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Abstract

Surface plasmons - coherent electron oscillations at the surface of metallic nanoparticles
- allow to bridge between micrometer and nanometer length scales of optics and nan-
odevices, and are subject to various applications and experiments, the most prominent
being sensors.

This thesis is devoted to image the near-fields accompanied with coherent electron
oscillations with nanometer resolution. In more detail, we investigate the interaction of
a swift electron with surface plasmons, as it occurs in electron energy loss spectroscopy
(EELS), and examine the electron energy loss probability of plasmonic nanostructures.
Further, we develop a tomography scheme for EEL maps in the quasi-static approx-
imation and extend it by regularization with compressed sensing to the full vectorial
case.

We find that the interaction of swift electrons and surface plasmons leads to nanometer
spatial resolution of the electron energy loss probability of surface plasmons, and gives
detailed insight into the near-field of plasmonic structures. Further, the juxtaposition
between experiment and theory is improved by utilizing the full three dimensional par-
ticle geometry in the simulations. By introducing a modal decomposition of the Green
function, we reformulate EELS as a tomography scheme and thereby connect it with lo-
cal optical properties - the photonic local density of states - of plasmonic nanostructures.
For particles small compared to the resonance wavelength these can be found under some
restrictions by an inverse Radon transformation. The more general full vectorial case is
treated by using additional knowledge of the particle geometry and compressed sensing.



Zusammenfassung

Oberflächenplasmonen - kohärente Elektronenoszillationen an metallischen Oberflächen
- erlauben es, die Mikrometer- und Nanometer-Längenskalen von Optik und Nanobau-
steinen zu verbinden. Sie werden für verschiedene Applikationen und Experimente, wie
zum Beispiel Sensoren, benutzt.

Im Rahmen dieser Dissertation werden die mit den Oberflächenplasmonen einherge-
henden Nahfelder untersucht und dargestellt. Im Detail betrachten wir die Wechselwir-
kung eines schnellen Elektrons mit Oberflächenplasmonen, wie es in der Elektronenver-
lustspektroskopie (EELS) passiert, und berechnen die Energieverlustwahrscheinlichkeit
des Elektrons für verschiedene metallische Nanostrukturen. Weiters entwickeln wir ein
Tomographie Schema für EEL Projektionen in der quasi-statischen Näherung sowie für
den vektoriellen Fall mit Retardierungseffekten.

Die Resultate für verschiedene metallische Nanostrukturen zeigen, dass Nanometer-
auflösung von plasmonischen Strukturen mit EELS zu tieferer Erkenntnis des Nahfeldes
führt und durch die Benutzung der vollen dreidimensionalen Oberflächenstruktur der
Vergleich von Experiment und Simulation profitiert. Wenn man EELS als Tomographie-
problem formuliert, ist es zusätzlich möglich, Informationen über die optischen Eigen-
schaften von metallischen Nanostrukturen - genauer die lokale optische Zustandsdichte -
zu finden. Für Teilchen die klein gegenüber der Resonanzwellenlänge sind, ist dies unter
bestimmten Einschränkungen mit einer inversen Radon Transformation möglich. Für
eine generelle Rekonstruktion der optischen Eigenschaften benötigt man die zusätzliche
Information der Oberflächenstruktur.
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1 Introduction

1.1 Scope and structure of this work
Investigations of the interaction between electromagnetic waves and metallic nanopar-
ticles has led to a fast growing research field called plasmonics, which is the topic of
this thesis. Hybrid light-matter excitations, termed surface plasmons, allow to bridge
between the length scale of visible light and the nanometer-regime. This is achieved by
binding light to coherent electron oscillations at the surface of metallic nanoparticles.
Surface plasmons are accompanied by large field enhancements and evanescent fields
nearby the particle surface [1]. The progress of the field aroused by a good deal from
developments in the fabrication process of nano sized objects, such as chemical synthesis
or electron beam lithography, which allow to prepare metallic nanoparticles of various
size and geometry with nanometer accuracy, which in turn permits tailoring the reso-
nance frequencies of surface plasmons [2] and leads to high field enhancements at certain
hot-spots [3]. This thesis is devoted to the theoretical and experimental investigations
of the near-fields with nanometer spatial and sub eV spectral resolution.

In more detail, we study the interaction of swift electrons with metallic nanoparti-
cles. The excitation of surface plasmons by a relativistically moving electron and the
energy loss of the electron produced by the induced plasmonic field is theoretically well
established, but for complex plasmonic nanoparticle shapes numerical simulation tools
are needed in order to strengthen and interpret experimental findings. One goal of this
thesis is to use and improve simulation tools, which compute the energy loss of fast
electrons by plasmonic nanoparticles.

Electron energy loss spectroscopy projects the induced plasmon fields along the elec-
tron trajectory for certain impact parameters, and there is some controversy about the
interpretation of the measurement signal. Here we challenge the interpretation problem
and reformulate EELS as a tomography problem. We first employ the idea and formu-
late the tomography problem with a number of assumptions and restrictions, especially
the small particle approximation. In a second step we lift some of these restrictions and
generalize the idea to particle dimensions in the order of the resonance wavelength.

The thesis is structured as follows: The first chapter provides a general introduction
into the field of this thesis - plasmonics, and derives some basic properties of surface
plasmons. The second one deals with imaging of surface plasmons and gives a detailed
introduction into the theory of electron energy loss spectroscopy, one of the main tech-
niques used for surface plasmon imaging. In the third chapter we provide a general
introduction into the field of computed tomography and give detailed insight into the
techniques used for tomography of surface plasmons with electron energy loss spec-
troscopy. Chapter four to eight are reprints of papers originated from this thesis in
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1.2. THE WORLD OF PLASMONICS

chronological order of appearance. Finally in chapter nine we conclude the thesis by
giving an overview of the obtained results.

1.2 The world of plasmonics
Surface plasmons (or surface plasmon polaritons) are surface charge oscillations on the
surface of metallic nanoparticles which are excited by electromagnetic fields (e.g. light,
oscillating dipole, fast electron beam). Surface plasmons come along with strongly lo-
calized evanescent fields confined on a nanometer scale and evolve at certain resonance
energies, which depend on geometry and material of the nanoparticles. The field asso-
ciated with surface plasmons is decaying exponentially away from the particle surface
and is enhanced at certain geometry dependent hot spots, like particle corners or edges.
Because of the robustness of the effect - surface plasmons can be studied under air and
quite dirty conditions - plasmonics holds promise for numerous applications in different
fields.

Probably the first observation of surface plasmons appearing in literature dates back
to 1902 and is nowadays termed as Woods anomalies [4]: Polarized light was shone on
a metal coated diffraction grating, leading to anomalies in the reflected light. The first
theoretical description of this effect is referred to Lord Rayleigh [5]. The first sound
theory of particle plasmons is attributed to Gustav Mie [6] in 1908. He considered nano
sized spherical metallic particles that give rise to spectral modifications of the scattered
field. In 1957 the pioneering work of Ritchie proposed a theoretical description of electron
energy losses due to interaction of a swift electron with a metal foil [7] coming from the
excitation of surface plasmons. This effect was observed two years later [8] and marked
the beginning of electron energy loss spectroscopy for surface plasmons. The excitation
of surface plasmons with light was simultaneously developed by Kretschmann [9] and
Otto [10]. Both configurations use the evanescent fields of totally internally reflected
light from glass prisms in order to excite surface plasmons at thin metal films. Since
then plasmonics has emerged as a fast growing research field, with strong inputs from
the development of chemical synthesis and electron beam lithography, which lead to a
whole bunch of new geometries for investigation. Further, the hype in plasmonics arouse
from foreseen and already working applications [1, 11].

Possible applications include, but are not limited to, (bio-) sensors, medical applica-
tions (cancer therapy) and plasmonic circuits [1, 11]. Sensors rely on the effect that the
surface plasmon resonances are slightly shifted if another dielectric medium is brought
into the vicinity of a plasmonic particle, see e.g. [12]. Medical applications include can-
cer therapy, where the heating of plasmonic nanoparticles is used to destroy cancer cells,
which is termed plasmonic phototermal therapy and has already been applied in vivo
studies on mice [13]. Plasmonic circuitry deals with the implementation of plasmons into
photonic circuits, in order to shrink their size to the nanometer regime. The optimal
design of the building blocks of such circuits - plasmonic waveguides - is currently under
heavy development [14].
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1.2. THE WORLD OF PLASMONICS

Theoretical description

The theoretical description of surface plasmons usually considers the optical response
of a metal due to some exciting electromagnetic field. The question arises, whether
this should be done in a quantum mechanical way or in a classical way, since the in-
volved metallic structures usually have dimensions at the nanometer scale, close to the
quantum mechanical regime, but for most structures considered for surface plasmons,
the dimensions are large enough to use a classical description1, i.e. Maxwell’s theory
of light, and incorporate quantum mechanical material effects in a phenomenological
frequency-dependent response function, the so called dielectric function ε(ω).

A simple model for the dielectric function of a metal is the so called Drude or Drude-
Sommerfeld model, see e.g. [15], which treats a metal as a free electron gas with negative
charge and a fixed positively charged ionic background. When an oscillating external
electric field is applied, the electron gas begins to oscillate around the positive ionic back-
ground, leading to a polarization which is strongest in the volume at a certain material
dependent volume or bulk plasma frequency ωp. By comparing with the macroscopic
polarization of Maxwell’s equations, one finds a response function χ(ω) and, accordingly,
a dielectric function ε = 1 + ε0χ(ω), which reads

εDrude(ω) = 1 − ω2
p

ω2 + iγω
. (1.1)

Here γ = vF /l is a damping term with vF the Fermi velocity and l the electron free mean
path. Although this model already gives quite good results for the optical response
of metals - especially for gold and silver for wavelengths above 700 nm - it does not
account for interband transitions of bound electrons, which can be supplemented by
using a similar ansatz as in the Drude model, but for bound electrons, see e.g. [15]. A
comparison between the dielectric functions obtained from optical experiment [16] and
the Drude model with and without interband transitions in an energy range between 1
and 3.5 eV is given in Fig. 1.1 for gold. As can be seen, below 2 eV the Drude model is
in good agreement with experiment, but for higher energies interband transitions need
to be accounted for.

Having a function for the material parameters, we are seeking for a solution of Maxwell’s
equations that are evanescent (decaying away) from the surface and traveling along the
surface of the metal. In other words, we are searching either for the eigenmodes of closed
dielectric bodies or for electromagnetic waves that have an imaginary wave vector in the
direction normal to the surface and only propagate along the surface.

Planar interface between two media We look at a planar interface between two media
and search for a homogeneous solution of the electric field wave equation - i.e. a solution
of the electric field that exists without external excitation, which is localized at the
interface (see e.g. [15]). One finds a dispersion relation for the excitation of surface

1Quantum mechanical effects typically set in when the Fermi wavelength of the electrons in the metal
is comparable to the particle dimension, which is for noble metals at the order of Angstroms.
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1.2. THE WORLD OF PLASMONICS

Figure 1.1: Dielectric function of gold for Drude model without and with interband tran-
sitions, and comparison with experimental data from [16]. Left and right figure show
the real and imaginary part of dielectric function, respectively. Plateau in experimental
data of imaginary part above 2.5 eV is attributed to d-band transitions of electrons in
gold. For silver (not shown here) such high damping due to interband transitions sets
in above 3.5 eV.

plasmons propagating along the interface. By denoting kx the wavenumber into the
plasmon propagation direction, and ε1 and ε2 the dielectric functions of the two half
spaces, respectively, one arrives at a dispersion relation and a relation for the wave
vector component normal to the interface plane [15]

k2
x =

1
c2

ε1ε2
ε1 + ε2

ω2, k2
j,z =

ε2
j

ε1 + ε2
k2, (1.2)

where j is the index to medium j. Let us for simplicity assume that the imaginary
parts of the dielectric functions can be neglected. In order to get a solution traveling in
x-direction we need a real kx. Further, to be bound to the interface, we demand purely
imaginary kj,z. Then, from inspection of Eq. (1.2) we find that the dielectric functions
of the two media have to fulfill

ε1(ω) · ε2(ω) < 0 (1.3)
ε1(ω) + ε2(ω) < 0 (1.4)

in order to get a solution decaying exponentially away from the surface and traveling
along the interface. In other words, this means that one of the dielectric functions has
to be positive, while the other one needs to be negative. Further, the absolute value of
the negative dielectric function has to exceed the value of the positive one. Therefore
metals - as they have a large negative real part and a small positive imaginary part of
the dielectric function in the energy range of visible light - are a good choice as materials
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1.2. THE WORLD OF PLASMONICS

Figure 1.2: Surface plasmon dispersion relation for interface between gold (Drude model)
and dielectric with ε2 = 1 and 2.25. Below the dashed line surface plasmons are excited,
above the dispersion for bulk plasmons is shown. Bulk plasmons can not be excited
by transversal electromagnetic fields because they are longitudinal waves. Dotted lines
show light dispersion in medium with dielectric constant ε2 and yellow dotted line shows
dispersion of light tilted by medium with refractive index n = 2. kres is the wave vector
component in x-direction where a surface plasmon can be excited due to yellow light
line.
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1.2. THE WORLD OF PLASMONICS

Figure 1.3: Surface plasmon resonances of metallic nanospheres. Blue lines correspond
to gold nanospheres (values are multiplied with a factor of 200), red lines to silver
nanospheres. For the dielectric functions we used the Drude model with material pa-
rameters as in [18]. The data are normalized with R−6, where R is the radius of the
sphere. Solid, dashed and dashed-dotted lines correspond to a refractive index of the
embedding medium n = 1, 1.33, and 1.5, respectively.

for the excitation of surface plasmons. Especially gold and silver show good behavior
due to very low losses in the visible frequency spectrum. Usually the second material
is then a dielectric with small positive real dielectric constant, like air or glass. When
one looks at a glass/metal interface and does not neglect the imaginary part of the
dielectric function of the metal, one arrives at a kx with imaginary part, accounting for
ohmic losses in the metal. In Fig. 1.2 we look at the dispersion relation of Eq. (1.2)
and find that for the excitation of surface plasmons on films with light an additional
restriction comes up, namely energy and momentum conservation. Light excitations of
surface plasmons can only be achieved when the wave vector of light is diminished by a
dielectric with dielectric constant greater than one. Otherwise the wave number of light
in the dielectric medium is too small to cross the dispersion curve of surface plasmons.
Naively, one would think that by setting ε2 to a higher value than one, a crossing of the
light line and the surface plasmon dispersion relation is possible. But then the surface
plasmon dispersion relation is also tilted by the same factor. Therefore one has to find
a way to slow down light and bring it to the interface region where surface plasmons
propagate. Experimental realizations of tilting the light line in order to excite surface
plasmons at films are the Otto [10] and Kretschmann [9] configuration, respectively.
Here the evanescent fields of total internal reflection of prisms are used. The dispersion
relation can also be probed by swift electrons as is done in [17]. In addition, the authors
show that for the resonances of metallic nanoparticles a similar dispersion relation holds.
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1.2. THE WORLD OF PLASMONICS

Surface plasmons in metallic nanoparticles Resonances of metallic nanoparticles are
found by solving Maxwell’s equations for a homogeneous medium embedded in another
homogeneous medium. For a sphere [6], and some other special geometries, the equations
can be worked out analytically and yield equations for important physical quantities such
as scattering or extinction, which show the resonance energies of particle plasmons. In
the quasi-static case, the scattering cross section σscatt(ω) for a sphere is

σscatt(ω) =
8π

3
R6k4

∣∣∣∣ ε1(ω) − ε2
ε1(ω) + 2ε2

∣∣∣∣
2

, (1.5)

where ε1 and ε2 are in- and outside dielectric functions of metal and surrounding, re-
spectively, k is the vacuum wave number and R corresponds to the radius of the metallic
sphere. So, for particles small compared to the wavelength of the exciting electric field,
only the material properties allow for surface plasmon excitations. If we use the Drude
dielectric function of gold and silver, respectively as ε1(ω) and ε2 = 1 for vacuum we get
the resonances shown in Fig. 1.3 in the visible energy spectrum. Only the dipolar mode
shows up in the spectrum. The width of the resonances is attributed to radiation and
ohmic losses of the surface plasmon. For gold these losses are much stronger than for
silver and the position of the resonances is also dependent on the chosen material. Fur-
ther, the resonances can be shifted to higher energies, by using an embedding medium
with a higher refractive index n =

√
ε.

More modes can be excited, when the excitation wavelength is of the order of the
sphere diameter. Then the resonance position is dependent on R and one has to refrain
from the quasi-static approximation and use the full Maxwell equations for the evaluation
of the optical properties. For spheres one can resort to Mie theory [6].

If the particle shape is altered, also modifications in the plasmon energy arise. When
two particles are in close distance to each other the surface plasmons of each mode begin
to interact via their electromagnetic fields and a mode hybridization leads to bonding
and anti-bonding modes, see e.g. [19].
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2 Imaging plasmons with EELS
Surface plasmons are confined to the surface of metallic nanonstructures and therefore
their electromagnetic fields are also confined to the nanoregime. Furthermore, the fields
are decaying exponentially away from the surface, and for moderate particle sizes only
the dipole radiation is transfered to the far-field. Thus, in order to image the spatial and
spectral profile of particle plasmons, a microscopy technique which probes electromag-
netic fields with nanometer resolution and sub-eV spectral resolution is needed. There
exist mainly three approaches to interact with surface plasmons: excitation with light,
quantum emitters, and fast electron beams.

When plasmons are excited by optical far-field microscopy one usually gets a resonance
peak in the scattering or extinction spectra at the plasmon resonances, but no spatial
information. That is, because the resolution of optical microscopy is restricted by the
diffraction limit of light to about λ/2 ( Fig. 2.1 ).

It is possible to overcome the far-field resolution limit by scanning near-field optical
microscopy (SNOM). Here the specimen is excited by light and the evanescent fields are
probed by placing a detector - usually a sharp tip of glass or silicon - in close proximity
(much smaller than the exciting wavelength) of the specimen. It is also possible to invert
the scheme and to use the tip to illuminate the sample at a certain spot and measure
the induced near- or far-fields of the sample. This technique achieves a lateral resolution
of about 20 nm [20].

In contrast to that, in electron energy loss spectroscopy (EELS) an electron beam
is used as the excitation and probe source. This gives loss spectra with nanometer
resolution due to the short electron wavelength at typical resonance energies (Fig. 2.1),
therefore establishing a great tool to extract information about the near field of surface
plasmons. By raster scanning the specimen with the electron beam, one achieves detailed
spatial information with nanometer resolution [21, 22].

2.1 EELS in experiment
The experimental technique was already developed in the 1940s by Hillier and Baker
[24], but not widely used for plasmon imaging until advances in microscope instrumen-
tation (monochromated electron beam and aberration correction) led to better spatial
and energy resolution. While the spectra at a fixed beam position have been measured
for decades [25], the spatial electron energy loss map of surface plasmons at a certain
resonance energy has been measured only recently [22, 21]. Currently, nanometer reso-
lution for various particle shapes and sizes has been achieved and new plasmon modes
have been observed [26, 27, 28]. A comprehensive review of EELS in experiment is given
in [29].
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2.1. EELS IN EXPERIMENT

Figure 2.1: Lateral and spectral resolution of different microscopy techniques: Resolution
is limited to fractions of the wavelength of the probe. The photon wavelength is much
larger than the electron wavelength at typical excitation energies of plasmons, leading
to higher spatial resolution. Image taken from [23].
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2.2. EELS THEORY

There are two main types of setups: Scanning transmission electron microscope (STEM),
where the electron probe is raster scanned over the specimen and at each position a
spectrum is recorded, and electron filtered transmission electron microscopy (EFTEM),
where an electron beam interacts with the sample and spatial information at a fixed
energy is obtained. While the STEM approach gives excellent energy resolution, the
EFTEM setup measures large areas with high spatial resolution in comparable short
acquisition time [30].

The main principle of transmission electron microscopy is depicted in Fig. 2.2: Swift
monochromated electrons with kinetic energies of 80 to 200 keV are passing by or pen-
etrating the specimen. The information from elastically scattered electrons is used to
get high angle annular dark-field images, while the inelastically scattered electrons are
spectrally fanned out and recorded by a CCD camera. The recorded data show the
kinetic energy of the electron and therefore the spectral information at an electron beam
position.

The resulting spectral information, which can be resolved with about 0.1-0.3 eV, usu-
ally has to be post-processed to show the desired resonance peaks, e.g. the zero-loss
peak (no interaction of electron with specimen) has to be subtracted from the spectra
because it superimposes the plasmon resonances, which are usually found at energies of
only a few eV at the tail of the zero-loss peak. Further, non negative matrix factorization
is sometimes used to resolve the contributions of single plasmon resonances [31] and the
zero-loss peak.

Altogether performing the experiments is very tough: one needs a highly monochro-
mated, focused electron beam for energy and spatial resolution. Furthermore, the prepa-
ration of samples is complicated and contamination before and during the measurement
has to be suppressed.

2.2 EELS theory
The theoretical framework of EELS is well established and can be found in various
articles and reviews, e.g. [23, 32]. Here we follow more or less [23]. We use Gaussian units
throughout and only consider non-magnetic materials, i.e. we set the permeability μ = 1,
which is for the typical metals in use for plasmon measurements a good approximation.

The theoretical description takes into account two key ingredients of electron energy
loss which are formulated in a semi-classical framework: First, the electric field of a swift
electron excites a surface plasmon. Second, the induced field of the surface plasmon acts
back on the electron, leading to the energy loss of the electron.

2.2.1 Loss probability
The work done by a charge at position r(t) against an electric field is described conve-
niently as

dW = −qE(r(t), t) · v, (2.1)
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2.2. EELS THEORY

Figure 2.2: Scheme of experimental setup for electron energy loss spectroscopy. a) An
electron gun shoots fast electrons with velocities of 0.1 to 0.8 times the velocity of
light. A monochromator narrows the energy distribution of electrons and an aberration
corrector minimizes the electron probe size. After the corrector the probe interacts with
the sample which is placed on a substrate. Then the electron energy is spectrally fanned
out with a spectrometer and measured with a CCD camera. b) Scheme of the electric
field of an electron in close vicinity of a specimen. c) Electrons scattered from nuclei are
collected by high-angle annular dark-field detector, producing an image of the specimen.
Image taken from [25].

16



2.2. EELS THEORY

where we have omitted the magnetic contribution of the Lorentz force because it vanishes
for the inner product with v. For the total work of a fast moving electron against an
electric field we integrate over the whole electron path:

ΔE = e

∫ ∞

−∞
dtv · Eind(re(t), t). (2.2)

Here we assume that the electron path goes from −∞ to ∞, which is a good estimate
for EELS with plasmonic particles, because of the evanescent character of the involved
fields and the small specimen compared to the electron path. The electron path can be
estimated as a straight line which is not modified by the induced plasmon field. This
is simply because the high kinetic energies of the electron in an electron microscope
(several tens to hundreds of keV not far away from the speed of light) are not changed
noticeably by the energy loss of a plasmon (eVs), and therefore the velocity vector stays
practically the same. So we safely write for the electron trajectory

re(t) = R0 + ẑvt, (2.3)

where without loss of generality, we assume the electron trajectory to propagate along
the positive z-direction and we define the impact parameter R0 = (x0, y0, 0).

The induced electric field can be decomposed into different frequency contributions
by a Fourier transform. Then it reads

Eind(r(t), t) =
1

2π

∫ ∞

−∞
dωe−iωtEind(r(t), ω), (2.4)

and we use the definition ΔE =
∫ ∞

0 dω�ωΓEELS(R0, ω) for the loss probability per
energy �ω to finally arrive at

ΓEELS(R0, ω) =
e

π�ω

∫ ∞

−∞
dt Re[e−iωtv · Eind(r(t), ω)]. (2.5)

Here, we used the property, that for real fields the Fourier transform Eind(r, ω) =
Eind(r, −ω)∗. Then the antisymmetric part of the ω-integral (imaginary part) vanishes
and the integral limits can be changed from ω ∈ (−∞, ∞) to ω ∈ (0, ∞). If we set z = vt
and v = ẑv we arrive at

ΓEELS(R0, ω) =
e

π�ω

∫ ∞

−∞
dz Re[e−iωz/vEind

z (R0, z, ω)]. (2.6)

Eqs. (2.5) and (2.6) show that if we know the induced electric field we immediately are
in position to compute the electron loss probability ΓEELS(R0, ω). Further, we detect
that EELS only probes the z-component of the induced electric field.

