not pose a problem when using BFGS and also flat regions of the control space
can be traversed quickly. The difference in convergence between BFGS and conjugate
gradient can be drastic. Fig. 3.3 shows such an example, taken from the optimization
of a BEC process (for a detailed discussion see below). The conjugate gradient method
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(red) seems to hit a plateau after around 20 iterations and finds a control with a cost of
roughly 0.1. BFGS on the other hand finds a control that has a 100 times lower cost in
the same amount of iterations.

Figure 3.3.: BFGS can perform much better than conjugated gradient in the context of
BECs. The optimization problem of this calculation is similar to the one
presented in paper 1 [51].

BFGS calculates the approximated Hessian B in the following way [80]: We start by
obtaining a search direction di from the control equation and an optimal step size αi

from a line search. λ is then updated according to

λi+1 = λi+ αi di (3.3)

Then we need to define two auxiliary variables: si, the last modification of λ, and yi,
the difference between the last two gradients.

si = αi di (3.4)

yi = ∆λi+1 −∆λi (3.5)

With these auxiliary variables a new approximation for the Hessian can be calculated
from the approximation from the last step. At the first step, where no previous Hessian
is available, one can take B = 1 as a starting point. The update is then performed in
the following way:

Bi+1 = Bi +
yi y

T
i

yTi si
− Bi si s

T
i Bi

sTi Bi si
(3.6)

With this method the approximation of the Hessian gets better at each iteration step
and even extremely flat regions of the control space can be crossed rather quickly. This
is the reason why BFGS is the method of choice for most BEC optimization problems.
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3.3.2. Krotov’s method

A different approach to optimization is Krotov’s method [81, 82, 83]. Similar to GRAPE
this method begins with defining a control λ and a cost functional J that maps every
control to a cost. To this cost functional an additional term, the Krotov term, is added.
This must be done in such a way, that the position of the minimum does not change.
If done correctly, the new term makes it possible to divide the cost functional into two
parts that can be optimized separately. Now one can devise a scheme that improves
the control, always leading to a lower cost. This control can in turn by improved by
the same scheme until convergence is reached. Since it is guaranteed that the control
improves each iteration step, Krotov’s method is monotonically convergent.
The update with Krotov’s method is sequential, which means that every point in time

gets updates separately, in contrast to a concurrent algorithm, like GRAPE. On the one
hand this can be an advantage, since the updated points are used right away for the
calculation of the next update, in a way that more recent information is available. On
the other hand, there is less information available about the control as a whole.
There are several parameters on which Krotov’s method relies, which can be changed

in order to improve performance. For example the step size of the Krotov update can be
finetuned in order to speed up convergence. Also the Krotov term has three parameters,
α, β and γ [83], which must be chosen in some way and these parameters often influence
convergence drastically. Additionally, a shape function can be introduced in order to
produce controls that have special features, like a slow switching on or off of the control
fields. In general, choosing all these parameters is not trivial, but finetuning them has
the potential to lead to very fast convergence.

3.3.3. CRAB

Another interesting optimization method is called “Chopped Random Basis” (CRAB) [84].
While the control field is usually discretized in time for GRAPE and Krotov’s method,
CRAB expands the control in a function basis characterized by some parameters Ωj :

λj =
∑

k

ckj λ̂
k
j (Ω

k
j ) (3.7)

This expansion is “chopped” in the sense that there is only a finite number of basis
functions and “random”, meaning that the basis functions get randomized according to

λ̂kj → λ̂kj [Ω
k
j (1 + rkj )] , (3.8)

where rkj is a random number. It can be shown that this form of randomization breaks the

orthonormality of the functions λ̂kj , but on the other hand leads to faster convergence [84].
The problem now reduces to a multivariable optimization of the cost function, which

can be solved by methods like steepest descend, conjugate gradient or even direct search
methods [85].
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Advantages and disadvantages

The big advantage of CRAB is that the control space has a much lower dimensionality
than the control space of GRAPE or Krotov’s method. This makes convergence faster
and reduces the computational effort. A downside of this simplification is that it is
also very restrictive in terms of allowed control fields. The choice of basis functions is
crucial for the success and the final cost of this optimization technique, and without prior
knowledge about the system it is often very difficult to find well suited basis functions.

3.3.4. Genetic algorithms

Another approach for solving OCT problems are so-called genetic algorithms [86]. Hereby
one tries to use the same principles as biological evolution in order to find good controls.
First of all a population of n random controls is generated. In principle it is possible to
use discretized control fields, but very often it is more convenient to parametrize them
in some form, e.g. by expanding them in base functions. The next step is calculating
the cost for each of these controls. The controls with the lowest costs are then used to
produce controls for the second population. There are many different ways of doing so.
One example would be to choose the parameters for a new control randomly from a pair
of good controls or combining the parameters of good controls in some other way. This
generates a second generation, again with a population of n, which ideally now has a
lower average cost than the last population. They are in turn tested for their fitness and
the best ones are used to produce a third generation. This can be repeated as often as
necessary, as depicted in Fig. 3.4.
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Figure 3.4.: Genetic algorithm: The best individuals of each population are combined to
produce a new population.

Advantages and disadvantages

Genetic algorithms have problems similar to CRAB. Parametrizing the control fields ex-
cludes many controls from the control space, possibly those with low costs. Discretization
on the other hand leads to many parameters for each control, which poses a big problem
for genetic algorithms and slows down or even inhibits convergence. The second problem
is that this approach relies heavily on randomly generated numbers and controls. For
problems where randomly generated controls nearly always lead to high costs it is very
difficult to produce controls with low cost by means of a genetic algorithm.

3.4. OCT applied to BECs

3.4.1. Gradient Ascend Pulse Engineering

The main ingredients one needs for GRAPE are a control, a cost functional and the
equations of motion that govern the system. For BECs the control parameter λ often
describes a magnetic field that can be controlled externally. Additionally to this control
we also define a cost functional. Suppose that the problem we are interested in is how
to bring a BEC from its initial state Ψ0 at time 0 to a desired state Ψdes at time T . The
cost functional can then simply be defined as

J =
1

2
||Ψ(T )−Ψdes||2 . (3.9)
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This would yield J = 0 for Ψ0 = Ψdes and J > 0 for Ψ0 6= Ψdes. However, this cost
functional has disadvantages. Suppose we find a state Ψ(T ) that only differs from Ψdes

by a global phase. The cost functional would still not yield 0, although the observables
|Ψdes|2 and |Ψ(T )|2 would match perfectly. To remedy that we can use a different cost
functional in the form of

J =
1

2

(

1− |〈Ψ(T )|Ψdes〉|2
)

. (3.10)

It is apparent that there are many different ways to define a cost functional and some
thought is required to find a well suited one for the problem at hand. Especially for
problems that have an experimental application it is often a good idea to include a term
in the cost functional that favors smooth control parameters, since they are often easier
to implement experimentally. One way of including such a term is

J =
1

2

(

1− |〈Ψ(T )|Ψdes〉|2
)

+
ν

2

∫ T

0
λ̇(t)2dt . (3.11)

ν serves as a weighting parameter and is chosen very small (e.g. 10−9) in order to ensure
that the cost value is primarily determined by Ψdes.
The next step in order to construct an optimality system is to include the equations

of motion in the cost functional. For the example of a BEC this could be the Gross-
Pitaevskii equation [33, 34, 35] or the more complicated MCTDHB equations [45]. The
equations of motion are then included via Lagrange multipliers. For the Gross-Pitaevskii
equation

iΨ̇ =

(

−1

2
∇2 + V (λ) + κ|Ψ|2

)

Ψ (3.12)

the full Lagrangian is given by

L = J +Re

〈

p,

(

−1

2
∇2 + V (λ) + κ|Ψ|2

)

Ψ

〉

(3.13)

Here 〈a, b〉 is shorthand notation for
∫

dx
∫ T
0 dt a∗ b and p is the Lagrange multiplier.

The full cost functional given in (3.13) depends on three functions, namely the wave
function Ψ, the control parameter λ, and the Lagrange multiplier p:

L = L(Ψ, λ, p) (3.14)

In order to find the minimum of this functional we have to perform functional derivatives
with respect to each variable and set them zero, similar to the procedure of finding the
minimum of a function. So we are looking for the three derivatives ∂L

∂Ψ ,
∂L
∂λ and ∂L

∂p . These

three derivatives lead to three equations. ∂L
∂p yields the equation of motion, in this case

the Gross-Pitaevskii equation. ∂L
∂Ψ yields the so-called adjoint equation, an equation for

the Lagrange multiplier p that runs backwards in time, i.e. it starts at time T . This has
to do with the boundary condition (3.15g) in which the value of p at time T depends
only on Ψ(T ). The last equation comes from ∂L

∂λ . It is the so-called control equation and
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gives the gradient of the control λ as a function of Ψ(t) and p(t). The derivation of this
optimality system can be found in appendix A, and we obtain:

iΨ̇ =

(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ (3.15a)

ṗ =

(

−1

2
∇2 + Vλ + 2κ|Ψ|2

)

p+ κΨ2p∗ (3.15b)

γλ̈ = −Re

〈

p

∣

∣

∣

∣

δVλ
δλ

∣

∣

∣

∣

Ψ

〉

(3.15c)

λ(0) = λ0 (3.15d)

λ(T ) = λT (3.15e)

Ψ(0) = Ψ0 (3.15f)

ip(T ) = −〈Ψdes |Ψ(T )〉Ψdes (3.15g)

If all three equations of the optimality system yield zero we have found a minimum
of the cost functional. However, the control equation has another useful property: If
the Gross-Pitaevskii equation and the adjoint equation are both satisfied, the control
equation gives us the gradient of λ, i.e. the direction along which we need to change
the control in order to improve it. This information is crucial for GRAPE. With these
equations, namely the equation of motion, the adjoint equation and the control equation,
the GRAPE algorithm works like this:

1. Start by guessing an initial control field λ(t)

2. Solve the equation of motion to obtain Ψ(t)

3. Solve adjoint equation to obtain p(t)

4. Solve control equation to obtain the gradient of λ

5. update λ

6. go to 2 until convergence is reached

This process is also depicted in Fig. 3.5.
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Figure 3.5.: Schematic of the GRAPE algorithm

This algorithm allows to find a suitable control for many different problems. An
important part hereby is step 5, the update of λ. In principle many of the methods
described in section 3.3.1 can be used to perform this update, however, BFGS usually
leads to the best results. Further improvements can be made by adapting the cost
functional, as shown in the next section.

H1-norm

Let us review the cost functional (3.11).

J = 1− |〈Ψ(T )|Ψdes〉|2 + ν

∫ T

0
λ̇(t)2dt (3.16)

The last term can be interpreted as the norm of the derivative of the control parameter
λ. Ordinarily we use the L2 norm.

〈λ|λ〉L2
=

∫ T

0
λ∗ λ dt (3.17)

However, this is not the only possibility and other choices can be more physical. For
example we can choose λ to be a H1 function instead.

∫ T

0
λ̇2dt = 〈λ̇|λ̇〉L2 = 〈λ|λ〉H1 (3.18)

This has no impact on the cost functional, but changes its interpretation and the way
we numerically calculate the update of λ.

∇λJ = −γλ̈− Re
〈

p
∣

∣

∂V

∂λ

∣

∣ψ
〉

for L2 norm (3.19)

− d2

dt2
[

∇λJ
]

= −γλ̈− Re
〈

p
∣

∣

∂V

∂λ

∣

∣ψ
〉

for H1 norm (3.20)
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Using the H1 norm is equivalent to solving an additional Poisson equation. The
interpretation of

∫ T
0 λ̇(t)2dt as H1 norm is still mathematically valid [87] and has several

advantages. First of all, convergence can be much faster. Secondly, because of the
additional Poisson equation, the resulting control fields are very smooth. This is good
for an experimental realization, since smooth controls are easier to implement. For most
BEC optimization problems it is beneficial to use the H1 norm in this case.

3.4.2. Krotov’s method

Applying Krotov’s method to the previous example of bringing a BEC from a initial
state into a desired state again begins with defining a cost functional. In general, the
cost functional for Krotov’s method includes a vanishing term Φ that depends on the
Krotov function σ, defined in (3.24).

J = JT (Ψ(T )) + Φ(Ψ(T ), T )− Φ(Ψ0, 0)−
∫ T

0
R(Ψ, λ, t)dt (3.21)

A possible way to define that cost functional in the context of BECs would be

J =
1

2

(

1− |〈Ψ(T )|Ψdes〉|2
)

+

∫ T

0

[λ(t)− λref(t)]
2

S(t)
dt . (3.22)

Here λref is a reference field, typically chosen to be the control field of the previous
iteration. This ensures small changes during one iteration step while the contribution of
this term decreases over the optimization process, as the difference of controls becomes
smaller and finally nearly vanishes if convergence is reached. S(t) is a so-called shape
function that is used to enable a smooth turning on and off of the control.
With this cost function it is possible to derive Krotov’s equation for updating the

control field:

λ(i+1) = λ(i) + S(t)Re
[

〈

p(i)
∣

∣

∂V

∂λ

∣

∣ψ(i+1)
〉

+
σ(t)

2i

〈

∆ψ
∣

∣

∂V

∂λ

∣

∣ψ(i+1)
〉

]

(3.23)

From this equation it is apparent why Krotov’s method is sequential, in contrast to
GRAPE. Ψi+1 appears on the right hand side of the equation, so for a given time t,
the update depends on all updates at earlier times. An important part of the update
equation is the σ term [83, 82]. It is needed to ensure convergence, but is very difficult
to choose. In general σ has the form

σ(t) = α(eγ(t−T ) − 1) + β , (3.24)

where α, β and γ are the so-called Krotov parameters. Suitable Krotov parameters need
to be found for each individual problem. Too high values for the parameters lead to very
slow convergence, while too small values lead to an increase in cost from one step to the
next, which makes optimization impossible. There are different ways to find well suited
Krotov parameters. It is possible to find bounds through analytical calculations [83],
but sometimes it is more convenient to simply try to start with small values and increase
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them until the cost starts to decrease. For some problems σ can be neglected altogether.
Once σ is chosen properly, the optimization can begin.

The algorithm for Krotov’s method is different from the one of GRAPE (see Fig. 3.6):

1. Start by guessing an initial control field λ(t)

2. Solve the equation of motion to obtain Ψ(t)

3. Solve adjoint equation to obtain p(t)

4. Solve equation of motion simultaneously with the equation for the new control
(3.23)

5. go to 3 until convergence is reached

Figure 3.6.: Schematic of Krotov’s method

Also Krotov’s method is well suited for all kinds of problems in the field of BECs and
a detailed comparison between the optimization methods can be found in chapter 6 and
section 8.1.
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Abstract

We present theoretical and experimental results on high-fidelity transfer of a trapped

Bose–Einstein condensate into its first vibrationally excited eigenstate. The excitation is driven

by mechanical motion of the trap, along a trajectory obtained from optimal control theory.

Excellent agreement between theory and experiment is found over a large range of parameters.

We develop an approximate model to map the dynamics of the many-body condensate wave

function to a driven two-level system.

(Some figures may appear in colour only in the online journal)

1. Motivation

The precise control over quantum systems represents a major

challenge in modern physics. Successful implementation of

quantum technologies may lead to the construction of devices

such as quantum simulators, quantum cryptography devices,

and quantum computers. For such applications, one needs

to produce arbitrary quantum states, e.g. strongly entangled

many-body states, or states which are far from thermal

equilibrium or the ground state of the system.

In this paper we report on highly efficient preparation of

a non-classically excited motional state of a Bose–Einstein

condensate (BEC), by a modulation of the trapping potential,

as obtained from optimal control theory (OCT) [1]. Fast

changes of the potential are routinely used in BEC laboratories,

for instance as ways to probe the gas by exciting collective

excitations [2, 3], or to displace the samples for further

manipulation. Recently, controlled modulations of the trapping

potential were achieved in order to quickly displace or

deform BECs while keeping them in their ground state.

These ‘shortcuts to adiabaticity’ [4–9] take advantage of the

self-similar dynamics of interacting BECs trapped in time-

dependent harmonic potentials [10, 11].

For more general desired states, like excited stationary

states [12], for which no exact solutions are found, one needs

to use numerical methods such as OCT, which provides a

framework for determining optimized driving sequences to

actively manipulate a quantum system. One typical task is the

precise control of spin evolution in an NMR spectroscopy

experiment [13–15]. Other exciting applications are the

shaping of laser pulses for controlling chemical reactions

[16–19], or optimizing solid-state quantum gates [20–25].

For rapid quantum state transitions, the quantum speed limit

[26–28] may be approached, which sets the upper limit to

how fast a system can evolve in its Hilbert space. This may

be highly relevant for quantum computation, where fast gate

times are required to outrun decoherence.

In the context of ultracold atoms, such approaches were

investigated theoretically for the splitting of BECs [29], to

optimize the transport of atoms in optical lattices for quantum

gate operations [30], cooling [31], generation and storage of

entanglement [32, 33] or number-squeezed states [34].

Here, we aim for a vibrational state inversion, where

the entire population of the condensate is transferred to the

first excited state of its motional degree of freedom. Such

an inverted state can be used as a source for the amplified

0953-4075/13/104012+16$33.00 1 © 2013 IOP Publishing Ltd Printed in the UK & the USA
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Figure 1. Schematic representation of our excitation scheme. (a) Illustration of the sequence: an elongated Bose–Einstein condensate (blue)
is trapped on an atom chip (chip and condensate aspect ratio not drawn to scale). Mechanical motion along the y-axis pumps the gas into a
vibrationally excited state, which decays by directed emission of twin-atom beams along x (red). (b) Initial and excited condensate wave
functions in the (x, y)-plane. The state ψd(x, y) (desired state) is the first excited state of the Gross–Pitaevskii equation (1) along y. (c)
Trajectory λ(t) of the trap minimum along y. (d) Time-dependent density n(y, t) = |ψ(y, t)|2 of the condensate wave function under the
influence of the excitation process. (e) Population (simulated) of the excited state ψd(y) derived from wave-function overlap (black, with
markers) and using the two-mode model as introduced in section 4.3 (red, solid).

emission of matter-wave twin beams [35, 36], similar to a

pumped gain medium in a laser or an optical parametric

amplifier (figure 1(a)). We start from a condensate in the

ground state along the strongly confined (transverse) directions

of an elongated trapping potential. We then use OCT on a

controlled displacement of the trap centre (transverse ‘shaking’

of the cloud, figure 1(c)), in order to transfer the BEC to the

first antisymmetric stationary state as given by the Gross–

Pitaevskii equation (GPE), which is governing the system’s

dynamics (figure 1(b)). The efficiency of this process is close to

100%, which corresponds to the desired vibrational inversion

of the atomic cloud. Since a harmonic potential (where all

energy levels are equidistant) would not allow the transfer to

an excited stationary state by means of displacement [37–41],

we use here an anharmonic potential [25, 23, 41] generated by a

radio-frequency (RF) dressed magnetic trap [42]. In the limit of

vanishing atom–atom interactions, the final state would simply

correspond to all atoms residing in the first excited Fock state of

the trap (quantum numbers nx = 0, ny = 1, nz = 0). However,

in our many-body wave function inter-atomic interactions are

an essential ingredient of the system’s dynamics and cannot be

neglected in the optimization. In the experiment they manifest

themselves in energy shifts due to the atomic mean-field, and

a decay of the excited state by means of inelastic two-body

scattering [35, 36].

Another aspect we will address is the interpretation of

our results beyond a simple comparison of calculated and

measured wave function dynamics. While such a comparison

benchmarks the accuracy to which experiments and theory are

matched, it provides only limited insight into the nature of

the excitation mechanism, and the structure of the quantum

state during and after the excitation process. To this end,

we will deduce an approximate description, that allows to

map the many-body wave function in a weakly anharmonic

confinement to a driven two-level system, where the excitation

process corresponds to a π -pulse that transfers all population

to the excited state.

The paper is structured as follows: section 2 presents the

theoretical description of the problem and the OCT algorithm

used to obtain the excitation trajectory of the trap centre,

section 3 details the experimental implementation, and finally,

section 4 discusses the results, with an emphasis on how the

behaviour of key observables can be captured by a two-level

model. To our knowledge, this excitation sequence represents

the first successful use of OCT for the preparation of exotic

many-body states of BECs.

2. Optimal control theory

OCT is a mathematical tool that allows an optimal control

sequence for a given control problem to be determined

[43, 44, 1]. In the following we review the basic ingredients

of OCT, taking the example of the shaking process which

brings the condensate from the ground state to its first

vibrationally excited eigenstate. Our analysis closely follows

the presentation given in [29, 36].

As will be discussed in section 3, the condensate can

be described by a one-dimensional GPE for the transverse

coordinate y, along which the condensate is displaced,

according to3

i
∂ψ(y, t)

∂t
=

(

−1

2

∂2

∂y2
+ Vλ(y, t) + g |ψ(y, t)|2

)

ψ(y, t).

(1)

Furthermore, g is a nonlinearity parameter accounting

for the repulsive atom–atom interactions [29, 34]. The

anharmonic confinement potential Vλ(y, t) = V6(y − λ(t), 0)

(see section 3.1) follows a control parameter λ(t), in our case

the displacement of the potential minimum, and provides the

means for exciting the condensate.

