
Bachelor Thesis
Institut für Physik

Impact of the gap morphology on the optical
properties of plasmonic nanoparticles

Advisor:
Ao. Univ. Prof. Dr. Ulrich Hohenester

Benedikt Gasplmayr
Mat.Nr. 01530104

Wintersemester 2019



1 ABSTRACT

1. Abstract

The focus in this theses was to take a look at the resonance frequency of two coupled
gold rods with either spherical or rectangular caps. The resonance frequency was calcu-
lated for varying distances between the rods.
Furthermore, the resulting surface charge was expanded into eigenmodes and the expan-
sion coefficients were calculated. This was done with MATLAB and MNPBEM toolbox.
In the first step, the rods separated by some distance , were excited with a plane wave.
The resulting fields were calculated by solving Maxwells’ equations using the toolbox.
This was repeated for various distances. From these, the resonance frequency could be
determined.
The same procedure was used to get the expansion coefficients when expanding the
surface charge into the eigenmodes at various distances. The result for the resonance
frequency showed a red shift with decreasing distance. The rod with rectangular cap
showed a smaller wavelength at larger distances but was subject to a steeper increase
when the distance decreased. This behaviour can also be seen in [3].
In the expansion, the dipole mode was the most dominant order in both cases.
In a logarithmic plot of the coefficient’s modulus the red-shift was also present.
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2 INTRODUCTION

2. Introduction

Plasmons are excitations of metallic nano particles embedded in a dielectric material.
Plasmonic properties highly depend on shape, form and material properties and can
therefore be manipulated in many ways.
Plasmonics rapidly gained attention in the 1990’s when local fields around nano-structures
could be measured for the first time.
By using those nano-structures it is possible to confine light. The scale of this confi-
nement is usually far smaller than the free-space wavelength. E.g in some cases it was
possible to localize light with copper, gold, silver or aluminium nano-particles with sharp
edges in volumes. The minimum dimensions were around 10-100 nm. Reaching smaller
distances is possible but the implementation with a single particle is very difficult due
to technical limitations, e.g fabrication. For some applications like surface-enhanced Ra-
man scattering (SERS) it is necessary to archive a high and tight field strength.
Using coupled nano-particles is an alternative Ansatz to using single rods. Light can be
localised in the gap between them but here the same limitations are present.
A different approach is to use so called nano antennas. Two metal layers are separated
by a dielectric. A so called gap plasmon is embedded in this dielectric. The advantage
of this lies in the ease of production combined with extreme field enhancement and sen-
sitivity with regards to single atom placements. In fact, nano-optical antennas are part
of the ’extreme nano-optics’. [1, S. 668]

2.1. Basic Concepts

For a metal-insulator-metal multilayer, the dispersion relation is given through [2]

(k‖/k0)2 = n2
eff = εg + 2ζ[1 +

√
1 + (εg − εm)/ζ] (1)

with εg being the permittivity of the dielectric gap, εm being the permittivity of the
metal layers and

ζ = (k0 · d · εm/εg)−2 (2)

This relationship is valid for gap distances d < 10 nm.
The facets of a particle, figure 1 left, break this continuum into discrete modes and
localizes them in the small gap. The discrete wavelengths are

λsi ' λp

√
wεg
d αi

+ ε∞ (3)

with w being the facet length of the particle, αi the roots of the Bessel function, λp being
the plasma frequency, ε∞ being the dielectric background and a Drude-metal permitti-
vity of εm = ε∞ − λ2/λ2

p is used. By varying w the whole visible and infra-red spectrum
can be covered. However these modes couple poorly with free space.
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2.2 Light matter electronic interaction in nano-gaps 2 INTRODUCTION

But they couple easily with plasmonic antenna modes. By using simple LCR circuits
and a quasi static field response, the first antenna mode yields

λ(1) = λp

√
ε∞ + 2εd + 4εdCg/CNP (4)

with Cd being the capacitance of the gap, CNP the capacitance of the nano-particle and
εd the permittivity of the gap. If one considers a spherical nano-particle with CNP =
Cgε

χ
g ln(1 + ζR/d) , χ ≈ 0.5, ζ ≈ 0.5, this results in

(λ(1)/λp)
2 = ε∞ + 2εd + 4εχg ln(1 + ζR/d) (5)

Equation (5) results in a red-shift if the gap distance d decreases. Such antenna-nano
gap plasmons depend highly on the shape of the facets. [1, S. 669]

Figure 1: Metallic facet with (right) and without (left) a conducting spacer.