Having derived this final form for ΓEELS(R0, ω) we want to evaluate the last unknown,
the induced electric field and for that we need the electric field of a swift electron.
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Figure 2.3: Radial and z part of electric field for electron traveling with velocity v along
z-direction. Velocities in units of speed of light c are reported in the figure. Inset displays
the dependency of the electric field on energy for an observation point with R=10 nm.
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2.2.2 Field of swift electron
A swift electron, as it occurs in an electron microscope can be described as a moving
point charge

ρ(r, t) = −eδ(R − R0)δ(z − vt), (2.7)

with in plane coordinates R = (x, y, 0) and velocity v, which is typically at the order of
speed of light c. To work out the equations for the electric field of of a swift electron
it is favorable to switch to frequency space. Therefore we Fourier transform the charge
distribution and get

ρ(r, ω) =
∫

dteiωtρ(r, t) = −e

v
δ(R − R0)eiqz. (2.8)

Here we introduced the wavenumber q = ω/v. For a homogeneous dielectric environ-
ment with dielectric function ε(ω), the electric field for this charge distribution can be
determined by the so called Liénard-Wiechert potentials, see e.g. [33]. The derivation
yields [23]

E(r, ω) =
2eω

v2γεε
eiqz

[
i

γε
K0

(
ωρ

vγε

)
ẑ − K1

(
ωρ

vγε

)
ρ̂

]
, (2.9)

where we have introduced the radial vector is ρ = R − R0 together with the Lorentz
contraction factor γε = 1/

√
1 − εv2/c2, and Kn are the modified Bessel functions (or

sometimes also called hyperbolic Bessel functions) of the second kind of order n. The
electric field decays with increasing radial distance due to the behavior of the modified
Bessel functions at large distances, as can be seen in Fig. 2.3, and the electric field
pointing in direction of the electron velocity vector is smaller than the radial part of the
electric field. If we look at the energy spectrum (see inset Fig. 2.3), we discover a more
intricate behavior. Interestingly the electron field decreases with increasing velocity,
because of the implicit dependence in γε.

Sometimes it is easier to work with the vector potential, rather than with the elec-
tromagnetic fields (especially for the boundary element approach discussed later), and
therefore we state for the potentials of a swift electron within the Lorentz gauge

φ(r, ω) = −2e

vε
eiqzK0

(
ωρ

vγε

)
, A(r, ω) = ε

v
c

φ(r, ω). (2.10)

2.2.3 Induced electric field of an electron beam
Quite generally by solving the electric wave equation for a given current distribution and
dielectric function ε(r, ω) we find the electric field everywhere. When we deal with linear
dielectric media, i.e. D = ε(ω)E, we can obtain the solution of the wave equation for
a general current distribution from a linear superposition of point-like current sources.
To incorporate all possible orientations of current sources we seek for solutions of point-
like current distributions defined for x-, y- and z-direction: ji(r) = δ(r − r′)êi, where
i = x, y, z. The solution of the wave equation for each orientation can be written as a
vector gi(r, r′). We use tensors to include all three orientations in compact form and
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write for the delta-like sources j(r) = δ(r − r′)11 and for the Green function solutions
G(r, r′) = [gx, gy, gz], respectively. Then the wave equation reads

∇ × ∇ × G(r, r′, ω) − k2
0ε(r, ω)G(r, r′, ω) = − 1

c2 δ(r − r′)11, (2.11)

where G(r, r′, ω) is the dyadic Green function and k0 = ω/c is the wavenumber in vac-
uum. We only take into account a local dielectric function ε(r, ω) which does not depend
on r′ and we demand for G outgoing boundary conditions, i.e. solutions vanishing at
infinity. Then

E(r, ω) = −4πiωG(r, r′ω) · j(r′), (2.12)
or in other words, for a point-like current distribution j(r′) the dyadic Green function
computes the electric field at r for a given dielectric environment and at frequency ω.
G is also called the electric Green tensor of Maxwell’s equations, and the first, second
and third column correspond to the x-, y- and z-direction, respectively.

Armed with the solution for a point-like current distribution it is now an easy task to
formally solve the electric field for an arbitrary current distribution J(r, ω) by integrating
over the whole volume:

E(r, ω) = −4πiω

∫
dr′G(r, r′, ω) · J(r′, ω). (2.13)

So, if we find the dyadic Green function for a dielectric environment with dielectric
function ε(r, ω), we immediately are in position to obtain the electric field at r produced
by an arbitrary current distribution.

Analytic forms of the dyadic Green function can only be found for a very restricted
number of geometries, such as layer structures, spheres, prolate sphere or infinitely long
cylinders (see e.g. [34] for a textbook or [35, 36, 37] for multi-layered spheres and
cylinders). Nonetheless these analytic expressions can be very useful as a check for
numerical simulation techniques. For more involved geometries numerical simulation
techniques are inevitable.

2.2.4 EELS in terms of dyadic Green function
By inserting Eq. (2.13) in Eq. (2.6) and knowing that the current produced by a swift
electron is Je(r, ω) = vρ(r, ω) we find for the electron energy loss probability

ΓEELS(R0, ω) = −4ev2

�

∫ ∞

−∞
drdr′ Im

[
J∗(r, ω) · G(r, r′, ω) · J(r′, ω)

]
. (2.14)

From inspection of Eq. (2.14) we find that the electron energy loss occurs in a two
step process: First the current distribution of the electron interacts with the dielectric
environment by means of the dyadic Green tensor, leading to the induced electric field,
which in turn acts back on the current distribution, leading to the energy loss.

Assuming a straight line trajectory in the z-direction re(t) = R0 + ẑvt and making
the abbreviation Gzz = ẑ · G · ẑ, we arrive at

ΓEELS(R0, ω) = −4e

�

∫ ∞

−∞
dzdz′ Im

[
eiq(z−z′)Gzz(R0, z, R0, z′, ω)

]
. (2.15)
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This connection between EELS and the dyadic Green function was first stated in [38]
and it can be shown that the loss is independent on whether the electron is traveling in
the positive or negative z-direction.1

For electron trajectories passing through a dielectric body, e.g. a metallic sphere, it
is appropriate to decompose the loss signal into a surface and a bulk contribution. The
surface contribution appears from induced charges and currents on the surface between
adjacent media, and the bulk contribution from electron energy loss inside a material.
The bulk contribution is roughly proportional to Im[−1/ε] [23]. Thus, we split the dyadic
Green function into G = Gind + Gbulk and insert the splitted Green function into Eq.
(2.15) to obtain

ΓEELS(R0, ω) = −4e

�

∫ ∞

−∞
dzdz′ Im

[
eiq(z−z′)Gind,zz(R0, z, R0, z′, ω)

]
+Γbulk(ω), (2.16)

where

Γbulk(ω) = −4e

�

∫ z2

z1
dzdz′ Im

[
eiq(z−z′)Gbulk,zz(R0, z, R0, z′, ω)

]
, (2.17)

where z1 and z2 are the z-values where the electron enters and exits the dielectric body,
respectively.

For selected geometries, like a planar interface [23], sphere [39] (in the framework of
Mie theory), or cylindrical hole [40], there exist analytical expressions, both for quasi-
static and retarded case, for the electron energy loss. More involved curved geometries
are usually subject to numerical techniques.

2.2.5 EELS in terms of eigenmode expansion
As we are dealing with plasmonic resonances, a decomposition of the loss signal into
different mode contributions would be beneficial and give more inside into the physical
mechanisms involved.

Such a decomposition can be done in a mathematical sound way for the quasi-static
case (when the resonance wavelength is much smaller than the particle dimension, e.g.
a sphere when the diameter d is much smaller than the exciting wavelength, i.e. d � λ).
For practical implementation also a retarded eigenmode expansion is feasible.

Quasi-static eigenmode expansion

In the quasi-static regime, the wave equation reduces to the scalar Poisson equation.
Here we can find - in a similar manner as in the retarded case - a Green function, now a
scalar quantity which mediates the action between two positions in space. The electron
energy loss probability reduces here to [41, 23]

ΓEELS(R0, ω) = − 1
π�

∫
dzdz′ Im

[
ρ∗(r, ω)Gind(r, r′, ω)ρ(r′, ω)

]
, (2.18)

1By using the reciprocity theorem the exponential factor can be recast into a cosine function outside
Im[..] and one finds that the electron energy loss is independent on whether the electron is traveling
in the positive or negative z-direction.
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where Gind is the induced Green function of the Poisson equation and ρ is again the swift
electron charge distribution. Eq. (2.18) is very similar to Eq. (2.14): the two step process
is apparent. The main difference lies in the scalar character of the involved quantities. A
decomposition of the induced scalar Green function into eigenmodes [42, 43] is possible
if only two different media are involved. The defining equation for this quasi-static
eigenmodes can be derived from a boundary element method approach (see Appendix
or e.g. [18]) and reads∮

∂Ω

∂G(s, s′)
∂n

σk(s′)ds′ = λkσk(s),
∮

∂Ω
σ̃k(s′)

∂G(s′, s)
∂n

ds′ = λkσ̃k(s), (2.19)

where σk and σ̃k are the right and left eigenmodes, respectively and ∂G/∂n is the
derivative of the free Green function with respect to the outer surface normal on the
boundary. The eigenmodes are defined solely from the geometry of the particle (through
the surface derivative of the Green function) and are therefore also called geometric
eigenmodes [44]. This scale and energy independence holds because of the quasi-static
approximation. Usually the mode with lowest eigenvalue shows up as the monopole
mode (see Fig. 2.4) and must be excluded from the eigenmode expansion, because it is
forbidden by charge conservation (sum of charge density of eigenvector unequal to zero).
Degenerate modes share the same eigenvalue, but the corresponding charge density is
different (Fig. 2.4). At the resonance energies of dipolar and quadrupolar modes, usually
a small number of modes shows up, but for higher energies (lower eigenvalues) the modes
evolve into a continuum.

The eigenmodes form a complete bi-orthogonal basis set and have a proper orthogo-
nality condition2 ∮

∂Ω
σk(s)σ̃k′(s)ds = δkk′ . (2.20)

The potential of an eigenmode - which is given by the charge density at the particle
boundary - can be computed by using the free Green function

φ(r) =
∮

∂Ω
G(r, s)σk(s)ds. (2.21)

By assuming that both r and r′ are located outside the dielectric medium3 (nanoparticle),
one can decompose Gind through the above defined modes - as shown in [44] and in detail
in the Appendix - into

Gind(r, ω) = −1
ε

∑
k

ck(ω)φk(r)φk(r′), ck(ω) =
λk + 2π

Λ(ω) + λk
, (2.22)

where Λ(ω) = 2π(εout + εin)/(εout − εin) is a material parameter depending on the
dielectric functions of surrounding and dielectric medium (e.g. gold or silver). By

2An orthogonality condition can also be defined for the right eigenvectors only and then reads∮
∂Ω σk(s)G(s, s′)σk′ (s′)dsds′ = δkk′ , but when non-smooth boundaries are involved [44] it is favorable

to use right and left eigenvectors.
3The formulas also work for r or/and r′ inside the dielectric medium, as can be seen in [44], but here

we restrict ourself to the most simple case.
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Figure 2.4: First 50 eigenvalues of a rectangle nanoparticle with aspect ratio 5:5:1 (x:y:z),
which are independent of material parameters. Insets show eigenmodes associated with
eigenvalues on particle surface (charge density of eigenmodes). Red box shows forbidden
monopole mode with integrated surface charge density unequal to zero. Degenerate
modes with same eigenvalue are displayed within one box.
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inspecting Eq. (2.22) we find, that Gind separates into parts depending on energy ω and
on geometry, where the energy dependent part gives the weights of the eigenmodes with
respect to energy, and the geometry dependent part accounts for the spatial dependence
of Gind and therefore also the spatial dependence of the derived quantities (like electric
field or EELS). So, if the modes are well separated in energy, the spatial profile of the
modes only depends on the geometry of the nanoparticle.

By inserting Eq. (2.22) into (2.18) and some simple algebra one finally arrives at
a modal decomposition of the loss probability for electron trajectories passing by a
nanoparticle

ΓEELS(R0, ω) = − −e2

π�v2ε

∑
k

Im [ck(ω)]
∣∣∣∣
∫ ∞

−∞
eiqzφk(R0, z)dz

∣∣∣∣2 . (2.23)

At the resonance energy of a mode Im[ck(ω)] results in a Lorentzian line shape function
dependent on ω, and the absolute value of the integral corresponds to a coupling strength
F (ω), which leads to a similar behavior as a harmonic oscillator.

As an instructive example we employ a simple model of a harmonic oscillator driven
by a fast moving electron coupled with the harmonic oscillator by a dipole (see Fig.
2.5) and compare it with the more complex case of electron energy loss from a metallic
nanodisk. As starting point, we write down the equations for the harmonic oscillator
coupled to the electric field of a moving electron:

ẍ + 2βẋ + ω2
0x = (d · ∇)E(r(t)) = F (r(t)), (2.24)

where β is the damping constant, d is the dipole moment and ω0 corresponds to the
resonance frequency of the oscillator. The electric field E(r(t)) of a moving electron can
be written as [33]

E(r(t)) =
r

r3γ2(1 − sin2 θ)3/2 . (2.25)

Here, γ =
√

1 − v2/c2 is the Lorentz contraction factor and θ is the actual angle between
the velocity vector v and r. The energy lost by the electron is equal to the power
delivered to the oscillator, which is Fẋ. The dissipated power can be written as βẋ2.
The integral over time starting with t0 gives the work and the dissipated work of the
harmonic oscillator

W (t) =
∫ t

t0
F (r(t))ẋ(t)dt, Wdiss(t) = −2

∫ t

t0
βẋ2dt. (2.26)

For a simple comparison to the oscillator model above we use Eq. (2.23) and restrict
ourself to one contributing mode. Then we can write the displacement of the surface
charge as x(t) ∝ ∫

dωeiωtck(ω)F (ω), and immediately are in position to compute the
work done by the electron W (t) and the dissipative work Wdiss(t) in the time domain.

A qualitative picture of the time dependency of a metallic nanodisk, driven by a swift
electron, and a comparison with a dipole, driven by a swift electron, is given in Fig.
2.5. Clearly, the electron energy loss happens in a short period compared to the exciting
frequency resulting in a almost kick-like excitation of the plasmon. The transferred
energy then dissipates through ohmic and radiative loss channels of the plasmon.
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Figure 2.5: e) Force of electron beam (red) acting on nanodisk with diameter 60 nm,
height 10 nm, and dielectric function for silver from drude model, and displacement
(green) of surface charges. f) Close up of the blue shaded region in e). g) Energy
transport from electron to plasmon (red) and dissipated energy (green). h) Close up of
the blue shaded region in g). a-d) Same as e-h), but for dipole oscillator pushed by fast
electron. Values for harmonic oscillator are ω0 = 2.85 eV, γ = ω0/100. Electron velocity
is 0.7 times the velocity of light and impact parameter is 60 nm away from dipole and
the center of disk, respectively.
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Retarded eigenmode expansion

In the retarded regime a proper description of modes is more challenging. We will present
two slightly different approaches: The first one relies on a central result of Leung et al.
[45], the second one is in the spirit of so called constant flux states [46] (see also [47], for a
description with boundary integral operators). Although at first glance both approaches
look very similar, there are subtle differences.

Quasinormal modes are eigenmodes f(r, ω) of Eq. (2.11). So we search for non-
vanishing solutions with outgoing wave boundary conditions [48]

∇ × ∇ × f(r) − ω2

c2 ε(r, ω)f(r) = 0. (2.27)

For non-lossy materials, i.e. real ε(r, ω), and particles small compared to the resonance
wavelength the eigenvalues are real and the quasinormal modes reduce to normal modes.
Otherwise we get complex eigenfrequencys ω with a negative imaginary part iγ. The
normalization of these modes is not trivial and can be done with different approaches,
see [49, 50]. Techniques for the calculation and normalization of quasinormal modes
are e.g. given in [51, 52, 53]. Usually an iterative search algorithm is used to find the
complex poles of the eigenmodes. One peculiarity of quasinormal modes is that because
of the complex eigenvalues the solutions diverge at the complex resonance frequencies
for r → ∞. Depending on the formalism, this non-physical behavior can be regularized
by perfectly matched layers [49].

One can find an approximate modal decomposition of the Green function with quasi-
normal modes [54]

G(r, r′, ω) ≈ − c2

2ω

∑
k

fk(r)fk(r′)
ω − ωk

, (2.28)

where ωk is the complex eigenfrequency of mode k. Until now, it has been shown for 1D
structures that this decomposition is complete inside the cavity or plasmonic resonator
[45]. For 3D structures and outside of a cavity or resonator this is not granted, but
approximately correct as has been shown by various studies [55, 48, 56, 54]. Once the
relevant modes are calculated - for plasmonic systems usually only a few modes - the
approximated Green function describes well the response of the nanoparticle at the
considered energy range. By inserting Eq. (2.28) into Eq. (2.14) one obtains a formula
for the electron energy loss probability (see [57, 55]).

In a different manner, if we allow a term on the right hand side of Eq. (2.27) unequal
to zero, i.e. a λ 
= 0, we can find eigenmodes close to the complex poles defined at real
frequencies ω [46, 47, 53]

∇ × ∇ × f(r, ω) − ω2

c2 ε(r, ω)f(r, ω) = λf(r, ω). (2.29)

These so called constant flux states depend on energy and thus have to be found for
each fixed frequency ω separately. As they are not orthogonal, one has to derive adjoint
states f̃(r, ω) from the adjoint equation ∇ × ∇ × f̃(r, ω) − ω2

c2 ε∗(r, ω)f̃(r, ω) = λ∗f̃(r, ω),
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which are bi-orthogonal, i.e.
∫

f̃∗
k (r, ω)fk′(r, ω)dr = δkk′ . The Green function associated

with the solution of Eq. (2.29) can be decomposed into these states inside the resonant
structure as [46]

G(r, r′, ω) ≈ − c2

2ω

∑
k

fk(r, ω)f̃∗
k (r′, ω)

ω − ωk
. (2.30)

The solutions in the constant flux sense are not diverging for r → ∞ and are close to
the resonance frequency of a quasinormal mode approximately the same as the resonant
quasinormal modes, and are therefore suitable for practical implementations. For a
comparison of these approaches in the Fredholm integral sense see [47].

2.2.6 Quantum effects
When the size of a plasmonic nanoparticle or the distance between two nanoparticles
comes into the order of atomistic length scales, quantum effects have to be taken into
account for the theoretical description of plasmons [58]. In [27] it was shown that the
resonances of single plasmonic nanoparticles shift to higher energies (up to 0.5 eV) than
expected by classical results, when the particle diameter is reduced from 20 to 2 nm. For
sufficiently narrow gaps between two nanoparticles, charge tunneling in the gap occurs
[28] and charge transfer plasmons appear. This effect shows up for very small gaps only,
i.e. gap distance smaller than 0.5 nm. Therefore, molecular tunneling junctions might
be beneficial [59] as they enable larger separation between the particles.

The theoretical description of charge transfer plasmons is either done by full quantum
mechanical simulations [60], or by extending classical models [61, 62, 63]. Here, usually
the dielectric function in a gap region is altered to account for gap tunneling. There
has been controversy which dielectric function is suitable to account for gap tunneling,
but most approaches use a constant tunneling conductivity [64] with respect to ω for
large distances, which in turn yields a constant dielectric function. When the gap is very
small, i.e. almost touching particles, one often uses a Drude type dielectric function,
similar to the particle material. For intermediate values an interpolation between those
two regimes can be done [63].

2.2.7 Connection between EELS and LDOS
Although electron energy loss spectroscopy shows features of the plasmon resonances
with nanometer resolution, there is some dubiety about the interpretation of the maps.
In other words, it is not completely clear to which physical quantity of the plasmons the
measured data are connected.

It was shown, that there exists a direct link between electron energy loss spectroscopy
and the photonic local density of states for special geometries [38]. For general particle
shapes a direct link is not applicable [65], rather there can be large discrepancies, e.g. in
the gap region between coupled plasmonic particles, where there is a high local density
of states at certain energies, while electron energy loss is almost blind to such hot spots.
This blindness can be attributed to the fact, that electron energy loss spectroscopy
only probes the z-component of the induced electric field, averaged over the electron
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Figure 2.6: Multiple multipole expansion for two adjacent media with dielectric function
ε1 and ε2 and boundary ∂Ω. Multipole positions for the expansions of the electromagnetic
fields in domain 2 and 1 are delineated as circles and crosses, respectively.

trajectory. By tilting the specimen, this blindness can be often reduced [66]. Further,
by using a tomography scheme for rotated energy loss maps, it is possible by solving an
inverse problem to reconstruct the photonic local density of states [57].

2.3 Simulation approaches
In this section we will give a short overview of numerical techniques to solve the electro-
magnetic field problem in presence of dielectric materials. We will go a little bit more
into detail for the boundary element method, because it was used as primary simulation
tool within this thesis.

2.3.1 Multiple multipole method
For materials with linear and piecewise homogeneous dielectric function and sharp
boundaries between adjacent materials one can use a semi-analytic method called mul-
tiple multipole method [67, 15] or generalized multipole method. Here the induced
electromagnetic fields are described at multiple source points by known analytic solu-
tions φj of the free wave equation such as vector spherical harmonics or plane waves,
for arbitrary curved structures (see Fig. 2.6). The field inside individual media with
dielectric function εi can be written as

E(i) = Einc +
∑

j

cjφj(r). (2.31)

Maxwell’s boundary conditions are used to match the series expansions of different do-
mains at the boundary and to numerically find the parameters cj . This is done usually by
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linear least square methods. The delicate part of this approach is to correctly place the
multipoles in each domain so that there are not too many multipoles (the computational
cost is proportional to the number of multipoles squared) and to find the best suited
analytic functions for the studied geometry. An automatic multipole setting scheme was
reported in [68]. Once the expansion coefficients are found the electromagnetic field can
be computed everywhere else analytically.

This technique has been used for the computation of electron energy loss spectroscopy
in [69] for spheroids and for different materials and in [70] for a gold dimer and plasmonic
filter applications.

2.3.2 Discrete dipole approximation
This technique was first used in astrophysics [71] and is probably conceptually the most
easiest way to derive the response of a dielectric medium to an external field. Here the
particle volume is discretized with a number of dipoles located on a three dimensional
equidistant grid, and the dipole moment pj(rj) at position rj due to an external electric
field and the other dipoles is proportional to the field Ej at rj . It reads [72]

pj(rj) = αjEj(rj) = αj

⎡
⎣Eext(rj) +

N∑
k �=j

Tjkpk(rk)

⎤
⎦ , (2.32)

where T is a dipole-dipole interaction matrix. Eq. (2.32) can be brought in the form
of a complex linear system of equations and solved with standard iterative techniques
or matrix inversion for the unknown polarizations pj . Simulations of electron energy
loss spectroscopy with a discrete dipole approximation lead to very good results when
compared with experiment as shown e.g. in [73] or [74] for electrons not penetrating the
plasmonic nano-object.

2.3.3 Finite difference time domain method
In contrast to most other methods used in electromagnetic field calculations, finite dif-
ference time domain methods are working in time- and not in frequency-domain. It is
the most widely used numerical approach to derive electromagnetic fields and is based
on discretization of space and time on a staggered grid [75] and uses second-order central
differences to compute the derivatives of Maxwell’s equations. Starting with some initial
condition the fields are propagated in the time domain. To restrict the computational
domain to a finite region so called perfectly matched layers are incorporated, which damp
the field solutions away from the simulated structures.