One might wonder how a mere displacement of the

symmetric confinement potential V6(y) can induce transitions

between states of opposite parity. This becomes obvious by

performing a unitary transformation exp[i λ(t) P], where P is

3 In this section, we will use dimensionless coordinates, which are matched

with the typical scales of the problem; lengths are given in units of l0 ≡ 1 µm,

times in units of τ0 ≡ ml2
0/� ≈ 1.37 ms, and energies in units of �/τ0 ≈

� · 0.73 ms−1, where m is the mass of the 87Rb atoms.

2
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the momentum operator along y, to obtain a frame of reference

that moves with the potential minimum at λ(t). In the shifted

frame, the GPE (1) contains a static potential, but acquires

another term −λ̇(t) P (in the right-hand side parentheses),

which is linear in the momentum operator P and proportional to

the velocity of the trap minimum. This additional term breaks

the inversion symmetry and thus induces transitions between

states of opposite parity.

The objective of the control problem can now be

formulated as follows. Let λ0 be the control parameter at the

initial time t = 0, and λ1 the control parameter at the final time

t = T of the control process. Likewise, we denote the initial

ground state of the GPE with ψ0(y) and the desired final wave

function (in our case the first excited state of the GPE in the

anharmonic trap) with ψd(y). OCT then seeks for the optimal

time variation of λ(t) that brings the final wave function as

close as possible to the desired state ψd.

To gauge the success of the excitation process for a given

control field λ(t), we define a cost function

J(ψ(T ), λ) = 1

2
[1 − |〈ψd|ψ(T )〉|2] + γ

2

∫ T

0

[λ̇(t)]2 dt.

(2)

The first term of the cost function becomes minimal when

the final wave function precisely matches the desired wave

function, apart from a global (irrelevant) phase. The second

term favours smooth control fields and is needed to make

the OCT problem well posed [45]. γ is a parameter that

weights the relative importance of the two control objectives of

smooth control fields and of wave function matching. As our

experimental implementation allows fast and precise control

of λ(t), the parameter γ can be set such that the control

penalization is always much smaller than the first term in

equation (2). OCT is now seeking for an ‘optimal control’ that

minimizes the cost function J(ψ(T ), λ), under the condition

that the final wave function ψ(T ) has to be obtained from

the GPE (1) with the initial wave function ψ0(y). To turn this

constrained minimization problem into an unconstrained one,

within the OCT framework one introduces a Lagrange function

L(ψ, p, λ) = J(ψ, λ)

+ℜe

∫ T

0

〈

p

∣

∣

∣

∣

∣

i
∂ψ

∂t
−

(

−1

2

∂2

∂y2
+ Vλ + g |ψ |2

)

ψ

〉

dt,

where the adjoint function p(y, t) acts as a generalized

Lagrange parameter. Here and in the following we will, for the

sake of brevity, often omit parameters y and t. At the minimum

of J(ψ, λ) the Lagrange function has a saddle point, where

all three derivatives δL/δψ , δL/δp and δL/δλ must vanish.

Performing the usual functional derivatives, we obtain after

some variational calculation the following optimality system:

i
∂ψ

∂t
=

(

−1

2

∂2

∂y2
+ Vλ + g|ψ |2

)

ψ (3a)

i
∂ p

∂t
=

(

−1

2

∂2

∂y2
+ Vλ + 2g|ψ |2

)

p + gψ2 p∗ (3b)

γ λ̈ = − ℜe

〈

ψ

∣

∣

∣

∣

∂Vλ

∂λ

∣

∣

∣

∣

p

〉

, (3c)

which has to be solved together with the initial condition

ψ(0) = ψ0, as well as with the constraints on the control

field λ(0) = λ0 and λ(T ) = λ1. To obtain the equation for

the adjoint function p, we have performed an integration by

parts for the term involving the time derivative of ψ prior to

working out the functional derivative δL/δψ . This procedure

gives, in addition to equation (3b), the terminal condition

i p(y, T ) = −〈ψd|ψ(T )〉ψd(y). (4)

Quite generally, the Lagrange parameter determines the

sensitivity of the system with respect to the external

control. In our case, the dynamic equation (3b) describes

the propagation of fluctuations around the Gross–Pitaevskii

solution and is closely related to the usual Bogoliubov–de

Gennes equations [46].

In most cases of interest it is impossible to guess λ(t)

such that equations (3a)–(3c) are fulfilled simultaneously, and

one has to employ a numerical solution scheme. Suppose that

λ(t) is some guess for a viable control field. We can now

solve equation (3a) forward in time to obtain the final wave

function ψ(T ), which, in turn, allows us to compute the adjoint

function p(T ) from equation (4). In the ensuing step, the time

evolution of p(t) is solved backwards in time. Since λ(t) is

not the optimal control, equation (3c) is no longer fulfilled.

However, the functional derivative

δL

δλ
= −γ λ̈ − ℜe

〈

ψ

∣

∣

∣

∣

∂Vλ

∂λ

∣

∣

∣

∣

p

〉

(5)

provides us with a search direction for λ(t). Adding a fraction

of δL/δλ to λ(t) leads to a control that performs better and

brings the final wave function ψ(T ) closer to the desired one.

The improved control field is then used in the next iteration.

In our simulations we typically perform a time discretization

of the interval [0, T ] and use a generic optimization routine,

such as the nonlinear conjugate gradient [47] or a quasi-

Newton method, together with equation (5) for computing the

appropriate search directions. One shortcoming of equation (5)

is that in general δL/δλ does not vanish at the boundary

points of the time interval, although the control field is

fixed to the values of λ0 and λ1 there. To overcome this

problem, one rewrites the penalization term of the control field

(γ /2) (λ̇, λ̇)L2 as (γ /2) (λ, λ)H1 , where the definition of the

H1 inner product is (u, v)H1 = (u̇, v̇)L2 [48]. It is important to

realize that this different norm does neither affect the value of

the cost function nor the Gross–Pitaevskii or adjoint equations.

However, it does affect the equation for the control field in the

case of a non-optimal λ(t), which now satisfies a Poisson

equation

− d2

dt2

δL

δλ
= −γ

d2λ

dt2
− ℜe

〈

ψ

∣

∣

∣

∣

∂Vλ

∂λ

∣

∣

∣

∣

p

〉

. (6)

The advantages of equation (6) are that the boundary

conditions for λ(t) are automatically fulfilled and that changes

due to large values of the second term on the right-hand side

are distributed, through the solution of the Poisson equation,
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Figure 2. Schematics of the OCT optimization loop, which starts with an initial guess for the control field λ(t) associated with the
displacement of the minimum of the confinement potential. First, the Gross–Pitaevskii equation with the (panel 1) initial condensate wave
function ψ0(y) is solved forwards in time, to obtain (2) the final wave function ψ(y, T ) at the terminal time T = 5 ms of the control process,
which in general deviates significantly from the desired, first excited wave function ψd(y). The density plots in the different panels report the
time evolution of the square moduli of the different functions. From the knowledge of ψ(y, T ) and ψd(y) we can compute the (3) terminal
value of p(y, T ) via equation (4), and solve the adjoint equation (3b) backwards in time (4), to finally come up with a new search direction
for the optimal control field (equation (6)) that is used in the next iteration of the optimization loop. The solid lines superimposed on λ(t) in
the panel of the adjoint equation depict the search directions. The inset (5) shows how the cost and derivative for a given control decrease
with increasing iterations, until (6) an optimal control is obtained. Here λ(t) (magnified by a factor 4) steers the system from ψ0(y) to the
desired wave function at the terminal time of the control process.

over the whole time interval. In all of our OCT calculations

we use equation (6) instead of equation (5).

Our OCT implementation relies on a numerical

optimization routine and a differential equation solver. As for

the optimization routine, one can use any generic code that,

starting from some initial guess for the control field, requires a

function value (the cost function) together with the derivative

of the evaluated function δL/δλ to compute a new, improved

λ(t). When using the H1 norm of equation (6) one must ensure

that all inner products in the generic code are evaluated as

(u, v)H1 rather than (u, v)L2 . In general we observed the best

performance for the quasi-Newton BFGS optimization [49],

which outperforms the nonlinear conjugate gradient method

for larger number of iterations in the optimization loop. As

for the differential equation solver, we usually employ a

split operator technique [29] because of its robustness and

simplicity.

The OCT optimization is schematically depicted in

figure 2. One starts with some initial guess for the control

field. In general, the outcome of the OCT loop does not depend

critically on the initial λ(t) and one can use any reasonable

guess, such as in our case some interpolating function between

the boundary values of λ0 = 0 and λ1 = 0.1 µm at the

terminal time T = 5 ms. Next, (panel 1) the condensate wave

function ψ(y, 0) = ψ0(y) is set to the ground state ψ0(y) of

the anharmonic trap, including the nonlinear term of the GPE

[29], and equation (3a) is solved forwards in time to obtain

(2) the terminal wave function ψ(y, T ). For the initial guess of

the control, ψ(y, T ) differs significantly from the desired, first

excited state ψd(y) of the anharmonic trap, which has a node

in the middle, as can also be inferred from the ensuing time

evolution where the trap displacement is held constant. From

equation (4) we can compute the (3) terminal condition for

p(t), and (4) solve the adjoint equation (3b) backwards in time.

Finally, the knowledge of the complete history of ψ(y, t) and

p(y, t) allows us to compute the new search direction through

equation (6), and to pass this direction to the optimization

routine which will come up with a new, improved λ(t), which

can be used in the next iteration of the optimization loop.

In the inset (5) of figure 2 we show how the cost

function J(ψ, λ) and the derivative measure |δL/δλ| evolve

with increasing iterations. Note that the ‘optimal control’

corresponds to a minimum of the control landscape, associated

with a derivative equal to zero, but it is generally not guaranteed

that the cost is also small there. However, there are indications

that under quite broad conditions the OCT loop will come up

with a λ(t) that fulfils the control objective of wave function

matching almost perfectly [50]. In our simulations we typically

stop after a given number of iterations or when the derivative

has become sufficiently small. The resulting λ(t) sequence

is then called the optimal control. As can be seen from the

solution of the GPE on in (6), with this control we closely

match the desired wave function at the terminal time, with a

fidelity of |〈ψd|ψ(T )〉|2 ≈ 1–3 × 10−3. Up to a global phase,

the wave function remains stationary for t > T .
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3. Experimental implementation

The vibrational state control scheme is realized using an ultra-

cold Bose gas trapped on an atom chip. The experimental

procedure is very close to that described in [35, 36]. In

brief, a laser-cooled cloud of rubidium-87 atoms in the

|F = 1, mF = −1〉 Zeeman level is loaded into a strongly

elongated atom chip wire trap [51, 52]. Using forced

evaporative cooling, the gas is brought to a temperature close

to quantum degeneracy. Then, by means of RF dressing

[53, 42], the external confinement along the two tightly trapped

axes y, z is deformed from a harmonic to an anharmonic and

anisotropic potential (see the next section for details). In the

anharmonic trap, further cooling down to a temperature T

well below 50 nK is performed. With N ∼ 800 atoms, the

gas is now in a quasi-condensate [54, 55] regime, where phase

fluctuations prevent true condensation of the matter wave along

the longitudinal (elongated) direction x. However, the energy

scales corresponding to both temperature (kBT < h × 1 kHz,

with Planck and Boltzmann constants denoted as h and

kB, respectively) and atom interactions (chemical potential

µ ∼ h × 600 Hz) are well below the trap level spacing

(∼h×2 kHz) along the transverse directions y, z. Thus, thermal

excitations in the transverse degrees of freedom are frozen out,

and almost all atoms occupy a single transverse mode; along

y and z, the system is hence appropriately described by a

single condensate wave function. In this paper, we are mostly

concerned with the dynamics along the transverse direction

y, and hence neglect the longitudinal mode structure of the

quasi-condensate.

Having prepared the system in this way, we apply the

control sequence, while monitoring the momentum space

distribution of the condensate, as will be described in the

following sections.

3.1. Trap preparation

In a quantum harmonic oscillator, all states that can be

addressed by simple displacement of the potential are quasi-

classical coherent states [38]. This statement also holds for

a harmonically trapped interacting many-body system, where

a quasi-classical collective oscillation at the trap frequency

fully decouples from more complex internal dynamics

[39, 40], and the shape of the wave function is preserved [41].

Hence, transferring the condensate population into an excited,

stationary state necessitates an anharmonic potential along the

displacement direction y, where the decoupling of collective

and internal dynamics breaks down. Furthermore, to be robust

against excitations in the perpendicular direction z, anisotropy

in the transverse plane of the potential is required, causing a

detuning of trap levels between the directions.

Initially, the Ioffe–Pritchard field configuration as created

by the chip wires (plus external offset fields, see figure 3) is

rotationally symmetric, and provides harmonic trapping along

the transverse directions y, z. For the parameters chosen in our

experiment, the transverse trap frequency is ν0 = 4.1 kHz in

both directions, whereas the longitudinal frequency is of the

order of 30 Hz. To introduce anharmonicity and anisotropy, we

apply RF dressing [56, 42, 53]. Using two chip wires running

Figure 3. Main figure: schematic of the atom chip layout (see [52]
for details). The waveguide potential is formed by the current
through the trap wire along −x and a static bias field By, adding up
to quadrupole field (bent arrows). An external offset field along Bx,
perpendicular to the figure plane, defines the Larmor frequency at
the trap minimum (Ioffe–Pritchard field configuration). On a
separate chip layer, currents in broad wires along y (not shown)
provide weak longitudinal confinement. The radio frequency
dressing currents are applied to wires (RF) in parallel to the trapping
wire, leading to a RF field along z (blue arrows). The resulting
anisotropic transverse potential is shown as ellipse in the centre of
the quadrupole. Finally, the modulation of the trap position is
accomplished by a current in an auxiliary wire (M), leading to a
magnetic field, aligned at ∼19◦ with respect to the z-axis (red
arrow). Inset: field configuration for trap position modulation. The
transverse trap position is defined by cancellation of the chip wire
field (brown) and the bias field (green). Adding a weak field along z
(red) tilts the bias field slightly, leading to a horizontal shift of the
trap minimum.

in parallel to the trapping wire as antennae, the atoms are

irradiated by a RF near field with linear magnetic polarization,

which is red-detuned by tens of kHz with respect to the atomic

Larmor frequency due to the static magnetic field at the trap

centre. The RF field adiabatically mixes the Zeeman levels of

the F = 1 hyperfine manifold, coupling them to dressed states.

This gives rise to an energy shift that depends on detuning

from the Larmor frequency 
(r) and coupling strength (Rabi

frequency) �(r). Both quantities are position-dependent, the

latter because of the changing RF polarization with respect to

the local magnetic field that modulates the coupling strength.

In the rotating-wave approximation [42], the resulting potential

landscape up to a constant is given by

V (r)/h =
√

�(r)2 + 
(r)2.

The dressing is most effective along the direction

perpendicular to the RF polarization; in our case, applying

a polarization along the vertical axis z leads to a deformation

mostly along y. In figure 4(a), the potential along y is shown

as a function of dressing strength, expressed as coupling �0

near the trap centre. At sufficiently strong coupling, splitting

of the potential into a double well occurs, which is the typical

application of RF-dressed potentials [53, 57–60]. However, at

lower coupling, this technique also allows for the introduction

of anharmonicity and anisotropy to a single trap, as needed for

our scheme. In the experiment, we apply a RF field of ∼0.84 G

peak-to-peak amplitude, leading to a coupling �0 = 147 kHz,

at a frequency red-detuned by 
0 = −54 kHz with respect to

the Larmor frequency near the trap minimum (824 kHz).

The resulting potential is shown as a green line in

figure 4(a). Even though the rotating-wave approximation

holds well for the used dressing strength [61], the high
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Figure 4. Effects of RF dressing on the transverse trapping potential. (a) Potential along the y (displacement) direction, as a function of RF
Rabi frequency. The detuning is 
0 = −55 kHz. At dressing strengths above �0 ∼ 180 kHz, splitting of the single potential into a double
well occurs. (b) Shift of single-particle trap levels versus dressing strength. Solid and dashed lines correspond to perpendicular (y) and
parallel (z) directions with respect to the RF polarization, respectively. Blue: frequency of harmonic part, as defined in equation (7). Black,
red: first and second level spacing of single-particle eigenstates. Inset: initial (grey) and dressed (black) potential, each with their first three
energy levels. The green lines in both panels mark the setting used for the experiments.

sensitivity of the excitation protocol to the exact potential
shape calls for an exact calculation by means of a Floquet
analysis [62]. Along two transverse directions the result can
be approximated by a sixth-order polynomial of the form

V6(y, z)/h = νy

2

(

y

ly

)2

+ σy

(

y

ly

)4

+ ξy

(

y

ly

)6

(7)

+ νz

2

(

z

lz

)2

+ σz

(

z

lz

)4

+ ξz

(

z

lz

)6

. (8)

In this expression, the lengths ly,z =
√

h/(mνy,z)/(2π)

correspond to the characteristic length of the harmonic part.
The parameters are given by

νy = 1655 Hz; νz = 2751 Hz

σy = 78.2 Hz σz = −69.6 Hz

ξy = −0.96 Hz ξz = 9.1 Hz

ly = 265 nm lz = 206 nm.

(9)

Along y, the sixth-order term ξy is negligibly small, and the
description reduces to a Duffing oscillator [63].

By solving the Schrödinger equation, the single-particle
trap levels of the dressed potential can be obtained.
The first two level spacings ν1,2 along y and z are
shown in figure 4(b). For the used parameters (as marked
by a green line), the initial degeneracy of the level
spacings is lifted, and we obtain the excitation energies
(zero-point energy subtracted) [E10, E20, E01, E02, E11] /h =
[1.84, 3.83, 2.58, 5.21, 4.42] kHz with Ei j denoting the ith
and jth state along y and z, respectively. The relevant level
spacings along y are given by ν1 = 1.84 kHz, ν2 = 1.99 kHz,
the first level spacing along z is νz = 2.58 kHz. From the
corresponding eigenfunction along the z direction, and a
Thomas–Fermi approximation [64] of the longitudinal profile
for N = 800 atoms, we can estimate the coupling constant4 in
equation (1) by averaging as g = h × 300 Hz µm [65].

4 Note, that we normalize the wave function to 1, not N, in equation (1).

Hence, g incorporates the atom number.

In the experiment, characterization of the initial harmonic

trap is straightforward, using RF spectroscopy and observation

of collective oscillations. On the other hand, confirming

the (calculated) parameters of the anharmonic dressed trap

with sufficient accuracy is difficult. Instead, we optimize

the experimental control parameters (RF field strength

and detuning) directly, by comparing the response to the

control ramp to that determined numerically using those trap

parameters. Along the longitudinal x-axis, the harmonic trap

frequency νx = 16.3 Hz is determined by observation of

deliberately excited collective modes of the atom cloud.

3.2. Control of trap motion

The transverse movement of the potential is accomplished by

applying a time-dependent current to an auxiliary wire running

parallel to the main trapping wire. As shown in the inset of

figure 3, the additional magnetic field along z causes a slight

tilt of the homogeneous bias field, which is exactly aligned

along y initially. The trap minimum position, which is given

by the point where the bias field cancels that of the trapping

wire, is displaced along y. Additionally, the y-component of

the modulation field, which changes the magnitude of the bias

field, causes a slight proportional movement along z. However,

as confirmed by two-dimensional simulations, the anisotropy

of the transversal potential suppresses any significant influence

on the excitation along y. From numerical simulations of the

field geometry, the movement of the trap minimum caused

by the current can be calculated as 26 nm mA−1 along y

and 9 nm mA−1 along z. The geometry of all chip wires and

homogeneous offset fields involved in trapping and modulation

is shown in figure 3.

3.3. Effect of finite control bandwidth

The current in the modulation wire is driven by a custom-

design low-noise current source, which is controlled from

6
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Figure 5. Effect of filtering due to finite electronics bandwidth.
k-axes are scaled to �k0 =

√
2mhν1. (a) Control ramps λ(t). Red:

original control ramp as derived from OCT. Black: control ramp
after applying the electronics filtering. Blue: filtered, rescaled and
shifted control ramp. (b) GPE momentum distribution, simulated
without accounting for finite bandwidth. (c) GPE momentum
distribution, simulation including finite bandwidth, rescaling of the
control ramp by a factor of 1.6 and a time shift of 0.08 ms.

an arbitrary waveform generator5, that outputs the excitation

ramp. A slight smoothing of the control sequence is imposed

by finite bandwidth of the electronics, which has to be

accounted for when comparing experimental and numerical

results (see section 4.1). The measured transfer function

modulus |M(ν)| at a frequency ν can be approximated

by an exponential |M(ν)| ≈ eν/νco with cutoff frequency

νco ≈ 4.4 kHz. Furthermore, a frequency-dependent phase

shift is imposed. Effectively, filtering causes a reduction of the

driving amplitude near the resonant frequency ν1 ≈ 1.8 kHz

by a factor |M(νy)|−1 ∼ 1.6, and a time delay on the order of

0.1 ms (figure 5(d)). In figure 5 it is shown, that the filtering

due to the electronics can be largely cancelled by rescaling and

shifting the control sequence by these factors. The difference

in the outcome of the simulated momentum distribution is

only small and largely given by a slightly enhanced collective

oscillation (see section 4.3).

3.4. Measurement of momentum distributions

At a time t after starting the excitation process, we suddenly

switch off the trapping potential, implying that for t < 5 ms

the excitation process is still incomplete. The fast transverse

expansion of the cloud due to the tight waveguide confinement

causes atom interactions to vanish rapidly, and the ensuing

expansion can be considered ballistic. After texp = 46 ms of

expansion, we take a fluorescence image [66] similar to that

shown in figure 6(a), fully integrating over the z-direction.

In the images, three separate clouds can be observed along

the longitudinal x-direction. The two side peaks emerge due

to decay of the excited state which has been populated by

our excitation protocol. Correlation properties of these (twin

beams) and the dynamics of the decay process have been

analysed elsewhere [66, 35]. We separately integrate along x

over the central and side peaks, respectively (blue dashed lines)

to analyse the transverse state of each part of the system. The

observed density distributions along y (figure 6(b)) represent

the momentary momentum distributions of the trapped cloud

at time t, as the initial transverse cloud size (of the order of

5 Tabor Electronics WW5061.
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Figure 6. Experimental image analysis. (a) Typical experimental
image data for optimal excitation and t = 5.5 ms, averaged over 12
shots. As the image is taken after 46 ms of expansion time, it
predominantly reflects the initial momentum distribution. The scale
bar corresponds to a spatial distance of 187 µm, equivalent to the
typical momentum of 5.5 µm−1 ≈ k0. (b) Transverse momentum
distribution inferred from the image in panel (a). Upper (black) line:
central peak, inside dashed lines in (a). Lower (red) line: emitted
atoms, outside dashed lines in (a). Dashed (blue) line: Gaussian fit
to emitted atom momentum.
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Figure 7. Comparison of momentum distribution dynamics as
obtained from experiment and theory for typical parameters. (a)
Experiment. Each pixel column in the false-colour plot corresponds
to a distribution as shown in figure 6(b). (b) 1d GPE numerics,
including finite bandwidth effects (see text).

ly ∼ 250 nm) is negligible compared to that after expansion

(far field). If we express momenta as wave numbers ky, a

distance δy in the image hence corresponds to δky = α δy

with α = m/�ttof ≈ 0.034 µm−2. Taking an experiment series

where t is scanned, we can thus fully access the momentum

distribution dynamics ñy(k, t) along the excitation direction,

which we will typically depict as false-colour plot, see e.g.

figure 7(a). Our main interest will be the dynamics of the

central (source) cloud which is subject to the excitation;

however, in section 4.2, also the transverse dynamics of the

twin-beam peaks will be of some importance. For each of

the experimental series shown in this paper, we averaged over

typically 12 realizations to suppress noise and allow for robust

comparison to theory results.

4. Results

We will analyse the excitation dynamics in various

complementary ways, motivated by the goal of developing

an effective mapping of the many-body dynamics to a driven

two-level system. In section 4.1 we will start by comparing

the results obtained in section 2 for the time-dependent

momentum distribution of the condensate wave function

to experimental observations, varying a range of relevant
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parameters. While the excellent agreement ensures that the

numerics used to obtain the optimized ramp are accurate,

this result only gives limited insight into how the excitation

process can be understood qualitatively. In section 4.2 a

more phenomenological analysis is performed directly on the

experimental data, which will give hints about how to develop

a two-level description. In section 4.3 the GPE simulations

are investigated in more detail, using a description based on

Wigner quasi-probability functions, and displaced Fock states.

It will become evident that all approaches lead to conceptually

similar and quantitatively compatible interpretations, which

can finally be unified to obtain a two-level interpretation as

sought after initially.

4.1. Comparison of experiment and numerics

Compared to other driven quantum systems, where optimal

control techniques may be applicable, a rather unique

advantage of cold atoms is the accessibility of the system

response, enabled by the relatively large time and length

scales and the abundance of powerful imaging techniques.

Probing the performance of a control strategy such as that

developed in section 2 is not restricted to the final outcome,

but the driven system can be monitored even while it is being

driven, providing direct means to compare experiment and

numerical simulations, or apply feedback schemes [67]. As

explained in section 3.4, time-of-flight fluorescence images

give us direct access to the momentum distribution of the

condensate along its transverse axis. In figure 7(a), a typical

momentum distribution dynamics plot, as obtained from the

experiment, is shown.

Many-body effects. Along the transverse directions,

confinement is strong enough (hν1 ≫ µ) to make interaction-

induced effects comparatively small. Still, to achieve the

highest possible fidelity of the excitation, it is crucial to

take into account the nonlinear term in equation (1) for

optimization. In figure 8, the excitation dynamics is shown

for a data set, where the atom number has been varied before

starting the excitation sequence. The data is compared to the

result of the GPE (1).

It is observed that effective excitation is achieved for

a nonlinearity corresponding to an atom number N ∼ 900,

which is close to what has been used in the optimization. For

all other atom numbers, stronger residual dynamics after the

end of the sequence (t > 5 ms) is found, indicating decreased

fidelity, as the desired state is stationary. While the GPE

simulations reproduce the general tendencies found in the

experiment, the agreement is not as good as e.g. for scaled

excitations (see below). For the highest atom number, only

rather poor qualitative agreement is reached, indicating the

insufficiency of a mean-field model such as GPE (necessitating

e.g. a MCTDHB ansatz [34, 48]) and strong effects of the rapid

decay of the excited state.

Robustness against experiment inaccuracy. In OCT, an

aspect of high relevance is the sensitivity of the excitation

dynamics to deviations of experimental parameters from the

ones used for optimization. In our case, this predominantly

applies to parameters affecting the trapping potential. We

consider small changes of the potential parameters νy, σy. In the

experiment such deviations arise from variation of the dressing

parameters �0, 
0, which, in turn, are caused by inaccuracy

of the current in the RF antenna wires, and of the external

offset field along x (defining the atomic Larmor frequency),

respectively.

Numerical results for a range of parameters are shown

in figure 9. Panels (c)–(f) correspond to deviations caused by

an offset field misalignment of ±2 mG (b), (c) and ±7 mG

(e), (f) leading to weaker (positive values) or stronger RF

dressing, respectively. It is observed that any deviation leads

to a decrease in excitation efficiency, which is defined here

as time-averaged overlap with the desired wave function ψd,

η = 〈| 〈ψd|ψ(t)〉 |2〉t>5 ms. The similarly defined population of

higher excited states ζ becomes strong at trap modifications

with weaker dressing δνy > 0 and δσy < 0. This effect can be

expected, as the protection against excitation to higher states

fades with decreasing anharmonicity, while the excursion

of the trap relative to the typical length ly increases. In

panel (d), on top of an offset field mismatch of +3 mG,

the current in the RF wire has been adjusted to cancel the

effect on νy. The weak mismatch in σy and ξy only leads

8
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Figure 9. Stability of the excitation sequence against inaccuracy of the trapping potential (numerical result). In each plot, the deviation of
the potential terms δνy, δσy are given (in units of Hz), as well as the efficiency η and the spurious excitation to higher states ζ as defined in
the text.

to a slight reduction of efficiency. Consequently, optimizing

the experimental parameters for a strong excitation (e.g. by

minimizing residual dynamics at t > T = 5 ms) may lead

to slightly shifted values, which however compensate each

other. Using this method, a sensitivity of better than 1 mG

(or an equivalent mismatch of the dressing current) can be

reached, which is beyond what can be achieved by independent

characterization of the trapping potential.

Scaled excitations. In figure 10 the momentum distribution

dynamics is shown for a data set with varying excitation

efficiency, which will be the main subject of analysis in the

remainder of this and the following section, as it covers a

very broad range of control sequences. To achieve different

efficiencies, the excitation ramp has been scaled in amplitude

by factors s with respect to the optimal control result, resulting

in strongly varying wave function dynamics. The approach

of simple amplitude scaling has been chosen over using

separately optimized ramps for different efficiencies, to allow

for easier comparison due to the well-defined relation between

the used control sequences. Furthermore, our analysis will

show that the main spurious effect of this strategy are collective

oscillations at reduced scalings. Comparison between GPE

and the experimental result (average over ∼12 realizations)

shows excellent agreement at early times6. At later times,

decay of the excited state into twin beams, which is not

accounted for in theory, becomes significant (see bottom right

panel) and for high values of s, agreement is reduced due

to inelastic collisions with the twin beams which reside in

a different transverse state. However, for weak excitation,

even the shape of single ‘beating peaks’ after the end of the

excitation pulse is precisely captured by numerics. Along the

k-axis, the GPE result has been convolved with a Gaussian

of m/(�ttof) · 40 µm ≈ 1.20 µm−1 rms width to account for

finite imaging resolution and bulk position fluctuations. Apart

from a small shift of the t-axis and a slight re-scaling of the

6 Note that s has been defined including the necessary re-scaling due to finite

electronics bandwidth (see figure 5).

k-axis7, the scaling factor s is the only free input parameter of

the simulation.

Having established the detection method, and verified that

the outcome is consistent with the numerics on which the

control optimization has been founded, we now proceed to a

more qualitative analysis of the experimental result.

4.2. Analysis of experimental momentum dynamics

In this and the following section we will analyse the

momentum distribution dynamics beyond a simple comparison

to numerical results. The notion underlying the discussion

will be that of a few-level system, comprised by the ground,

first and occasionally second excited state of the confinement

potential along the excitation direction, with the final goal to

reduce the anharmonic oscillator to a closed two-level system.

This approach may seem inappropriate, as it relies on the

superposition principle, which requires a linear equation of

motion and is hence not applicable to a mean-field wave-

function as described by the GPE. However, in our case the

nonlinearity is weak compared to the oscillator energy, and so

is the modification of the dynamics due to many-body effects

(see figure 8), suggesting that a description in terms of single-

particle states may still provide significant insight8.

Centre-of-mass dynamics. As the simplest possible

observable derivable from the momentum dynamics, we start

by analysing the transverse centre-of-mass of the experimental

images, corresponding to the momentum expectation value

K(t) ≡ 〈ky(t)〉, see black lines in figure 11 (left panels).

In the power spectra of K(t) (centre panels), two strong

peaks are observable near the first two transverse level

spacings at frequencies ν1 = 1.84 kHz and ν2 = 1.99 kHz,

and a weak third at ν3 ≈ 2.10 kHz, defined analogously.

7 The shift in t is well below the experimental time resolution, and is very

probably due to the inaccuracy of the filtering circuit characterization. The

necessity for the re-scaling of k (of the order of 10%) might arise from

interaction effects causing weak hydrodynamic effects in expansion [68]. The

values of both adjustments are consistent among all sets shown.
8 A more involved, but conceptually similar approach, which is directly based

on stationary states of the GPE can be found in [12, 69, 41].
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Figure 10. Results for scaled excitation ramps. Mean atom number is 770 for sets I, II, IV–VI, and 856 for sets III and VII. For each of the
seven sub-sets, the upper image (red false-colour) is the experimental result, normalized separately for each time step. The middle image
(blue false-colour) shows the numerical GPE result, including low-pass filtering and scaling by the factor s as given. The bottom image
shows the deviation between experiment and theory, expressed as imbalance ñex − ñth; the colour scale for the imbalance is enhanced by a
factor 3. The bottom right inset shows the relative amount Ndec/N of atoms that have decayed from the excited state into twin atom pairs.

Assuming a single-particle level picture, these peaks can

be interpreted as beating frequencies between populations

of the first three levels of the oscillator, where mean-field

effects are causing frequency shifts, as described below.

Consequently, the magnitude of oscillations is the strongest

for intermediate excitation efficiencies (sets II–IV), where

the levels are populated most evenly, maximizing the beating

contrast (see below).

A crucial observation is that also the transverse profiles

of the twin-beam peaks, which are separated in the images

longitudinally (see figure 6), exhibit strong oscillations of

Kt (t) ≡ 〈k(t)
y (t)〉. Meanwhile, they fully maintain their

Gaussian shape (figure 6(b)). In figure 11, oscillations of the

relative centre-of-mass Kr(t) = K(t) − Kt (t) (left), and their

power spectrum (centre) f (ν) = |F[Kr(t)](ν)|2, are shown

as blue lines. It is observed that, while the oscillations are

similarly strong as in a fixed frame, all peaks in the power

spectrum, except that near ν1 are suppressed. This suggests that

in a reference frame co-oscillating with Kt (t), the dynamics can

be understood in terms of two transverse levels, motivating an

approach of decomposition into a quasi-classical oscillation,

and ‘internal’ dynamics, which remain unaffected by the

bulk oscillation9. This interpretation is consistent with our

understanding of the decay process [36], where the transverse

state of the twin beams, a ground state displaced by Kt (t),

defines the appropriate ground state for the internal dynamics.

In section 4.3, a more rigorous formalism for the co-oscillating

frame will be given, and its position will be independently

derived from numerical results.

In the right column of figure 11, spectra are shown which

are derived from the oscillations at times t > 5 ms only,

9 This decomposition is exactly valid for harmonically confined many-body

systems [39, 40]. Obviously, this does not hold for an anharmonic oscillator,

which is exactly why our excitation to a non-classical state by displacement

can work at all (see above). Being aware of the inconsistency, we still apply

the decomposition approach to qualitatively understand the dynamics.
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Figure 11. Momentum space centre-of-mass dynamics for data set as shown in figure 10. Left column: centre-of-mass momentum of the
source cloud with respect to a fixed frame (K(t), black) and relative to the twin-beam centre-of-mass (Kr(t), blue). (See figure 14 for the
twin-beam centre-of-mass.) In the background, the full dynamics is shown (see figure 10). Middle column: corresponding power spectra
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previous section. All spectra are in arbitrary units, but normalized identically for each of the columns.

i.e. where no driving occurs anymore. Hence, they provide

a characterization of the final state that is reached after the

excitation. Qualitatively, the same features are observed as in

the full time spectra, however, peaks at ν2 are smaller, which

is consistent with theory, as will be shown below. Also, in the

relative centre-of-mass spectrum, the observation of a single-

peak structure, with a minimal amplitude for the most efficient

excitation is even more evident.

In figure 12(a), the integrated power of the oscillations

P ∝
∫

f (ν)dν, measuring the stationarity of the final state,

is shown as a function of the numerically obtained excitation

efficiency η (see previous section). Apart from the strongest

driving, where higher states may become excited more easily,

P shows fair agreement with a curve given by η(1 − η),

which is the squared amplitude of the interference term in

the momentum-space density of a two-level system with

momentum-space wave functions ψ̃0, ψ̃d:

ñ(ky, t; η) =
∣

∣

∣

√

1 − ηψ̃0(ky) + √
ηψ̃d(ky)

∣

∣

∣

2

(10)

= (1 − η)|ψ̃0(ky)|2 + η|ψ̃d(ky)|2

+ 2
√

η(1 − η)ℜ[ψ̃∗
0 (ky)ψ̃d(ky)] cos(2πν ′

1t).

The positions of the beating peak (obtained from a

Gaussian fit) are shown in figure 12(b). For high efficiency,

the frequency is shifted downwards from the oscillator level

spacing ν1 (red line). This is explained by the mean field term

in the GPE (1). For the boundary case of near-unity efficiency,

the shift can be calculated rather easily. As the ground state

population is negligible, it does not contribute to the interaction

energy, and the chemical potential µe for an atom in the excited

state is given by the second eigenvalue of the time-independent

GPE. The according wave function ψd (i.e. the desired state
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Figure 12. Analysis of post-excitation beating spectra shown in the
right column of figure 11. (a) Integrated power of oscillations P. The
experimental points have been scaled along the y-axis for best fit to
η(1 − η) (red line). η has been derived as described in the previous
section. The shading of each point indicates the corresponding
scaling s (white is highest). (b) Peak position (black squares, left
axes) and cosine of averaged phase (green circles, right axes). Red
and blue lines correspond to the single-particle level spacing ν1, and
the mean-field-shifted level spacing ν ′

1, respectively.

in the optimization process) can now be used to calculate the

chemical potential of a single atom in the ground state ψ ′
0,

using a Schrödinger equation with effective potential arising

from the mean field of the excited state:

µeψ
′
0(y) =

[

− �

2m

∂2

∂y2
+ Vext(y) + 2g|ψd(y)|2

]

ψ ′
0(y). (11)

The beating frequency is now given by the difference in

chemical potential. Instead of the oscillator level spacing ν1 ≈
1.831 kHz, we obtain ν ′

1 = (µe − µg)/(2π�) ≈ 1.724 kHz

(blue line). Given the uncertainty in the input parameters of the

calculation (such as the assumption of an equilibrium Thomas–

Fermi shape longitudinally), this value agrees well with the

experimentally obtained one for maximum efficiency (set IV),

νV = 1.709(4) kHz.

Finally, we can have a look at the phase of the (relative)

centre-of-mass oscillation. When comparing the value of

K(r)
y (t) for different scalings at a fixed time in figure 11, it

is apparent, that the phase inverts at the point of maximum

efficiency. We take the averaged phase from the Fourier

transform result, weighted by the Lorentzian fit of the peak,

and obtain the curve shown in figure 12(b) (right axes). The

inversion is reminiscent of a two-level system subject to a Rabi

driving, where the phase of precession inverts after passing the

pole of the Bloch sphere at a pulse area larger than π . As will be

shown in section 4.3, the excitation process can be understood

analogously.

4.3. Interpretation of numerical result: two-level driving

model

To understand the physical mechanism governing the optimal

excitation protocol, in the following we analyse the time

evolution of the condensate wave function in the Wigner

representation [38]:

W (y, k, t) =
∫

e−iksψ
(

y + s

2
, t

)

ψ∗
(

y − s

2
, t

)

ds, (12)

which provides a mixed position–momentum distribution. The

Wigner function has many appealing features reminiscent

of a classical distribution function. Integration over all

momenta k gives the spatial probability distribution |ψ(y, t)|2.

(a) (b)

(c)

(d)

(e)

(f)

Figure 13. Time evolution of Wigner function. Panel (a) reports the
time evolution of the Wigner function, and panels (b)–(f) show
snapshots at selected times. In (a) we show the iso-surfaces at ±0.35
times the maximum value of the Wigner function, with transparency
added to the iso-surface at time above 3 ms to highlight the
appearance of the negative Wigner function part, associated with the
first excited state. The magenta line indicates the excitation
trajectory λ(t). For discussion see text.

Likewise, integration over y gives the momentum probability

distribution. The Wigner function of the condensate ground

state, figure 13(f), approximately corresponds to the ground

state of the harmonic oscillator, with equal uncertainty in

position and momentum. In the figure the distribution is

slightly elongated along y due to the nonlinear atom–atom

interactions. The desired state of the control, figure 13(b),

corresponds to the first excited state of the GPE in the

anharmonic trap. It has positive and negative values (giving

a node at y = 0 upon integration over all momenta), and thus

differs from a genuine classical distribution function.
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Figure 14. Reference frame for the two-level model. Underlying data are the same as shown in figures 10 and 11. Red lines are the
momentum-space displacement K0(t) of the two-mode basis states, as obtained from applying equation (13) to the GPE result. Black points
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Panel (a) of the figure reports the time evolution of the

Wigner function. We plot the iso-surfaces at ±0.35 times

the maximum value of the Wigner function. At times later

than 3 ms we have added transparency to the iso-surface

for positive values to show the appearance of the negative

part of the Wigner function, associated with a non-classically

excited state. The solid line shows the time variation of the

spatial minimum of the confinement potential. Initially, this

displacement brings the condensate into collective oscillations,

whose frequency is determined by the harmonic part of the

confinement potential. For a large enough displacement, the

condensate wave function is brought into the region where

the anharmonicity of the confinement is sufficiently large to

modify the internal structure of the wave function (and not

just its displacement). One observes that in addition to the

centre-of-mass oscillations in this regime the transfer from the

ground to the first excited state occurs. Finally, at the terminal

time T = 5 ms of the control process the minimum of the

confinement potential is shifted to bring the condensate to a

complete halt.

We next suggest a procedure to approximately map the

excitation dynamics onto a genuine two-level description of

ground and excited condensate states. As in section 4.2, the

main idea is to separate the wave function dynamics into (i) a

collective, quasi-classical oscillation, which is needed to bring

the condensate into the anharmonic part of the trap, and (ii)

an internal conversion between the ground and first excited

state, defined in a co-moving frame. The latter conversion is

governed by the anharmonic part of the trap, as explained

above.