Finite difference time domain implementations for electron energy loss spectroscopy
work best for non penetrating electron trajectories and have been introduced recently in
[76].
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Figure 2.7: Typical arrangement for boundary element method. Two homogeneous me-
dia with dielectric function ε1 and ε2 are separated by a sharp boundary ∂Ω. The
outwards pointing normal surface vector n̂ is needed for the orientation of the surface.

2.3.4 Boundary element method
In contrast to finite element and DDA methods, boundary element methods do not need
to discretize the volume of the specimen, but only the boundaries between different
homogeneous media, therefore leading to less discretization elements.

There exist mainly two branches of boundary element methods: The first one uses the
Stratton Chu formalism [77] to solve the electric and magnetic fields, while the second
one is based on the evaluation of the vector potentials [78]. Both methods work in
frequency space and have their pros and cons. The discretization of the boundary can
be done either by Galerkin [79] or collocation methods [18, 78].

In the field of plasmonics and especially electron energy loss spectroscopy the first
boundary element method based on evaluation of the potentials and a collocation method
was done in [78]. Here a solution of the Helmholtz equation in terms of the retarded
Green function is given by

(∇2 + k2
j )Gj(r, r′, ω) = −4πδ(r − r′), G(r, r′, ω) =

eikj |r−r′|

|r − r′| , (2.33)

where kj = k0
√

εj(ω) is the wavenumber in medium j. For the vector potentials the
partial differential equations with source terms ρ and J read

(∇2 + k2
j )Φj(r, ω) = −4πρ(r, ω), (2.34a)

(∇2 + k2
j )Aj(r, ω) = −4πJ(r, ω). (2.34b)

The external sources can be evaluated by means of the retarded Green function as
Φext

j (r, ω) =
∫

dr′G(r, r′, ω)ρext
j (r′, ω) and Aext

j (r, ω) =
∫

dr′G(r, r′, ω)Jext
j (r′, ω) and
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the solution of the Helmholtz equation for the vector potentials in each medium j can
then be written in the ad hoc form as

Φj(r, ω) = Φext
j (r, ω) +

∮
∂Ω

dsG(r, r′, ω)ρj(s, ω), (2.35a)

Aj(r, ω) = Aext
j (r, ω) +

∮
∂Ω

dsG(r, r′, ω) · hj(s, ω), (2.35b)

where the integral goes over the boundary between two adjacent materials (see Fig.
2.7) and ρ(s, ω) and h(s, ω) are surface charges and currents, respectively. To link the
solutions inside different media the boundary conditions - i.e. continuous tangential
electric field and continuous normal electric displacement across the boundary, as well
as continuous tangential magnetic field strength and continuous normal magnetic field
across the boundary - are applied and one obtains a set of eight integral equations [78].

For the numerical implementation one discretizes the boundary charge and current
distribution on a surface mesh and obtains from the integral equations and the boundary
conditions a matrix representation [78, 18], which can be solved through matrix inversion
for the surface charges and currents, and with Eq. (2.35a) and (2.35b) for the scalar and
vector potentials everywhere else.

There exist several implementations of boundary element methods, e.g. see [79] for
a Galerkin method implementation or [18] for a collocation method. A comparison
for spheres with varying diameter between the implementation in [18] and a Galerkin
method based on [79] is shown in Fig. 2.8. Both methods agree well with the analytic
Mie solution over a broad energy range. Substrate effects can also be incorporated
by a redefinition of the retarded Green function as was done in [80]. The energy loss
suffered by a swift electron in vicinity of a dielectric medium was implemented in [81].
This approach works for non penetrating and penetrating electron trajectories as well
as for substrates. Excellent agreement between simulations and experiment has been
demonstrated, see e.g. [17, 82], or for a comparison with the analytic solution of a
sphere and the collocation approach, Fig. 2.9.

Computation of eigenmodes via boundary element method

In the quasi-static case the computation of eigenmodes within the boundary element
method is straight forward. One uses the discretized form of Eq. (2.19) at the boundary,
which leads to a n × n matrix, with n being the number of discretized surface elements.
For the computation of the eigenmodes one searches for the left and right eigenvectors
of this matrix with a standard eigenvalue solver and then othogonalizes them with Eq.
(2.20), i.e one redefines the left eigenmodes as σ̂ = (σσ̃)−1σ. The orthogonalization is
needed for degenerate eigenmodes. An implementation of this procedure can be found
in [18].

The retarded eigenmodes are evaluated in the boundary element formalism by use of
the Sigma matrix Σ, which is defined in [78]. Either one searches for the complex poles
of the matrix with an iterative technique, i.e. one searches for det[Σ(ω)] = 0 and obtains
the quasinormal modes, or one computes the eigenvectors at a fixed real frequency,
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Figure 2.8: Comparison of analytic Mie theory, MNPBEM toolbox [81] and a Galerkin
discretization based on Stratton-Chu formalism [79] for sphere with varying diameter:
solid line 100 nm, dashed line 200 nm, dot-dashed 400 nm. Both methods agree well
with the analytic result. For lower energies and larger diameter, the Galerkin method is
more accurate.

obtaining constant flux states. An iterative procedure of the evaluation of quasinormal
modes by a boundary element method can be found in [52], where also a normalization
procedure is given (this approach works best for a single mode approximation).
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Figure 2.9: Comparison of analytic Mie theory with MNPBEM toolbox [81] for sphere
with R=75 nm, a discretization of approximately 500 boundary elements and dielectric
function of silver taken from experimental values [16]. The electron beam is situated 10
nm away from the particle boundary.
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3 Tomography of plasmons
In tomography one usually tries to recover a two or three-dimensional function (e.g.
image, density distribution) from a series of selected projections. The projections are
usually some kind of indirect measurements of the desired function, e.g. an integration
of a function along a trajectory.

The seminal paper is by Radon and dates back to 1917 [83], although its breakthrough
came with the invention of x-ray computed tomography by Hounsfield, who received a
Nobel prize for it in 1972.

The field of tomography has its largest application in the disciplines of medicine,
for imaging purposes - by creating visual representations of inner parts of the body.
Techniques such as x-ray tomography, magnetic resonance imaging, or optical coherence
tomography are used. There exist also numerous non-medical applications inspired by
tomography, e.g. geophysical applications or electron tomography for volume imaging
of different materials with nanometer resolution.

In a less strict sense tomography deals with the problem of how to obtain information
of an object or a function from a collection of indirect measurements. In a mathematical
sense this can be brought into the form

Af = y, (3.1)

where A is a measurement operator, f is the desired function and y is the measurement or
projection. Usually the desired information f is obtained by solving an inverse problem,
that is in the best case - if the problem is well posed and when it is computationally
affordable - by inverting A and applying it to y. Unfortunately a lot of inverse problems
are ill-posed - i.e. no solution, no unique solution or no linear dependence on initial
conditions of the solution exists - in nature and/or demand a lot of computational
power.

There are two main solution procedures in the field of tomography: algebraic recon-
struction and filtered back projection. In algebraic reconstruction essentially a matrix
inversion is performed or - if the size of the matrix is too large - iterative techniques
are used to solve the discretized matrix form of Eq. (3.1) and find f . Filtered back
projection can be applied when A is a Radon transformation. Then a Fourier transform
of the projections y can be associated with a Fourier transform of f and one can solve
f essentially by Fourier and inverse Fourier transforms.

To achieve better convergence or a solution for ill-posed inverse problems at all (be-
cause of the nature of the problem, measurement errors, linear dependent measurements,
nonlinear problems,...), one can use additional assumptions like sparsity in a given basis
(compressed sensing) or smoothness of the solution. Applying additional assumptions is
also referred to as regularization.
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3.1. RADON TRANSFORMATION

Figure 3.1: Concept of Radon transformation. (Middle figure) The famous Shepp-Logan
phantom [84] is used as function f(x, y) to show the basic principle. Dashed lines
correspond to integration trajectories along the s-direction (e..g parallel light beams) for
some values of r. (Left figure) Corresponding Radon transformation for θ = 90◦. (Right
figure) Sinogram of phantom for θ = 0 : 0.5 : 179.5. Orange dashed line corresponds to
sinogram of orange dot in phantom. Blue line is associated with Radon transformation
at 90◦ (same as left figure).

3.1 Radon transformation
The most common form of tomography deals with the projections obtained from a Radon
transformation [83]. It is at heart of modern medical imaging techniques, such as x-ray
tomography or positron emission tomography and other parallel and fan beam tomogra-
phy schemes. The mutual basis of all of them is that the probe penetrates the specimen
via a straight line for varying angles and accumulates the desired information (density,
magnetic field...). More precisely, a function is projected by an integral over a straight
trajectory on a line for different angles, see Fig. 3.1. The transformation can be written
as

Rθ(r) =
∫ ∞

−∞
f(r, s)ds, (3.2)

where r, s are given in Fig. 3.1 and are obtained by a rotation of the principal axis x
and y by an angle θ [

r
s

]
=

[
cos θ sin θ

− sin θ cos θ

] [
x
y

]
. (3.3)

In other words, the Radon transformation projects a two dimensional function f(x, y)
onto a line r for a certain direction defined by θ. E.g. a Radon transformation for θ = 90◦
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Figure 3.2: Reconstruction of phantom image (same as Fig. 3.1) by an inverse Radon
transform R−1 from sinogram with θ = 0 : 1 : 179 and different filter methods. the worst
results are obtained by unfiltered back-projection, while Hann and Hanning are a little
bit better than Ram-Lak. Images are computed with Matlab routines for inverse Radon
transforms.

is a projection of f(x, y) onto the y-axis (Fig.3.1). By applying the Radon transformation
to a point for angles from 0 to π as in Fig. 3.1 (see orange point and orange dashed
line) one obtains a sine function. Therefore a dataset with projections of a function for
different angles is called a sinogram. To obtain the largest possible information content,
it usually suffices because of symmetry reasons to vary θ from 0 to π. For generalizations
of the Radon transform, such as involving non straight trajectories, see e.g. [85].

The Radon transformation can be linked to the Fourier transformation of f(x, y) by
a Fourier transform of Rθ(r) and using the variable transformation of Eq. (3.3), as [86]

R̃θ(k) =
∫ ∞

−∞
e−ikrRθ(r)dr =

∫ ∞

−∞
e−i(k cos θx+k sin θy)f(x, y)dxdy = F (k cos θ, k sin θ),

(3.4)
which is also called Fourier-slice theorem and states that the Fourier transformed pro-
jections of f are the polar form of the Fourier transformed function f , which can be used
for reconstruction of f .

3.1.1 Inverse Solution
As already stated the field of tomography deals with inverse solutions. In contrast to
forward solutions, where one usually knows an initial state and wants to derive a final
state, in inverse problems one attempts to find the initial state or initial function from
final data, like projections.

The nice thing about a Radon transformation is that an inverse solution exists and
various methods are developed to gather it. There are two main groups: Inverse Fourier
transforms and algebraic reconstruction techniques.

Filtered back projection

The most simple approach to acquire an image from projections is to back project at
each angle. One then obtains a blurred image (see Fig. 3.2). For an accurate inversion
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Figure 3.3: Reconstruction of phantom image (same as Fig. 3.1 ) by an inverse Radon
transformation R−1 from sinogram using different numbers n of angles between 0:180
degrees. As a filter function a conventional Ram-Lak filter is used (see also Fig. 3.2).

one has to account for the blurring through use of filter functions in the back projection
process. The filtered back projection method is computationally fast, because it only
involves Fourier transformations, and it is therefore the standard algorithm in computed
tomography.

Filtered back projection uses the fact that a Radon transformation is linked to a
Fourier transformation. The inverse Fourier transformation of f(x, y) can be written as

f(x, y) =
1

(2π)2

∫ ∞

−∞
ei(kxx+kyy)F (kx, ky)dkxdky. (3.5)

By switching to polar coordinates and changing the integral limits from θ = (0, 2π)
and k = (0, ∞) to θ = (0, π) and k = (−∞, ∞) one obtains a formula for filtered
back-projection

f(x, y) =
1

(2π)2

∫ π

0

∫ ∞

−∞
eik(x cos θ+y sin θ)|k|F (k, θ)dkdθ, (3.6)

where F (k, θ) = R̃θ(k) and |k| is working as a filter function to account for the effect
of blurring in unfiltered back-projection. One can use better filter functions, e.g. one
can limit the bandwidth, and there are existing plenty of different filter functions, each
with its advantages and disadvantages. For more on filters see e.g. [87, 88]. In Fig.
3.2, we show the inverse Radon transformation for different popular filter functions.
One finds that using a filter function is a crucial point in obtaining accurate results. A
second possibility to get better results is shown in Fig. 3.3, where the inverse Radon
transformation is shown for a varying number of projections.

Algebraic reconstruction technique

To solve the inverse problem one can discretize the image into a number of pixels and
for each projection or measurement one gets a linear equation where the pixels are the
unknown as depicted in Fig. 3.4. In principle then one only needs to solve the linear
system of equations by matrix inversion. For very small problems this method is feasible,
but as images and therefore the number of pixels grow, iterative techniques are used.
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3.2. GENERAL SOLUTION OF INVERSE PROBLEMS

Figure 3.4: The projection values (arrows) of pixels (A, B, C, D) are solutions of a matrix
equation formed by the coefficients (pixels) and a measurement matrix, accounting for
each projection. Here, the solution can be found by simple matrix inversion and gives
A=4, B=2, C=5 and D=1.

There are several variants: Algebraic reconstruction technique (ART), simultaneous
iterative reconstruction technique (SIRT) and iterative total least squares technique
(ITLS) [88].

The first reconstruction algorithm used in computed tomography was algebraic re-
construction and therefore we will shortly introduce it here. It consist of three steps
[86, 89]:

1. Make an initial guess of the image

2. Compute projections based on that guess

3. Refine the guess based on the weighted (by g) difference between the desired (real)
projections and the actual (calculated) projections p:

pi+1 = pi + g(desired − actual).

When a stopping criteria - maximum difference between real and desired projections -
is reached, the iteration stops and gives a final result, which is the desired image.

Iterative methods are slow compared to filtered back-projection, but it is relatively
easy to incorporate prior knowledge of the problem and there is no need of equidistant
aligned angles between 0 and π to obtain good results.

3.2 General solution of inverse problems
As already stated one can use the matrix form of the Radon transformation to obtain
the inverse solution. Inverse problems, where we know the operator or measurement
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matrix A can be tackled in a similar way. In principle one can attempt to minimize

min
x

||Ax − b||l2 < ε, (3.7)

where ||Ax − b||l2 is the so called cost function and ε is a stopping value. One starts
with an initial guess and iterates x until the stopping criteria is reached. The change of
x for each iteration is usually derived by using the gradient of the cost function. The
simplest method is to search along the direction of the gradient, which is called steepest
descent. This method often has to be improved - because of slow convergence - by the
conjugate gradient method [90], which takes into account and tries to hinder previous
search directions. More involved schemes - usually termed as Newton or quasi-Newton
methods - also use the second derivative, or approximations of it, to find search direction
and step size [91].

Although this problem always yields to a solution, often the solution is not unique
and one has to take into account some constraints, which are added to the cost function
in order to find a meaningful solution vector x.

3.3 Compressed sensing
One rather new mathematical tool - the first paper was written in 2004 [92] - that is
used nowadays in a lot of tomography applications is compressed sensing or compressive
sampling. It is used, to name just a few applications, in MRI to increase image recon-
struction speed and reduce amount of required data [93], for geophysical problems [94],
for single pixel cameras [95], for quantum state [96] and electron [97] tomography, and
in general for inverse problems. For introduction and review see e.g. [98, 99].

The basic principle relies on a sampling paradigm that goes beyond the Nyquist-
Shanon theorem - the frequency information can only be obtained up to the sampling
frequency divided by two - which uses additional information about the signal for recov-
ery: (i) sparsity of the desired signal and (ii) incoherence of the measurement basis with
the basis where the signal is sparse.

3.3.1 Sparsity
A signal or some information is sparse in a certain basis, when it can be represented
there with just a few number of coefficients unequal to zero. In fact, many natural
signals can be represented sparse (almost) without information loss in a proper basis,
e.g. a Dirac delta in the time domain is sparse or the size of images can be reduced
dramatically by representing them in a wavelet basis. For example see Fig. 3.5, where
only three coefficients contain almost all information about a time signal: When only
the three largest coefficients are taken for a Fourier transformation, we get essentially
the same Fourier coefficients.

In mathematical terms a signal can be represented in a certain basis Ψ = [ψ1, ψ2, ..., ψn]
as

f(t) =
n∑
i

ciψi(t), (3.8)
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Figure 3.5: Principle of sparsity and incoherence. (Left) A sparse signal in the time
domain has three spikes. All other coefficients tk are approximately zero. (Right) Real
part of the discrete Fourier transformation of the signal in left figure. The signal is spread
out and all coefficients are unequal to zero and needed to describe the signal. The time-
frequency pair is maximal incoherent. Orange circles denote the Fourier transformation
of the three largest coefficients only, implying that only this coefficients contain almost
all information about the signal.

40



3.3. COMPRESSED SENSING

where c is the coefficient vector of f in basis Ψ and ci = 〈f, ψi〉. Then the signal is sparse
in basis Ψ, when only a small number of coefficients ci suffices to describe the signal
without much information loss. In other words, all ci ≈ 0 can be discarded, when the
signal is sparse in basis Ψ. This is also reflected by the following: Set cs the coefficients
of the sparse approximation and fs = ψscs. Then because of the orthonormality of Ψ
and from Parseval’s identity we arrive at ‖f −fs‖l2 = ‖c− cs‖l2 . So, if the error between
c and cs is small, the error between the solution and the approximation of the solution,
described only by s basis elements and coefficients, is small and the signal is described
well by the sparse approximation (if cs are the only non-zero entries, the error is zero).

This is the principle which data compression techniques, like JPEG-2000, follow: com-
pute the coefficients of an image in a sparse basis and discard the small coefficients, for
an example see e.g. [98, 100]. However compressed sensing goes well beyond that be-
cause the sensing itself can be compressed, provided that one uses a largely incoherent
measurement basis for sampling.

3.3.2 Incoherent sampling
Incoherence of the measurement basis means that the basis of the measurement is largely
incoherent with the sparse basis of the signal. Put differently, the signal should have
an extremely dense representation in the measurement basis, such as a Dirac delta
distribution in the time domain is spread out in the frequency domain (see Fig. 3.5).
Then only a small number of random measurements with dense basis elements already
contains enough information to reconstruct the desired signal.

Suppose we have two orthonormal bases (although this restriction is not essential):
Ψ and Φ. The first basis represents the signal sparse and the second basis is used for
sensing (the measurement basis). Then, by definition [98], the coherence between Ψ and
Φ is

μ(Ψ, Φ) =
√

n max
1≤k,j≤n

|〈ψk, φj〉|, (3.9)

where n is the number of basis elements. Put differently, coherence measures the largest
correlation between all elements of Ψ and Φ and μ(Φ, Φ) ∈ [1,

√
n], where 1 expresses

minimum coherence and
√

n maximum coherence. For compressed sensing we want
low-coherence pairs.

An example of a basis pair with minimum coherence or maximal incoherence, that
is μ(Ψ, Φ) = 1, is the canonical or spike basis ψk(t) = δ(t − k) and the Fourier basis
φj(t) = n−1/2ei2πjt/n. Here, Ψ corresponds to the classical sampling scheme in space or
time. The incoherence of this basis pair is depicted in Fig. 3.5, where a signal is sparse
in the spike basis is shown in the Fourier basis, where it is spread out. In a similar vein,
spikes and sinusoids - even in three dimensions - are minimal coherent. Other examples
are noiselets and Haar wavelets, where μ =

√
2. For random matrices [101], e.g. random

binary entries in a matrix, we get a special result: μ =
√

2 log n for any second basis.
In other words: random matrices are largely incoherent with any fixed basis and are
therefore a great promise as a sensing basis [95] for sparse signals.
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Figure 3.6: Reconstruction of the sample shown in Fig. 3.5. Only one third of the Fourier
components are used as measurement data (orange circles in right figure) to solve the
inverse problem, which results in a highly under-determined problem. A simple least
square minimization yields the purple circles in left figure. The solution of compressed
sensing is shown by the orange circles in left figure and agrees almost perfectly with the
exact solution shown as blue dots.

3.3.3 Reconstruction
Suppose we have a sparse signal with a sparsifying basis Ψ and a sensing basis Φ, which is
largely incoherent with the sparse basis. We measure f , which is the desired information
consisting of n entries, e.g. the pixel of an image. Then the collected data takes the
form ym = 〈f, ψm〉, where m is the number of measurements. We have

y = Af, (3.10)

where A is an m × n matrix and f and y are n × 1 and m × 1, respectively. If m > n
and the matrix A has full rank we are done and can solve either by matrix inversion or
with least square techniques. For m < n and ill-posed problems (if a solution exists) we
get in principle infinitely many candidate solutions f̃ , for which y = Af̃ .

How can we use the properties of sparseness and incoherence, or, in other words, which
constraints do we have to set on the cost function in order to find the desired signal and
can we guarantee that, if we have found a solution by these constraints, the solution is
f?

A first guess to implement the constraint of a sparse basis would be to search for a
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vector x̃ with f̃ = Ψx̃ and

min
x̃

‖x̃‖l0 subject to y = AΨx̃, (3.11)

where ‖.‖l0 =
∑

x0
i , 00 = 0 checks whether a coefficient is zero or not. Eq. (3.11)

searches for a solution x̃ with as little as possible coefficients xi unequal to zero. This
idea has two drawbacks: It does not work for approximately sparse signals, i.e. ci ≈ 0
and it can be shown, that it is NP-hard, which means that it is computationally not
feasible. Luckily, one can substitute the l0-norm by the l1-norm in Eq. (3.11). Then the
ci’s can be approximately sparse and the problem can be solved by convex optimization
[98], which has the advantage that algorithms for convex optimization exist. Further, if
we have noisy data, a robust compressed sensing scheme can be formulated and reads

min
x̃

‖x̃‖l1 subject to ‖AΨx̃ − y‖l2 ≤ ε, (3.12)

where ε is used to define the amount of noise in the data y. Eq. (3.12) can be solved
efficiently and is again a convex optimization problem (a second-order cone program)
and was first stated in [102]. A Matlab implementation of this and similar compressed
sensing problems is available at [103].

If Eq. (3.11) and (3.12) find a sparse solution x̃, do we know that it is the sparse
representation of f? It can be shown, that the answer is yes. Put differently, if we find a
solution of Eq. (3.11), which is S-sparse, with S the number of non-vanishing coefficients,
from m measurements and

m ≤ C · μ2(Ψ, Φ) · S · log n, (3.13)

holds for some positive constant C, then the solution x̃ is equal to x with overwhelming
probability. Eq. (3.13) states that, when μ(Ψ, Φ) is close to one, the number of mea-
surements taken has to be in the order of S log n instead of n. Further, any set of m
measurements guarantees a solution. In Fig. 3.6 we show a reconstruction of a sparse
signal in the time domain with 101 coefficients (three of them are around zero) and the
discrete Fourier transform of the signal (also 101 coefficients). We take approximately
a third (31) of the Fourier coefficients as measurement data and try to reconstruct with
them - by solving an inverse problem - the time signal. With a simple least square al-
gorithm (standard Matlab routine) this is impossible (highly under-determined system
with m < n), but compressed sensing (performed with the code in [103]) shows exact
recovery for the ill-posed inverse problem.