We define wave functions φg(y) and φe(y) as single-

particle eigenfunctions of the harmonic part of the trap

potential only, i.e. equation (7) with σy and ξy set to

zero. Also, any modifications due to the nonlinear atom–

atom interactions are neglected. This simplification allows

us to analyse the dynamics in terms of displaced Fock

states [70], that capture well the notion of the separation

approach. Let D̂[α(t)] = exp[α(t)â† − α(t)∗â] denote the

displacement operator of the harmonic oscillator [38], where

α(t) = [l−1
y Y0(t) + ilyK0(t)]/

√
2 determines the position and

momentum of the displacement at time t, and â denotes the

annihilation operator. For a given displacement α(t), we can

compute the overlap between the displaced ground and excited

states with the condensate wave function according to

χ(t) =
∣

∣

∣

∣

∫

[

D̂[α(t)]φg(y)
]∗

ψ(y, t) dy

∣

∣

∣

∣

2

+
∣

∣

∣

∣

∫

[

D̂[α(t)]φe(y)
]∗

ψ(y, t) dy

∣

∣

∣

∣

2

. (13)

Determining the value α(t) which gives the largest overlap at

time t allows us the aforementioned decompositions into (i)

centre-of-mass coordinatesY0(t) and K0(t), and (ii) probability

amplitudes 〈D̂[α(t)]φg|ψ(t)〉 and 〈D̂[α(t)]φe|ψ(t)〉 for the

ground and excited state within the displaced frame. In all

cases we find an overlap χ(t) well above 90%, which thus

justifies the wave function decomposition. In figure 14, the

obtained values for K0(t) are shown as red lines, and compared

to experimentally obtained values, as described below. In

figure 15 we compare χ(t) and the obtained excited population

η′(t) = |〈D̂[α(t)]φe|ψ(t)〉|2 to results from direct projection

of ψ(y, t) on the oscillator states φ(y) (defined in the co-

moving frame of the excitation motion). The direct projection

leads to strong transient population of higher excited states,

and a sudden jump near the end of the excitation (figure 15(a)),

where they are depopulated again. This is reminiscent of the

fixed-frame centre-of-mass spectra (black lines in figure 11),

where a peak near ν2 is present when regarding the entire

sequence (centre column), but mostly vanishes after t = T

(right column). In contrast, the two-level approximation in

the system displaced by α(t) yields a smooth transition

(figure 15(b)), consistent with the continuous appearance of

negative values of the Wigner function (figure 13). In the

momentum dynamics derived from the two-level model in

a similar manner to equation (10) as shown in figure 15(d),

a continuous transfer to the excited state is observed, with

strong beating at intermediate excited population. Again, this

is consistent with the experimental relative centre-of-mass

spectra (blue lines in figure 11), where only a single peak

near ν1 persists, even during the excitation. Similar to a Rabi

pulse with area larger than π , the excited population η(t) is

decreasing towards t = T for scaling parameters s > 1.
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0

0.5

1
(a)

η
, 

η
’

(c)

(b)

k
/k

0

t (ms)

0 2 4 6

−1

1

(d)

t (ms)

0 2 4 6

Figure 15. State populations during the excitation process. (a) Populations η(t) of excited states of the full anharmonic potential (equation
(7)) as arising from direct projection of the GPE result for data set V (s = 1). The solid line indicates the population of the first excited state,
dotted lines represent the ground (black) and first and second excited (red, blue) states. (b) Corresponding momentum dynamics (identical to
figure 10-V). (c) Population of first excited state in the co-oscillating frame within the two-mode model η′(t). Solid line: data set V,
corresponding to the solid line in (a). Dashed lines: sets I (black, s = 0.27), III (red, s = 0.63), and VII (blue, s = 1.43). The dash-dotted
line indicates the total overlap of the two-level model with the GPE result χ(t) (see equation (13)), which exceeds a value of 0.95 at all
times t. (d) Momentum dynamics arising from time-dependent superposition of φ0, φ1 in the co-oscillating frame, data set V. Note the strong
beating at intermediate times/excited fractions.

As laid out in section 4.2, the appropriate ground state

for the internal conversion dynamics can also be determined

in the experiment from the centre-of-mass position Kt (t) of

the twin-atom beams which the excited state is decaying into

continuously. For times t, where the decayed fraction becomes

perceivable, we can compare the experimentally found Kt (y)

to K0(y) as in figure 14, and find good agreement without

any free parameter over a large range of settings. Together

with the absence of decay products from higher excited states

in the experiment, this result confirms the validity of the

decomposition approach. In [36] it has been shown, that the

obtained populations of the excited state lead to an accurate

quantitative description of the ensuing decay process.

5. Conclusion

In conclusion, we have presented successful application of

optimal control theory to the problem of preparing a non-

classical, strongly out-of-equilibrium motional state of a

Bose–Einstein condensate, realizing population inversion with

near-unity fidelity. The obtained condensate wave function

corresponds to the first excited eigenstate of the Gross–

Pitaevskii equation, closely resembling the first odd Fock

state of a harmonic oscillator. To manipulate the external

state of the Bose–Einstein condensate, we used precisely

controlled motion of an anharmonic trap potential along the

optimized trajectory. Experimental and numerical results on

the momentum distribution dynamics during and after the

excitation sequence show excellent agreement over a large

range of parameters, including tuning of many-body effects.

Moreover, a model of the excitation dynamics based on

decomposition into a quasi-classical oscillation and the actual

state transfer has been developed, and shown to be consistent

with various observations made in both experiment and theory.

Using this approach, we were able to deduce an approximate

two-level description of the excitation process.

A first application of the vibrational state inversion,

using the condensate as a gain medium for matter wave

amplification, has been demonstrated in [35, 36]. However,

optimal control in condensates is not restricted to high-

fidelity preparation of a desired wave function, and more

general pulses, that e.g. act on non-stationary initial states

in a phase-sensitive manner can be implemented [71]. Also,

given the excellent control of the trapping potential, other

parameters than a simple one-dimensional displacement are

readily accessible to study properties of more complex excited

states [41]. State preparation beyond a mean-field description

has been proposed, including entanglement generation

[32, 33], number-squeezed states [34], or cooling [31], which

should be realizable in a similar fashion. More generally,

our results highlight the potential of experiments with Bose–

Einstein condensates as a test-bed for a large range of

quantum control problems, as known from NMR spectroscopy

[13–15], solid-state [20–25], atomic [19], or molecular physics

[16–18].
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[66] Bücker R, Perrin A, Manz S, Betz T, Koller C, Plisson T,
Rottmann J, Schumm T and Schmiedmayer J 2009
Single-particle-sensitive imaging of freely propagating
ultracold atoms New J. Phys. 11 103039
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We theoretically investigate protocols based on optimal control theory (OCT) for manipulating Bose-Einstein

condensates in magnetic microtraps, using the framework of the Gross-Pitaevskii equation. In our approach we

explicitly account for filter functions that distort the computed optimal control, a situation inherent to many

experimental OCT implementations. We apply our scheme to the shakeup process of a condensate from the

ground to the first excited state, following a recent experimental and theoretical study, and demonstrate that the

fidelity of OCT protocols is not significantly deteriorated by typical filters.
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Introduction. Optimal quantum control aims at the manipu-

lation of a quantum-mechanical wave function in a controlled

fashion [1–3]. External parameters, such as laser fields, can be

controlled at will and allow us to steer the wave function

from a given initial to a desired terminal state. Recent

years have seen tremendous research efforts in the realm of

quantum control [3]. Quantum chemistry implementations

often rely on stochastic optimization techniques, which are

particulary appealing for experimental implementations [2].

An alternative approach is provided by optimal control theory

(OCT) [1,4,5], which performs a numerical optimization of

the control fields through an iterative procedure by solving the

dynamic system equations.

In Refs. [6,7] we presented an experimental implementation

of optimal quantum control for a Bose-Einstein condensate.

Ultracold atoms become trapped in the vicinity of an atom

chip [8] by the magnetic fields produced by currents running

through the wires of the chip, and the magnetic confinement

potential can be controlled by changing the currents. We have

demonstrated the excitation of the condensate wave function

from the ground to the first excited state of an anharmonic

potential, where the population transfer has been achieved

with an efficiency close to 100% by displacing the potential

minimum according to a protocol computed with OCT.

In this Brief Report, we investigate the effects of filter

functions that distort the control parameters computed from

OCT. Such filters might be due to electronics and are inherent

to many experiments. For sufficiently simple control protocols

filter effects can be corrected through a simple deconvolution

scheme, but in general it is advantageous to incorporate

filtering directly in the OCT approach. In this paper we first

develop the methodology for OCT with filtered control param-

eters and then apply our scheme to the condensate shakeup

investigated in Refs. [6,7]. We find that for realistic filter

functions the fidelity of the control process does not become

deteriorated significantly. Although in this paper we focus only

on Bose-Einstein condensates, the developed methodology is

general and might be useful in a much wider context.

OCT without a filter. We first briefly review the optimal

control implementation of Bose-Einstein condensates formu-

lated in Ref. [9] (see also Ref. [10] for related work). Within

the framework of the Gross-Pitaevskii equation [11,12] the

dynamics of the condensate wave function ψ(r,t) is described

by (h̄ = 1)

i
∂ψ(r,t)

∂t
=

(

−
∇2

2M
+ V (r,λ(t)) + κ|ψ(r,t)|2

)

ψ(r,t).

(1)

The first term on the right-hand side is the operator for the

kinetic energy; the second one is the confinement potential,

which can be controlled by some external parameter λ(t); and

the last term is the nonlinear atom-atom interaction in the

mean-field approximation of the Gross-Pitaevskii framework.

M is the atom mass and κ is the strength of the atom-atom

interactions.

OCT is seeking an “optimal” time variation of the control

parameter λ(t) in order to fulfill certain control objectives. For

instance, the cost function

J (ψ,λ) =
1

2
[1 − |〈ψd |ψ(T )〉|2] +

γ

2

∫ T

0

[λ̇(t)]2dt (2)

becomes minimal when state ψ(T ) at the terminal time T of

the control process comes as close as possible to the desired
state ψd , apart from an irrelevant global phase [9]. The second

term penalizes strong variations of the control parameter and

is needed to make the OCT problem well posed [9,13,14].

Through γ it is possible to weight the importance of wave-

function matching and control smoothness, and below we set

γ ≪ 1.

In order to bring the system from the initial state ψ0 to

the terminal state ψ(T ) we have to fulfill the Gross-Pitaevskii

equation, which enters as a constraint in our optimization

problem. The constrained optimization problem can be turned

into an unconstrained one by means of Lagrange multipliers

p(t). To this end, we introduce a Lagrange function,

L(ψ,p,λ) = J (ψ,λ) + Re

[ ∫ T

0

〈p(t)|iψ̇(t)

− [Hλ + κ|ψ(t)|2]ψ(t)〉dt

]

, (3)

where Hλ is the single-particle Hamiltonian defined through

Eq. (1). The Lagrange function has a saddle point at the

minimum of J (ψ,λ) where all derivatives δL/δψ∗, δL/δp∗,

and δL/δλ become 0. Performing functional derivatives in
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FIG. 1. (Color online) Optimization strategy (a) without and (b) with a filter function. When a filter is considered, the optimization interval

[0,T ] should differ from the time interval [0,T ⋆] of the condensate dynamics to account for the finite filter response time.

the Lagrange function, we then arrive at the following set of

equations [9,13]:

iψ̇ =

(

−
∇2

2M
+ V (r,λ(t)) + κ|ψ |2

)

ψ, (4a)

iṗ =

(

−
∇2

2M
+ V (r,λ(t)) + 2κ|ψ |2

)

p + κψ2p∗, (4b)

γ λ̈ = −Re

〈

p

∣

∣

∣

∣

∂Hλ

∂λ

∣

∣

∣

∣

ψ

〉

. (4c)

Equation (4a) is the initial value problem ψ(0) = ψ0 of

the Gross-Pitaevskii equation, whereas Eq. (4b) is a terminal

value problem for the adjoint variable p(T ) = i〈ψd |ψ(T )〉ψd .

Finally, Eq. (4c) determines the optimal control and is a

boundary value problem where both the initial and the terminal

values are fixed, λ(0) = λ0 and λ(T ) = λT . It has been

discussed in Refs. [9,14,15] that Eqs. (4a)–(4c) can be also

used for arbitrary control parameters in order to formulate an

iterative procedure that successively improves λ(t).

OCT with a filter. In this paper we discuss the case where

the external control parameter λ(t) does not directly influence

the confinement potential but becomes distorted by some filter

function h(τ ). Such filtering is inherent to many quantum

control experiments and has previously been discussed also in

the context of laser pulse shaping [16,17]. Figure 2(b) shows

a typical filter function due to the finite bandwidth of the

electronics [7]. As a consequence, when the optimized control

λ(t) is sent to the electronics, a distorted (nonoptimal) signal,

λ⋆(t) =

∫ t

0

h(τ )λ(t − τ ) dτ, (5)
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FIG. 2. (Color online) (a) Filtered and unfiltered control for λ obtained without the consideration of a filter. (b) Typical filter function h(t)

taken from experiment [7]; the impulse response of the electronics is modelled as a second-order linear filter with a 4.4 kHz cutoff frequency

and a quality factor of 0.34. (c) Time evolution of the condensate density under the effect of the unfiltered control. (d) Absolute value of desired

and terminal wave function for unfiltered control at terminal time T of control process. (e, f) Same as (c, d) but for the filtered control λ⋆(t).
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determines the time evolution of V (r,λ⋆(t)). It is obvious that

the condensate dynamics with the nonoptimized λ⋆(t) will

no longer bring the condensate wave function to the desired

state.

A possible solution is to try to deconvolute Eq. (5) and to

find an input signal that produces the proper output signal.

However, since h is typically a filter for high frequencies,

and the optimal control might include fast time variations,

the deconvolution is often doomed to failure. In what follows

we formulate a different strategy. We stay with the OCT

framework of Eqs. (1)–(3) but replace λ(t) with the filtered

λ⋆(t). Our task now is to determine the optimal control λ(t)

such that the filtered control of Eq. (5) brings the condensate

from ψ0 to ψd . In fact, we can carry over most of the results

of the previous discussion. However, in Eqs. (4a) and (4b) we

have to replace λ(t) with λ⋆(t), and the control, Eq. (4c), is

changed to the form

γ λ̈ = −Re

∫ T

t

h(s − t)

〈

p(s)

∣

∣

∣

∣

∂V

∂λ

∣

∣

∣

∣

ψ(s)

〉

ds, (6)

which is now nonlocal in time (note that ∂V/∂λ is evalu-

ated at time s). The optimality system is then formed by

Eqs. (4a) and (4b), with λ replaced by λ⋆, together with

Eq. (6).

A slight complication appears at this point. Let us consider

the schematic OCT loop depicted in Fig. 1. In the unfiltered

case in Fig. 1(a) the optimal control parameter λ(t) determines

how the condensate wave function is brought to ψd . If ψd is

a stationary state of the Gross-Pitaevskii equation and λ is

kept fixed at t � T , the system will remain in this stationary

state. On the other hand, in the presence of a filter things

behave differently. For λ(t � T ) = λT the filtered response

λ⋆(t) can still vary at times later than T , because of the finite

response time of the filter. Thus, even if the system ends up

in the desired state ψ(T ) = ψd at the terminal time T , the

ensuing temporal evolution of λ⋆ will push the system away

from ψd .

To account for this, we propose a slight variation of our

OCT implementation. We use different time intervals [0,T ]

and [0,T ⋆] for the control optimization and the condensate

simulation, respectively. The two end points differ by T ⋆ −

T = τ ⋆, as shown in Fig. 1(b). τ ⋆ is a time at which the filter

function has dropped to 0 (approximately the inverse of the

cutoff frequency). Thus, if λ is kept constant at times t � T ,

the filtered response λ⋆ will become constant at t � T ⋆.

In the presence of filtering, the OCT loop formulated in

Refs. [9,13,14] consists of the following steps.

(1) Start with some initial guess for λ(t), where λ is kept

constant for t � T .

(2) Solve the Gross-Pitaevskii equation, (4a), forward in

the time interval [0,T ⋆] using the filtered control λ⋆.

(3) Determine the terminal condition p(T ⋆) for the adjoint

variable, and integrate the sensitivity, Eq. (4b), backward in

time.

(4) Compute a search direction for λ(t) via Eq. (6).

(5) Compute an improved control parameter λ(t) within the

time interval [0,T ], and iterate the loop 2–5 until convergence

is obtained or a given number of iterations is reached.
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FIG. 3. (Color online) (a) Optimal control with consideration of the filter function. The last part of the time evolution of λ is kept constant

in order to guarantee λ⋆(T ⋆) = λT . (b) Time development of the condensate density driven by the optimal control for a transition time of

8 ms. (c) Absolute value of desired and terminal wave function at the final time. (d, e) Same as (b, c), but for the shorter transition time of

2 ms.
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Results. We next apply the OCT implementation including

filter functions to the case of condensate shakeup described in

Refs. [6,7]. Here one starts in the ground state of an anharmonic

trap, and the trap center is displaced in an optimized fashion

such that the condensate is brought to the first excited state.

We only consider the spatial dynamics along the displacement

direction, and use the same trap and condensate parameters as

in Refs. [6,7]. The solid line in Fig. 2(a) shows the optimized

control for a shakeup process, using a time interval of 8 ms

and discarding filter effects. Here λ(t) directly corresponds

to the displacement of the trap center. The density plot in

Fig. 2(c) provides details about how the condensate is brought

from the initial to the desired state. Figure 2(d) demonstrates

that ψ(T ) and ψd almost perfectly match at the terminal

time T . In the presence of a filter function, depicted in

Fig. 2(b), the control parameter becomes distorted [dashed

line in Fig. 2(a)] and the control process leaves the system

in a highly excited and nonstationary state, as shown in

Figs. 2(e) and 2(f).

Things change considerably for the OCT implementation

with filtering, introduced above. Figure 3(a) shows the opti-

mized control λ(t) together with the filtered signal λ⋆(t). In

our OCT simulations we set the filter response time τ ⋆ to

0.5 ms. Figures 3(b) and 3(c) show that with the optimized

control parameter the desired state is reached perfectly, even

in the presence of filtering. In Fig. 3(d) we finally demonstrate

that the shakeup protocol also works for significantly shorter

transition times, here 2 ms. In Fig. 4 we investigate the

success for the shakeup process for different times T ⋆. For

small transition times, say around 2 ms, the transfer has a

high efficiency but the terminal state still differs somewhat

from the desired one. With increasing transition time the

efficiency increases, and the cost function saturates at later

times.
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FIG. 4. (Color online) Final cost for different transition times (we

set γ = 10−9). For transition times under 8 ms the final cost begins

to rise; for transition times under 2 ms no satisfying control could be

obtained.

In conclusion, we have developed a methodology that

allows us to incorporate filter effects in optimal quantum

control simulations. We have applied our approach to a

condensate shakeup process, where the wave function is

transferred from the ground to the first excited state of an

anharmonic, magnetic microtrap, and have demonstrated that

high transfer efficiencies can be achieved even in the presence

of filtering. Although in this paper we have only focused

on Bose-Einstein condensates, the developed methodology is

rather general and might also be useful for other systems.
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We study optimal quantum control of the dynamics of trapped Bose-Einstein condensates: The targets are

to split a condensate, residing initially in a single well, into a double well, without inducing excitation, and

to excite a condensate from the ground state to the first-excited state of a single well. The condensate is

described in the mean-field approximation of the Gross-Pitaevskii equation. We compare two optimization

approaches in terms of their performance and ease of use; namely, gradient-ascent pulse engineering (GRAPE)

and Krotov’s method. Both approaches are derived from the variational principle but differ in the way the

control is updated, additional costs are accounted for, and second-order-derivative information can be included.

We find that GRAPE produces smoother control fields and works in a black-box manner, whereas Krotov

with a suitably chosen step-size parameter converges faster but can produce sharp features in the control

fields.

DOI: 10.1103/PhysRevA.90.033628 PACS number(s): 03.75.−b, 37.25.+k, 02.30.Yy

I. INTRODUCTION

Controlling complex quantum dynamics is a recurring

theme in many different areas of atomic, molecular, and optical

(AMO) physics and physical chemistry. Recent examples

include quantum state preparation [1,2], interferometry [3]

and imaging [4,5], or reaction control [6,7]. The central idea

of quantum control is to employ external fields to steer the

dynamics in a desired way [8,9]. The fields that realize the

desired dynamics can be determined by optimal control theory

(OCT) [10,11]. An expectation value that encodes the target

is then taken to be a functional of the external field which is

minimized or maximized. The target can be simply a desired

final state [10] or a unitary operator [12], a prescribed value

of energy or position [13], or an experimental signal such as a

pump-probe trace [14].

The algorithms that can be employed for optimizing the

target functional broadly fall into two categories—those where

changes in the field are determined solely by evaluating

the functional, such as simplex algorithms [13,15], and those

that utilize derivative information, such as Krotov’s method

[16,17] or gradient-ascent pulse engineering (GRAPE) [18],

possibly combined with quasi-Newton methods [19,20]. The

solutions that one obtains typically depend not only on the

target functional but also on the specific algorithm that is

employed and the initial-guess field. This is due to the fact that

numerical optimization is always a local search which may find

one of possibly many optimal solutions or get stuck in a local

extremum. It is thus important to understand which features

of an optimal control solution are due to the optimization

procedure and which reflect truly physical properties of the

quantum system.

For example, when seeking to identify, by use of optimal

control theory, the quantum speed limit, i.e., the shortest

possible time in which a quantum operation can be carried

out [21], the answer should be independent of the algorithm.

Moreover, in view of employing calculated solutions in an

experiment, conditions such as limited power, limited time

resolution, or limited bandwidth need to be met. The way in

which the various optimization approaches can accommodate

such requirements differ greatly.

Here, we study control of a Bose-Einstein condensate in a

magnetic microtrap, comparing several variants of a GRAPE-

type algorithm [22,23] with Krotov’s method [16,17,24]. We

consider two targets—splitting the condensate, which resides

initially in the ground state of a single well, into a double well,

without inducing excitation, and exciting the condensate from

the ground to the first-excited state of a single well. The latter

is important for stimulated processes in matter waves, whereas

the former presents a crucial step in interferometry [25–27].