3.4 Tomography applied to plasmon imaging
First of all, for plasmon tomography one needs an imaging tool, which is capable of
exciting surface plasmons. Here, several electromagnetic field sources to excite a surface
plasmon come into mind, especially excitation by molecules (oscillating dipole), lasers
(plane wave excitation) and fast electron beams (electron energy loss spectroscopy). Sec-
ond, one needs spatial information at the length scale of surface plasmons, which is in
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Figure 3.7: Plasmon tomography using electron energy loss spectroscopy: A silver
nanocube is studied via a tomography scheme experimentally by means of non-negative-
matrix factorization and compressed sensing. Plasmon resonances are imaged in the
spatial domain. Adapted from [31].

the nanometer regime. With this second restriction in mind, only a few techniques are in
principle suitable to extract three dimensional plasmon information. One of them is near
field microscopy [104, 105], where NSOM data is used for the inverse scattering problem,
leading to an ill-posed reconstruction problem, which can be solved by means of singu-
lar value decomposition. Another promising approach deals with electron energy loss
spectroscopy, where two different types of information can be gathered: the scattering
spectra from electron beam excitation - cathodoluminescence spectroscopy [23], and the
energy loss spectra. Recently, for cathodoluminescence spectroscopy data, a tomography
scheme has been used to reconstruct optical properties [106]. Other investigations are
going towards electron energy loss tomography [31, 107, 57, 108]. Here, we will discuss
them in more detail.

For the small particle approximation, i.e. particle small compared to the resonance
wavelength, a tomography scheme based on the quasi-static approximation, i.e. the
Poisson equation, was developed theoretically in [107] and studied experimentally for a
silver nanocube in [31] (see Fig. 3.7). A model for the reconstruction of surface charges
was also reported in [107] and investigated in detail in [108].

For particles with dimensions comparable to the resonance wavelength retardation
effects come into play and the situation is more delicate. Here one either refrains from
solving an inverse problem directly for the electromagnetic fields and uses the tomo-
graphically reconstructed particle surface as input in electromagnetic simulations [82],
or uses a more involved reconstruction scheme, which is based on compressed sensing
optimization and an eigenmode decomposition of the electromagnetic field propagator
in presence of a dielectric body [57].
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3.4.1 Quasi-static regime
In the quasi-static regime the eigenpotential expansion of Eq. (2.23)

ΓEELS(R0, ω) = − −e2

π�v2ε

∑
k

Im [ck(ω)]
∣∣∣∣
∫ ∞

−∞
eiqzφk(R0, z)dz

∣∣∣∣2

leads under some assumptions to a Radon transformation.
First of all, one has to assume that the electron energy loss at a certain resonance

frequency ω is dominated by one mode, hence we neglect the sum in Eq. (2.23). It can
be checked in the electron energy loss spectra if this assumption is true, which is the
case for a lot of particle geometries.

Second, the exponential factor in Eq. (2.23) refrains from reformulating electron
energy loss spectroscopy in terms of a simple Radon transformation. Fortunately, this
factor can be neglected provided the sign of the eigenmode potential does not change at
the interaction length along the electron path.1 In principle the exponential factor could
also be incorporated in the reconstruction process by using diffraction tomography [109].

Third, Eq. (2.23) applies only to electron paths passing by the particle. For elec-
trons penetrating the particle a more complicated scheme, relying also on the Radon
transformation can be used [107].

By applying these assumptions and restrictions we are left with a simple form of
the reconstruction process - a Radon transform, which is easily implemented and well
understood. Neglecting constant factors and at a certain resonance frequency the energy
loss can be written as

ΓEELS(R0) ∝
∣∣∣∣
∫ ∞

−∞
φ(R0, z)

∣∣∣∣2 = Rθ[φ(r)]2, (3.14)

stating, that the electron energy loss is connected with the eigenmode potential of plas-
monic particles by a Radon transformation squared. So we loose the sign of the potential
due to the square of a Radon transformation. Therefore one has to carefully choose the
reconstruction plane in a way that the potential has always the same sign thereon.

To lift some of the above restrictions and assumptions, one may refrain from a simple
Radon transformation and solve an inverse problem based on more complicated models
of the electron energy loss. A reconstruction based on the source of the eigenmode
potential, i.e. surface charges on the particle boundary, was reported in [107], where Eq.
(2.23) was modified by inserting Eq. (2.21). Then connecting the free Green function
showing up in Eq. (2.21) with the electron beam one is left with integrals over the
particle boundary only and obtains a model for the surface charge distribution on the
boundary, which can be used to introduce a cost function and minimize it according to

min
σ(s)

∥∥∥ΓR0,θ
EELS − ΓR0,θ

MODEL[σ(s)]
∥∥∥

l2
. (3.15)

1Then the imaginary part in the integral approximately cancels because of symmetry reasons, and the
lasting cosine function is approximately equal to one due to the reason that qz = w/vz << 1 at the
interaction regime, which is restricted to the evanescent decaying eigenmode potential( see e.g. Fig.
2.5.
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It is advantageous over a Radon transformation reconstruction, because penetrating
electron beams and the sign problem are not apparent. As the inverse problem does not
give a unique solution, it relies on an initial guess σ0(s) and therefore one should carefully
choose an initial guess with proper symmetry. An experimental realization for silver bi-
pyramids was shown in [108]. The authors revealed the three dimensional profile of
plasmon modes and showed substrate-induced mode degeneracy breaking. They added
to the cost function in Eq. (3.15) a regularization term in order to promote parsimonious
solutions.

3.4.2 Full Maxwell equations
A reconstruction scheme for particles, where retardation effects come into play - i.e.
particles with at least one dimension greater than 50 to 100 nm, has to take into ac-
count the full Maxwell equations. Then we do not obtain a scalar quantity from the
reconstruction, as in the quasi-static case, but vector valued solutions. Therefore things
get more complicated.

The electron energy loss can be written for the full Maxwell equations as (see also Eq.
(2.15))

ΓEELS(R0, ω) = −4e

�

∫ ∞

−∞
dzdz′ Im

[
eiqzv · G(r, r′, ω) · ve−iqz′]

. (3.16)

The response of the particle due to applied electric fields is governed in the dyadic Green
tensor G. So we want to reconstruct this quantity from the energy loss data. In order
to solve the inverse problem the Green tensor can be decomposed into a set of modes as
shown in subsection 2.2.5. Then an approximation of the dyadic Green tensor reads

G(r, r′, ω) ≈
∑

k

CkEk(r) ⊗ Ek(r′), (3.17)

where Ck control the contribution of each mode. It is motivated by the fact that
G(r, r′) = Gᵀ(r′, r) is a complex symmetric operator. A singular value decomposi-
tion of the associated complex symmetric matrix leads to a decomposition of this type.
Further, the same decomposition is used, when the Green tensor is decomposed into
quasinormal modes, see Eq. (2.28). When inserting Eq. (3.17) into (3.16) one ends
up with a model for the electron energy loss probability, which depends only on the
coefficients of the decomposition and reads at a certain energy ω

ΓRv̂
MODEL[Ck] =

∑
k

Im
[
CkA+(Rv̂)A−(Rv̂)

]
, (3.18)

where A±
k (Rv̂) =

∫ ∞
−∞ e±iqzv̂ · Ek(R0 + v̂z)dz. These integrals can be tackled in a way

that only integrals over the surface of the particle have to be taken into account. Eq.
(3.18) leads to a linear system of equations with k unknowns and can be solved by
optimizing

min
Ck

∥∥∥ΓRv̂
EELS − ΓRv̂

MODEL[Ck]
∥∥∥

l2
(3.19)
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Figure 3.8: Least square reconstruction of the photonic local density of states of a rect-
angular nanoparticle with dimensions 200×65×30nm3 and a dielectric function for gold
from the Drude model. Shown are the dipolar (top panels) and quadrupolar (bottom
panels) modes of the plasmonic structure and the true local density of states compared
to the density of states evaluated from the reconstructed Green tensor via least square
optimization. As measurement data a set of rotated electron energy loss maps was used.
As reconstruction basis bi-orthogonal eigenmodes, as described in subsection 2.2.5, where
used. For further details, see [57].

for different impact parameters Rv̂ with orientation of the electron trajectory v̂.
In principle, one could expand the eigenmodes Ek again into a set of basis vector func-

tions, which fulfill Maxwell’s equations in free space, such as vector spherical harmonics.
A proper framework for non-smooth particles would be to use a multiple multipole ex-
pansion, as is depicted in subsection 2.3.1. Such a decomposition would be nice, because
one could use quite general basis functions to expand the solution and there would be
no need for additional assumptions, as is the case for a decomposition, where modes
defined on the surface of a particle, such as quasinormal modes or constant flux states,
are used. Then the modes read Ek(r, ω) =

∑
l Clfl(r, ω) and one gets an expansion in

the form of
G(r, r′, ω) ≈

∑
k,l

Cklfk(r, ω) ⊗ fl(r′, ω), (3.20)

where also non diagonal entries in the expansion need to be accounted for and the number
of coefficients therefore grows with N2, where N is the number of basis functions used. In
contrast to this, for basis functions leading to a decomposition of the form of Eq. (3.17),
the number of coefficients is N. If we insert the expansion of Eq. (3.20) in the formula for
the electron energy loss Eq. (2.15) we get a model, which can be solved for the coefficients
Ckl with linear least square optimization. Unfortunately the least square optimization
fails to converge to the Green tensor, as can be seen in Fig. 3.8, where a comparison
between the true local density of states of a plasmonic nanoparticle and the one from a
reconstructed Green tensor - via least square optimization - are plotted and show almost
no agreement. In order to converge to the desired solution, one needs to implement some
additional information in the reconstruction process. Choosing a basis, where the dyadic
Green tensor can be decomposed into a form like Eq. (3.17), is one such assumption.
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Figure 3.9: Least square reconstruction of the photonic local density of states of a rect-
angular nanoparticle with dimensions 200×65×30nm3 and a dielectric function for gold
from the drude model. Shown are the dipolar (top figures) and quadrupolar (bottom
figures) modes of the plasmonic structure and the true local density of states compared
to the density of states evaluated from the reconstructed Green tensor by compressed
sensing. As measurement data a set of rotated electron energy loss maps was used. As
reconstruction basis bi-orthogonal eigenmodes, as described in subsection 2.2.5, where
used. For further details, see [57].

Here, in order to derive such a basis set, one needs the particle geometry and the dielectric
function of the material, as described in the former chapter. From the experimental point
of view, it is not really a big problem to obtain the particle geometry, because usually
one automatically gets some high angle annular dark field images in addition to electron
energy loss maps, which can be used for a geometry reconstruction [82]. Even armed with
the natural basis functions for the inverse problem, the solution shows no agreement with
the true dyadic Green tensor (Fig. 3.8) and additional assumptions need to be made.

Assuming that only a small number of modes contribute to the electron energy loss,
is such an assumption. When one looks at typical electron energy loss spectra (see e.g.
[82, 110]), one finds that there are typically just a few Lorentz shaped peaks, which are
attributed to different modes. Therefore this is probably a good assumption. In order
to implement it, one could use compressed sensing optimization, where one searches for
a solution with as little as possible coefficients unequal to zero, as described in section
3.3. Then the optimization problem reads

min
Ck

[
‖Ck‖l1 +

1
2μ

∥∥∥ΓRv̂
EELS − ΓRv̂

MODEL[Ck]
∥∥∥

l2

]
, (3.21)

where μ is a parameter, which allows to switch between compressed sensing and simple
linear least square optimization. A comparison of the true photonic local density of
states with the one derived from the dyadic Green tensor, reconstructed by compressed
sensing, provides excellent agreement, as can be seen in Fig. 3.9, showing that the
assumption of a sparse basis and therefore a regularization term ‖Ck‖l1 is a good choice.
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We theoretically investigate electron energy loss spectroscopy (EELS) of metallic nanoparticles in the

optical frequency domain. Using a quasistatic approximation scheme together with a plasmon eigenmode

expansion, we show that EELS can be rephrased in terms of a tomography problem. For selected single

and coupled nanoparticles we extract the three-dimensional plasmon fields from a collection of rotated

EELS maps. Our results pave the way for a fully three-dimensional plasmon-field tomography and

establish EELS as a quantitative measurement device for plasmonics.

DOI: 10.1103/PhysRevLett.111.076801 PACS numbers: 73.20.Mf, 68.37.Og, 78.20.Bh, 79.20.Uv

Electron energy loss spectroscopy (EELS) has emerged
as an ideal tool for the study of surface plasmon polaritons
and particle plasmons [1]. For surface plasmon polaritons,
electrons with kinetic energies of a few to hundreds of keV
penetrate through a metal film and excite surface and bulk
plasmons, whose resonance frequencies can be directly
extracted from the energy loss spectra [2,3]. By raster scan-
ning the electron beam over a plasmonic nanoparticle, one
can extract both the resonances and fieldmaps of the particle
plasmons [4,5]. This technique has been extensively used in
recent years to map out the plasmon modes of nanotriangles
[5–7], nanorods [4,8–10], nanodisks [11], nanocubes [12],
nanoholes [13], and coupled nanoparticles [14–17].

Despite its success and widespread application, the
interpretation of plasmonic EELS data remains unclear.
In [18] the authors speculated that EELS renders the
photonic LDOS, a quantity of immense importance in
nano-optics [19], but the interpretation was questioned in
[20]. A detailed comparison between LDOS and EELS was
given recently in [21], where the authors provided an
intuitive interpretation of different measurement schemes
in terms of an eigenmode expansion. It should be noted that
the controversy only concerns the interpretation, whereas
the theoretical description of EELS maps is well estab-
lished [1] and very good agreement between experiment
and simulation has been achieved [5,8,11,12].

In this Letter we challenge the interpretation of EELS
maps of plasmonic nanoparticles, and rephrase the prob-
lem in terms of a tomography scheme. For sufficiently
small nanoparticles, where the quasistatic approximation
can be employed, we expand the particle fields in terms
of plasmonic eigenmodes [21–23] and the EELS signal
becomes a simple spatial average along the electron propa-
gation direction. We show by the example of single and
coupled nanorods that the extraction of plasmon fields
from EELS data can be reduced to an inverse Radon trans-
formation, which is at the heart of most modern computer
tomography algorithms [24]. Otherwise the field extraction
can be formulated in terms of an inverse problem which
can be solved by optimization techniques.

EELS simulation.—Electron energy loss is a two-step
process, where the electron first excites a surface plasmon
and, in turn, the electron has to perform work against
the induced surface plasmon field. The energy loss
becomes [1,2]

�E ¼ e
Z

v �Eind½reðtÞ; t�dt ¼
Z 1

0
@!�EELSð!Þd!; (1)

where�e and v are the charge and velocity of the electron,
respectively, and Eind is the electric field of the surface
plasmon evaluated at the electron positions. In the second
expression of Eq. (1) we have spectrally decomposed the
different loss contributions and introduced the loss proba-
bility �EELS. A similar expression can also be obtained from
a fully quantum-mechanical description scheme [1]. For
nanoparticles much smaller than the wavelength of light,
one can employ the quasistatic limit by keeping only the
scalar potential and performing the static limit for the Green
functions, while retaining the full frequency dependence for
the material permittivities [1]. We are then led to [1,25]

�EELSðR0; !Þ ¼ � e2

�@v2

Z 1

�1
dzdz0

� Im½e�i!z=vGindðre; r0e; !Þei!z0=v�dzdz0
(2)

for the loss probability. Here Gind is the Green function in
the quasistatic limit that describes the response of the
metallic nanoparticle [1,20]. We next introduce plasmonic
eigenmodes [21–23] defined through

Z
@�

@Gðs; s0Þ
@n

�kðs0Þda0 ¼ �k�kðsÞ; (3)

where �k and �kðsÞ denote the plasmonic eigenvalues
and eigenmodes, respectively, and @G=@n is the derivative
of the Green function of an unboundedmediumwith respect
to the outer surface normal. The eigenmodes are orthogonal
in the sense

R
�kðsÞGðs; s0Þ�k0 ðsÞdada0 ¼ �kk0 and can be

chosen real [22,23]. Let �kðrÞ ¼
R
@�Gðr; sÞ�kðsÞda

denote the potential of the kth eigenmode. The induced
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Green function can then be decomposed into these eigen-
modes according to [21]

Gindðr; r0Þ ¼ �X
k

�k � 2�

�þ �k

�kðrÞ�kðr0Þ 1

"ðr0Þ ; (4)

with � ¼ 2�ð"1 � "2Þ=ð"1 þ "2Þ and "1 and "2 being the
dielectric functions inside and outside the particle, respec-
tively. The plus andminus signs correspond to the situations
where r0 lies outside or inside the particle. Inserting Eq. (4)
into the loss probability of Eq. (2), we obtain for an electron
trajectory that does not penetrate the particle the final result

�out
EELSðR0; !Þ ¼ � e2

�@v2"2

X
k

Im

�
�k þ 2�

�þ �k

�

�
��������
Z 1

�1
ei!z=v�kðrÞdz

��������
2

: (5)

This expression, which has been previously derived in
[21], forms the starting point for our following analysis. At
a plasmon resonance, defined through Re½�ð!Þþ�k�¼0,
the resonance term in Eq. (5) becomes large and its con-
tribution can dominate the total loss probability. Let us
assume for the moment that !z=v � 1, such that the
EELS probability for the single, dominant mode reduces to

�out
EELS;�ðR0; !Þ � jR�½�kðrÞ�j2: (6)

HereR� is the Radon transformation [24,26] that performs
a line integration of �kðrÞ along the z direction. We have
included in Eq. (6) an angle � that accounts for a possible
rotation of the integration axis, as schematically depicted
in Fig. 1. A collection of Radon transformations for a
complete set of rotation angles is conveniently called a
sinogram [26]. The projection-slice theorem then states
that one can uniquely reconstruct the original function
from the sinogram. Equation (6) differs from a normal
sinogram in that �EELS depends on the square of the
Radon transforms, which leads to a sign ambiguity in the
sinogram. In the following we first analyze a situation
where the sign ambiguity can be ignored, and we will
discuss the more general situation further below.

Results.—We first consider the setup depicted in Fig. 1,
where an electron beam is raster scanned over a single
nanorod and the EELS maps are recorded for different loss
energies @! and rotation angles �. In Fig. 2(a) we show the
simulated EELS spectrum for the electron beam positions
shown in the inset. We use a dielectric function for silver
[27] and employ the MNPBEM toolbox [28] for the solution
of the full Maxwell equations (without the quasistatic ap-
proximation). At low loss energies one observes two peaks
which can be attributed to the dipolar and quadrupolar
plasmon modes. Owing to the symmetry of the modes, an
electron propagating along z always passes through regions
where �kðrÞ is either solely positive or negative, which
allows us to perform the inverse Radon transformation in
Eq. (6). Results are reported in 2(d) and 2(e), showing
almost perfect agreement between the reconstructed

potentials and �kðrÞ, apart from the potential sign that
cannot be reconstructed from the EELS data. This is an
encouraging finding, considering that our EELS maps are
obtained from the solutions of the full Maxwell equations.
In Fig. 3 we show EELSmaps for coupled nanoparticles,

which have received considerable interest in recent years
[14–17,20], partially due to their importance for surface
enhanced Raman scattering [29,30]. Inside the gap region
the EELS signal becomes zero for the bonding mode
and maximal for the antibonding mode, as discussed in
detail in Ref. [20]. However, from the reconstructed
potential maps one observes a significant variation of the
bonding potential along x, indicating a strong electric field
in the gap region, contrary to the antibonding mode which
has only a weak dependence along x. Thus, although
‘‘being blind to hot spots’’ [20,31], EELS tomography
even allows us to reconstruct the complete field distribu-
tion inside the gap region.
The situation becomes more complicated when the elec-

tron passes through the metallic nanoparticle, and the
induced Green function in Eq. (4) has to be separated
into contributions where the electron is either inside or
outside the metallic particle. Inside the metal the electron
becomes efficiently screened by free electrons through the
"�1 term. To a good approximation, we can ignore this
contribution and approximate the EELS probability by

�EELS;�ðR0; !Þ � ðR�½�kðrÞ�ÞðR�½�out
k ðrÞ�Þ; (7)

where �out
k ðrÞ is the potential that is artificially set to zero

inside the particle. In Eq. (7) it is no longer possible to

FIG. 1 (color online). Schematics of EELS tomography.
An electron beam is raster scanned over a metallic nanoparticle,
and EELS maps are recorded for different rotation angles �.
The main panel shows the isosurface and contour lines for the
modulus of the dipolar surface plasmon potential, and the insets
report the different EELS maps. From the complete collection
of maps one can reconstruct the plasmon fields, as described in
text (positions of reconstruction planes used in Figs. 2 and 3 are
indicated in the main panel).
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perform an inverse Radon transformation to reconstruct the
plasmon potential, and we have to proceed in a different
manner. First, we introduce a cost function that measures
the distance between the computed EELS probabilities and
those computed from Eq. (7). Let f0 denote the EELS
probabilities for all impact parameters and rotation angles,
and f½�kðrÞ� the corresponding probabilities computed
from Eq. (7). In a second step we then determine, starting
from some reasonable initial guess, those potentials that
minimize the cost function J ¼ ð1=2Þjf0 � f½�kðrÞ�j2
using a nonlinear conjugate gradient method [32]. In
most cases the initial guess for the potentials was not
overly critical and the minimization algorithm converged
after a few iterations. Figures 2(b) and 2(c) report the
reconstructed potentials and �kðrÞ for electrons penetrat-
ing through the metallic nanoparticle, and we again
observe very good agreement.

Having established a numerical optimization scheme
for the potential through minimization of the cost function,
we can also rephrase the EELS tomography problem of
Eqs. (5) and (6) in a way that appears better suited for expe-
rimental implementation and that can also be employed for
more complicated structures. To this end, we first note that
the source for the potential �kðrÞ is the charge distribution

�kðsÞ of the eigenmodes, and one can reconstruct equally
well the surface charge distribution or the potential. We
next rewrite Eq. (5) in the form

�out
EELS;�ðR0; !Þ ¼ X

k

Ckð!Þ
��������
Z

�	
R0;�

ðsÞ�kðsÞda
��������

2

; (8)

where �R0;�ðsÞ ¼ �ðe=vÞR1
�1 Gðs; reÞei!ze=vdze is the

potential of the electron propagating along re, with direc-
tion � and impact parameter R0, and the form of Ckð!Þ
follows directly from the comparison with Eq. (5).
Equation (8) allows for the reconstruction of �kðsÞ, which
can be approximated by boundary elements (as used in our
simulation approach [28]) or some free-form surface func-
tions such as nonuniform splines, provided that the nano-
particle surface is known [26]. In what follows, we again
set !=v 
 0.
Figure 4 shows for a number of particle shapes the

reconstruction based on Eq. (8). In all cases we used for
the initial guess a mode profile with proper symmetry,
whereas other details turned out to be unimportant.
Figure 4(a) reports �kðsÞ (left) and the reconstructed
surface charge distributions (right) for the dipolar and
quadrupolar nanorod modes, which are in very good
agreement. In Fig. 4(b) we show results for a disk-shaped
particle with two degenerate eigenmodes. For the recon-
struction, we keep in Eq. (8) two modes with identical
coefficients Ck, and ensure that, because of symmetry, the
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FIG. 3 (color online). (a) Same as Fig. 2 but for coupled
nanorods. The particle and simulation parameters are the same
as those given in the caption of Fig. 2, the gap distance between
the nanoparticles is 5 nm. In the inset we report the potentials for
the bonding and antibonding modes. (b)–(e) Reconstructed and
true potential maps at different x positions, reported in the panels,
as measured with respect to the gap center. For clarity, the
potentials for the bonding mode are multiplied by a factor of 3.
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FIG. 2 (color online). (a) EELS spectrum for silver nanorod
with dimensions of 50� 15� 7 nm3 and for the two beam
positions indicated with circles in the inset. The inset also reports
the potential maps for the dipole and quadrupole mode at z ¼ 0.
The dashed lines indicate the positions of the planes where the
potentials are reconstructed from the collection of EELS maps.
(b)–(e) Potential maps reconstructed from EELS maps (left-hand
panels) and potential maps (right-hand panels) for dipole mode
(upper panels) and quadrupole mode (lower panel). In the
simulations we assume a kinetic electron energy of 200 keV
and use a dielectric constant of 1.6 for the embedding medium.
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charge distributions of these modes are identical but
rotated by 90� with respect to each other. Again the opti-
mization procedure comes up with the correct modes. We
emphasize that a similar approach could be used for modes
that are energetically close to each other, although in this
case the coefficients Ck are different and the optimization
should include EELS maps for different loss energies.
Finally, Fig. 4(c) shows the bonding and antibonding
mode distributions for a bowtie geometry, demonstrating
that our approach can also be applied to more complicated
structures.