A challenging aspect of controlling a condensate is the

nonlinearity of the equation of motion which can compromise

or even prevent convergence of the optimization [17]. The

two methods tackle this problem in different ways: GRAPE

by computing the search direction for new control fields

within the framework of Lagrange parameters and submitting

the optimal control search to generic minimization routines

[22,28], Krotov’s method by accounting for the nonlinearity

of the equations of motion in the monotonicity conditions

when constructing the algorithm [16,17,24]. Furthermore, the

methods differ in the way in which additional requirements

such as smoothness of the control can be accounted for. We

compare the two optimization approaches with respect to the

solutions they yield as well as their performance and ease of

use. Our study extends an earlier comparison of GRAPE-type

algorithms with Krotov’s method [19] that was concerned with

the linear Schrödinger equation and with finite-size (spin-type)

quantum systems.

Our paper is organized as follows: After introducing the

equation of motion for the condensate dynamics together

with the control targets in Sec. II, we briefly review the two

optimization schemes in Sec. III. Section IV presents our

results for wave-function splitting and shaking. Moreover, we

investigate the influence of the nonlinearity, the performance

of the two algorithms, and the smoothness of the optimized

control in Secs. IV B to IV D. Our conclusions are presented

in Sec. V.

1050-2947/2014/90(3)/033628(9) 033628-1 ©2014 American Physical Society

65
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II. MODEL AND OPTIMIZATION PROBLEM

In this paper we consider a quasi-one-dimensional (quasi-

1D) condensate residing in a magnetic confinement potential

V (x,λ(t)) that can be controlled by some external control

parameter λ(t) [2,22,23,29]. We describe the condensate

dynamics within the mean-field framework of the Gross-

Pitaevskii equation, where ψ(x,t) is the condensate wave

function, normalized to one, whose time evolution is governed

by [30] (� = 1)

i
∂ψ (x,t)

∂t
=

[

−
1

2M

∂2

∂x2
+ V (x,λ (t) ) + κ|ψ (x,t) |2

]

×ψ (x,t) . (1)

The first term on the right-hand side is the operator for the

kinetic energy, the second one is the confinement potential,

and the last term is the nonlinear atom-atom interaction in

the mean-field approximation. M is the atom mass and κ is

the strength of the nonlinear atom-atom interactions, which

is related to the effective one-dimensional interaction strength

U0 and the number of atoms N through κ = U0(N − 1) [31].

We can now formulate our optimal control problem.

Suppose that the condensate is initially described by the wave

function ψ(x,0) = ψ0(x) and the potential is varied in the

time interval [0,T ]. We are now seeking for an optimal time

variation of λ(t) that brings the terminal wave function ψ(x,T )

as close as possible to a desired wave function ψd (x). To rate

the success for a given control, we introduce the cost function

JT (ψ(T )) = 1
2
[1 − |〈ψd |ψ(T )〉|2], (2)

which becomes zero when the terminal wave function matches

the desired one up to an arbitrary phase. Optimal control theory

aims at a λOCT(t) that minimizes Eq. (2).

III. OPTIMIZATION METHODS

In this paper, we apply two different optimal-control

approaches; namely, a gradient-ascent-pulse-engineering

(GRAPE) scheme [18] and Krotov’s method [16,17,24], which

is discussed separately below. An overview of the control

approaches is given in Table I.

A. GRAPE: Functional and optimization scheme

The GRAPE scheme for Bose-Einstein condensates has

been presented in detail elsewhere [22,23,29,32], for this

reason we only briefly introduce the working equations.

Experimentally, strong variations of the control parameter are

difficult to achieve. Therefore, we add to the cost function an

additional term [22,33,34],

J (ψ(T ),λ) = JT (ψ(T )) +
γ

2

∫ T

0

[λ̇(t)]2dt. (3)

Mathematically, the additional term penalizes strong variations

of the control parameter and is needed to make the OCT

problem well posed [22,33,34]. Through γ it is possible to

weight the relative importance of wave-function matching

and control smoothness. Below, we set γ ≪ 1 such that J

is dominated by the terminal cost JT .

In order to bring the system from the initial state ψ0 to

the terminal state ψ(T ) we have to fulfill the Gross-Pitaevskii

equation, which enters as a constraint in our optimization

problem. The constrained optimization problem can be turned

into an unconstrained one by means of Lagrange multipliers

p(x,t), whose time evolution is governed by [22]

iṗ =

(

−
1

2M

∂2

∂x2
+ V (x,λ(t)) + 2κ|ψ |2

)

p + κψ2p∗, (4)

subject to the terminal condition p(T ) = i〈ψd |ψ(T )〉ψd . The

optimal control problem is then composed of the Gross-

Pitaevskii equation (1) and Eq. (4), which must be fulfilled

simultaneously together with [22]

γ λ̈ = −Re〈p|
∂V

∂λ
|ψ〉 (5)

for the optimal control. This expression differs from standard

GRAPE [18] and results from minimizing changes in the

control; cf. Eq. (3).

This set of equations can be also employed for a nonoptimal

control where Eq. (5) is not fulfilled. In this case Eq. (1) is

solved forwards in time and Eq. (4) backwards in time, and

the search direction ∇λJ for an improved control is calculated

from one of the Eqs. [22,23,34]:

∇λJ = −γ λ̈ − Re〈p|
∂V

∂λ
|ψ〉 for L2 norm, (6)

−
d2

dt2
[∇λJ ] = −γ λ̈ − Re〈p|

∂V

∂λ
|ψ〉 for H 1 norm. (7)

These two expressions are obtained by interpreting, on the

right-hand side of Eq. (3), the integral
∫ T

0
[λ̇]2dt = 〈λ̇,λ̇〉L2 =

〈λ,λ〉H 1 in terms of an L2 or H 1 norm [31,34]. The H 1 norm

TABLE I. Optimization approaches used in this paper. For each algorithm, we specify whether a line search is used, which free parameter

is available to influence the optimization, the order of the derivative for the determination of the new control parameter, the penalty term that

is added to Eq. (2), with �λ = λ − λref , the equation for the cost function, the type of the update of the control, and the update equation used

in our simulations.

Line Free Penalty Update

Algorithm search parameter Deriv. Penalty equation Update equation

GRAPE grad L2 Yes γ 1 λ̇2 Eq. (3) Concurrent Eq. (6)

GRAPE grad H1 Yes γ 1 λ̇2 Eq. (3) Concurrent Eq. (7)

GRAPE BFGS L2 Yes γ 2 λ̇2 Eq. (3) Concurrent Eq. (6)

GRAPE BFGS H1 Yes γ 2 λ̇2 Eq. (3) Concurrent Eq. (7)

Krotov No k 1 (�λ)2 Eq. (9) Sequential Eq. (10)

KBFGS No k 2 (�λ)2 Eq. (9) Sequential Eq. (38) of Ref. [20]
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implies that one additionally has to solve a Poisson equation;

see the derivative operator on the left-hand side of Eq. (7). This

generally results in a much smoother time dependence of the

control parameters while the additional numerical effort for

solving the Poisson equation is negligible. As for an optimal

control, both Eqs. (6) and (7) yield ∇λJ = 0.

Here we solve the optimal control equations using the

Matlab toolbox OCTBEC [23]. The ground and desired states

of the Gross-Pitaevskii equation are computed by using the

optimal damping algorithm [23,35]. The control parameters

are obtained iteratively by using either a conjugate gradient

method (GRAPE grad), which only uses first-order informa-

tion, or a quasi-Newton Broyden-Fletcher-Goldfarb-Shanno

(BFGS) scheme [36] (GRAPE BFGS), which also takes

into account second-order information via an approximated

Hessian. In both cases, the optimization employs a line search

to determine the optimal step size in the direction of a given

gradient. The pulse update is calculated for all time points

simultaneously, making the GRAPE schemes concurrent.

B. Krotov’s method: Functional and optimization scheme

Krotov’s method [16] provides an alternative optimal

control implementation. The main idea is to add to Eq. (2)

a vanishing term [16,17,24], which is chosen such that the

minimum of the new function is also a minimum of J .

However, for nonoptimal λ(t) one can devise a scheme that

always gives a new control corresponding to a lower cost

function. Thus, Krotov’s method leads to a monotonically

convergent optimization algorithm that is expected to exhibit

much faster convergence.

Our implementation closely follows Refs. [17,20,24].

Specifically, the cost reads

J (ψ(T ),λ) = JT (ψ(T )) +

∫ T

0

[λ (t) − λref (t)]2

S (t)
dt, (8)

where the reference field λref(t) is typically chosen to be the

control from the previous iteration [37]. The second term in

Eq. (8) penalizes changes in the control from one iteration to

the next and ensures that, as an optimum is approached, the

value of the functional is increasingly determined by only JT .

S(t) = ks(t) is a shape function that controls the turning on

and off of the control fields, k is a step-size parameter, and

s(t) ∈ [0,1] is bound between 0 and 1.

Let ψ (i)(t) and λ(i)(t) denote the wave function and control

parameter, respectively, in the ith iteration of the optimal

control loop. To get started, we first solve for an initial

guess λ(0)(t) the Gross-Pitaevskii equation (1) and the adjoint

equation (4) for the costate p(t), which is backward propagated

in time with the same terminal condition as in GRAPE in order

to obtain ψ (0)(t) and p(0)(t). In the next step, we solve the

Gross-Pitaevskii equation simultaneously with the equation

for the new control field

λ(i+1)(t)

= λ(i)(t) + S(t)Re〈p(i)(t)|

[

∂V

∂λ

]

λ(i+1)(t)

|ψ (i+1)(t)〉

+ Re
σ (t)

2i
〈�ψ(t)|

[

∂V

∂λ

]

λ(i+1)(t)

|ψ (i+1)(t)〉, (9)

where ψ (i+1)(t) is obtained by propagating ψ(t = 0) forward

in time using the updated pulse.1 The fact that ψ (i+1)(t) appears

on the right-hand side of the update equation implies that the

update at a given time t depends on the updates at all earlier

times, making Krotov’s method sequential. This type of update

makes it nonstraightforward to include a cost term on the

derivative of the control as in Eq. (3), since the derivative at a

given time t requires knowledge of past and future values of

ψ(t).

The last term in Eq. (9) with �ψ(t) = ψ (i+1)(t) − ψ (i)(t)

is generally needed to ensure convergence in presence of the

nonlinear mean-field term κ|ψ(t)|2 of the Gross-Pitaevskii

equation. Convergence is achieved through a proper choice

of σ (t) [17,24]. In this work we neglect this additional

contribution for simplicity, as it is of only minor importance

for the moderate κ values of our present concern.

The derivative ∂V /∂λ in Eq. (9) has to be computed for

λ(i+1)(t), thus leading to an implicit equation for λ(i+1)(t).

When k is chosen sufficiently small, such that the control

parameter varies only moderately from one iteration to the

next, one can obtain the new control fields approximately from

λ(i+1)(t) ≈ λ(i)(t) + S(t)Re〈p(i)(t)|

[

∂V

∂λ

]

λ(i)(t)

|ψ (i+1)(t)〉.

(10)

Otherwise one can employ an iterative Newton scheme for the

calculation of λ(i+1)(t), as briefly described in Appendix A. In

all our simulations we found Eq. (10) to provide sufficiently

accurate results. Once the new wave functions ψ (i+1)(t) and

control parameters λ(i+1)(t) are computed, we get the adjoint

variables p(i+1)(t) through the solution of Eq. (4) and continue

with the Krotov optimization loop until the cost function

J is small enough or a certain number of iterations is

exceeded.

As a variant, we also use a combination of Krotov’s

method with the BFGS method (KBFGS) [20]. It includes an

approximated Hessian via the Krotov gradient as an additional

term in the update equation (9). However, for technical reasons

and differently from the GRAPE BFGS algorithm, no line

search is employed.

IV. RESULTS

In this paper, we consider two control problems. The first

one is condensate splitting, where the condensate initially

resides in one well which is subsequently split into a double

well. In our simulations we employ the confinement potential

of Lesanovsky et al. [38] where the control parameter λ(t)

is associated with a radio frequency magnetic field [22]. The

objective is to bring at the terminal time T the condensate

wave function to the ground state of the double-well potential.

1The costates of this work and of Ref. [24] are related through

p = iχ . With this definition the adjoint equation (4) and the terminal

condition p(T ) are the same for GRAPE and Krotov. As consequence,

the scalar products on the right-hand side of Eq. (9) involve the real

part rather than the imaginary part.
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FIG. 1. (Color online) Wave-function splitting through the trans-

formation of the confinement potential from a single to a double well.

(a) The solid lines report the control parameters λ(t) for the GRAPE

and Krotov optimizations, respectively. The potential is held constant

after the terminal time T = 2 ms. The dashed line shows the shape

function s(t) of Eq. (8) used in our version of Krotov’s method, scaled

by a factor of 0.4 for better visibility. (b), (c) Density plots of the

condensate density n(x,t) = |ψ(x,t)|2 during the splitting. The solid

lines show the confinement potentials at three selected times and the

time variation of the potential minima. (d), (e) Terminal (solid lines)

and desired (dashed lines) densities, which are indistinguishable. In

the optimization we set γ = 10−6 and k = 10−3.

In the second control problem the condensate wave function

is excited from the ground to the first-excited state of a single-

well potential. The confinement potential is an anharmonic

single-well potential; details and a parametrized form of V (x)

can be found in Refs. [2,23,29]. The shakeup is achieved by

displacing the potential origin according to V (x − λ(t)), where

λ(t) now corresponds to the position of the potential minimum,

i.e., through wave-function shaking. Experimental realizations

of such shaking protocols have been reported in Refs. [2,3,29].

In our simulations, GRAPE and Krotov start with the same

initial guess. The terminal time is set to T = 2 ms throughout.

Unless stated differently, we use a nonlinearity κ/� = 2π ×

250 Hz (κ = π/2 for units with � = 1 and time measured in

milliseconds, as used in our simulations [23]).

A. Splitting vs shaking

Figure 1(a) shows the controls obtained from our GRAPE

and Krotov optimizations for condensate splitting, together

with [Figs. 1(b) and 1(c)] the density maps of the condensate

wave function. The potential is held constant after the terminal

time T = 2 ms of the control process. Figures 1(d) and 1(e)

show the square moduli of the terminal (solid lines) and

desired (dashed lines) condensate wave functions, which are

almost indistinguishable, thus demonstrating the success of

both control protocols. This can be also seen from the density

maps which show no time variations at later times, when the

potential is held constant, in accordance to the fact that the
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GRAPE BFGS H1 (κ = 2 π)
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FIG. 2. (Color online) Cost function versus number of solved

equations (either Gross-Pitaevskii or adjoint equation) for GRAPE

and Krotov. For GRAPE, one optimization iteration consists of

numerous solutions of the Gross-Pitaevskii equation (1) during a line

search, which are followed by a solution of the adjoint equation (4)

once a minimum is found, to obtain a new search direction ∇λJ .

For Krotov one optimization iteration consists of a Gross-Pitaevskii

solution, subject to Eq. (10), and a subsequent solution of the

adjoint equation (4). In our simulations we use k = 10−3. The

dashed lines report results of simulations with a larger nonlinearity

κ/� = 2π × 1000 Hz. In the legend we report the κ values in

units used in our simulations, with � = 1 and time measured in

milliseconds [23].

terminal wave function is the ground state of the double-well

trap.

Figure 2 compares the efficiency of the GRAPE and Krotov

optimizations. We plot the cost function JT versus the number

n of equations solved during optimization. For both GRAPE

and Krotov, n counts the solutions of either the Gross-

Pitaevskii or the adjoint equation. The actual computer run

times depend on the details of the numerical implementation

but are comparable for both schemes. As can be seen in Fig. 2,

in the GRAPE optimization the cost function decreases in large

steps after a given number of solved equations, whereas in

the Krotov optimization JT decreases continuously. The cost

evolution of GRAPE can be attributed to the BFGS search

algorithm, where a line search is performed along a given

search direction. Once the minimum is found, the step is

accepted (JT drops) and a new search direction is obtained

through the solution of the adjoint equation. In contrast,

the Krotov algorithm is constructed such that JT decreases

monotonically in each iteration step. Altogether, GRAPE and

Krotov optimizations perform equally well.

In comparison to condensate splitting, the shakeup process

is a considerably more complicated control problem. Figure 3

shows the optimized control parameters as well as the time

evolution of the condensate densities. Both GRAPE and

Krotov succeed comparably well. Regarding the control fields,

the GRAPE one is smoother than the Krotov one, due to the

penalty term on λ̇(t) in Eq. (3). From Fig. 4 we observe that

a much higher number of optimization iterations is needed, in

comparison to wave-function splitting, for both optimization

methods to significantly reduce JT . Initially, JT decreases

more rapidly for the Krotov optimization, but after a larger

number n of solved equations, say around n ∼ 600, GRAPE

performs better.
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FIG. 3. (Color online) Same as Fig. 1 but for shaking process.

B. Influence of nonlinearity

We investigate the influence of the nonlinear atom-atom

interaction on the convergence of the optimization loop. The

dashed lines in Fig. 2 report results for splitting simulations

with a larger nonlinearity κ/� = 2π × 1000 Hz. While the

GRAPE convergence depends only weakly on κ , Krotov

converges significantly slower for larger κ values.

Things are different for the shaking shown in Fig. 4. While

the GRAPE performance again depends only weakly on κ ,

Krotov converges faster with increasing κ . Because of the

lack of a line search in the Krotov algorithm, the convergence

behavior is far more dependent on specific features of the

control landscape which depend strongly on κ .

C. Convergence behavior

Next, we inquire into the details of the convergence proper-

ties for the optimization of the shakeup process. By comparing

GRAPE with Krotov, we will identify the advantages and

disadvantages of the respective optimization methods.

Figure 5(a) shows the terminal cost function JT versus

the number of solved equations of motion n for the different

GRAPE schemes. It is evident that the conjugate gradient

solutions reach a plateau after a certain number of iterations.

In contrast, the BFGS solutions decrease significantly even at

later stages of the optimization. We attribute this behavior

to the use of the second-order-derivative information. The

GRAPE BFGS scheme, which estimates the Hessian of J

in addition to ∇λJ , can take larger steps to cross flat regions

of J , contrary to the (first-order) GRAPE gradient scheme,

which gets stuck.

Figure 5(b) shows the control fields for the GRAPE

BFGS schemes. Although both optimization strategies per-

form equally well, the solutions obtained with the H 1 norm

are smoother and probably better suited for experimental

implementation.

Figures 6(a) and 6(b) present JT versus n and the control

parameters for the Krotov optimization, respectively. The solid

line with k = 0.005 in Fig. 6(a) is identical to the one shown
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FIG. 4. (Color online) Same as Fig. 2 but for shaking process.

We use k = 5 × 10−3.

in Fig. 4. When we increase k (black line), the cost function

drops more rapidly. However, we found that larger k values can

lead to sharp variations in λ(t) which might be problematic for

experimental implementations, as is discussed in more detail

below.

In Fig. 6 we additionally display results for a simulation

using a combination of Krotov’s method with the BFGS

scheme (KBFGS) [20]. The performance of KBFGS is similar

to the simpler optimization procedure of Eq. (10), a finding

in accordance with Ref. [20]. We attribute this to the fact that

within the Krotov scheme only a small portion of the control

landscape is explored, because the monotonic convergence

enforces small control updates, in contrast to GRAPE where

larger regions are scanned by the line search. As consequence,

the improvement in the Krotov search direction via the Hessian

is minimal.

Finally, the dashed line for adaptive k shows results for

an optimization that starts with a small k value, which

subsequently increases in each iteration until the cost decreases

by a desired amount (here 2.5%) within one iteration. This k

value is then kept constant for the rest of the optimization.

The idea behind this strategy is that the choice of k is crucial

for convergence, but the optimal value is different for each

problem. Generally, finding a suitable value for k requires

some trial and error.

D. Features of the control

For many experimental implementations it is indispensable

to use smooth control parameters. In the following we

investigate the smoothness of the optimal controls obtained

by the different optimization methods.

Figure 7(a) shows for GRAPE BFGS H1 the evolution of the

λ(t) values during optimization. One observes that, during the

first few iterations, the characteristic features of λ(t) emerge,

which then become refined in the course of further iterations.

Figure 7(b) reports the power spectra (square moduli of Fourier

transforms) of the λ(t) history during optimization. During the

first, say, 20 iterations the Fourier-transformed control pa-

rameter λ̃(ν) spectrally broadens, indicating the emergence of

sharp features during optimization. With increasing iterations

the spectral width of λ̃(ν) remains approximately constant.