In Fig. 5 we compare for the nanorod the true and
reconstructed potentials along the line (e) shown in the

inset of Fig. 2(a) [z ¼ 0]. We observe that the quasistatic
potential and the potentials reconstructed from the EELS
maps, through either the Radon transformation [Eq. (6)]
or the surface charges of Eq. (8), are in good agreement,
demonstrating the quantitative measurement capability of
our approach. The comparison with the retarded potentials
is complicated by the fact that there exists no clear eigen-
mode concept for the full Maxwell equations, and we thus
we have to proceed in a different manner. In the figure we
show the modulus of the induced potentials for a plane-
wave excitation (we use an incidence angle of 45� where
both dipolar and quadrupolar modes can be excited). Good
agreement between the solutions of the quasistatic and
full Maxwell equations is found, with only small devia-
tions at larger positions, attributed to the different excita-
tion conditions and/or retardation effects not included in
the quasistatic solutions.
There are several reasons why Eq. (8) is advantageous in

comparison to Eq. (6). First, while �kðsÞ can typically be
represented by a few tens to hundreds of boundary ele-
ments or parameters, the EELS maps for different rotation
angles provide a much larger data set, thus making the
optimization procedure for the reconstruction a highly
overdetermined problem. The reason for this overdetermi-
nation is the two-dimensional nature of the surface charge
distribution, whereas the potential, which is uniquely
determined by �kðsÞ, can be measured in the entire three-
dimensional space. For the reconstruction of �kðsÞ one can
thus even discard trajectories where the electrons pass
through the nanoparticle, which are problematic in experi-
ment because of the electron attenuation within the metal.
The inverse Radon transformation additionally requires a
large field of view, to properly include the far-reaching
components of the dipolar or multipolar surface plasmon
fields, in contrast to Eq. (8) that can be restricted to
significantly smaller regions. Consideration of finite wave
numbers !=v naturally enters the framework of Eq. (8), in
the spirit of diffraction tomography [33], although in this
work we have neglected for simplicity such wave number
effects. Finally, effects of substrates or layers supporting
the nanoparticles can be included in our approach by
replacing in Eq. (3) and in the definition of �R0;�ðsÞ the
Green function of an unbounded medium by that including
substrate or layer effects. The main limitations of our
tomography scheme are probably the quasistatic approxi-
mation, which restricts the scheme to sufficiently small
particles, and the high degree of preknowledge needed for
the surface charge reconstruction (homogeneous dielectric
function of particle, surface charge distributions as the only
source for plasmonic fields).
We are grateful to Gerald Kothleitner, Toni Uusimäki,

Franz Schmidt, Harald Ditlbacher, and Joachim Krenn for
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We have characterized the surface plasmon resonance (SPR) in silver nanowires using spatially

resolved electron energy loss spectroscopy (EELS) in the scanning transmission electron

microscope. Non-symmetric EELS spectra due to high-k SPR propagation along the nanowire and

spectral shifts due to higher-order mode excitation are observed when the beam is positioned near

the tip of the nanowire. When the beam is far from the tip region and on the side of nanowire, no

spectral shifts are observed as the beam is scanned in the radial direction of the nanowire. The

experimental spectra are compared with three different theoretical approaches: direct numerical

calculation of the energy loss, analytical models for energy loss, and numerical simulations using

an optical model. All three models reproduce the spectral shifts as the electron beam approaches

the cap of the nanowire. The analytical model reveals the origin of the shifts in high-order plasmon

mode excitation.VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4903535]

I. INTRODUCTION

The surface plasmon resonance (SPR) modes of metal

nanoparticles (NPs) enable the development of nano-optics

and the manipulation of light at length scales far below the

diffraction limit. In recent years, researchers have developed

an extraordinary degree of control over the propagation of

confined optical modes on the nanoscale in a variety of

metallic systems. The character of SPR modes has been stud-

ied for varieties of geometries, including cubes,1 prisms,2

rods, and wires.3–5 Metal nanowires are of particular interest

since they may serve as the building blocks of more complex

plasmonic systems or circuits. Metal nanowires exhibit an

enhanced polarizability compared to more spherical shapes,

and their resonance frequency can be tuned by changing their

length and/or diameter and the composition of the surround-

ing medium. Some recently published theoretical analysis

and experimental measurements have illustrated their optical

properties and potential applications.6–8

In order to determine their spectral properties or their suit-

ability for various applications, SPR modes are typically

excited optically. In this case, it is difficult to study the spatial

modes in great detail since no optical characterization with

truly single-nanometer spatial resolution exists. However, elec-

tron energy loss spectroscopy (EELS) performed in the scan-

ning transmission electron microscope (STEM) is capable of

such resolution. In recent years, EELS has become a powerful

tool to study optical-frequency SPR modes in individual nano-

structures as a result of the improved energy resolution enabled

by electron monochromators.4,5,9 In this case, the attainable

energy resolution approaches the width of SPR excitations in

noble metals10 and the signal can be acquired with nanometer-

scale spatial resolution.11

Theoretical and experimental investigations of SPR exci-

tation using EELS have been conducted on a variety of nano-

structures, including single NPs of various shapes, nanoparticle

arrays, thin films, and composite metamaterials.10,12–16

Specifically for wire-type structures, Nicoletti et al.17 and

Rossouw et al.18 have both recently utilized EELS to map the

spatial extent of SPR’s in single silver nanorods. They

observed confined modes along the length of the wires as well

as anti-node bunching of high-order resonant modes at the

nanowire ends. They illustrated mode confinement effects and

interpreted their results with the aid of optical excitation calcu-

lations, which were found to be in good agreement with

experiment. Rossouw and Botton also analyzed the resonant

modes of bent and kinked silver nanowires for their potential

use in nanophotonic circuits.19 Interestingly, no interruption of

the mode propagation was observed due to the bends and

kinks, such that the optical response was similar to that of a

straight wire.

In this work, we further explore EELS of silver NWs,

presenting new data on the detailed dependence of the spec-

tral response on the electron beam position near the nanowire

surface. We observe an asymmetrical loss spectrum and

spectral shifts in the loss peak that we attribute to high-order

mode excitation. To aid interpretation, we compare the

experimental results with previously published analytical

theories, optical excitation models, and direct calculation of

electron energy loss probability.

II. EXPERIMENTAL SETUP

Silver nanowires were synthesized through CuCl2 medi-

ated polyol reduction.20 5ml of ethylene glycol (EG) in a
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20ml disposable glass vial was submerged in an oil bath and

heated to 150 �C under magnetic stirring. After 1 h of heat-

ing, 40ml of 4mM CuCl2�2H2O in EG was added and the

solution was heated for an additional 15min. 3ml of

147mM polyvinylpyrrolidone (PVP) and 3ml of 94mM

AgNO3 solutions in EG were synchronously injected into the

heated EG solution at a constant flow rate of 0.45ml/min.

Upon the formation of long silver nanowires, an hour from

the injection of PVP and AgNO3, the solution turned opaque

and wispy gray. The silver nanowires were separated from

the EG and PVP by centrifugation at 209 rad/s (2000 RPM)

for 20min in acetone and re-dispersed in water.

The silver nanowires were dispersed in organic solvents

by replacing the PVP with an alkanethiol.21 Specifically,

1mg/ml of silver nanowires in ethanol were mixed with

10mM of 1-undecanethiol (UDT) in chloroform in equal

volume and sonicated for 10 min after which the mixture

was left for 24 h. This allowed for displacement of the PVP

and formation of a UDT self-assembled monolayer on the

nanowires. The silver nanowires were further purified by

centrifugation, supernatant extraction, and re-suspension in

target organic solvents.

In preparation for STEM-EELS analysis, silver nano-

wires were deposited from solution by drop-casting onto a

thin lacey-carbon film supported on a standard 3mm copper

mesh grid. EELS spectrum imaging and high-angle annular

dark-field imaging (HAADF) were carried out using an FEI

Titan 80–300 STEM equipped with a double-hexapole spher-

ical aberration corrector on the probe-forming side of the

objective lens and a Wien-filter monochromator.31 The

instrument was operated at an accelerating voltage of 300 kV

using an accelerating gun lens resulting in a final probe cur-

rent of �100 pA. While the spherical aberration corrector

permits the formation of an electron probe with a diameter

of approximately 0.1 nm, additional source magnification is

incurred due to the dispersive action of the monochromator.

The exact probe shape is difficult to measure and calculate,

but the final probe size is on the order of 0.3 nm.

Spectroscopy was carried out with a Gatan Tridiem 865

imaging energy-filter, with typical acquisition times of

100ms per spectrum, using a convergence angle of 13mrads

and a collection angle of 13mrads. The energy dispersion

was set to 0.01 eV/channel. To provide a measure of the

energy-resolution of the system under these conditions, the

full-width half maximum and full-width tenth maximum of

the zero-loss peak were measured and found to be 0.2 eV and

0.5 eV, respectively. Spectra were aligned in the energy

dimension using Matlab code to set the channel with maxi-

mum intensity to zero energy-loss. While it was impossible

to analyze free-standing NWs, in order to minimize substrate

effects, care was taken to analyze only the ends of those

NWs that extended far from the underlying amorphous car-

bon support. STEM-HAADF images were collected both

before and after EELS acquisition. Images collected prior to

analysis showed that the nanowires exhibited clean surfaces,

with no evidence of oxide or carbonaceous surface layers

present. However, the presence of ultrathin layers of this

kind cannot be entirely ruled out. Images collected after

analysis showed that some hydrocarbon deposition did occur

during the analysis. No other evidence of specimen alteration

was observed.

In order to study the plasmon modes in detail, we

performed EELS of individual silver nanowires. In the first

set of experiments, we acquired EELS spectra at a series of

electron beam positions relative to the nanowire. All spectra

are presented as they were acquired, without applying back-

ground subtraction or deconvolution. We investigated the

dependence of the spectral response on the distance of the

beam from the nanowire tip and the distance from the side of

the nanowire in a region that was far from the tip. The spec-

tral response was also measured at a fixed distance from the

side of the wire as a function of distance from the wire’s tip.

This measurement was complemented by hyperspectral

EELS imaging of the entire region of the nanowire within

several hundred nanometers of the tip.

III. RESULTS

EELS spectra collected as a function of beam distance

from the tip of the nanowire are shown in Fig. 1(a). The inset

shows the experimental setup, where spectra were acquired

every nanometer along a 50 nm line (indicated in orange).

The acquisition began with the beam positioned inside of the

wire and then moving away from it into the surrounding vac-

uum. A 2-D plot of the spectral response vs. beam position is

given in Fig. 1(a), with the white dashed line indicating the

interface between the tip of the nanowire and vacuum. A

similar set of data was acquired for beam positions scanned

perpendicular to the side of the nanowire, and this is shown

in Fig. 1(b). Spectra extracted at various intervals along the

line of acquisition are presented in Figs. 1(c) and 1(d). In all

cases, a strong loss peak due to SPR has been excited near

3.6 eV. The SPR excitation efficiency drops off exponen-

tially as the beam moves away from the wire, corresponding

to the confinement of the SPR mode to the metal surface, as

has been established by a number of recent studies.4,18,22,23

When the beam is positioned near the tip of the nanowire,

the SPR peak is highly asymmetric and broad. In addition,

the peak was observed to continuously shift from �3.5 eV

when the beam was near the metal-vacuum interface to

�3.3 eV when the beam was 25 nm away as indicated by the

dashed black line in Fig. 1(c). By contrast, as shown in Figs.

1(b) and 1(d), the spectral peak in the transverse case was

relatively narrow and was positioned at 3.6 eV regardless of

beam position.

SPR propagation along the side of the nanowire was

also investigated by positioning the beam at the positions

indicated in the STEM image shown in Figure 2(a). The cor-

responding EELS spectra for each of these positions contain

a strong peak at �3.6 eV, as well as a series of peaks at lower

energy-loss (indicated by arrows). These lower energy-loss

peaks are due to the excitation of Fabry-Perot modes along

the wire due to its finite length.17,18 Moreover, it is shown

that the strongest silver SPR peak occurs at �3.6 eV when

the beam is positioned along the side of the wire, but that the

peak shifts to �3.5 eV when the beam is moved to the tip of

the nanowire. This observed difference in the energy-loss

position is consistent with the previously presented spectra.
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Figs. 2(b) and 2(c) show another STEM-HAADF image

of the nanowire and the corresponding spectra obtained

along the wire surface at the indicated positions. In this case,

the Fabry-Perot modes are again observed at low energy-loss

in addition to a pair of stronger peaks positioned at 3.5 eV

and 3.75 eV. As discussed previously, the former peak is due

to the delocalized SPR at the wire-vacuum boundary, while

the latter is due to the bulk plasmon loss as the beam passes

through the wire itself.4,24,25

The spatial distribution of the low-energy modes was

observed by extracting images from an EELS spectrum

image at varying energy-loss values, and a subset of the data

is shown in Fig. 3(a). As observed in the previous stud-

ies,17–19 the propagating modes along the length of the wire

become standing waves in a finite system due to boundary

confinement resulting in the Fabry-Perot type resonances.

These images can be compared to simulated electric field

distributions obtained by finite-difference time-domain

(FDTD) simulations of the optical response of the nanowire

(Fig. 3(b)) and the results are qualitatively quite similar. By

measuring the spatial separation between the peaks of each

SPR mode in Figs. 3(a) and 3(b), the dispersion relations are

obtained and plotted in Fig. 3(c). The values of k (in nm�1)

are measured from the experimental EELS series in Fig. 3(a)

and the simulated series in Fig. 3(b). k is given by

k ¼ 2p
ksp

;

where ksp is the wavelength between two resonance peaks.

For a given resonance mode, the spacing between adjacent

maxima of intensity varies slightly along the silver nanowire,

so that the k does not have a unique value. The theoretical dis-

persions from a model neglecting retardation and substrate

FIG. 1. Experimental EELS spectra collected near the end of a 100 nm diameter silver nanowire with the beam traveling in (a) the longitudinal direction and

(b) the transverse direction. The inset STEM-HAADF images show the region analyzed. Data were collected serially in 1 nm increments in the direction indi-

cated by the orange arrow. The white dashed line overlaid in the EELS data represents the interface between the silver nanowire and vacuum which is set as

the origin of the abscissa. Also shown are EELS spectra as a function of distance from the nanowire surface along the (c) longitudinal direction and (d) the

transverse direction.

223101-3 Zhou et al. J. Appl. Phys. 116, 223101 (2014)

 [This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to ] IP:
143.50.77.37 On: Tue, 16 Dec 2014 06:31:3758



FIG. 2. (a) STEM-HAADF image of 100 nm diameter silver nanowire and corresponding EELS spectra extracted from the numbered locations. The strongest

SPR peaks are at �3.5 eV to �3.6 eV, while the black arrows highlight the Fabry-Perot resonances observed at lower energy-loss, the position of which

depends strongly on distance from the nanowire tip. (b) STEM-HAADF image of a silver nanowire and a zoomed image of the region analyzed by EELS. (c)

Corresponding EELS spectra extracted from the seven numbered positions denoted in (c).

FIG. 3. (a) Images extracted from a EELS hyperspectral dataset acquired from near the end of a 100 nm diameter. The images show the spatially resolved

EELS response at various energy-loss values and depict the standing wave pattern in the nanowire resulting from surface plasmon resonances. (b) Simulated

electric field distributions resulting from optical excitation of a model silver nanowire. The intensity has been scaled independently for all of the images in. (c)

Experimental and calculated dispersion relations as a function of wavenumber k, where k¼ 2p/ksp and ksp /2 is the half wavelength measured between two

resonance peaks. Note that the k values are not uniquely defined but have an error range, as the EELS signal is not perfectly periodic.
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effects are also shown; clearly, a small systematic shift is

observed between the model and experimental dispersions,

which may be due to limiting assumptions of the model as

well as effects due to shape, size, and composition.19

IV. DISCUSSION

To investigate the features observed in the collected

spectra and the relation between the optical and energy loss

responses, we first performed EELS simulations using the

MNPBEM toolbox.26 The nanowire was modeled as a 1 lm
long cylindrical wire with spherical caps at both ends; the

wire diameter was set to 100 nm. Values for the silver per-

mittivity were extracted from optical experiments,27 and the

EELS maps and spectra were computed according to the pro-

tocol given previously.28,29

In Figure 4, the calculated EELS response is shown as

a function of distance from the nanowire when the beam is

moving in the longitudinal and transverse directions (Figs.

4(a) and 4(b), respectively). The interface between the

nanowire and vacuum is again denoted by the white dashed

lines. The corresponding spectra for selected impact param-

eters are also shown in Figs. 4(c) and 4(d). In both cases, a

number of peaks associated with Fabry-Perot resonances

are observed at lower loss energies (<3 eV), which then

merge into a continuum of states around 3.60 eV. Also, in

both sets of simulations, a peak is observed at 3.75 eV when

the beam is positioned inside the nanowire, which corre-

sponds to excitation of the bulk plasmon for silver. If only

the asymptotic SPR peak near 3.60 eV is considered, a

higher degree of dispersion was observed in the longitudi-

nal case than in the transversal. This can be seen in the

insets of Figs. 4(c) and 4(b), which enlarge this spectral

region near the wire surface, as well as in Fig. 4(c) where

the peak near 3.6 eV shifts to lower energies when the elec-

tron beam moves away from the nanowire. In contrast, the

asymptotic peak in the inset of Fig. 4(b) and in Fig. 4(d)

shows almost no dispersion whatsoever. Therefore, the ex-

perimental and theoretical results show very nice agree-

ment, especially in the asymptotic regime.

However, there are some interesting differences between

the acquired spectra and the calculated EELS response. First,

in the experimental EELS data, the Fabry-Perot modes are

much less distinct than the EELS calculations suggest. This

is likely due to the finite energy resolution of the experimen-

tal data. Indeed, when the simulated spectra are convolved

FIG. 4. Simulation results for a cylindrical nanowire of 1 lm length and 100 nm diameter, using the MNPBEM toolbox.27 Density plot for electron energy loss

maps as a function of loss energy and impact parameter along the (a) longitudinal and (b) transversal directions. The insets show a magnified view of the as-

ymptotic regime, marked by the white box. The nanowire boundary at 0 nm is shown by the dashed line. (c) and (d) Corresponding spectra for selected impact

parameters.
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with a Gaussian function with FWHM¼ 0.3 eV (shown in

Fig. 5), the pronounced peak structure is almost completely

indiscernible and the simulated spectra more closely match

those acquired experimentally (Figs. 1(b) and 1(d)) quite

well. Therefore, the modeled spectra indicate that the origin

of the observed spectral asymmetry arises from the contribu-

tions of the high-k longitudinal modes on the low energy

side of the SPR peak. Another discrepancy is that the bulk

peak is less intense in the experimental data and optical exci-

tation calculation than in the EELS simulations. A quantita-

tive explanation of this requires further work but is possible

that this effect is due to the attenuation of the electron beam

within the metal nanowire, which is not accounted for in the

EELS calculations.

While the EELS spectra calculated using the MNPBEM

toolbox nicely replicated the spectral shift behavior observed

in our experiments, they did not indicate what the origin of

this behavior could be. In order to obtain physical insight

into the observed plasmonic modes and the relation between

the nanoscale optical and EELS responses, we then carried

out detailed simulations using energy loss theories and opti-

cal models. A theoretical description of the collective elec-

tronic excitations at metal surfaces has been presented by

Pitarke et al.,25 who predicted that a number of multipolar

modes can be excited and contribute to the energy loss of

moving electrons. To approximate the nanowires that were

examined experimentally, we have considered two distinct

geometries. First, a semi-spherical model was used to ap-

proximate the tip of the nanowire, although it is apparent

from the image in Fig. 1 that the true tip geometry deviates

from this simplified geometry. To compare the analytical

theory of energy loss with the optical response of this silver

nanosphere, we performed numerical simulations using the

FDTD Lumerical package, assuming excitation by an optical

dipole source at different positions to mimic the electron

beam positions. The frequency dependent dielectric function

of silver was taken from previously reported optical data.30

Figure 6(a) presents a schematic of the silver nano-

sphere model used to approximate the nanowire tip. The

red line in Fig. 6(a) depicts the electron beam traveling at a

particular distance, b, from the center of the silver nano-

sphere. Fig. 6(b) shows the calculated FDTD normalized

power flow distribution as a function of distance from a sil-

ver nanosphere with diameter of 100 nm. The origin of the

x-axis is set in the nanosphere, and the white dashed line at

x¼ 0 denotes the interface between the sphere’s surface

and vacuum. When the beam is positioned within the

sphere, the resonance peak is observed at �3.7 eV, which

corresponds to the bulk plasmon energy. This peak is stable

as the beam moves towards the surface of the sphere.

However, when it reaches the interface and progresses

away from the sphere, the resonance peak steadily shifts

towards �3.5 eV. The inset in Fig. 6(b) presents the electric

field power flow distribution in the region near the nano-

wire tip. The black dashed curve with arrow indicates the

resonance peak position as the beam moves away from the

tip. The spectral shift observed in this simulation agrees

quite well with that observed in the experimental EELS

data (Figs. 1(a) and 1(c)).

To investigate the origin of this shift, the electron

energy-loss probability was also calculated analytically for

the spherical model.25 Fig. 6(c) shows the results of this

calculation for several SPR resonance modes: the dipole

mode (mode index ‘¼ 1), quadrupole mode (‘¼ 2), octu-

pole mode (‘¼ 4), and hexadecapole mode (‘¼ 8). In this

case, the resonance peaks are seen to shift from 3.50 eV for

‘¼ 1 to 3.66 eV for ‘¼ 8. In addition, the higher order

modes are noticeably more localized at the surface of the

sphere than the lower order modes which extend much fur-

ther into vacuum. Since the tip of the nanowire analyzed

using EELS can be considered pseudo-spherical, these ana-

lytical computations suggest that the spectral shift observed

in the experimental data (Figs. 1(a) and 1(c)) arises due to

the differences in energy-loss probabilities between the

lower- and higher-order modes. When the beam is posi-

tioned near the nanowire surface, the more localized,

higher-order modes contribute more significantly. As the

beam moves away from the surface, the energy-loss is

FIG. 5. Simulated spectra from the (a) longitudinal and (b) transversal directions after convolution with a Gaussian function (FWHM¼ 0.3 eV).
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dominated by the more delocalized dipole mode resulting

in a shift of the observed resonance peak to lower energy-

loss. As discussed by Pitarke et al.25 and shown schemati-

cally in Fig. 6(a-1), multipolar resonances are readily

excited when the beam is near the edge of the sphere since

it effectively interacts with a nearly planar surface. In con-

trast, the dipole resonance will be dominant when the beam

is far from the surface of the nanosphere and the impact pa-

rameter is large (Fig. 6(b-2)).

To model the EELS response when the beam was posi-

tioned along the side of the nanowire, we have performed

similar calculations using an infinitely long cylinder geome-

try.25 Figure 7(a) shows a schematic of this case where the

solid red line represents the electron beam trajectory and the

dashed red line indicates its distance, b, from the center of

the cylinder. Fig. 7(b) shows the FDTD calculated normal-

ized power flow distribution as a function of radial distance.

In contrast to the case of the spherical model, in this case,

the power flow shows a single peak at �3.6 eV that does not

shift as the beam moves away from the cylinder. The inset in

Fig. 7(b) depicts the power flow distribution from the region

near the edge of the cylinder, and the dashed black line

shows a consistent resonance peak that does not shift with

excitation position. The observed insensitivity of the peak

energy-loss with beam position differs markedly from the

calculations for the spherical model but agrees quite well

with the experimental EELS data.

Once again, to investigate the origin of these observa-

tions, the analytical energy loss probabilities for the various

modes (‘¼ 1–8) were calculated, and the results are pre-

sented in Figure 7(c). For all four modes, peaks are observed

at �3.65 eV and �3.3 eV, which are confined near the inter-

face region. For the dipole mode (‘¼ 1) ,these two peaks ex-

hibit very similar amplitudes. However, as ‘ increases, the

higher energy-loss peak becomes progressively more intense

relative to the lower energy-loss peak. These results fit quite

well with the peak shapes and intensities observed in the ex-

perimental EELS spectra collected along the side of the

nanowire (Figs. 1(d) and 2(c)), suggesting that the multipolar

resonances dominate the SPR response in this case. Finally,

despite the differences in amplitude, the peak positions for

all four modes do not change as a function of distance from

the nanowire surface. This is markedly different from the

calculations already discussed for the spherical model but

matches the behavior observed in the experimental EELS

spectra acquired in the transverse orientation. Therefore, the

characteristics of the SPR peak in the two experimental cases

we have investigated can be explained by the spatial depend-

ence of the energy-loss probabilities of the various modes

excited by the electron beam.

FIG. 6. Results of analytical energy loss and optical simulations for an ideal silver nanosphere. (a) Schematics of the surface charge densities induced by an

electron beam (denoted by the red line) placed (a-1) close to the surface of the sphere and (a-2) far away from the surface of the sphere. (b) FDTD simulated

power flow intensity distributions as a function of distance from the surface of an ideal silver nanosphere under optical excitation. The position of the surface

is indicated by the white dashed line at 0 nm. (c) Analytically computed electron energy loss probabilities from the silver nanosphere for various resonance

modes (mode index ‘¼ 1, 2, 4, and 8). Due to the strong variation in maximum energy-loss intensity and for better visibility, the color scale has been scaled in-

dependently for all of the images.
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V. CONCLUSIONS

We have explored the detailed spatial dependence of the

electron energy loss at optical frequencies when the electron

beam is directed near the surface of silver nanowires. Due to

the pseudospherical shape of nanowire tip, the detailed loss

spectrum near this region depends strongly on the position of

the electron beam. Far from the tip, the spectral response is

dominated by the dipolar excitation, as predicted theoreti-

cally for a spherical geometry. As the beam approaches the

tip, the surface of the wire becomes effectively planar, result-

ing in the excitation of higher-order modes and a shift of the

resonance peak towards higher energies. The spectral

response was simulated in three ways: (1) using previously

published analytical models of energy loss for ideal spheres

and infinite wires, (2) by calculating the optical response

with dipole optical field excitation, and (3) by simulating the

EELS maps using a boundary element method. With the aid

of these calculations, it was shown that the spatial variations

of the loss peak in the experimental spectra were due to exci-

tation of the more localized higher-order modes when the

beam is very close to the nanowire surface. For detailed cal-

culation of the loss spectra and the spatial response profiles,

both numerical optical excitation and energy loss simulations

showed good agreement with the experimental results. These

experiments and calculations demonstrate that the energy

loss and optical spectra provide complementary insight into

the plasmonic modes of metallic nanostructures.
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Full Three-Dimensonal Reconstruction of the Dyadic Green Tensor
from Electron Energy Loss Spectroscopy of Plasmonic Nanoparticles
Anton Hörl, Andreas Trügler, and Ulrich Hohenester*

Institute of Physics, University of Graz, Universitaẗsplatz 5, 8010 Graz, Austria

ABSTRACT: Electron energy loss spectroscopy (EELS) has
emerged as a powerful tool for the investigation of plasmonic
nanoparticles, but the interpretation of EELS results in terms
of optical quantities, such as the photonic local density of
states, remains challenging. Recent work has demonstrated
that, under restrictive assumptions, including the applicability
of the quasistatic approximation and a plasmonic response
governed by a single mode, one can rephrase EELS as a
tomography scheme for the reconstruction of plasmonic
eigenmodes. In this paper we lift these restrictions by formulating EELS as an inverse problem and show that the complete
dyadic Green tensor can be reconstructed for plasmonic particles of arbitrary shape. The key steps underlying our approach are a
generic singular value decomposition of the dyadic Green tensor and a compressed sensing optimization for the determination of
the expansion coefficients. We demonstrate the applicability of our scheme for prototypical nanorod, bowtie, and cube
geometries.

KEYWORDS: plasmonics, electron energy loss spectroscopy, tomography, compressed sensing

Electron energy loss spectroscopy (EELS) is a powerful tool
for the investigation of plasmonic nanoparticles.1,2 EELS is

a technique based on electron microscopy and measures the
probability of a swift electron to lose part of its kinetic energy
through plasmon excitation as a function of electron beam
position. Following first proof of principle experiments,3,4 in the
last couple of years EELS has been exhaustively used for the
investigation of plasmon modes in single and coupled
nanoparticles.
Despite its success, the interpretation of EELS data in terms

of optical quantities, such as the photonic local density of
states5 (LDOS), remains challenging.6,7 To overcome this
problem, in ref 8 we formulated EELS as a tomography
scheme9 and showed that under certain assumptions a
collection of EELS maps can be used to reconstruct the
three-dimensional mode profile of plasmonic nanoparticles. A
similar approach was presented independently by Nicoletti and
co-workers,10 who demonstrated the applicability of the scheme
for a silver nanocube. Extracting three-dimensional information
through sample tilting was also shown for a split-ring
resonator11 and a nanocrescent using cathodoluminescence
imaging.12

The problem with EELS tomography is that the measure-
ment signal (the loss probability) is not simply the integral of
local losses along the electron trajectory but involves a two-step
process where the swift electron first excites a particle plasmon
and then performs work against the induced particle plasmon
field. This leads to a nonlocal response function, which allows
for a tomographic reconstruction only under restrictive
assumptions, such as the applicability of the quasistatic
approximation or a plasmonic response governed by a single
mode. In this paper we use additional preknowledge, namely,

that the particle plasmon fields are solutions of Maxwell’s
equations and that the dyadic Green tensor5 can be
decomposed into modes, in order to rephrase EELS in terms
of an inverse problem. We develop a rather generic model for
the EELS probabilities, which depends on a few parameters,
and determine the parameters such that the model data match
as closely as possible the measured data. Within this approach
we are able to obtain the most accurate reconstructions of the
dyadic Green tensor, which, in turn, allows us to extract the
three-dimensional photonic LDOS from a collection of tilted
EELS maps. We demonstrate the applicability of our scheme
for prototypical nanorod, bowtie, and cube geometries.

■ THEORY

We start by analyzing EELS within a semiclassical framework,1

where a swift electron propagating with velocity v loses a tiny
part of its kinetic energy by performing work against the electric
field E[re(t)] produced by itself. For sufficiently large velocities,
we can ignore velocity changes in the electron trajectory re(t) ≈
R0 + vt, with R0 being the impact parameter. It is convenient to
split E = Ebulk + Esurf into a bulk contribution13 Ebulk,
corresponding to the electric field within an unbounded
homogeneous medium, and a surface contribution Esurf,
corresponding to field modifications (including surface
plasmons) from the interfaces between different materials.
Bulk losses are due to Cherenkov radiation and electronic
excitations,1 and the loss probability is obtained by simply
multiplying the loss probability per unit length γbulk

j (ω), inside
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material j and for loss energy ℏω, with the path length j of the
electron inside material j,

∑ω γ ωΓ =( ) ( )
j

j
jbulk bulk

(1)

Bulk losses can be interpreted in terms of local scatterings
where the electron emits a photon or excites electrons in the
dielectric material and loses part of its kinetic energies. To
compute the surface loss probability, we integrate the work dW
= eEsurf·vdt performed by the electron over the entire trajectory
and decompose it into the different loss energies ℏω according
to

∫ ∫ ω ω ω= · = ℏ Γ
−∞

∞ ∞
W e t tv E r[ ( )]d ( )dsurf e

0
surf (2)

Thus, the energy loss probability becomes1

∫ω
π ω

ωΓ =
ℏ

·ω
̂ −∞

∞ −e
e t tR v E r( , ) Re{ [ ( ), ]}di t

vsurf surf e

(3)

where we have explicitly indicated the dependence on the
electron propagation direction and the impact parameter
through Rv ̂ = (v,̂R0). To understand the physical process
underlying eq 3, it is convenient to introduce the current
distribution J(r,t) = −evδ(r − re(t)) of the swift electron and
the dyadic Green tensor5 G(r,r′,ω) that relates for a given
frequency ω a current source at position r′ to an electric field at
position r via E(r,ω) = iωμ0G(r,r′,ω)·J(r′,ω). The loss
probability of eq 3 can then be rewritten in the form

∫ω
μ
π

ω ω ωΓ =
ℏ

* · ′ · ′ ′̂R J r G r r J r r r( , ) Im{ ( , ) ( , , ) ( , )}d dvsurf
0

(4)

where dr denotes integration over the spatial variable r.
Contrary to eq 1, the above expression describes a genuinely
nonlocal self-interaction process where the electron first
induces a field (through excitation of a surface plasmon) and
then performs work against the induced field.
In ref 6, the authors tried to interpret eq 4 in terms of the

photonic local density of states5 (LDOS)

ρ ω ω
πω

ω= ̂*· · ̂̂ r n G r r n( , )
6

Im{ ( , , ) }n 2 (5)

which is of paramount importance in the field of nanooptics
and describes how the decay rate of a quantum emitter located
at position r and with dipole moment oriented along n̂
becomes modified in the presence of a structured dielectric
environment. While such interpretation can be formally
established for nanostructures with translational symmetry
along one spatial dimension, it becomes problematic for
nanoparticles with generic shape.7

A different interpretation of eq 4 in terms of a tomography
scheme was formulated independently in refs 8 and 10. As a
preliminary step, let us consider the bulk losses of eq 1 for a
given Rv ̂ value. Then, each point r inside a medium j
contributes with γbulk

j to the total loss rate. Within the field of
tomography9 it is well-known that the three-dimensional profile
of γbulk(r) can be uniquely reconstructed from a sinogram,
where bulk losses are recorded for all possible propagation
directions v ̂, using the inverse Radon transform. Such
tomography reconstruction is significantly more complicated
for the surface losses of eq 4 since Γsurf is not the sum of local
losses (as in the bulk case) but governed by the self-interaction

process of excitation and back-action. Only for certain, rather
restrictive simplifications, a viable tomography scheme can be
formulated:8,10 the nanoparticles must be small enough such
that the quasistatic approximation can be employed; the
plasmonic response must be governed by a single plasmonic
eigenmode; the sinogram must only consist of electron
trajectories that do not penetrate the particle; the sign of the
eigenmode potentials must be unique. Although it has been
demonstrated that reconstruction is possible in certain cases,8,10

it is obvious that the above restrictions provide a serious
bottleneck for general plasmon field tomography.
In this paper we formulate a significantly more general

scheme, which approaches the reconstruction as an inverse
problem rather than a tomography scheme. We first describe
our approach and discuss possible problems and generalizations
at the end. First, we decompose the dyadic Green tensor into a
number of modes Ek(r,ω)

∑ω ω ω′ ≈ ⊗ ′
=

CG r r E r E r( , , ) ( , ) ( , )
k

n

k k k
1 (6)

where Ck controls how much the different modes contribute to
the decomposition. In the following we only consider positions
r and r′ outside the plasmonic nanoparticle and assume that
Ek(r,ω) is a solution of Maxwell’s equations. The expansion of
eq 6 is generally possible because G is a symmetric matrix that
can be submitted to a singular value decomposition, with Ck
being the singular values and Ek being the orthogonal matrices.
In this respect, eq 6 is similar to a wave function expansion in
quantum mechanics into a complete set of basis functions.
To be useful as a reconstruction scheme the modes Ek(r,ω)

should be sufficiently well adapted to the problem such that a
limited number n suffices for a suitable representation of
G(r,r′,ω). Possible modes are quasi normal modes of the
plasmonic nanoparticles,14−17 which have recently received
considerable interest, or natural oscillation modes of our
boundary element method approach (see Methods). With
these modes, the surface losses of eq 4 become

∑ω
μ
π

ω ωΓ̃ ≈
ℏ̂

=

+
̂

−
̂

e
C A AR R R( , ) Im{ ( , ) ( , )}

k

n

kv v vsurf
0

2

1
(7)

where Ak
±(Rv,̂ω) = ∫ −∞

∞ e±iωz/v v·̂Ek(R0 + vẑ,ω)dz is the
averaged mode profile along the electron propagation direction.
We can now formulate our inverse problem as follows. Suppose
that one has measured EELS spectra Γexp for a given loss energy
and for various impact parameters and electron propagation
directions. We then determine the coefficients Ck such that the
entity of measurement data differs as little as possible from the
model data of eq 7,

ω ωΓ − Γ̃̂ ̂R Rmin
1
2

( , ) ( , )
C L

v vexp surf

2

k
2 (8)

resulting in a least-squares optimization (we adopt the norm
definitions ∥x∥L2

2 = ∑i|xi|
2 and ∥x∥L1 = ∑i|xi|). Alternatively, in

this work we will use a compressed sensing optimization18,19

μ
ω ω+ Γ − Γ̃̂ ̂

⎡
⎣⎢

⎤
⎦⎥C R Rmin

1
2

( , ) ( , )
C

k L Lv vexp surf
2

k
1 2 (9)

which attempts to minimize the moduli of the expansion
coefficients, therefore the scheme is often referred to as a L1-
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optimization, and μ is a parameter that allows to switch
between genuine compressed sensing and least-squares
optimizations.19 For a sufficiently small number of expansion
modes Ek, the determination of the expansion coefficients Ck is
a highly overdetermined problem since the measured loss data
can be assembled for many propagation directions and impact
parameters Rv ̂. The only preknowledge entering our
optimization is the self-interaction-type scattering process of
the electron loss, eq 4, and the assumption that the dynamics of
the electric fields outside the plasmonic nanoparticles is
governed by Maxwell’s equations. Importantly, once the
coefficients Ck are determined, we have (approximately)
reconstructed the dyadic Green tensor of eq 6, which allows
us to compute all electrodynamic properties including the
photonic LDOS.

■ RESULTS

To prove the applicability of our reconstruction scheme, we
generate the “experimental” EELS data Γexp using the
simulation toolbox MNPBEM for plasmonic nanoparticles.20,21

We first consider a silver nanorod with dimensions 200 × 65 ×
30 nm3 and compute the loss spectra for the three selected
impact parameters indicated in Figure 1a. The two prominent
loss peaks at low energies can be attributed to the dipole and

quadrupole plasmon modes. Corresponding EELS maps at the
resonance frequencies are shown for a few selected electron
propagation directions (rotation angles) in Figure 1c. The
mode profiles are reminiscent of the dipole and quadrupole
surface charge distributions.8 For the decomposition of eq 6
into modes Ek(r,ω), we use the information about the
nanoparticle shape, which in experiment can be obtained
from additional high-angle annular dark-field (HAADF)
data22,23 and compute the 50 natural oscillation modes of
lowest energy (see Methods). Figure 1b shows the modulus of
coefficients Ck obtained from either a compressed sensing or
least-squares optimization. Although the two approaches give
quite different Ck distributions, the back-projected EELS maps,
obtained by assembling the dyadic Green tensor using eq 6 and
computing Γ̃surf from eq 4, both are in almost perfect agreement
with the original Γexp maps.
Having obtained the Ck values from the optimizations of eqs

8 and 9, we can use eq 6 to approximately reconstruct the
dyadic Green tensor, which allows us to compute any
electrodynamic response function for the plasmonic nanorod.
In the following we consider the projected photonic LDOS of
eq 5. Figure 2 shows the true and reconstructed LDOS maps
and compares the quality of compressed sensing and least-
squares optimizations. In particular, the inspection of panels

Figure 1. EELS spectra and maps for a silver nanorod. (a) EELS spectra recorded at the positions indicated in the inset. The peaks at approximately
1.5 and 2.7 eV are attributed to the dipole and quadrupole plasmon mode. (b) Mode decomposition of the dipole and quadrupole mode from the
collection of rotated EELS maps, using either the least-squares minimization of eq 8 or the compressed sensing optimization of eq 9. For each mode,
the coefficients Ck are normalized to unity. (c) Selected EELS maps for dipole (upper part) and quadrupole (lower part) mode and for different
electron propagation directions (rotation angles), as computed with the MNPBEM toolbox.20,21 (d) Back projected EELS maps for the Ck
distribution obtained from the compressed sensing optimization, using eq 6 for the Green function decomposition and eq 4 for the calculation of the
loss probabilities. (e) Same as panel (d) but for Ck distribution obtained from the least-squares optimization.
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(b) and (c), which report the LDOS in a plane 20 nm above
the nanorod, reveals that the compressed sensing results are in
very good agreement with the true LDOS values, whereas the
least-squares optimization completely fails to provide even
qualitative agreement. This finding seems at first sight
surprising since both optimization approaches were previously
capable of reconstructing the experimental EELS data almost
perfectly, as shown Figure 1c−e. We attribute the least-squares
shortcoming to the fact that the EELS loss of eq 4 is governed
by the long-range tails of the particle plasmon field
distributions, with which the passing electron predominantly
interacts, whereas the LDOS of eq 5 is governed by the short-
range evanescent field components. Thus, when the opti-
mization has no strong bias on the Ck determination, it comes
up with the proper long-range components, resulting in high-
quality EELS maps shown in Figure 1e, but fails for the short-
range components, which contribute little to the minimization
function of eq 8. In contrast, the compressed sensing
optimization of eq 9 seeks for a Ck distribution with as few

nonzero components as possible. For suitable basis functions
Ek, this bias helps to properly select those modes that
contribute little but still noticeably to the loss probability of
eq 4. We emphasize that such a bias for selecting a sparse
expansion distribution is by no means unique to the problem of
our present concern, but has been previously highlighted in
various studies, for example, in the context of plasmon
tomography10 or single-pixel cameras,24 and lies at the heart
of the compressed sensing algorithm.
An advantage of compressed sensing is that the reconstruc-

tion can, in general, be performed, even with a very limited
amount of measurement data, and the quality of the
reconstructed data is usually not strongly affected by noise.18

In Figure 3 we show reconstructed EELS and LDOS maps for
the small number of impact parameters and rotation angles
shown in the first row of measurement data. As can be seen, the
quality of the reconstructed data is extremely good, despite the
limited amount of measurement data. This might be beneficial
for EELS experiments that typically suffer from a limited

Figure 2. Photonic LDOS of eq 5 and reconstructed LDOS. (a) Three-dimensional LDOS distribution, as computed with the MNPBEM toolbox
(LDOS),20 and the distributions reconstructed from the compressed sensing (CS) and least-squares (LSQ) optimizations. The projected LDOS
ρn̂(r,ω) is shown for different projection directions n̂ = x,̂y,̂z.̂ (b) LDOS density map in a plane 20 nm above the nanoparticle, as reconstructed from
the compressed sensing optimization. The lower (upper) part of each panel shows the dipole (quadrupole) mode, the left (right) part shows the true
(reconstructed) LDOS. (c) Same as panel (b) but for least-squares optimization. The reconstructed least-squares LDOS has also negative
contributions, which are set to zero for clarity.
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amount of rotation angles (missing wedge problem) and where
the number of measurement points is often kept low to avoid
sample contamination.
Finally, in Figure 4 we compare LDOS maps with

reconstructed maps for (a,b) a bowtie nanoparticle and (c,d)
a cube. For the bowtie geometry, we show the LDOS for the
two plasmon modes of lowest energy, which can be labeled as
bonding and antibonding according to the parallel and
antiparallel orientation of the dipole moments of the individual
nanotriangles.25 The agreement between the true and
reconstructed LDOS maps is very good; in particular, one
can clearly observe the strongly increased LDOS enhancement
in the gap region. For the cube, we show the dipole and corner
modes of lowest energy,10 finding fair agreement between the
true and the reconstructed LDOS maps. We attribute the small
differences to problems of our algorithm when dealing with
degenerate modes of symmetric particles, which might be
improved by explicitly accounting for mode symmetries.26

■ SUMMARY AND DISCUSSION

To summarize, we have shown how to extract the dyadic Green
tensor of Maxwell’s theory from a collection of EELS maps
recorded for different electron propagation directions (rotation
angles). Our reconstruction scheme is based on a singular-value
decomposition of the Green tensor and a compressed-sensing
optimization for the expansion coefficients. We have demon-
strated the applicability of our approach for various elementary
nanoparticle shapes. We foresee several improvements for
plasmon tomography based on EELS. On the experimental
side, electron holography22 can provide additional information
and could allow to disentangle the excitation and measurement
channels of plasmonic EELS. On the theoretical side, the
presented reconstruction scheme works surprisingly well for
most nanoparticle geometries, but further work is needed to
clarify the role of various ingredients.
First, there are several possibilities for choosing the basis

functions for the decomposition of the dyadic Green tensor, eq

6. In this work we have chosen biorthogonal “constant flux
states”27 that are the eigenstates of the Green function
evaluated for real frequencies (see Methods). They have the
advantage that they can be computed rather straightforwardly,
even in the case of degenerate or near-degenerate modes; on
the other hand, they have to be computed for each loss energy
separately, and several of these modes can govern the
plasmonic response. Another possibility for a basis are the
quasi normal modes evaluated at the poles of the Green
function in complex frequency space.14−17 The computation of
these modes requires an iterative solution scheme,17 however,
once they are computed, they can be used for a large frequency
range, and in general, the plasmonic response is only governed
by very few of these modes.
In this work we have considered the situation where the basis

is already computed for the true nanoparticle shape and have
shown that even in this case the EELS tomography scheme can
be quite tricky. However, our approach is less restrictive than it
may appear: in principle, for electron beams not penetrating the
nanoparticle, any basis with modes being solutions of the free-
space Maxwell’s equations can be employed. Thus, even if a
slightly different particle shape or dielectric material is
considered in the computation of the basis, this will not
necessarily degrade the quality of the reconstruction. In this
case, it might be beneficial to adapt our approach such that (i)
the modes for the Green function decomposition are expanded
in a given nonideal basis and (ii) the compressed sensing
algorithm seeks for a minimum number of decomposition
modes. Here it might be advantageous to use quasi normal
modes, because the same few modes could be optimized for a
whole range of loss energies, thus, imposing stronger
restrictions in comparison to an independent optimization at
individual loss energies.
Although further work is needed to establish EELS

tomography of plasmonic nanoparticles as a robust and out-
of-the-box scheme, we believe that our present work provides
an important step forward for reconstructing electrodynamic
quantities from EELS measurements and makes significant

Figure 3. Compressed sensing reconstruction for a strongly reduced number of measurement points. The first row shows the measurement data for
a few rotation angles. In the second row we compare the EELS data for a finer sampling mesh (upper part of panel) with the reconstructed signal
(lower part), finding almost perfect agreement. The last row reports the true (upper part of panel) and reconstructed (lower part) LDOS maps in a
plane 20 nm above the nanorod.
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progress with respect to the recently developed tomography
schemes that were bound to quasistatic approximation and
other restrictive assumptions.

■ METHODS
Simulations. In our simulation approach, we compute the

LDOS and EELS spectra using the MNPBEM toolbox20,21 and
a silver dielectric function extracted from optical experiments.28

Mode Decomposition. For the mode decomposition of eq
6, we follow the prescription of Garciá de Abajo et al.29 and
compute the natural oscillation modes through diagonalization
of the Σ matrix, see eq 21 of ref 29 for details, keeping for the
solution of the inverse problem the 50 modes of lowest energy.
A higher number of modes did not show a significant

improvement in the reconstruction results. For our mode
decomposition it turns out to be convenient to use a
biorthogonal basis, similarly to the quasistatic case.30 Our
approach closely follows recent related work,17 and we
introduce the right and left eigenmodes Ek(r,ω) and Ẽk(r′,ω)
associated with the Σ matrix, respectively. Instead of the
decomposition of eq 6, we then use

∑ω ω ω′ ≈ ⊗ ̃* ′
=

CG r r E r E r( , , ) ( , ) ( , )
k

n

k k k
1

and, accordingly, also modify eq 7. The biorthogonal expansion
turns out to be advantageous in particular for nanoparticles
with degenerate modes, as it automatically guarantees proper
mode orthonormalization.