Results of the GRAPE BFGS L2 optimization are shown

in Figs. 7(c) and 7(d). We observe that, in contrast to the

H1 results, λ(t) acquires sharp features during optimization,
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JÄGER, REICH, GOERZ, KOCH, AND HOHENESTER PHYSICAL REVIEW A 90, 033628 (2014)

0 100 200 300 400 500 600 700 800
10

−3

10
−2

10
−1

10
0

Number of solved equations

C
o

s
t

 

 

GRAPE BFGS H1

GRAPE BFGS L2

GRAPE grad H1

GRAPE grad L2

0 0.5 1 1.5 2

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Time (ms)

C
o

n
tr

o
l

 

 

GRAPE BFGS H1

GRAPE BFGS L2

(b)

(a)

FIG. 5. (Color online) (a) Cost function versus number of solved

equations for conjugate gradient (grad) and BFGS optimization

schemes, and for search directions obtained from Eqs. (6) and (7)

with H 1 or L2 norm, respectively. (b) Optimal control parameters

λ(t) for BFGS solutions.

as also reflected by the broad power spectrum. This is

because initially the gradient ∇λJ , which determines the

search direction for improved control parameters, exhibits

strong variations. These variations are washed out in the H1

optimization through the solution of the Poisson equation [see

Eq. (7)], leading to significantly smoother control parameters.

In GRAPE, the user must additionally provide the weight-

ing factor γ of Eq. (3) that determines the relative importance

of terminal cost and control smoothness. For the problems

under study, we found that the performance of GRAPE does

not depend sensitively on the value of γ , and we usually use

a small value such that the cost is dominated by the terminal

cost.

Figures 8(a) and 8(c) show the λ(t) history during a Krotov

optimization for different step sizes k, and Figs. 8(b) and 8(d)

report the corresponding power spectra. In comparison to

the GRAPE BFGS H1 optimization, the power spectra are

significantly broader, in particular for the larger k values. This

is due to the fact that, in the functional used for the Krotov

optimization, there is no penalty term that enforces smoothness

of the control (and thus a narrow spectrum).

The choice of the step size k is rather critical for the

Krotov performance. With increasing k the cost function

decreases more rapidly during optimization. However, values

of k that are too large can lead to numerical instabilities. These

instabilities result from the discretization of the update equa-

tion; mathematically, Krotov is only guaranteed to converge

monotonically for any value of k if the control problem is

continuous.

One might wonder whether a combination of both ap-

proaches would give the best of two worlds. In Fig. 9 we
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FIG. 6. (Color online) Same as Fig. 5 but for Krotov optimiza-

tion. We investigate the influence of different mixing parameters k

between the old and new control fields [see Eq. (10)], as well as

a scheme with an adaptive k choice (see text for details). KBFGS

reports the optimization result for a combination of Krotov’s method

with BFGS [20].

present results for simulations where we start with a Krotov

optimization and switch to GRAPE after a given number of

iterations. As can be seen, the performance of this combined

optimization does not offer a particular advantage over genuine

GRAPE or Krotov optimizations. This is probably due to

differences between the optimal control fields λ(t) obtained

by the two approaches, such that λ(t) needs to be significantly

modified when changing from one scheme to the other. In

addition, the BFGS search algorithm of GRAPE uses the

information of previous iterations in order to estimate the

Hessian of the control space, and this information is missing

when changing schemes.

V. CONCLUSIONS AND OUTLOOK

Based on the two examples investigated in the previous

section; namely, wave-function splitting and shaking in a

magnetic microtrap, we now set out to analyze the advantages

and disadvantages of the GRAPE and Krotov optimization

methods which are tied to the functional that is minimized in

each case.

First, when the optimization converges fast to an optimal

solution, such as for wave-function splitting investigated in

Sec. IV A, both optimization algorithms perform equally well,

even without carefully tuning the free parameters γ or k. For

such problems, the choice of algorithm is a matter of personal

preference. On the other hand, for optimization problems with

slow convergence, such as wave-function shaking, more care

has to be taken. Specifically, there are significant differences

between the two algorithms in terms of free parameters vs

speed of convergence as well as possible cost functionals vs

features of the obtained optimal control.
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FIG. 7. (Color online) (a), (c) Evolution of control parameters during the optimization process for GRAPE. (b), (d) Density plot of power

spectra of the control parameters displayed in panels (a) and (c). We use a logarithmic color scale. In panels (b) and (d) the numbers of

iterations are chosen such that the final cost function JT becomes approximately 10−2, the numbers of solved equations (see Figs. 2 and 4) are

approximately (b) 500 and (d) 700.

While GRAPE BFGS utilizes a line search to ensure

monotonic convergence and to obtain the optimal step size

in each iteration, the speed of convergence in Krotov’s method

is mainly determined by the free parameter k. On the one hand

this means that GRAPE BFGS works better “out of the box”

since it automatically determines the best step size in each

step. On the other hand, the convergence is slowed down due

to the necessity of a line search.

It is also evident from our results that both algorithms

yield controls with features that can be understood in terms of

additional costs introduced in the functional. For GRAPE we

use a cost that penalizes a large derivative of the control which

results in smooth controls in the end. For Krotov’s method we

employ a penalty on changes in the amplitude of the control

in each iteration. Correspondingly, this leads to controls that

have a smaller integrated intensity and come at the cost of a

less smooth control.

In principle it is conceivable to modify the Krotov algorithm

to take into account an additional cost term on the derivative

of the control. While we conjecture that this will lead to

controls that are comparable with those obtained in the GRAPE

framework, the necessary modification of the Krotov algorithm

is beyond the scope of the current work.

In the context of controlling Bose-Einstein condensates

with experimentally smooth controls, the optimization with

the GRAPE BFGS method, a functional enforcing smoothness,

and use of the H 1 norm appears to be the method of choice. It

is a black-box scheme with practically no problem-dependent

0 0.5 1 1.5 2

−0.5

0.5

Time (ms)

C
o

n
tr

o
l

Krotov (k = 0.005)

 

 

Initial guess

Iteration 150

Iteration 300

Frequency (kHz)

It
e

ra
ti
o

n
s

 

 

−75 0 75

1

100

200

300

0 0.5 1 1.5 2

 

 

 

Time (ms)

Krotov ( k = 0.01)

 

 

Initial guess

Iteration 100

Iteration 200

Frequency (kHz)
−75  0  75

1

100

200

1

0.1

0.01

(c)(a)

(b) (d)

FIG. 8. (Color online) Same as Fig. 7 but for Krotov optimization. The numbers of solved equations are (b) 600 and (d) 400.
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FIG. 9. (Color online) Same as Fig. 4, but for a combined

GRAPE-Krotov scheme where one initially starts with the Krotov

method and switches to GRAPE after a given number of iterations.

parameters, it gives the desired smooth control fields, and it

works for various nonlinearity parameters κ .

In contrast, the Krotov optimization without an appropriate

penalty term in the functional can converge faster but usually

also leads to sharp features in the control. A sensitive choice

of the step size k is indispensable to achieve a compromise

between fast convergence and smoothness. If smoothness is not

an issue or extremely fast convergence is needed, the Krotov

method is preferable.

A combination of GRAPE and Krotov in the sense of

switching from one method to the other during the optimization

did not result in any significant gain. This is explained by

the different control solutions that are found by the different

methods which do not easily facilitate a transition between

them. It points to the fact that many control solutions exist,

and which solution is identified by the optimization depends

strongly on the additional constraints [39] as well as the

optimization method.
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APPENDIX

In this appendix we show briefly how to numerically solve the equation

λ(i+1)(t) = λ(i)(t) + S(t)Re〈p(i)(t)|

[

∂V

∂λ

∣

∣

∣

∣

λ(i+1)(t)

]

|ψ (i+1)(t)〉, (A1)

which differs from Eq. (10) in that the potential derivative is evaluated for λ(i+1)(t). Things can be easily generalized for the

additional σ (t) term of Eq. (9). Let λ0(t) denote an initial guess for the solution of Eq. (A1), e.g., the solution of Eq. (10). We

now set λ(i+1)(t) = λ0(t) + δλ(t), where δλ(t) is assumed to be a small quantity. Thus, we can expand the second term on the

right-hand side of Eq. (A1) in lowest order of δλ(t) to obtain

λ0(t) + δλ(t) ≈ λ(i)(t) + S(t)Re〈p(i)(t)|

[

∂V

∂λ

∣

∣

∣

∣

λ0(t)

+
∂2V

∂λ2

∣

∣

∣

∣

λ0(t)

δλ(t)

]

|ψ (i+1)(t)〉. (A2)

Separating the contributions of δλ from the rest, we get
(

1 − S(t)Re〈p(i)(t)|

[

∂2V

∂λ2

∣

∣

∣

∣

λ0(t)

]

|ψ (i+1)(t)〉

)

δλ(t) ≈ −[λ0(t) − λ(i)(t)] + S(t)〈p(i)(t)|

[

∂V

∂λ

∣

∣

∣

∣

λ0(t)

]

|ψ (i+1)(t)〉, (A3)

which can be solved for δλ(t). If |δλ(t)| < ε is smaller than some small tolerance ε, we set λ(i+1)(t) → λ0(t) + δλ(t). Otherwise

we set λ0(t) → λ0(t) + δλ(t) and repeat the Newton iteration until convergence. Typically only few iterations are needed to reach

tolerances of the order of ε = 10−6.
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We theoretically investigate the creation of squeezed states of a Bose-Einstein Condensate (BEC)
trapped in a magnetic double well potential. The number or phase squeezed states are created
by modulating the tunnel coupling between the two wells periodically with twice the Josephson
frequency, i.e., through parametric amplification. Simulations are performed with the multi config-
urational Hartree method for bosons (MCTDHB). We employ optimal control theory to bring the
condensate to a complete halt at a final time, thus creating a highly squeezed state (squeezing factor
of 0.12, ξ2S = −18 dB) suitable for atom interferometry.

PACS numbers: 03.75.-b,39.20.+q,39.25.+k,02.60.Pn

I. INTRODUCTION

In atom chips, Bose-Einstein condensates (BECs) and
ultracold atoms become trapped in the vicinity of a solid-
state chip [1]. By changing the currents running through
the wires mounted on the chip or modifying the strength
of additional radio-frequency (rf) fields [2, 3], one can ma-
nipulate [3–5] and measure single quantum systems with
extremely high precision. Possible applications range
from atom interferometry [5–9], over quantum gates [10–
12] and resonant condensate transport [13], to nonlinear
atom optics [14–18].

In particular atom interferometry has attracted a lot
of interest since atoms are massive objects sensitive to
gravity. This opens new ways for measuring the gravi-
tational constant [19], detection of gravitational waves,
or the search for dark energy [20]. Using non-classical
(squeezed) states brings the measurement sensitivity be-
low the quantum noise limit [21]. Squeezed atom number
states are typically created through condensate splitting
and manipulation of the condensate around the point
where the tunnel coupling strength becomes comparable
with the nonlinear atom-atom interaction [22–24]. Possi-
ble routes towards squeezing are based on quasi-adiabatic
splitting [25] or one-axis twisting [26].

It is often advantageous to seek for fast squeezing, for
instance to achieve measurement series with high repe-
tition rates or to suppress dephasing losses due to ther-
mally excited atoms. In [27, 28] we demonstrated fast
squeezing protocols that were obtained by using opti-
mal control theory (OCT) [29, 30], a mathematical de-
vice allowing for optimization of certain control objec-
tives. OCT protocols were succesfully implemented in
atom chip experiments for twin-atom production [18] and
interferometry [31].

In this paper we theoretically investigate the genera-
tion of squeezed states in a split BEC through paramet-
ric amplification. For a harmonic oscillator, parametric
amplification can be achieved by modulating the spring
constant with twice the resonance frequency, leading to
an exponential increase of the oscillator’s amplitude [32].

Similarly, modulating the tunnel coupling strength with
twice the Josephson frequency leads to an exponential in-
crease of number and phase fluctuations. To achieve fast
squeezing, say on a time scale of 10 ms, one needs rather
large tunnel coupling modulations which lead to addi-
tonal wavefunction oscillations of the split condensate,
thus rendering the state useless for further interferome-
try once the wells become separated. We demonstrate
that a final splitting stage of 2 ms, optimized with OCT,
brings the condensate at a final time to halt and freezes
the system in a highly squeezed state.

The motivation of this work lies in a direct experimen-
tal implementation. While the combined parametric am-
plification and splitting scheme investigated in this work
leads to a slightly better squeezing compared to previ-
ous work [26–28], it is additionally simpler to implement
and facilitates state tomography by releasing the conden-
sate at different times and recording the time-of-flight
images [18, 33].

We have organized our paper as follows. In Sec. II
we discuss BEC interferometry and squeezing within
a two-mode model and introduce a convenient Bloch
sphere visualization for the many-body wavefunction.
Squeezing through parametric amplification is discussed
in Sec. III within the framework of the multi configura-
tional Hartree method for bosons (MCTDHB) [34], which
allows for the consideration of both wavefunction and
atom number dynamics. We identify the pertinent pa-
rameters that lead to fast and efficient squeezing ampli-
fications. In Sec. IV we employ the OCT framework to
derive control ramps that freeze the condensate in a state
with high number squeezing. Finally, Sec. V provides a
short summary.

II. TWO-MODE MODEL

A. BECs in double wells

For the purpose of interferometry, we consider a 1d rep-
resentation of a BEC in a double well trap, as depicted in
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FIG. 1: (Color online) Schematic of a BEC wave function in a
double well potential. Transforming a single well slowly into
a double well produces a split BEC that can be used for inter-
ferometry. In the two-mode model atoms can reside in either
the left or right well. Tunneling promotes atoms between the
two wells, and the interwell distance allows control over the
tunneling strength Ω.

Fig. 1. We assume that the trap is produced by the mag-
netic fields generated by an atom chip [1], which allow us
to transform the potential from a single to a double well,
thus creating a split BEC, and to change the distance
between the two wells [35] in order to control the inter-
well coupling. Within the field of BEC interferometry, in
the waiting phase the atoms in the two wells are decou-
pled and acquire different phases due to interactions with
some external (classical) probe, such as gravity or mag-
netic fields. The phase shifts are finally read out through
BEC interference.
The physics of double-well BECs is conveniently de-

scribed in terms of a two-mode model, similar to Joseph-
son junctions [36], where each atom can either reside in
the left or the right well. With N atoms in the BEC, we
can map the model to a spin N/2 system that captures
many phenomena of double-well BECs. We introduce the
pseudo spin operators [37]

Jx =
1

2

(

a†l ar + a†ral

)

(1)

Jy =
i

2

(

a†l ar − a†ral

)

(2)

Jz =
1

2

(

a†l al − a†rar

)

, (3)

with al/r and a†l/r being the annihilation and creation

operators for an atom in the left/right well, respectively.
These operators have the following physical interpreta-
tions: Jx exchanges an atom between the left and the
right well, and Jy and Jz measure the phase difference
and atom number imbalance between the two wells, re-
spectively. With these operators we can write down a
model Hamiltonian in the form [38, 39]

H = −Ω Jx + 2κJ2

z , (4)

where Ω is the tunneling energy, accounting for the inter-
well tunneling, and κ is the charging energy describing
the nonlinear interaction between atoms. For the inter-
well distances of our present concern, Ω can be assumed
to be approximately proportional to the distance of the

two wells (see Fig. 1), while κ has in general a more
complicated behavior. Both quantities can be computed
within the Gross-Pitaevskii framework [40].

States of a two-level quantum mechanical system
(qubit) are conveniently depicted on the Bloch sphere [41,
42]. Such visualization is also possible for the two-mode
model with a rather intuitive interpretation: A state
where all the atoms are in the left or right well corre-
sponds to a Bloch state on the north or south pole. We in-
troduce n = (nl−nr)/2 for the atom number imbalance,
with nl/r being the number of atoms in the left/right
well. States where the atom number is exactly balanced,
n = 0, are on the equator, and the angle ϕ describes
the relative phase between the two wells (see Fig. 2). In
addition to the mean values, also the atom number and
phase uncertainties ∆n and ∆φ can be seen on the Bloch
sphere: ∆n corresponds to the height and ∆φ to the
width of the distribution, as shown in Fig. 2(a).

For any interferometry experiment, the important ob-
servable to be measured in the end is either the relative
phase or number imbalance between the wells. Both mea-
surements are subject to (shot) noise limiting the mea-
surement precision, and thus render states with large ∆n
and ∆φ fluctuations unfavorable. On the other hand,
reduction of ∆n and ∆φ is possible but bound by the
important relation [43]

∆n∆φ &
1

2
, (5)

stating that we can in principle decrease one of the vari-
ances, however, at the cost of increasing the other one.
For a binomial state we have ∆n =

√
N/2 and ∆φ =

1/
√
N , leading to standard quantum shot noise [23]. In

contrast, for states with smaller ∆n or ∆φ values, the
so-called squeezed states, we can achieve a measurement
precision below standard quantum shot noise [24].

In order to quantify how much a state is squeezed
several factors have been used in the literature. The
so-called number squeezing and phase squeezing factors
ξn = ∆n/(

√
N/2) and ξφ = ∆φ/(1/

√
N), respectively,

provide information about how much a given state is
squeezed in comparison to a binomial one. Both factors
equal one for a binomial state. However, these factors
completely neglect the coherence of the split condensate,
a quantity of paramount importance for interferometry.
Coherence is additionally considered by the factor [43, 44]

α =
2

N

√

〈Jx〉2 + 〈Jy〉2 = 〈cosφ〉 , (6)

where we have used the fact that 〈sinφ〉 = 0 at equilib-
rium to arrive at the last expression on the right hand
side. It is now convenient to introduce the so-called co-
herent spin squeezing factor [43]

ξS =
∆n

(
√
N/2)α

=
ξn
α
, (7)

which is a direct measure of the useful number squeez-
ing in the context of interferometry. In the following we
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FIG. 2: (Color online) (a) State of a double-well BEC depicted on the Bloch sphere. For an equal number of atoms in the two
wells, the distribution is centered around the equator, the height of the distribution corresponding to number fluctuations and
the width to phase fluctuations. (b) Schematic view of parametric amplification on the Bloch sphere. During amplification
the distribution rotates around the x-axis (driven by modulations of the tunneling strength Ω) and becomes more and more
elongated under the influence of the atom-atom nonlinearity. Parametric amplification leads to an alternation between number
and phase squeezed states, and the overall squeezing increases over time.

will refer to states with low squeezing factors as “highly
squeezed states”.
Squeezed states cannot only be used for measurements

with precisions beyond the standard quantum limit [24],
but also have other interesting properties. For instance,
number squeezed states are very robust against dephas-
ing effects [45]. It is therefore important to find ways
of producing number or phase squeezed states, ideally
on short time scales. A possible route towards number
squeezing is to simply increase the distance between the
two wells quasi-adiabatically [25]: this reduces tunnel-
ing and, in turn, ∆n, since the number squeezing in the
groundstate of Eq. (4) increases with decreasing Ω. Addi-
tionally ∆φ increases. However, this process is relatively
slow.
In this paper we will explore a different approach to-

wards highly phase or number squeezed states on short
time scales, which relies on parametric amplification
through a periodic modulation of the tunnel coupling
with twice the resonance frequency. In the following we
briefly recall the mechanism underlying parametric am-
plification. We start with the Hamiltonian of Eq. (4) and
rewrite it using the particle imbalance n and the relative
phase φ [46],

H = −Ω cosφ+ 2κn2 . (8)

In the coupled regime the relative phase is assumed to
be very small, so we can approximate cosφ ≈ 1 − φ2/2.
Apart from an irrelevant constant energy shift, this ex-
pansion leads to

H =
Ω

2
φ2 + 2κn2 . (9)

From the commutation relations of the spin operators one
observes that φ and n are canonically conjugate quanti-
ties, obeying [φ, n] = i [46]. The Hamiltonian of Eq. (9)
thus has exactly the same form as the Hamiltonian of a
harmonic oscillator, with phase and number playing the

role of momentum and position, and the “mass” of the
oscillator given by 1/Ω. Starting with a small amplitude
at time zero, parametric amplification for the harmonic
oscillator occurs for a time-dependent Ω which is mod-
ulated with twice the Josephson frequency ωJ = 2

√
κΩ.

This leads to an exponential increase of the oscillator’s
amplitude, in case of Eq. (9) the density n. We emphasize
that parametric amplification is also possible for higher
φ values without performing a Taylor expansion of cosφ,
as discussed in more detail in Ref. [47].

Since for a split BEC we can modulate the tunneling
parameter Ω by changing the distance between the wells,
we can use parametric amplification in order to increase
squeezing. We first start with a slightly number squeezed
groundstate of a split but still tunnel-coupled BEC in a
double well. In a next step, we modulate Ω with twice the
Josephson frequency to get parametric squeezing amplifi-
cation. In contrast to the above example of the harmonic
oscillator, the Ω modulation leads to an amplification of
the fluctuations rather than the mean values.

III. PARAMETRIC SQUEEZING

AMPLIFICATION OF A BEC

In this section we show how to achieve parametric am-
plification for a BEC in a double well with realistic ex-
perimental parameters, in order to achieve high number
or phase squeezing. To describe the BEC correctly, a
simple two mode model with static orbitals is not suffi-
cient, as will be discussed below, and one has to resort
to a description scheme that accounts for both the atom
number and wavefunction dynamics. In this work we em-
ploy the multi-configurational time-dependent Hartree
method for bosons (MCTDHB) [34] using our recently
developed Matlab toolbox OCTBEC [49].
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FIG. 3: (Color online) Lesanovsky-type potential [35], as used
in our simulations, which allows to change from a single to a
double well by modifying the control parameter λ associated
with rf fields of an atom chip. The dashed lines indicate the
5% modulations used in our simulations. λ primarily controls
the distance between the two wells, but additionally also mod-
ifies the barrier height.