Compressed Sensing. The least-squares optimization is
performed with the built-in Matlab functions, for the
compressed sensing optimization we use the YALL1 software
freely available at http://yall1.blogs.rice.edu/. We set the
mixing parameter μ = 5 × 10−2, and the stopping tolerance
has a value of 10−4. We take 12 rotated EEL-maps for each
structure with equidistant angles between 0 and 180°, each map
consisting of 31 × 51 points. To speed up the optimization
process, we take only 2000 random measurement points of the
generated maps. Further, only measurement points with
distance more than 15 nm away from the particle surface are
used for optimization. For the volume visualization of the
LDOS, we use the MatVTK software freely available at http://
hdl.handle.net/10380/3076.
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*S Supporting Information

ABSTRACT: Electron tomography in combination with
electron energy-loss spectroscopy (EELS) experiments and
simulations was used to unravel the interplay between
structure and plasmonic properties of a silver nanocuboid
dimer. The precise 3D geometry of the particles fabricated by
means of electron beam lithography was reconstructed
through electron tomography, and the full three-dimensional
information was used as an input for simulations of energy-loss
spectra and plasmon resonance maps. Excellent agreement
between experiment and theory was found throughout,
bringing the comparison between EELS imaging and simulations to a quantitative and correlative level. In addition, interface
mode patterns, normally masked by the projection nature of a transmission microscopy investigation, could be unambiguously
identified through tomographic reconstruction. This work overcomes the need for geometrical assumptions or symmetry
restrictions of the sample in simulations and paves the way for detailed investigations of realistic and complex plasmonic
nanostructures.

KEYWORDS: Plasmonics, nanoparticles, electron tomography, electron energy loss spectroscopy, electron beam lithography

Plasmonics confines light to subdiffraction volumes through
excitation of collective electron charge oscillations at the

boundaries of metallic nanoparticles, so-called surface plas-
mons,1,2 and holds promise for various applications in
photonics, optoelectronics, and (bio)sensing.2,3 By tailoring
shape and alignment of metallic nanoparticles, it becomes
possible to control properties of localized surface plasmon
resoncances (LSPRs), such as spectral peak positions or near-
field couplings and enhancements.1,2,4−6 In particular the top-
down approach of electron beam lithography plays an
important role in the quest of versatile nanoparticle
manufacturing,7−11 but the technique usually suffers from
imperfections, surface roughness, and limited spatial resolution,
which leads to nanoparticle shapes that deviate from the design
objectives. Similar limitations apply to chemical synthesis,
which generally leads to metallic nanoparticle ensembles with
size dispersion and nonidentical geometries. Therefore, to
exploit the full potential of plasmonics, full 3D characterization
and simulation tools taking into account the imperfections of
real structures become mandatory.
Monochromated EELS together with scanning transmission

electron microscopy (STEM) provides a powerful combination
to investigate individual plasmonic nanoparticles with high
spatial (subnanometer) and energy (sub 100 meV) reso-
lution.12−14 Experimental data sets from which both the spatial

2D and energetic information can be retrieved, termed
spectrum images (SI), have been used intensively to investigate
LSPRs in various nanostructures.5−11,15−18 The major
limitation of this approach is the two-dimensional character
of the technique, preventing the plasmon modes and the
corresponding electromagnetic fields to be resolved in full 3D,
since the spatial field distribution in the direction of the
electron beam cannot be recovered from a single SI.
Although spectroscopic electron tomography is nowadays

successfully and routinely employed in material science
applications,19−26 tomographic EELS mapping of LSPRs is
complicated by the nonlocal self-interaction character of the
plasmonic energy loss, where the swift electron first excites a
LSPR and then performs work against the induced plasmon
field.27,28 Tomographic plasmon field reconstruction is
generally possible only under restrictive assumptions, such as
the applicability of the quasistatic approximation or a plasmonic
response governed by a single mode, and was demonstrated in
a single proof-of-principle experiment for a silver nanocube.28

Possible routes to overcome these restrictions are based on
inverse-problem schemes29 or combined STEM and cathodo-

Received: September 18, 2015
Revised: October 22, 2015
Published: October 23, 2015

Letter

pubs.acs.org/NanoLett

© 2015 American Chemical Society 7726 DOI: 10.1021/acs.nanolett.5b03780
Nano Lett. 2015, 15, 7726−7730

This is an open access article published under a Creative Commons Attribution (CC-BY)
License, which permits unrestricted use, distribution and reproduction in any medium,
provided the author and source are cited.

74



luminescence tomography, experimentally demonstrated for a
metal−dielectric nanocrescent.30 However, the quantitative
predictability of these techniques still remains vague.
In this paper we demonstrate full 3D tomographic

reconstruction of two coupled silver nanocuboids and
measured EEL spectra and maps for a series of tilt angles.
Instead of attempting a tomographic reconstruction of the
plasmon fields (with exception of two interface modes to be
discussed at the end), we used the precise 3D geometry of the
particles as an input for EELS simulations14,31−33 and
computed EEL spectra and maps for direct comparison with
experiment. The rationale behind this approach is that (i) EEL
maps contain a vast amount of (partly dependent)
information,27,29 providing access to the entire plasmonic
mode spectrum, and (ii) the predictability of EELS simulations
has matured in recent years to the point where experiment and
simulation can be compared on par. Our work renders
plasmonic EELS capable for quantitative juxtaposition of

experiment and simulation and significantly improves on
previous simulation approaches using idealized geometries,
such as perfectly symmetric cylinders, triangles, or cuboids,
which neglected imperfections of real nanostructures despite
their possible impact on the nanoparticles’ plasmonic proper-
ties.
We investigated pairs of 30 nm thick silver nanocuboids

designed by electron beam lithography on a 15 nm thin Si3N4

membrane. To reduce charging during the experiment, the
nanocuboids were coated with a thin layer (∼1−2 nm) of
carbon (see Supporting Information). Among the various cube
sizes and gap distances fabricated on the membrane, in this
study we selected two cubes with a nominal edge length of 200
nm and a gap of 70 nm between the corners. This particle
dimer sustains a large number of distinct plasmon modes, as
further discussed below, and the gap size is small enough to
allow coupling between the two cuboids.
EEL spectrum images and mass−thickness high-angle

annular dark-field (HAADF) STEM images were acquired for
30 tilt angles between −67° and +73° (see Supporting
Information). The measured EEL spectra were treated with a
Richardson-Lucy deconvolution34,35 (see Supporting Informa-
tion), and each resonance was integrated over 0.17 eV to
generate 2D maps for comparison with simulation. The 3D
morphology shown in Figure 1 was derived from the HAADF
signal with a total-variation (TV) minimization reconstruction
algorithm.25,36 Our reconstruction scheme efficiently reduces
missing wedge artifacts and recovers both top and bottom
surfaces of the particles, which are impossible to obtain by
conventional algorithms (see Supporting Information). While
the bottom surface of the rhomboids, in contact with the
substrate, are fairly flat, the upper side features significant
roughness.
The reconstructed geometry of the silver cuboids served as

an input for EELS simulations based on a boundary element
method (BEM) approach and carried out with the MNPBEM
toolbox.32,33 In the simulations we consider both the actual
geometry of the sample and the Si3N4 substrate, and we use a

Figure 1. 3D reconstruction of the silver nanocuboids seen (a) from
the top side and (b) from the bottom (substrate) side. Scale bars are
200 nm.

Figure 2. (a) Experimental and (b) simulated spectra extracted from different locations of the nanocuboids. For experimental data the spectra are
averaged over regions marked by squares of the same color. For simulations spectra are averaged over the positions indicated by dots of the same
color. In the spectra surface plasmon resonance peaks are labeled by numbers. Scale bars are 200 nm.
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tabulated dielectric function for silver extracted from optical
data37 (see Supporting Information).
Figure 2a and b shows EEL spectra from distinct spatial

regions of the sample, extracted from experimental data and
simulations, respectively. Experimental spectra were extracted
from the spectrum image acquired at 0° tilt angle. Each

spectrum shows the averaged value obtained from the colored
positions, which were chosen by symmetry arguments;
averaging allowed us to improve the signal-to-noise ratio of
experimental spectra. This averaging approach can be validated
by comparing spectra from the individual positions (see
Supporting Information). The following positions on the
cuboids are compared: outer corners (dark yellow), inner
corners (green), as well as upper and lower corners (red). The
outer edges (dark blue), the inner edges (cyan), and the centers
of the cuboids (magenta) are also displayed. We find excellent
agreement between the experimental and simulated EEL
spectra, with exception of a few systematic deviations to be
discussed below. Multiple resonant modes can be identified,
labeled 1−10, starting from the lowest energy. While modes 1−
5 have their maxima at the corners of the cuboids, modes 6 and
7 have them at the edges, and modes 8−10 in the center of the
cuboids.
The experimental EEL features are generally slightly broader

than the simulated ones, which we attribute to the limited
energy resolution of our experiments. Regarding the energetic
positions of the modes, a slight mismatch between experiment
and simulations is noticeable, with the experimental resonance
energies typically occurring at lower values than the simulated
ones. The origin of these shifts is investigated by extended
simulations (see Supporting Information), and is most likely
due to nanoparticle aging and the modification of grain sizes,
which leads to a modification of the metal permittivity and in
turn to a red-shift of the plasmonic resonances, in agreement to
related studies.38,39 Supporting evidence for this interpretation
is our observation of contrast changes for aged particles that
went from a large crystal/polycrystalline state to near
amorphization between deposition and analysis (see Support-
ing Information). In Figure 2, these shifts lead in the
experimental spectra to an overlap of peaks 3 and 4 (separated
peaks in simulations) and to a concurrence of peaks 8 and 9
(overlap in simulations).
At the plasmon peak energies, we extracted EEL maps from

the experimental (Figure 3a, at 0° tilt angle) and simulation
(Figure 3b) data. Modes 1−5 show maxima on the corners of
the particles and are attributed to dipolar and quadrupolar
modes based on their resonances energies and the spatial
profile of the maps (see Supporting Information). Modes 1−3
show the spatial distribution of dipolar modes in the in-plane
(x- and y-) directions. The dipole oriented along the x-direction
splits up in energy into a bonding and antibonding mode, due
to a coupling between the particles:40 the bonding mode with
dipolar moment in the x-direction (1) has the lowest energy, an
uncoupled mode in the y-direction with dipolar moment (2)
appears at a higher energy, and finally an antibonding dipolar
mode in the x-direction has the highest energy (3). Because of
an energetic overlap of modes 3 and 4 in the experiment, these
modes are summed up for a more meaningful comparison in
Figure 3 (see Supporting Information). Modes 4 and 5 are
assigned to quadrupolar modes with the maxima on the corners
of the particles. The coupling splits the quadrupoles into two
distinct modes, a bonding (4) and an antibonding configuration
(5).
In the range from 1.8 to 2.3 eV (2.2 to 2.7 eV) for the

experiment (simulations), several other modes become
apparent in Figure 2. Quadrupolar resonances, sensitive to
the shape and the exact geometry of the particles, split up into
several closely spaced signals as a result of structural
imperfections. We exemplarily use modes 6 and 7 to highlight

Figure 3. Surface plasmon resonance maps of the peaks indicated in
Figure 2 extracted from experiments (a) and simulations (b). Modes 3
and 4 are overlapping in the experiment and summed for the
simulations; modes 8 and 9 are overlapping in the simulation and
summed for the experiment (see Supporting Information). The
maximum in each map has been adapted for increased contrast,
absolute peak intensities can be observed in the spectra in Figure 2.
Scale bars are 200 nm.
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the high-quality correlation between the measured and
simulated maps: For ideal nanoparticles these EEL maps
would have maxima of equal strength at the edge centers; for
the realistic geometry in Figure 2 we observe significant
differences for the excitation at different edges and even two
maxima on a single edge for mode 6. It is gratifying to see the
one-to-one mapping of practically all features in the EEL maps,
including the absence and presence of signals in the center
region for modes 6 and 7, respectively.
At even higher energies, three additional resonances can be

observed that are attributed to the breathing mode (8) and the
surface plasmon interface modes between Ag and Si3N4 (9) and
between Ag and carbon/vacuum (10), respectively. As the
breathing mode shifts to lower energies, due to aging of silver,
modes 8 and 9 can be discriminated from each other (see
Supporting Information). By contrast, these modes overlap in
the simulations and are summed up for comparison in Figure 3.
Mode 10 is significantly weaker in comparison to the
simulations (see Figure 2), probably due to damping caused
by the carbon layer deposited on top of silver, an effect not
accounted for in the simulations.
The question whether modes 9 and 10 stem from different

interfaces is addressed by both a tomographic reconstruction
and analysis of tilted EEL maps. Quite generally, the size of the
structure is too large to allow a quasistatic reconstruction for all
modes.27,28 However, for the vertical (z-) direction we expect
the quasistatic reconstruction to provide a reasonable
approximation (see Supporting Information). The map
reconstructed from a tilt series of the respective EEL images
is shown in Figure 4a. The lower energy mode (9) is indeed
concentrated on the interface between silver and Si3N4, while
the higher energy mode (10) is located on the silver/carbon
interface. The vertical distribution becomes apparent also when
looking at EEL maps of modes 9 and 10 under large angular tilt

for both simulation and experimental data (Figure 4b) which
are again in almost perfect agreement.
In conclusion, we have demonstrated how 3D reconstructed

morphologies of metallic nanostructures can serve as an input
for simulations of their plasmonic properties. Simulated EEL
spectra and maps of coupled silver nanocuboids agree
extremely well with experimental data, except for small
deviations originating from incomplete information about the
actual material composition and crystallinity. These differences
could be eliminated if pure monocrystalline materials were
used, or simulation tools would additionally consider the exact
material properties. The 3D reconstruction of LSPR maps is
feasible and allowed us to identify interface plasmons in the
nanoparticles. Our work founds a basis for the detailed
investigation of complex and realistic nanostructures, including
geometry imperfections and surface roughness. It will be helpful
for nanomaterial diagnostics but will also provide a tool for
optimizing the material properties of complex nanostructures.
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maximum in each map has been adapted for increased contrast. Scale bars are 200 nm.
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2Institute of Physics and Center for Nanotechnology, University of Münster, 48149 Münster, Germany
(Received 19 August 2015; published 9 February 2016)

We theoretically investigate gap plasmons for two silver nanocubes coupled through a molecular tunnel
junction. In the absence of tunneling, the redshift of the bonding mode saturates with decreasing gap distance.
Tunneling at small gap distances leads to a damping and slight blueshift of the bonding mode, but no low-energy
charge transfer plasmon mode appears in the spectra. This finding is in stark contrast to recent work of Tan et al.
[Science 343, 1496 (2014)].

DOI: 10.1103/PhysRevB.93.081405

Gap plasmonics [1] deals with surface plasmons (SPs) [2]
in narrow gap regions of coupled metallic nanoparticles. For
sufficiently narrow gaps, electrons can tunnel directly fromone
nanoparticle to the other one, leading to the emergence of new
charge transfer plasmons (CTPs) [1,3–6]. Molecular tunnel
junctions enable tunneling over larger gap distances in the
nanometer regime [7,8], and thus establish a novel platform
for hybrid structures reconciling molecular electronics with
plasmonics.
Recent years have seen significant research efforts to un-

derstand the properties of gap plasmons and have highlighted
the importance of the tunneling strength as a trigger for
the CTP appearance [9] and of the gap morphology which
strongly influences the CTP spectral position [10]: for rounded
gap terminations the bonding mode redshifts with decreasing
gap separation, until tunneling sets in, as evidenced by the
appearance of a low-frequencyCTP togetherwith a broadening
and blueshift of the bonding mode [1,3,6]. In contrast, for flat
terminations the redshift of the bonding mode saturates with
decreasing gap distance, while at the same time the transversal
cavity plasmon (TCP) modes shift to the red; here, the onset
of tunneling has no significant impact on the bonding mode
and no low-frequency CTP appears in the spectra.
In this paper, we theoretically investigate the plasmonic

properties of two coupled silver nanocubes, similarly to the
electron energy loss spectroscopy (EELS) experiments of Tan
et al. [7] for two nanocubes coupled through a molecular
tunnel junction. We compute EEL and extinction spectra
using the MNPBEM toolbox [11–13], supplemented with the
quantum corrected model (QCM) [14] to account for quantum
tunneling. We find that the redshift of the bonding mode
saturates with decreasing distance and an additional tunnel
conductivity in the gap region leaves the spectral position
unaffected. The TCPmodes shift with decreasing gap distance
to the red, and the tunnel conductivity damps these modes. All
these findings are in perfect agreement with the observations of
Esteban et al. [6] for flat gap terminations and would qualify
our work as a systematic research paper, if it was not for
this single point: Despite serious efforts we were unable to
confirm the emergence of the low-energy CTP observed by
Tan et al. [7] and could not reproduce their simulation results.

*ulrich.hohenester@uni-graz.at

We will argue why we believe that our results are valid within
the electrodynamic and QCM model under consideration, and
why a re-interpretation of the experiments might be needed.
In our simulations we model the cubes with rounded

edges and corners as superellipsoides, whose boundaries are
parameterized through u ∈ [0,π ) and v ∈ [−π,π ) according
to

x(u,v) = a s(u,r) c(v,r) (1a)

y(u,v) = a s(u,r) s(v,r) (1b)

z(u,v) = a c(u,r) , (1c)

where a determines the cube size (we use side lengths
of 35 nm throughout), r is a rounding parameter, and we
have introduced the functions s(ξ,r) = sign(sin ξ )| sin ξ |r and
c(ξ,r) = sign(cos ξ )| cos ξ |r . For the cubes we set r = 0.25,
but will later use larger r values in order to morph the
cubes to spheres [15]. For the electrodynamic simulations
we employ the MNPBEM toolbox [11–13] and use for the
dielectric function of silver tabulated values extracted from
optical experiments [16].
Figure 1 shows density plots of the (a)–(c) EEL and (d)

optical extinction spectra for two coupled silver nanocubes
as a function of gap distance, using classical electrodynamic
simulations where no tunneling is considered. For the EEL
spectra the impact parameters of the electron beams are
indicated in the insets, and for the optical spectra the light
polarization is along the direction of the cube connection.
For large gap separations the EEL and optical spectra agree
with those of a single cube, whose modes have been studied
in detail elsewhere [17,18]. With decreasing gap distance
the bonding mode (denoted in Ref. [10] also as longitudinal
antenna plasmon, LAP) shifts to the red [19], as seen most
clearly in the extinction spectra of Fig. 1(d). At distances
around a few nanometers new modes appear in the spectra
which continuously redshift when further decreasing the gap
distance. In accordance to Ref. [10], and as shown by the
surface charge maps in Fig. 2(c), we assign these modes to
TCPs. Whenever these modes cross the bonding mode we
observe a clear anticrossing, a finding which we attribute
to mode coupling. The overall redshift of the bonding mode
saturates for the smallest gap distances, say at a value of 2.8 eV.
From the comparison of the different panels of Fig. 1 we see
that these mode characteristics can be observed in both EEL
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FIG. 1. Classical electrodynamic simulations of (a)–(c) EEL and
(d) optical extinction spectra for two coupled silver nanocubes with
side lengths of 35 nm. The impact parameters for the electron beams
are indicated in the insets of panels (a)–(c), and the light polarization
direction is along the cube connection direction in panel (d). Notice
the logarithmic scale used for the gap distances. All density plots are
normalized to the respective maximal values. The line in panel (c)
reports the gap distance used in Fig. 2.

and optical spectra, with the only exception of panel (a), where
the electron beam is located in the center plane of the gap and
the excitation of the bonding mode is forbidden because of
symmetry [20].
Figure 2 shows density plots of EEL spectra (electron beam

positions indicated in insets) for two coupled (a) spheres and

FIG. 2. Density plots for EEL spectra of coupled silver (a) spheres
and (b) cubes as a function of loss energy and gap conductivity, and
for a gap distance of 0.6 nm. The impact parameters of the electron
beams and the active region where tunneling is considered are shown
in the insets. The color bar indicates the loss probabilities in eV−1.
Probabilities in region A have been multiplied by a factor of ten for
clarity. (c) Surface charge distribution (imaginary part) of modes A–E
at the resonance energies. Cubes are rotated apart to offer a better view
to the gap region.

(b) cubes separated by a distance of 0.6 nm. We allow for
tunneling within a distance region of 0.6–0.8 nm (see inset,
distance region chosen in order to mimic molecular tunnel
junction) using the QCM of Ref. [14]. In each simulation the
gap conductivity within the region where tunneling is allowed
is set to a constant value. For the spheres shown in panel (a) and
for the smallest gap conductivities σgap, the lowest SP mode at
an energy of 2.7 eV is attributed to the bonding mode. When
increasing σgap, above a critical threshold of say 105 S/m there
is a transition where (i) a CTP appears at an energy of about
1 eV and (ii) the bonding mode blueshifts and broadens. These
features are in agreement with the literature [1,6,14]. Also the
weak dependence of the SP energy on σgap above or below the
critical threshold has been previously reported [9].
For the coupled nanocubes shown in Fig. 2(b) there is again

a transition in the EEL spectra when increasing σgap, and again
above or below the critical threshold the SP energies depend
very weakly on the gap conductivity. As regarding the SP
modes, we observe above the critical σgap value the appearance
of a new mode E, which, in contrast to the spheres, is not
accompanied by an additional low-energy CTP mode. This
finding is in agreement with that of Esteban et al. [10] for
flat gap terminations, and highlights the importance of the gap
morphology on the SP modes.
In Fig. 2(c) we report the surface charge distributions

of a few selected SP modes. For small σgap values, A–D
correspond to hybridizations between TCP and bonding
modes. In principle, because of symmetry all modes are double
or multiple degenerate [21] and the mode symmetry shown in
the figure is governed by the electron beam position. Above the
critical σgap threshold, (i) the cavity modes become damped
(see for instance disappearance of mode A in Fig. 2(b), whose
intensity has been magnified by a factor of 10 for clarity),
and (ii) a new mode E appears which dominates in the EEL
spectra. As can be inferred from Fig. 2(c), mode E is a CTP
where electron tunneling leads to an opposite charging of the
cubes.
To further explore the impact of the gap morphology on

the SP energies, in Fig. 3 we investigate the scenario where
two coupled spheres are deformed to two coupled cubes. Such
morphing has been proven successful for a deeper insight to
SP mode characteristics [15]. In our simulations we vary the
rounding parameter r in Eq. (1) from 0.25 for the cubes to
1 for the spheres. The gap distance is set to 0.6 nm for all
geometries, and we again consider tunneling within a distance
region of 0.6–0.8 nm using a tunnel conductivity of 2.49×105
S/m representative for BDT. For the spheres with r = 1 we
observe in the extinction spectra of Fig. 3(a) the CTP and
bonding modes at energies of 1 eV and 3 eV, respectively.
Uponmorphing to two cubes, (i) the CTPmode shifts to higher
energies and (ii) the bonding mode acquires a higher oscillator
strength. For comparison, in Fig. 3(b) we show the extinction
spectrum for a cuboid with a side length of twice the cube
length, consisting of one major peak approximately at the
energy position of the CTP mode for the coupled nanocubes.
Similarly, it has been shown that the CTP peak for the coupled
spheres has approximately the same energy as the dipole mode
for two slightly coalescing spheres (“negative gap distance”)
[1,6].

081405-2
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FIG. 3. (a)Morphing from two coupled spheres (rounding param-
eter r = 1) to two coupled cubes (r = 0.25). The density plot reports
the extinction cross section for a gap separation of 0.6 nm, for a light
polarization along the nanoparticle connections, and for a tunnel
conductivity of 2.49×105 S/m representative for BDT. Similarly to
Fig. 2, we consider tunneling within a distance region of 0.6–0.8 nm,
as further discussed in the text. In the insets we report the geometries
for three selected structures. (b) Extinction spectrum for a cuboid
whose side length is twice the cube side length.

We finally analyze the tunnel conductivities of the molec-
ular junctions of Tan et al. [7] consisting of aromatic
1,4-benzenedithiolates (BDT) and saturated aliphatic 1,2-
ethanedithiolates (EDT) molecules. The authors have esti-
mated values of 2.49×105 S/m for BDT and 9.16×104 S/m
for EDT. As a separate estimate for these values, we have
calculated the ground state electronic structure and transport
properties of the BDT and EDT junctions by ab initio density
functional calculations. In a first step, we have relaxed the
junction geometries and computed the ground state electronic
structure by adopting a repeated slab approach using five silver
layers on each side of the junction. For these calculations
we have used the VASP code [22,23] employing projector
augmented wave (PAW) potentials and have optimized the
gap separation, the geometry of the two topmost Ag layers on
each side of the junction, as well as all molecular coordinates.
The resulting geometries for both types of molecules and the
electronic structure for the BDT junction are depicted in panels
(a) and (b) of Fig. 4, respectively. From the density of states
projected onto the molecular orbital of the free molecules
(MOP-DOS), we see that the LUMO of BDT, located
2.5 eV above the Fermi level, only weakly hybridizes with the
silver surface, while the HOMO is spread between −2.0 and
−0.5 eV belowEF indicating a stronger hybridization with the
substrate. The overall DOS is dominated by Ag d states which
appear at a binding energy of about−3.0 eV. In a second step,
we have computed the ballistic electron transport through the
molecular junctions by using the TRANSIESTA code [24,25]
which is based on the Landauer-Büttiker formalism. Using
a double zeta, polarized (DZP) basis set, which has been
validated by comparing with our VASP DOS results, we have
computed the conductance through BDT and EDT junctions

FIG. 4. Density functional theory (DFT) simulations for the
conductance through the BDT and EDT molecules. (a) Density of
states (DOS) for BDT junction as obtained from the VASP code
[22,23]. We show the total and projected DOS (see text for details).
(b) Conductance through molecular BDT and EDT junctions (see
inset for simulated structures) as computed with the TRANSIESTA
code [24,25].

as a function of the junction bias, as depicted in panel (b). At
low voltages the conductance of EDT is slightly larger than
that of BDT due to the smaller junction width of the latter.
At bias voltages above 1 and 3 eV, the BDT junction clearly
exhibits a larger conductance owing to the fact that the frontier
HOMO and LUMOorbitals are located closer toEF in BDT as
compared to EDT. The low-voltage conductance relevant for
the small electric fields of EELS excitations is about 0.5×10−5
S for both BDT and EDT, which corresponds to 0.0645G0 in
units of the conductance quantumG0. This value is somewhat
smaller than the estimated 0.46G0 (BDT) and 0.20G0

(EDT) of Ref. [7], but is of the same order of magnitude,
although one can expect that misalignment of molecules in
the junction or finite temperatures will lead to even smaller
values [26].
We are now in the position to critically examine the work

of Tan et al. [7]. First, our results are in disagreement with
their finite element method (FEM) simulations which showed
in the extinction spectra an additional peak at photon energies
below 1 eV that was interpreted as a CTP. In this paper we have
motivated why such a low-energy peak should not appear in
the spectra (we additionally performed finite difference time
domain—FDTD—simulations with the Lumerical software,
for rounded nanocubes with and without a conductivity layer
in between the cubes, to confirm the absence of such a peak).
Our most striking argument, in agreement with Esteban et al.
[10], concerns the morphology of the gap: As can be clearly
be seen in Fig. 3, the modification of the gap termination
from round (spheres) to flat (cubes) comes along with a
continuous blueshift of the CTP, whose energy finally falls
together with that of the bonding mode. Additionally, for
dimers with “negative gap distances,” i.e., coalescing spheres
or a cuboid with a side length of twice the cube side length,
the SP energies of the dipole modes approximately agree with
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those of the CTPs. As the cuboid has a dipole SP energy at
about 2.7 eV, we exclude the possibility of a sub-eV CTP for
two tunnel-coupled cubes.
After submission of our paper we became aware [27]

that Tan et al. do not use a constant tunnel conductivity
σ0, but rather a frequency dependent expression σ (ω) =
σ0/(1− iωτ ) that corresponds to a Drude-type permittivity

εDrude(ω,�) = 1− ω̃2p

ω(ω + i/τ )
, ω̃p =

√
σ0

ε0τ
, (2)

with τ being a collision time. The effective plasma frequency
ω̃p depends on the conductivity σ0 which is computed from
quantum mechanical tunneling theory [7,9]. Inserting the
permittivity of Eq. (2) into our BEM simulations and using
a collision time τ = 30 fs, representative for silver, we indeed
observed a low-energy peak in our EEL and extinction spectra.
It should be noted first that the use of Eq. (2) was previously
not mentioned [7] and that related work for molecular tunnel
junctions used a constant σ0 [8], in accordance to our
approach.
So why does εDrude give a low-energy peak in contrast

to a frequency independent σ0? We believe that the low-
energy peak in the simulations is due to collective excitations
Re[εDrude(ω ≈ ω̃p)] = 0 built into theDrudemodel. These res-
onances correspond to bulk plasmons of the (fictitious) charge
carriers of the tunnel material. Setting for silver �ωp = 9 eV
and σAg = 6.3×107 S/m, we get for the BDT conductivity
an effective plasmon energy �ω̃p = �ωp

√
σ0/σAg ≈ 0.6 eV

which is similar to the CTP energy found by Tan et al. [7].
To make things clear, this resonance has nothing to do with a
CTP or any type of plasmonic enhancement, but is a genuine
absorption peak of the tunnel material. Indeed, we found

EEL and extinction peaks at precisely the same energy for
tunnel-coupled spheres or planar layers.
We next argue why we consider a constant σ0 to be a

much more reasonable choice. First, the conductivity in the
molecular tunnel junction is due to tunneling and not to
free carriers subject to collisions. In the static case one can
compute σ0 from tunneling theory [1,6,9] or in the (related)
Landauer-Büttiker formalism built into the TRANSIESTA
code, as we do in our paper. In the time dependent case and for
small frequencies, we can adopt the same reasoning as Esteban
et al. [1,6] and assume that the modulation of the electric field
is slow in comparison to the tunnel process, such that we can
describe the system quasiadiabatically (coming back to the
static case). In this approximation,whichwe assume to be valid
in the sub-eV regime, the field is slowly changing and electrons
tunnel in presence of the respective field. This approximation
yields a constant σ0. It is also unclear to us why one should
describe tunneling using a collision time τ . How would one
interpret these collisions? And which value should be chosen
for τ? Finally, even if σ0 has a frequency dependence, say even
by a few orders of magnitude, Fig. 2 shows that this would
not change dramatically our conclusions: Conductivity only
triggers the appearance of the CTP peak but has otherwise
no dramatic impact. For all these reasons we think that the
interpretation of the low-energy peak in the EEL spectra of
Tan et al. in terms of a CTP is not justified by the simulation
results, thus calling for a reconsideration of the experimental
findings. We hope that our work will trigger further research
in this direction.
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9 Conclusion and outlook

In this thesis we tackled the problem of imaging surface plasmon resonances with true
nanometer resolution by using electron energy loss spectroscopy.

In more detail, we brought the juxtaposition between simulation and theory to a new
level by using the exact specimen geometry, which was measured with electron tomogra-
phy, in the simulations. Further, we developed a tomography scheme for electron energy
loss spectroscopy, which reconstructs the optical properties of plasmonic nanoparticles
in three dimensions.

9.1 Imaging plasmons
Surface plasmon resonances of metallic nanoparticles enable the manipulation of light
at length scales beyond the diffraction limit. For resonances, which couple to the far
field, spectral properties are well measured by conventional optical microscopy. Such
common optical microscopy techniques are blind to resonances with vanishing dipole
moment (dark modes) and the spatial resolution is restricted by the diffraction limit.

9.1.1 EELS imaging of surface plasmons
It is crucial for a detailed spectral and spatial resolution of surface plasmon resonances at
metallic nanoparticles to utilize microscopy techniques, which are capable of measuring
with the desired spectral and spatial resolution. By using electrons as a probe, the
spatial resolution is increased dramatically and in addition dark modes are visible in
the loss spectra. Recently published works show detailed maps of various geometries,
including cubes [31], disks [26] and nanorods [111]. Further, dark modes are shown for
a nanodisk [26] and gold nanoparticle chains [112].

Studies of nanowires and conceptually similar nanorods [111, 113] showed detailed
maps of Fabry-Perot type modes and compared the results with analytic models of
infinite cylinders. In paper 2 [114], we study silver nanowires and make a detailed
comparison between experiment and theory. For that reason, we carried out simulations
with the MNPBEM toolbox [18], which simulates the electron energy loss based on a
boundary element approach and uses the theory described in chapter 2, for an idealized
nanowire with spherical caps and smooth cylindrical body. We find, both in experiment
and simulations, typical Fabry-Perot modes with nanometer spatial resolution. The
comparison of the spectra yields good agreement. The broader resonance widths of
the experimental spectra are attributed to the finite spectral resolution in experiment.
By convolution of the simulated spectra with a Lorentz function we gain even better
agreement, showing that theory and experiment matches very well. Further, we explored
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9.1. IMAGING PLASMONS

Figure 9.1: Simulation of silver nanowire. a) The electron beam position is varied at
the longitudinal axis as can be seen in the insight. Fabry-Perot modes are visible in
the spectrum and high order modes evolve into a continuum of modes at approximately
3.5 eV. A close up of the resonance at approximately 3.5 eV shows a stark variation of
the resonance energy with respect to electron beam position. b) same as a), but for
transverse positions. Here, multi-polar excitations show no decisive change with respect
to electron beam position.

the detailed spatial energy dependence of multi-polar modes at energies approximately
around 3.5 eV, when the electron beam is located in vicinity of the nanowire surface. We
approach the nanowire surface either longitudinal or transversal from the longest wire
axis, as can be seen in Fig. 9.1, and find, that due to the pseudo-spherical shape of the
nanowire tip, the longitudinal path shows a stark variation of energy when approaching
the surface. This effect occurs because higher order modes begin to contribute to the loss
near the nanowire surface. For the transversal direction the effect is less pronounced,
because of the cylindrical shape at the excitation path. Both findings are in agreement
with analytical models of sphere and infinite cylinder and show that detailed inspections
with nanometer resolution of surface plasmon resonances yield to new insights.

In paper 4 [82], we rectified the juxtaposition between experiment and simulation for
two coupled silver nanorectangles, fabricated by means of electron beam lithography, by
using the true three dimensional particle shapes in the simulations. The shape of the
particles was found by tomographic reconstruction (described in chapter 3). As input for
the tomographic reconstruction we used high angle annular dark-field images measured
with an electron microscope. Using the true particle shape in the simulation with the
MNPBEM toolbox yields even better agreement between theory and experiment as can
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9.1. IMAGING PLASMONS

Figure 9.2: Juxtaposition between simulation and experiment for silver coupled rectan-
gular particles. a) Cumulative spectrum of the electron energy loss for different areas
depicted by colored squares. The numbered peaks in the spectra correspond to surface
plasmon resonances. b) Same as a), but simulation results. A comparison between
experiment and simulation for the spatial maps is shown for mode 1, 2, 5 and 6.

be seen in Fig. 9.2. Both spectral and spatial simulation data correlate almost perfect
with experiment. Even details in the spatial distribution of resonances are reproduced
by the simulations. Slight differences in the spectra are attributed to the fact, that in
the simulation a dielectric function of silver from optical experiments is used, which is
different from the experimental specimen, where grain effects and contamination of the
sample change the dielectric function. This work paves the way for detailed investigations
of realistic and complex plasmonic materials and overcomes the need of symmetry or
geometrical assumptions of the specimen in the simulations.

9.1.2 Charge transfer plasmon
When metallic nanoparticles come close together, a tunneling current between the par-
ticles occurs, leading to new plasmon phenomena, namely charge transfer plasmons.
These were observed in experiment with electron energy loss spectroscopy for two sil-
ver nanocubes and a molecular tunneling junction between the gap [59], in order to let
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9.2. TOMOGRAPHY OF PLASMONS USING EELS

a tunneling current flow for experimental achievable gap distances. The experimental
results were strengthened by finite element simulations for a quantum corrected model
[61].

In paper 5 [64] we theoretically explore a similar geometry of coupled silver nanocubes
and search for the plasmon resonances by using a boundary element approach [18],
supplemented with a quantum corrected model for boundary element methods [62].
Within our approach we could not find the low energy peak attributed to a charge
transfer plasmon, measured in [59]. Our findings show transverse cavity modes rising
at low energies, when the gap size is diminished, in accordance with [63]. Further, we
showed that the charge transfer mode shifts to higher energies, when the gap morphology
is changed from spherical to flat gap surfaces. These findings lead to the assumption that
a low energy charge transfer plasmon peak for the special geometry of the experiment
in [59] should not be present within the quantum corrected model.

The contradicting simulation results in [59] are attributed to a frequency dependent
gap conductivity leading to a drude type dielectric function, which shows a resonance
at the plasma frequency and usually is used to account for free carriers subject to colli-
sions. In contrast, our work uses a frequency independent dielectric function, which only
accounts for the tunneling effect and not for additional free carrier collisions in the gap
region as is in accordance with other studies for molecular tunneling junctions [115].

9.2 Tomography of plasmons using EELS
In electron energy loss spectroscopy the energy loss due to interaction with a plasmon
resonance of metallic nanoparticles can be measured, leading to two dimensional projec-
tions of the loss signal at certain resonance frequencies.

To gain more insight, we introduced a tomography scheme for this type of plasmon
measurement, which reconstructs from the measurement data physical quantities con-
nected with the surface plasmon resonances. First we showed that this works in principle
if a number of assumptions is used in paper 1 [107], especially the quasi-static approxi-
mation. Later on we extended the work of paper 1 in paper 3 [57] to the retarded regime
and introduced a reconstruction scheme, which accounts for the vectorial character of
the problem, and reconstructed the local density of states of plasmon resonances.

9.2.1 Quasi-static approximation
In paper 1 [107] we reformulated electron energy loss spectroscopy as a tomography
problem, by using a quasi-static eigenmode expansion [43, 42] and a modal decomposition
of the induced Green function [44] yielding to a modal representation of the EELS signal.
Within this modal representation one can reconstruct from EELS data the eigenmode
potential of a surface plasmon resonance with a simple inverse Radon transformation.

Although this approach works and has more or less simple reconstruction schemes
(see. chapter 3), a lot of assumptions and restrictions need to be made: e.g. single mode
approximation, quasi-static approximation, and unique sign of the eigenmode potential
at a reconstruction plane.
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Some of this assumptions can be lifted by solving an inverse problem and searching for
the surface charges. In [108] this approach was used and extended to prevent spurious
solutions of the surface charges.

9.2.2 Retarded regime
In the retarded regime the vectorial character of the electromagnetic fields has to be
accounted for and the reconstruction gets quite complicated. To introduce a general
scheme that links EELS with a meaningful physical quantity, we employed an eigenmode
decomposition for the full Maxwell equations, as depicted in chapter 2, and used a
similar, although now vectorial, decomposition of the dyadic Green function. A simple
least square fit of the measurement data with the model did not lead to a solution,
that is consistent with the optical properties of the specimen. Therefore a regularization
term was introduced in the reconstruction process, accounting for the sparse character of
the eigenmode basis used for the decomposition of the dyadic Green function. In other
words, we applied compressed sensing optimization to the inverse problem and we found
excellent agreement between the reconstructed and the simulated optical properties for
different particle shapes, see paper 3 [57].

9.3 Connection between EELS and LDOS
Previous studies tried to link the energy loss of a swift electron with a meaningful
physical quantity, the photonic local density of states, which shows how an oscillating
dipole interacts at a certain position in space with the sample.

In [38], the authors showed, that EELS can be linked to a generalized local density
of states, which is local in the impact parameter of the electron beam and local in the
Fourier transform of the electron trajectory axis. A direct link is shown for special
symmetric samples, e.g. planar structures.

A continuative study [65] argued, that a link between local density of states and EELS
unfortunately is not as clear as wanted. For example, EELS can be blind to hot-spots
with high local density of states for certain coupled plasmonic nanoparticles, see e.g.
[66].

With paper 1 [107] and paper 3 [57] we showed, that indeed a link between the optical
properties of plasmonic nanoparticles and the loss suffered by a swift electron in vicinity
of the specimen is apparent, but one has to gain additional EELS data by tilting the
sample.

9.4 Outlook
Electron energy loss spectroscopy has become in the last couple of years a versatile tool
to image surface plasmons at the nanometer scale.

Although the comparison of simulation and experiment leads to very good accordance,
it would be beneficial to have as an input for simulations not only the true geometry
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of the particle, but also the true dielectric function. This would lead to even better
agreement.

The reconstruction schemes for plasmon tomography, which are developed during this
thesis could be improved at various corners, including especially a more general expansion
of the dyadic Green tensor and therefore the inclusion of substrate effects and intrusion.
Further, a study with experimental data for plasmon tomography would be nice which is
already in progress. To obtain additional knowledge, especially of the phase information,
electron holography could lead to progress in the field of plasmon tomography.

Future directions of the field of plasmon imaging are probably hard to detect, but
maybe advances in spectral resolution lead to new applications. More general, exciting
plasmons with swift electrons and measuring the optical response by cathodolumines-
cence, is an emerging field and promising, yet it is challenging to detect enough light
in the measurements. Another promising microscopy technique called photon-induced
near-field electron microscopy (PINEM) with nanometer resolution has shown to film the
time evolution of surface plasmons and is heavily investigated at the moment, possibly
leading to time resolved plasmon measurements.
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Appendix

9.5 Eigenmodes and proof of the orthogonality of eigenmodes
in the quasi-static regime

This result was first derived in [43]. We start with the equation for the potential in the
quasi-static case in the ad hoc form, which reads [18, 78]

φ =
∮

∂Ω
G(s, s′)σ(s′, ω)ds′ + φext(s, ω) (9.1)

and the boundary condition on the surface between two materials

ε1φ′
1(s, ω) = ε2φ′

2(s, ω), (9.2)

where the prime indicates the derivative taken with respect to n, the surface normal
vector. By evaluating this derivative for Eq. (9.1), inserting into Eq. (9.2), and simple
manipulations we get

(ε2 + ε1)2πσ(s, ω) + (ε2 − ε1)
∮

∂Ω
F(s, s′)σ(s′, ω) = −(ε2−)ε1)φ′

ext(s, ω), (9.3)

where F(s, s′) = ∂G(s, s′)/∂n is the derivative with respect to the surface normal. By
introducing a factor Λ(ω) = 2π(ε2+ε1)/(ε2−ε1), which is only dependent on the material
parameters ε1 and ε2, we rewrite Eq. (9.3) as

Λ(ω)σ(s, ω) +
∮

∂Ω
F(s, s′)σ(s, ω) = −φext(s, ω). (9.4)

This is an integral equation for the surface charges on the boundary between two adjacent
materials. By discretizing the boundary one obtains a set of linear equations, which can
be solved for σ.

Now we introduce an eigenmode expansion

σ(s, ω) =
∑

i

ci(ω)σi(s) (9.5)

where the modes are defined by the integral equation∮
∂Ω

F(s, s′)σi(s′) = λiσi(s). (9.6)

Here, λi are the eigenvalues of the operator F.

100
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9.6 Orthogonality of eigenmodes
the orthogonality of the eigenmodes [43, 42] in Eq. (9.6) is not straightforward and
therefore we show the derivation.

The surface derivative on in- and outside of the eigenmode potential φi(s) =
∮

∂Ω G(s, s′)σi(s′)
are given by

φ′
i1(s) = −2πσi(s) +

∮
∂Ω

ds′F(s, s′)σi(s′) = (λi − 2π)σi(s) (9.7)

φ′
i2(s) = +2πσi(s) +

∮
∂Ω

ds′F(s, s′)σi(s′) = (λi + 2π)σi(s) (9.8)

By subtracting and adding the above equations, respectively, and by using the continuity
of the potential at the boundary, one obtains

λi(φ′
i2(s) − φ′

i1(s)) = 2π(φ′
i2(s) − φ′

i1(s)) (9.9)
(2π − λi)φ′

i2(s) = −(2π + λi)φ′
i1(s). (9.10)

Multiplying the above equation with the eigenmode potential φj and taking the integral
over the boundary gives

(2π − λi)
∮

∂Ω
φj(s)φ′

i2(s)da = −(2π + λi)
∮

∂Ω
φj(s)φ′

1i(s)da. (9.11)

By using Green’s first identity and the fact, that ∇2φi = 0 away from the boundary, we
arrive at

(2π − λi)
∫

V 2
E2i · E2jdV = −(2π + λi)

∫
V 1

E1i · E1jdV. (9.12)

By starting with the surface derivative of the eigenpotentials of mode j, we can also
derive

(2π − λj)
∫

V2
E2i · E2jdV = −(2π + λj)

∫
V1

E1i · E1jdV. (9.13)

By inspecting Eq. (9.12) and (9.13), we find that, if λi 
= λj , then∫
V1,2

Ei · Ej = 0. (9.14)

If we use Green’s identity in backward direction, we get∫
V

Ei · Ej =
∮

∂Ω
φi(s)φ′

j(s)da (9.15)

and by using Eq. (9.8) ∮
∂Ω

φi(s)(λj − 2π)σj(s)da = 0 (9.16)∮
∂Ω

φi(s)(λj + 2π)σj(s′)da = 0 (9.17)

at inside and outside, respectively. By adding the above equations we arrive at the final
result: ∮

∂Ω
σi(s)G(s, s′)σj(s′)dada′ = 0 (9.18)

for i 
= j.
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9.7. EXPANSION OF INDUCED GREEN FUNCTION IN TERMS OF
EIGENMODES

9.7 Expansion of induced Green function in terms of
eigenmodes

The induced Green function can be expanded in terms of eigenmodes [116]. First, we
insert Eq. (9.5) into Eq. (9.4). Then we get by using Eq. (9.6)∑

j

(Λ(ω) + λj)Cjσj(s) = −φ′
ext(s, ω) (9.19)

Using the orthogonality relation derived in the last section, we get

(Λ(ω) + λi)Ci = −
∮

∂Ω
σi(s′)G(s′, s)φ′

ext(s, ω)ds′ds. (9.20)

Expressing the last equation for the coefficients Ci the eigenmode potential reads within
the eigenmode expansion as

φ(r) = −
∑

i

(Λ(ω)+λi)−1
∮

∂Ω
G(r, s)σi(s)ds

∮
∂Ω

σi(s′)G(s′, s′′)φ′
ext(s′′, ω)ds′ds′′. (9.21)

For the potential of a unit charge at position r′ the last integrals become∮
∂Ω

σi(s′)G(s′, s′′)F(s′′, r′)
1

ε(r′)
ds′ds′′. (9.22)

From Green’s theorem∮
∂Ω

G∂G/∂nda =
∮

∂Ω
∂G/∂nGda −

∫
Ω

(G∇2G − (∇2G)G)dτ)

we find (second term vanishes for r /∈ Ω)∮
∂Ω

G(r, s′′)F(s′′, r′)ds′′ =
∮

∂Ω
F(r, s′′)G(s′′, r′)ds′′. (9.23)

Taking the limit r → s′ we find

lim
r→s′

∮
∂Ω

F(r, s′′)G(s′′, r′)ds′′ = ±2πG(s′′, r′) +
∮

∂Ω
F(s′, s′′)G(s′, r′)ds′, (9.24)

where the plus/minus sign depends on whether we approach the surface from out- or
inside, respectively. Inserting the findings of Eq. (9.24) into Eq. (9.21) and using the
integral equation Eq. (9.6) we arrive at

φ(r) = −
∑

i

λi ± 2π

Λ(ω) + λi
φi(r)φi(r′)

1
ε(r′)

, (9.25)

and therefore as we derived the above equation for a unit charge located at r′ we find
the eigenmode decomposition of the induced Green function

G(r, r′) = −
∑

i

λi ± 2π

Λ(ω) + λi
φi(r)φi(r′)

1
ε(r′)

. (9.26)
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