A. Simulation details

We simulate parametric amplification of a BEC con-
sisting of 1000 atoms in a double well potential within
MCTDHB(2) [34], which expands the BEC wavefunction
in two orbitals. The trap is a Lesanovsky type poten-
tial [35], giving rise to elongated, cigar shaped conden-
sates. In this potential, the relevant splitting and ampli-
fication dynamics occurs in the radial direction, which
allows us to introduce a 1d description scheme. The
Lesanovsky potential has a single parameter λ, associ-
ated with the amplitude of a radio frequency field, that
can turn the trap from a single into a double well, as
depicted in Fig. 3.
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FIG. 4: (Color online) Parametric amplification with an am-
plitude of the control parameter λ of 1%: (a) Coherent spin
squeezing factor ξS and (b) BEC density. Same color bar as
in Fig. 2.

B. Parametric amplification

In our simulations, we start with a BEC correspond-
ing to the split ground state of the double well (we use
λ = 0.7). It has been demonstrated experimentally that
this state can be realized through adiabatic splitting of
an elongated single atom trap, without generating signif-
icant heating or a noticable thermal fraction [9]. Finite
temperature effects might lead to a slight broadening of
∆φ but will not significantly influence the spin squeezing
factor ξS [23]. In experiment, this might reduce the time
that is avalaible for the parametric amplification.

In the split ground state the spin squeezing factor is
initially already smaller than one (ξS = 0.65 for λ = 0.7).
Starting at time zero, the distance between the double
well is modulated with twice the Josephson frequency
ωJ/(2π) = 220 Hz, giving rise to a parametric amplifica-
tion of squeezing. The squeezing value mainly depends on
the amplitude of the modulation. Figs. 4 and 5 show the
spin squeezing factor ξS and the atomic density during
parametric amplification for λ-modulations with ampli-
tudes of 1% and 5%, respectively. The density oscillates
periodically for an amplitude of 1%, while strong excita-
tion and non-periodic features can be observed for 5%.

Parametric amplification with an amplitude of 1% only
produces a squeezing factor of ξS ≈ 0.4 (ξ2S ≈ −8 dB),
while the modulation with 5% leads to a much better
squeezing of ξS ≈ 0.1 (ξ2S ≈ −20 dB). However, squeez-
ing becomes worse after roughly 10 ms. We attribute this
degradation to dephasing effects: as depicted in Fig. 6,
at later times the number distribution becomes curled
around the x-axis of the Bloch sphere, indicating the par-
tial occupation of states where all atoms reside in the left
or right well, leading to complicated ensuing number dy-
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FIG. 5: (Color online) Same as Fig. 4 but for an amplitude of
5%. The black line reports for comparison results for a two
parameter optimization [48].
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FIG. 6: (Color online) Snap shot of state that suffers dephas-
ing, as obtained from the simulation with a 5% modulation
at time t = 12 ms (see Fig. 5). Through parametric ampli-
fication wavefunction components with all atoms in the left
or right well become populated, leading to a time evolution
where the distribution “curls” around the Bloch sphere and
squeezing is diminished. See Fig. 2 for color bar.

namics with a net effect reminiscent of dephasing.
A key requirement for interferometry on atom chips

is a reliable and fast generation of squeezed states. To
boost parametric amplification on short time scales, one
has to use sufficiently high tunnel coupling modulations,
which, in turn, lead to excitations of the condensate
wave function. In this context, the consideration of both
the atom number and wavefunction dynamics becomes
mandatory in a simulation approach, thus calling for
realistic many-body simulation approaches such as the
MCTDHB framework of this work. Additionally, fol-
lowing the parametric amplification one has to modify
the trap potential in such a way that the orbitals are
brought to a halt. This step will be discussed in the next
section. The main advantage of parametric squeezing
amplification compared to other routes towards number
squeezing [27, 28] is that the whole parametric amplifi-
cation process can be implemented experimentally very
easily, and only the final trapping stage requires some
fine-tuning of the atom chip potentials. For comparison,
the black line in Fig. 5 reports results for a two parameter
optimization [48], whose final ξS value is also comparable
to genuine OCT protocols for the optimization of num-
ber squeezing [27, 28]. Note that in comparison to these
optimized protocols our simple parametric amplification
scheme already leads to higher squeezing.

IV. CONDENSATE TRAPPING

A. Optimal control theory

To make parametric amplification useful in the con-
text of squeezing generation, we should be able to trap
the BEC after amplification in a highly number squeezed
state and separate the two wells far enough to inhibit

interwell tunneling. We will refer to the stage where the
condensate is brought to a halt as “ trapping”, not to be
confused with the atom trapping in order to produce a
BEC on the atom chip. Trapping is shown in Fig. 7 (for
details see discussion below) and is accomplished within
the framework of OCT.

The general goal of OCT is to solve the following in-
verse problem: suppose that the state of a system Ψ0

is known at some initial time t0, and we are seeking for
a desired state Ψd at some final time T . In order to
bring the system from Ψ0 to Ψd, we can tune some ex-
ternal control paramaters, such as the λ-parameter for
the Lesanovsky potential. In general, the time depen-
dence of the control parameter that brings the system
from the initial to the desired state is unknown. OCT
allows to find an optimal control in an iterative process.
Many variants of OCT implementations exist, such as
CRAB [50], Krotov’s method [51, 52], or a gradient as-
cent pulse engineering (GRAPE) scheme [27, 53]. In this
work we employ the GRAPE algorithm implemented in
the OCTBEC toolbox [49].

The OCT ingredients are the initial state of our system
Ψ0, a dynamic equation for the system’s time evolution
(here MCTDHB), and a cost function that rates the suc-
cess for a given control field λ(t). For Ψ0 we use the
system’s state after an initial parametric amplification
stage. As for the terminal cost, we are seeking for highly
number squeezed states and for condensates at rest. This
can be accomplished through a cost function of the form

JT = 〈Ψ|J2

z |Ψ〉+ γ

N
〈Ψ|H|Ψ〉 , (10)

which consists of two parts: the first one favors strongly
number-squeezed states, the second one minimal energy
and thus a condensate at rest. γ is a parameter that
weights the relative importance for these two optimiza-
tion goals.

A slight complication arises for the squeezing term in
Eq. (10), as Jz is defined in the left-right basis whereas
the natural MCTDHB basis is a gerade-ungerade ba-
sis [27]. To switch between the two bases, we use

φl =
1√
2
(φg + f̃φu) (11)

φr =
1√
2
(φg − f̃φu) , (12)

where f̃ = f/|f | is the relative phase between the or-
bitals, which is obtained from the wave function overlap
for x > 0 (θ denotes the Heaviside step function)

f =

∫

θ(x) φ∗g(x)φu(x) dx . (13)

The constraint that the BEC dynamics is governed by
the MCTDHB equations of motion is included within a
Lagrangian framework, and the full Lagrangian contains
an additional cost term that favors control fields where
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FIG. 7: (Color online) Parametric squeezing amplification (for times below 10 ms) and trapping (for times later than 10 ms,
note different time axes). We show the time evolution of the control parameter λ for trapping ramps obtained for different
weighting factors γ. The inset shows Bloch sphere representations of states which rotate clockwise around the x-axis and
become continuously squeezed. See Fig. 2 for color bar.

the control parameter changes smoothly [49],

L = JT +
ν

2

∫ T

0

[λ̇]2 dt+Re〈Ψ̃, iΨ̇− F (Ψ, λ)〉 . (14)

Here F is a short-hand notation for the equations of mo-
tion, ν is a weighting parameter, and 〈a, b〉 is a short-hand
notation for

∫ T

0
dt
∫

dx a∗(x, t)b(x, t).

We next derive from this Lagrangian the optimality
system that is needed for OCT. With exception of the
cost function, the pertinent equations for the MCTDHB
approach can be found in Ref. [49], and we thus only
comment on the functional derivatives of the terminal
cost function JT . Because of the relative phase f̃ , see
Eq. (13), appearing in the operator Jz, these derivatives
are somewhat involved. After some calculations, which
are briefly sketched in appendix A, we arrive at

∂JT

∂C∗
= J2

z |C〉+
γ

N
H|C〉 (15a)

∂JT

∂φ∗g
= 〈C|Jz

∂Jz
∂φ∗g

+
∂Jz
∂φ∗g

Jz|C〉 (15b)

∂JT

∂φ∗u
= 〈C|Jz

∂Jz
∂φ∗u

+
∂Jz
∂φ∗u

Jz|C〉 , (15c)

with

∂Jz
∂φ∗g

=
θ(x)φu

4

(

a†gau

|f | − a†uag
(f∗)2

|f |3

)

(16a)

∂Jz
∂φ∗u

=
θ(x)φg

4

(

a†uag
|f | − a†gau

(f)2

|f |3
)

. (16b)

For the optimizations we employ the Matlab toolbox
OCTBEC [49]. See also Refs. [53, 54] for a detailed de-
scription of our OCT implementation.

B. Trapping

In our OCT simulations we first perform a parametric
amplification with an amplitude of 5% and t0 = 10 ms,1

as shown in Figs. 5 and 7. The system’s state at this
terminal time is then used for Ψ0 in our OCT algorithm.
For the initial guess of the splitting and trapping ramp we
use a linear ramp for λ and a time interval of T − t0 =
2 ms. The initial guess was then optimized with the
scheme described in Sec. IVA and for different weighting
parameters γ.

Fig. 7 shows the resulting ramps for γ-factors of 0, 1,
and 100. For the additional cost penalization term in
Eq. (14) we use a small value of ν = 10−6 such that
the control selection is only governed by JT of Eq. (10).
The difference between these ramps is attributed to the
impact of the γ-factor that weights between the different
optimization objectives of squeezing and trapping. Fig. 8
depicts the resulting spin squeezing factors ξS for the
ramps shown in Fig. 7, and Fig. 9 the corresponding atom
densities.

All three ramps produce squeezing values lower than
0.13, corresponding to ξ2S ≈ −18 dB. This is roughly
10 dB above the Heisenberg limit of −28 dB. As ex-
pected, the squeezing values are better for optimizations
with smaller γ values, although the influence is not overly
large. From the density maps shown in Fig. 9 we infer
that the ramp with γ = 0 leads to an excited BEC, the
ramp with γ = 1 produces an only weakly excited BEC,
and the ramp with γ = 100 results in a BEC that is

1 The success for optimizing squeezing and wavefunction trapping
depends on the initial and terminal times t0 and T , respectively.
t0 = 10 ms was obtained from a linesearch, where we used a
linear λ ramp for trapping in order to find the “best” initial time
in the interval t0 ∈ [9, 11] ms. Also the length of the trapping
sequence (here 2 ms) was optimized through a similar linesearch.
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FIG. 8: (Color online) Coherent spin squeezing during and
after trapping, for the ramps shown in Fig. 7. Smaller γ

values lead to better squeezing.
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FIG. 9: (Color online) BEC density maps during and after
trapping (dashed lines indicate end of trapping stage, see
Fig. 2 for color bar) for the ramps shown in Fig. 7. Larger γ

values lead to a less excited BEC.

almost at rest.

V. SUMMARY

We have discussed a parametric amplification scheme
for creating and trapping a BEC in a highly squeezed
state, with a squeezing value of ξ2S ≈ −18 dB. Squeezing
amplification is achieved in a split BEC through mod-
ulation of the tunnel coupling with twice the Joseph-
son frequency. To achieve high squeezing on short time
scales, one has to use sufficiently large modulation am-
plitudes, which, in turn, lead to condensate oscillations.
These oscillation can be brought to halt through a split-
ting ramp optimized within the OCT framework. Com-
pared to other protocols for number squeezing [27, 28],

the method presented here needs OCT only for the final
trapping stage of the squeezed state.
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Appendix A

We describe the BEC dynamics within the framework
of MCTDHB(2) [34]. In this method, the BEC wave
function is expanded into a set of time dependent or-
bitals, which, for a spatially symmetric problem, can be
classified according to their parity as gerade and unger-
ade, i.e., φg(x) and φu(x). In order to find the optimality
system given in section IVA we have to calculate all the
derivatives of the cost function of Eq. (10), namely ∂JT

∂C∗
,

∂JT

∂φ∗

g
, and ∂JT

∂φ∗

u
. The difficulty here is that the operator

Jz depends explicitly on the orbitals,

Jz =
1

2

(

f̃a†gau + f̃∗a†uag

)

, (A1)

namely through the factor f̃ that depends on φg and φu,

see Eq. (13). Performing the functional derivative ∂JT

∂C∗
is

straightforward, and we arrive at

∂

∂C∗

(

〈C|J2

z |C〉+
γ

N
〈C|H|C〉

)

= J2

z |C〉+
γ

N
H|C〉 .

(A2)
For ∂JT

∂φ∗

g
the second term of the cost function vanishes,

since there is no dependence on the orbitals. We start by
using the chain rule

∂JT

∂φ∗g
=
∂JT

∂Jz

∂Jz
∂φ∗g

= 〈C|Jz
∂Jz
∂φ∗g

+
∂Jz
∂φ∗g

Jz|C〉 . (A3)

To calculate ∂Jz

∂φ∗

g
we first use

∂f

∂φ∗g
=

1

2|f |θ(x)φu ,
∂f∗

∂φ∗g
= − (f∗)2

2|f |3 θ(x)φu ,

and arrive at

∂Jz
∂φg

=
θ(x)φu

4

(

a†gau

|f | − a†uag
(f∗)2

|f |3

)

. (A4)

The calculation of ∂Jz

∂φ∗

u
is very similar and we find

∂Jz
∂φu

=
θ(x)φg

4

(

a†uag
|f | − a†gau

(f)2

|f |3
)

. (A5)

This leads us to our final result of Eq. (15).
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U. Hohenester, J. Phys B 46, 104012 (2013).

82



CHAPTER 8. CONCLUSION AND OUTLOOK

8. Conclusion and outlook

8.1. Comparison of different optimization methods

There are many different OCT techniques and algorithms, but not all of them are equally
suitable to solve BEC problems. The suitability of each method also depends on the
specific problem and how it is tackled. For most BEC problems the control describes a
time dependent magnetic field. This field can be numerically treated through discretiza-
tion in time or by describing it by a set of parameters. Discretization leads to a very
high dimensional problem, while parametrizing usually poses too strong constraints on
the possible control fields. For some algorithms it is necessary to parametrize, since they
do not converge in a control space with thousands of dimensions. Especially genetic
algorithms or CRAB rely heavily on such parametrization, which can be a problem for
a typical BEC optimization. In general, the shape of the optimal control is completely
unknown, so it is very difficult to find a working parametrization. Without any infor-
mation about the final control, one has to expand in some base functions, like sines
or polynomials, but for a finite number of parameters there is always the risk that the
best controls are excluded from the control space. In that sense, CRAB and genetic
algorithms are not very well suited to solve complex BEC optimization problems.

Nevertheless it is possible to use CRAB for BEC optimizations, if the shape of the
control is roughly known beforehand. In [22] for example CRAB was used in order to
find a control that produces a superposition of two trap eigenstates. This was possible,
because the rough shape of the control was known and it was sufficient to optimize 60
Fourier components. For general problems, however, such a parametrization might not
work, so GRAPE and Krotov’s method have a big advantage there, since they can work
with discretized controls and a high dimensional control space.
Especially GRAPE was very successful in the field of BEC optimization. It was

possible to bring a BEC from the ground state of a single well trap into the ground
state of a double well trap [64], as well as from its ground state to its first excited
state (paper 1, [51]). A detailed comparison of GRAPE and Krotov’s algorithm was
performed in paper 3 [88] and showed that also Krotov’s method is capable of such
optimizations and performs equally well. Although both algorithms work, there are
important differences between them that not only influence performance, but also the
resulting controls.
One such difference is that the update in Krotov’s method is sequential, while GRAPE’s

is concurrent. Using GRAPE, one first calculates the gradient for every point in time
and then updates all points simultaneously. This has the big advantage that additional
constraints on the control can be implemented very easily. Demanding a smooth control,
which is favorable for most experimental implementations, can be done by simply adding
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a term to the cost functional that favors smooth controls. This is quite easy, since when
calculating the gradient, the control is already known at all points in time, so properties
like smoothness, which rely on that information, are accessible. Krotov’s method on
the other hand is sequential. Each point in time is updated individually. This has the
advantage that the most recent information about the control is used for the update, as
illustrated in Fig. 8.1. The downside of this approach is that the information about the
shape of the control is incomplete most of the time, making it very difficult to include
terms in the cost function that require information about the control at each point in
time.

Figure 8.1.: The difference between a sequential and concurrent update: For sequential
updates each point in time is updated separately, for concurrent updates
the update is performed simultaneously for all points in time.

The fact that it is very difficult to include a smoothing term in Krotov’s method
leads to very different results for GRAPE and Krotov regarding the final control. Both
controls have an equally low cost, the shape however is very different as can be seen in
Fig. 8.2.
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Figure 8.2.: Comparison of GRAPE and Krotov Optimization: (a) The control produced
by GRAPE (blue) is much smoother than the one produced by Krotov’s
method (red). (b) and (c): Time development of the BEC density for both
GRAPE (blue) and Krotov’s method (red) (d) and (e): Both controls pro-
duce a final state that matches the target state. From paper 3 [88]

While the GRAPE control is relatively smooth, the Krotov control has very sharp
features. In simulations these features do not pose a problem, but for an experimental
realization they could be difficult to implement or might lead to unexpected behavior.
If it is important that the resulting control is very smooth or one has other, more
complicated constraints, GRAPE might be the method of choice.
Also concerning input parameters the two algorithms differ a lot. GRAPE works more

or less like a black box. The only value that can be chosen is the cost tolerance at which
the algorithm stops. However, this parameter does not need to be finetuned, it simply
corresponds to the precision one is interested in. Krotov’s method on the other hand
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has many parameters that can be chosen more or less arbitrarily. First and foremost the
success of Krotov’s method depends heavily on the choice of the Krotov parameters α, β
and γ. In order to get fast convergence, all these parameters must be finetuned. There
are ways of calculating upper bounds for them [83], but using these upper bounds often
results in extremely slow convergence. Using smaller values can speed up convergence,
but there is also the possibility that the algorithm does not converge at all, if one uses
too small parameters. Choosing suitable values requires intuition and experience, and
often it is convenient to simply determine them by trial and error, i.e. starting with
very small parameters and slowly increasing them until the cost begins to decrease [82].
There is a similar problem with choosing the step size of Krotov’s method. Too small step
sizes lead to slow convergence, while too large step sizes inhibit convergence altogether.
Unfortunately a line search in order to find the optimal step size is not possible for
Krotov’s method, since this would be computationally too expensive. The existence of
many parameters that can be changed can be an advantage, but also a disadvantage.
On the one hand finetuning all those parameters can be cumbersome, on the other hand
it can potentially improve convergence significantly.
In terms of computational effort both algorithms are comparable, although the types

of equations that need to be solved are very different. For Krotov’s method it is nec-
essary to solve the adjoint equation, followed by a simultaneous solution of the control
equation and the Gross-Pitaevskii equation, which is computationally expensive. Addi-
tionally these equations need to be solved with very high precision, because the update
is extremely sensitive to errors. The equations for GRAPE are entirely different. First
one has to solve the Gross-Pitaevskii equation, followed by the adjoint equation. Most
of the time, however, is spent on the following line search. In order to find an optimal
step size the Gross-Pitaevskii equation needs to be solved 10 or maybe even 100 times
in each iteration step. However, these calculations are usually fast.
In terms of the number of calculations that need to be solved GRAPE and Krotov’s

method perform equally well, as seen in Fig. 8.3. However, in terms of actual compu-
tation time the situation is different. Since the equations that need to be solved for
GRAPE can be solved in a fraction of the time it takes to solve the Krotov equations,
GRAPE usually outperforms Krotov’s method.
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Figure 8.3.: Cost development of GRAPE and Krotov’s method: Both algorithms pro-
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The equations for GRAPE can however be solved much quicker than those
for Krotov’s method. From paper 3 [88]

The nonlinearity parameter κ plays an important role in these optimizations. For
vanishing or very small κ, both algorithms converge very fast and there is little difference
between them in terms of performance. High κ on the other hand slows down the
convergence for GRAPE as well as Krotov’s method. While GRAPE can in principle
deal with large nonlinearities, Krotov’s method needs to be adapted, in particular the
Krotov term σ must be increased in order to ensure convergence.
To sum up, both GRAPE and Krotov’s method are well suited to solve many different

problems in the field of controlling BECs. However, GRAPE is very easy to use without
any parameters that need to be finetuned, it has a simple way of favoring smooth controls,
which is important for experiments, and it is computationally faster. This makes it the
method of choice for most BEC optimizations.
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8.2. Optimized generation of condensate wave functions

The main goal of most BEC optimizations is to bring the BEC from a target state Ψ0 to
a desired state Ψdes. The actual shape of these states depends on the problem at hand.

Wave function translation

The simplest manipulation of a BEC one can perform is a simple translation. Here the
BEC resides in a single well and the control translates the whole potential equally. The
goal is to transfer the BEC a given distance without exciting it. Successful optimizations
of such kind have been demonstrated in [64] and are depicted schematically in Fig. 8.4.

Figure 8.4.: Translating a BEC: Inital state (left) and target state (right)

This example demonstrates the principles of OCT, but is not overly interesting for
experimental implementation.

Wave function splitting

A more relevant example of BEC optimization is wave function splitting, also demon-
strated in [64]. Here the goal is to split the BEC into two coherent BECs that can be
used for interferometry or other purposes. This process is more complicated and requires
more than a simple translation of the potential. Instead a Lesanovsky type potential is
used, as depicted in Fig. 8.5. This potential can be changed from a single well into a
double well by a radio frequency field. The strength of this field is the control parameter
λ that needs to be optimized.
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Figure 8.5.: Lesanovsky potential: Single well for λ = 0 (left), double well for λ = 1
(right). The optimization objective is to bring the BEC from the ground
state of the unsplit trap to the ground state of the split trap.

Using GRAPE, this problem can be solved within a few iterations, typically < 10,
corresponding to a computation time of a few minutes on a single core. While a linear,
unoptimized control typically excites the BEC, especially for short transition times, the
optimized control leads to a BEC that is almost exactly in its ground state. This state
can then be used for interferometry or other applications.

Wave function shaking

A problem with even more interesting applications is called “wave function shaking”.
Again, the initial state is a BEC in the ground state of a single well trap. The target
state is the first excited state of the same potential, depicted in Fig. 8.6.
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Figure 8.6.: Wave function shaking. The optimization objective is to bring the BEC
from the ground state of the trap to the first excited state by “shaking”.

The density of the target state looks similar to the one for wave function splitting, but
the underlying process is entirely different. For wave function shaking the target state
is not the ground state of a split trap, but the first excited state of a single well trap.
Such a state cannot be reached by controlling the radio-frequency field of a Lesanovsky
type potential. Instead, the whole potential is moved in space, similar to wave function
translation. “Shaking” the trap in that way brings additional energy into the system
and can promote the BEC into the first excited state. The actual shape of the control
is hereby of utmost importance and can not be guessed or calculated analytically in any
way. For simpler problems, like wave function translation or wave function splitting,
even a linear control can produce relatively low costs. For wave function shaking this
is not the case, which makes this problem all the more interesting. The target is very
specific: all the atoms should be in the first excited state, none of them are allowed
in the ground state or in a higher excited state. With a guessed control this goal can
simply not be reached in a satisfying way.
Such a state inversion from the ground to the first excited state was experimentally

shown in paper 1, [51]. The optimization was performed with GRAPE (BFGS) and
lead to a control that was used in an experiment in cooperation with the group of Jörg
Schmiedmayer at the TU Wien. Theoretical simulation and experimental results match
very well as can be seen in Fig. 8.7.
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From paper 1 [51]

The main source of the small discrepancy between theory and experiment is the exper-
imental setup that works as a filter for the control. The optimized control gets changed
and distorted, leading to a suboptimal result. This problem has been tackled in pa-
per 2, [89], by including the experimental filter in the OCT calculations. With this
adaption an arbitrary filter function can be included in the optimization process, which
helps to close the gap between theory and experiment.
Performing a state inversion makes many other interesting experiments possible. One

prominent example is the generation of twin atom beams [90], the matter wave equiv-
alent of twin photon beams. Similar to a laser, there is an excited active medium that
produces a beam, here with atoms. This technique can be used for generating non-
local correlations and entanglement as required for precision metrology and quantum
communication and may path the way for future BEC applications.

8.3. Matter wave interferometry

One of the most promising applications where BEC control is needed is matter wave
interferometry. In order to surpass the classical limit in terms of precision it is necessary
to produce squeezed states, see section 2.3. In paper 4 [91] a technique called paramet-
ric squeezing amplification (see section 2.3.2) is used to generate such states on short
timescales.
The main idea of this technique is to trap a BEC in a double well and then modulate

the tunnel coupling at twice the Josephson frequency. We simulate this process within
MCTDHB(2) for different amplitudes and find very high squeezing for an amplitude of
5%. However, it is also evident that this squeezing becomes worse after a certain time
of amplification due to dephasing and other effects of the BEC dynamics. This raises
the question if it is possible to trap the BEC in a highly squeezed state using OCT.
This optimization problem is fundamentally different from the ones presented above.
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Previously we used the Gross-Pitaevskii equation to describe the BEC in a mean field
approximation. Here we are interested in number squeezing, a property that can only
be calculated within a many-body model. We use MCTDHB(2) (see section 1.2.4) in
order to describe both orbital and number dynamics.
Although this makes the equations of motion and the optimality system more com-

plicated, the steps for formulating the OCT problem remain the same. First we have to
define the cost functional. We do not have a desired state for this problem, the goal is
to find a state that is maximally squeezed. The exact shape of this state is unknown.
Nevertheless, we can formulate a cost functional by finding an operator whose expecta-
tion value needs to be minimized. In this case we can use the square of the pseudospin
operator Jz. Additionally we have a second requirement for the state at time T : Since
parametric squeezing amplification can excite the BEC, which is unfavorable for inter-
ferometry, we include a term in the cost that favors states close to the ground state. The
cost JT then reads:

JT = 〈Ψ|J2
z |Ψ〉+ γ

N
〈Ψ|H|Ψ〉 (8.1)

γ is a weighting parameter that determines the relative importance of the two terms.
For convenience it is normalized by the number of atoms N .
The next step is finding the initial state of the system Ψ0. For this problem this

is not the ground state, but a state that occurs after a certain time of parametric
amplification. We optimize this amplification time by a line search algorithm and find
a value of 10 ms. Ψ0 is then calculated by simulating 10 ms of parametric amplification
within MCTDHB(2) and it servers as a starting point for the OCT calculation.
In order to find an optimal control for this problem we use the MATLAB toolbox

OCTBEC [92]. For different weighting parameters γ we find different controls, shown in
Fig. 8.8.

Figure 8.8.: Control fields that produce highly squeezed states: The parametric amplifi-
cation stage (0-10 ms) is the same for all three controls, the trapping stage
(10-12 ms) differs depending on the weighting parameter γ. The inset shows
the parametric squeezing amplification on the Bloch sphere.
From paper 4, [91].
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All controls produce very highly squeezed states with a squeezing factor of ξS < 0.13
(ξ2s = −18 dB). Using such a state for an interferometer drastically improves its precision:
While a binomial state leads to an error of 1/

√
N , using a squeezed state reduces the

error to ξS/
√
N . In other words the error is reduced to 13% of the classical value.

It has been shown experimentally that non-classical states can improve the precision
of a matter wave interferometer [22], in principle down to the Heisenberg limit. The
experimental realization of parametric squeezing amplification will be an important next
step towards that goal.

8.4. Outlook

The field of BECs is very active with rapid advancements in recent years and one expects
many interesting results and applications in the near future. Matter wave interferometry
is especially promising. Using non-classical states to increase a matter wave interferom-
eter’s precision has been experimentally demonstrated in [22] and methods of producing
very highly squeezed states have been theoretically investigated [44, 60, 61]. Especially
parametric squeezing amplification (paper 4, [91]) is a promising candidate for improving
the precision of a matter wave interferometer. If these advancements continue, it is to be
expected that interferometers using squeezed states will outperform conventional ones in
terms of precision for a lot of applications. Additionally, many (proposed) applications
for matter wave interferometry are in areas where light wave interferometry does not
work. Since BECs are sensitive to gravity, matter waves can for example be used to
search for gravity waves [19]. They also present an entirely new method to measure the
gravitational constant on a microscopic scale [21]. BEC experiments can also help in the
search for dark energy [20], one of the most widely investigated problems in astrophysics.
Furthermore the manipulation of BECs and the creation of specific many body states

has other popular applications, beyond interferometry. Quantum simulation is a rapidly
growing field, where quantum systems, like BECs, are investigated as models for more
complicated systems. That way one can extract information about problems that are
far too complex to be tackled numerically. BECs are very versatile in this area, since
a magnitude of different states can be produced, depending on the used atom chip
and trap potential, so that many different systems can by analyzed. In the near future
better control of BECs may even increase their versatility and make quantum simulations
possible, that are currently beyond our reach.
Both quantum cryptography and quantum computing rely heavily on the production

of highly entangled states. BECs are a perfect tool for creating hundreds of entangled
atoms and are therefore a promising candidate for applications in both fields. The
high controllability of BECs and the possibility to work with a large number of atoms
simultaneously may lead to big advances in these areas.
BECs are fascinating objects and path the way to new, exciting experiments and

technologies. Studying them and learning to control them gives us insight in fundamental
physical principles, while it also enables us to utilize them in many different areas.
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A. Calculation of the optimality system

The starting point of the calculation of the optimality system is the cost function (3.11).
If we explicitly write down the Lagrangian, which ensures that the Gross-Pitaevskii
equation is satisfied, it reads:

L =
1

2

(

1− |〈Ψ(T )|Ψdes〉|2 + ν

∫ T

0
λ̇(t)2dt

)

+ Re

〈

p , iΨ̇−
(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ

〉

(A.1)
The goal is now to find the three derivatives ∂L/∂Ψ∗, ∂L/∂λ and ∂L/∂p∗.
We will begin by calculating ∂L/∂p∗. The first step is to separate L into terms that

depend on p∗ and terms that do not depend on p∗. Now we can denote all the terms that
are independent of p∗ as “const”, since they will simply vanish during the derivative.
Writing the real part of the second term of L as Re(A) = 1

2(A + A∗) gives a factor
1/2 and the complex conjugate of the term, which does not depend on p∗ and can be
included in the constant “const”:

L =
1

2

∫

dt p∗
(

iΨ̇−
(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ

)

+ const

The functional derivative ∂L/∂p∗ can now be calculated quite easily, as L is linear in p∗.

∂L
∂p∗

=
1

2

(

iΨ̇−
(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ

)

To find the minimum of L we set ∂L/∂p∗ = 0 and arrive at the first equation of the
optimality system.

iΨ̇ =

(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ

Next we calculate ∂L/∂Ψ∗. Again, we separate into constant and Ψ∗−dependent
terms. We find three terms that depend on Ψ∗ and write them in a way that the actual
dependency on Ψ∗ is evident.

L =
1

2

∫

dt

(

p∗(−κ)Ψ∗ΨΨ+ (iΨ̇)∗p−Ψ∗

(

−1

2
∇2 + Vλ + κΨ∗Ψ

)

p

)

+ const

We will now investigate each of these terms separately. The first one is linear in Ψ∗, and
we find

∂L
∂Ψ∗

∫

dt p∗(−κ)Ψ∗ΨΨ = p∗(−κ)ΨΨ
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For the second term we perform a partial integration and again exploit that the deriva-
tives of the constant terms vanish.

∂L
∂Ψ∗

∫

dt (−i)Ψ̇∗p =
∂L
∂Ψ∗

[(−i)Ψ∗p]T0 − ∂L
∂Ψ∗

∫

dt (−i)ṗΨ∗ = iṗ

Here we get an additional term p(T ) from the integration by parts that gives rise to the
boundary condition for p(T ). The third term consists of a linear, and a quadratic part
and the derivative yields:

∂L
∂Ψ∗

∫

dt −Ψ∗

(

−1

2
∇2 + Vλ + κΨ∗Ψ

)

p =

=
∂L
∂Ψ∗

∫

dt −Ψ∗

(

−1

2
∇2 + Vλ

)

p− κΨ∗Ψ∗Ψp =

=

(

−1

2
∇2 + Vλ

)

p− 2κΨ∗Ψp

Now we add those three terms together and get ∂L/∂Ψ∗. To find the minimum of L we
set the derivative to zero. This gives us the second equation of the optimality system,
the so-called adjoint equation.

ṗ =

(

−1

2
∇2 + Vλ + 2κ|Ψ|2

)

p+ κΨ2p∗

The last derivative we need to calculate is ∂L/∂λ. Rewriting the Lagrangian gives

L =

∫

dt
ν

2
λ̇λ̇+Re

〈

p, iΨ̇−
(

−1

2
∇2 + Vλ + κ ,Ψ|2

)

Ψ

〉

+ const.

We begin with the first term. Again we use partial integration and utilize that constant
terms, like λ evaluated at a certain time, vanish.

ν

2
δ
δλ

∫

dt λ̇λ̇ =
ν

2
δ
δλ

[

λ̈λ
]T

0
− γ

2
δ
δλ

∫

dt λλ̈ =

=
ν

2

(
∫

dt δ
δλλλ̈−

∫

dt λ δ
δλ λ̈

)

=

=
−ν
2

(

λ̈+

∫

dt λ δ
δλ λ̈

)

=

=
−ν
2

(

λ̈+
[

λ δ
δλ λ̇
]T

0
−
∫

dt λ̇ δ
δλ λ̇

)

=

=
−ν
2

(

λ̈+
[

λ δ
δλ λ̇
]T

0
−
[

λ̈ δ
δλ λ̇
]T

0
+

∫

dt λ̈ δ
δλλ

)

=

=
−ν
2

(

λ̈ + λ̈
)

= −νλ̈

In the second term the only dependency on λ appears in Vλ.

∂

∂λ
Re

〈

p, iΨ̇−
(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ

〉

= Re

〈

p

∣

∣

∣

∣

δVλ
δλ

∣

∣

∣

∣

Ψ

〉
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We add those two terms and find ∂L/∂λ. Demanding that this derivative also equals
zero gives the last equation of the optimality system, the control equation:

γλ̈ = −Re

〈

p

∣

∣

∣

∣

δVλ
δλ

∣

∣

∣

∣

Ψ

〉

We have now derived the three equations of the optimality system, namely the Gross-
Pitaevskii equation, the adjoint equation and the control equation, from the three func-
tional derivatives ∂L/∂Ψ∗, ∂L/∂λ and ∂L/∂p∗. To complete the optimality system we
also need to find the boundary conditions of those equations. The wave function Ψ at
time 0 is Ψ0. For the control λ we know both the value at the initial time (λ0) and the
value at the final time T (λ(T )). The last boundary condition comes from the derivative
of the cost functional ∂J /∂Ψ∗.

The complete optimal control system, including boundary conditions, is:

iΨ̇ =

(

−1

2
∇2 + Vλ + κ |Ψ|2

)

Ψ (A.2a)

ṗ =

(

−1

2
∇2 + Vλ + 2κ|Ψ|2

)

p+ κΨ2p∗ (A.2b)

γλ̈ = −Re

〈

p

∣

∣

∣

∣

δVλ
δλ

∣

∣

∣

∣

Ψ

〉

(A.2c)

λ(0) = λ0 (A.2d)

λ(T ) = λT (A.2e)

Ψ(0) = Ψ0 (A.2f)

ip(T ) = −〈Ψdes |Ψ(T )〉Ψdes (A.2g)
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B. Calculation of the optimality system for

a filtered control

The derivation of the optimality system for a filtered control is similar to the calculations
done in appendix A. There are, however, some important differences.
We start again with the Lagrangian (3.11), but we have to replace the control λ with

the filtered control λ⋆:

λ⋆(t) =

∫ t

0
h(τ)λ(t− τ)dτ , (B.1)

where h is the filter function which is determined by the experimental parameters. We
find a new Lagrangian:

L =
1

2

(

1− |〈Ψ(T )|Ψdes〉|2 + ν

∫ T

0
λ̇(t)2dt

)

+Re

〈

p , iΨ̇−
(

−1

2
∇2 + Vλ⋆ + κ |Ψ|2

)

Ψ

〉

(B.2)
Like in appendix A we now have to calculate the functional derivatives ∂L/∂Ψ∗, ∂L/∂λ

and ∂L/∂p∗.
The derivation of ∂L/∂p∗ is very similar to the one in appendix A, we only have to

replace Vλ with Vλ⋆. We arrive at the first equation of the optimality system.

iΨ̇ =

(

−1

2
∇2 + Vλ⋆ + κ |Ψ|2

)

Ψ

Also ∂L/∂Ψ∗ does not change much due to the introduction of a filtered control. Again
it is enough to simply replace Vλ with Vλ⋆, so that the second equation of the optimality
system reads:

ṗ =

(

−1

2
∇2 + Vλ⋆ + 2κ|Ψ|2

)

p+ κΨ2p∗

The last derivative, ∂L/∂λ, is however more complicated once the control is replaced by
a filtered control. We start by writing the Lagrangian in a way that makes the actual
dependency on λ apparent. Note that we still search for the derivative with respect to
λ, although the potential depends on λ⋆.

L =

∫

dt
ν

2
λ̇λ̇+Re

〈

p , iΨ̇−
(

−1

2
∇2 + Vλ⋆ + κ |Ψ|2

)

Ψ

〉
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The first term is calculated in the same way we did earlier for the Lagrangian without
the filter:

ν

2
δ
δλ

∫

dt λ̇λ̇ =
ν

2
δ
δλ

[

λ̈λ
]T

0
− ν

2
δ
δλ

∫

dt λλ̈ =

=
ν

2

(
∫

dt δ
δλλλ̈−

∫

dt λ δ
δλ λ̈

)

=

=
−ν
2

(

λ̈+

∫

dt λ δ
δλ λ̈

)

=

=
−ν
2

(

λ̈+
[

λ δ
δλ λ̇
]T

0
−
∫

dt λ̇ δ
δλ λ̇

)

=

=
−ν
2

(

λ̈+
[

λ δ
δλ λ̇
]T

0
−
[

λ̈ δ
δλ λ̇
]T

0
+

∫

dt λ̈ δ
δλλ

)

=

=
−ν
2

(

λ̈ + λ̈
)

= −νλ̈

Before we derive the last term, we first calculate δ
δλ(t)λ

⋆(s), since we are going to need
it in the next step.

λ⋆(s) =

∫ s

0
h(τ)λ(s− τ)dτ

δλ⋆(s)

δλ(t)
=

∫ s

0
h(τ)δ(s− τ − t)dτ

With that result we can now calculate the derivative of the second term:

∂
∂λ(t) Re

〈

p , iΨ̇−
(

−1

2
∇2 + Vλ⋆ + κ |Ψ|2

)

Ψ

〉

=

=Re

∫ T

0

δ
δλ(t)

〈

p(s)
∣

∣Vλ⋆(s)

∣

∣Ψ(s)
〉

ds =

=Re

∫ T

0

δλ⋆(s)
δλ(t)

δ
δλ⋆(s)

〈

p(s)
∣

∣Vλ⋆(s)

∣

∣Ψ(s)
〉

ds =

=Re

∫ T

0
ds

∫ s

0
dτh(τ)δ(s− τ − t)

〈

p(s)

∣

∣

∣

∣

δVλ⋆(s)

δλ⋆(s)

∣

∣

∣

∣

Ψ(s)

〉

=

=Re

∫ T

t
h(s− t)

〈

p(s)

∣

∣

∣

∣

δVλ⋆(s)

δλ⋆(s)

∣

∣

∣

∣

Ψ(s)

〉

ds

This leads to the third equation of the optimality system for a filtered control:

γλ̈ = −Re

∫ T

t
h(s− t)

〈

p(s)

∣

∣

∣

∣

δVλ⋆(s)

δλ⋆(s)

∣

∣

∣

∣

Ψ(s)

〉

ds
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CHAPTER B. CALCULATION OF THE OPTIMALITY SYSTEM FOR

A FILTERED CONTROL

Additional to the boundary condition we calculated in appendix A, the filter gives us
two new boundary conditions: The filtered control is λ⋆0 at time 0 and λ⋆T at time T.
This completes the optimality system for a filtered control:

iΨ̇ =

(

−1

2
∇2 + Vλ⋆ + κ |Ψ|2

)

Ψ (B.3a)

ṗ =

(

−1

2
∇2 + V ⋆

λ + 2κ|Ψ|2
)

p+ κΨ2p∗ (B.3b)

γλ̈ = −Re

∫ T

t
h(s− t)

〈

p(s)

∣

∣

∣

∣

δVλ⋆(s)

δλ⋆(s)

∣

∣

∣

∣

Ψ(s)

〉

ds (B.3c)

λ(0) = λ0 (B.3d)

λ(T ) = λT (B.3e)

λ⋆(0) = λ⋆0 (B.3f)

λ⋆(T ) = λ⋆T (B.3g)

Ψ(0) = Ψ0 (B.3h)

ip(T ) = −〈Ψd |Ψ(T )〉Ψd (B.3i)
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[10] R. Folman, P. Krüger, J. Schmiedmayer, J. Denschlag, and C. Henkel, “Microscopic
atom optics: From wires to an atom chip,” vol. 48 of Advances In Atomic, Molecular,
and Optical Physics, pp. 263 – 356, Academic Press, 2002.

[11] T. Bravo, C. Sab́ın, and I. Fuentes, “Analog quantum simulation of gravitational
waves in a Bose-Einstein condensate,” EPJ Quant. Technol., vol. 2, p. 3, 2015.

[12] T. Schumm, S. Hofferberth, L. M. Andersson, S. Wildermuth, S. Groth, I. Bar-
Joseph, J. Schmiedmayer, and P. Kruger, “Matter-wave interferometry in a double
well on an atom chip,” Nat Phys, vol. 1, 2005.

100



Bibliography

[13] W. Hänsel, J. Reichel, P. Hommelhoff, and T. W. Hänsch, “Trapped-atom interfer-
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