2.2. Light matter electronic interaction in nano-gaps

Emitters experience modified absorption and emission rates when placed in the enhanced
field inside the gap which can lead to strong coupling. To achieve this, the orientation of
the emitter’s position and dipole are important. The field in the gap can vary strongly
within nano-meters which makes this strong coupling difficult.
Interestingly, concerning fluoresce properties, enhancement, reduction and quenching
has been observed. These depend on position, geometry and dimension of the gap. The
changes can be explained on a quantum level by quantum yields and altered efficiencies
of excitation. Quantum yields are the probability that excitation results in a photon
The strong dependency on position allows tailoring the spontaneous emission rate to
build ultra-fast low power light sources, modulators and single photon emitters. [1, S. 671]
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2.3 Plasmon-Phonon Coupling 2 INTRODUCTION

2.3. Plasmon-Phonon Coupling

The extreme surface enhanced Raman signal (SERS), which is a surface sensitive Raman
spectroscopy, enables a localized detection of ultra-thin materials. A robust and accurate
SERS signal is needed to exactly identify materials. These signals however can vary from
structure to structure. A solution are gap plasmons when the optimal field distribution,
enhancements and dipole orientation are precisely known. [1, S. 671-672]

2.4. Conduction and bridging in nano-gaps

It is also possible to consider a conducting spacer in the nano-gap. These spacers can be
described with the model of a perturbed Fabry-Perot metal-insulator-metal layer, which
has a facet length w and a conducting layer of width t (figure 1 right). This defines a
perturbed cavity length Lg = (w − t)/2. The resonance condition becomes

Lg = r′λr/2 (6)

r′ = r + φg/2π, r = 0, 1, 2... is the so called groove cavity mode and φg ∼ π/2 is the
resonance condition at the boundaries. The dispersion relation is the same as equation
1 with a modified groove wave vector kr = 2π/λr.
As in section 2.1, one can couple these modes to antenna modes which causes radia-
tion. At a wavelength near 700 nm these modes are barely perturbed by the bridging.
Additionally, the near field decays exponentially in the bridge. A wider bridge causes
the confined modes to blue-shift because of a smaller Lg. Such conductive bridges are
studied to build resistive- RAM devices. These are non-volatile and low energy storage
devices. [1, S. 673]

2.5. Future applications

Several techniques allow precise coating. By using them it is possible to create meta-
surfaces. These surfaces allow to tailor the electric and magnetic properties of a material
by exploiting plasmonic effects.
By matching the gap length to the diameter of the plasmonic particle, it is possible to
achieve near perfect absorption at the plasmon resonance length. This can be useful for
hot-electron photo-detectors, thermal detectors and light harvesting.
In general, the high dependence on a material’s properties gives potential for sensitive
sensors or switching.
The field of extreme nano-optics allows for chemical reactions and functional surface
electro-chemistry to be studied at molecular scale. Also electrochemical processes can be
studied better by using SERS and scattering during reactions. The difficulty, however,
is that there is not yet a market for this application which limits the scientific research
in this field.
Furthermore, the tune-ability of plasmon modes and electronic states allows for a better
studying of electrochemical reaction.
However quantitative information is missing here. As mentioned in section 2.2 it is
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2.6 In this Thesis 2 INTRODUCTION

possible to tailor the spontaneous emission rate of emitters in the nano-gap to build
ultra-fast optical applications [1, S. 675-676]

2.6. In this Thesis

In this thesis 2 golden nano-particles are consider. They are excited by light
(400 nm -900 nm). As mentioned in 2.1, the resonance wavelength should redshift if the
gap distance decreases. The resulting surface charge will then be numerically expanded
into its eigenmodes and the expansion coefficients calculated.
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3 THEORY

3. Theory

An electromagnetic wave hitting a metal causes some interesting physics to happen on
the interface between the metal and the surrounding dielectric. The system considered
in this thesis consists of two metallic (golden) nano-rods that are excited by an incident
light wave. This results in an surface charge oscillation whose amplitude depends on the
excitation wavelength. These surface charge oscillations can be expanded into eigenmo-
des. In this section, at first the physics for spherical metallic particles being excited is
discussed. Afterwards, Green’s functions are shortly introduced to extend the approach
in section 3.1 to arbitrary geometries. Finally, plasmonic coupling and the important
quantities for scattering are shortly introduced.

3.1. Wave equation in quasistatic limit

The wave equation for the scalar potential

(∇2 + k2)V (r) = −ρ(r)

ε
(7)

with k2 = εµω2 is the starting point for this consideration. It can be derived by working
in the Lorenz gauge condition

∇ ·A = i
√
µεkV (r) (8)

The characteristic wavelength of the exciting wave, λ, is much larger than the charac-
teristic length scale of the nano particle L. The Laplace operator gives the curvature of
the function. With this, following approximation can be done

|∇2V | ∼ 1

L2
|V | � 1

λ2
|V | ∼ k2|V | (9)

Which justifies dropping the k2V (r) term in the wave equation. For further simplification
consider the Lorenz gauge condition

L|∇ ·A| = L|i√µεkV (r)| ∼ L

λ
|V | � |V | (10)

This approximation tells that the absolute value of the vector potential is much smaller
than the scalar potential and therefore can be neglected and using E(r) = −∇V (r) is
justified. Finally, the dielectric permeability is assigned a frequency dependency which
leads to the quasi-static approximation

∇2V (r) = −ρ(r)

ε(ω)
(11)

This approximation is valid if the wavelength is much larger than the size of the nano-
particle. The goal is to solve Maxwell’s equations in the quasistatic approximation for
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3.2 Green’s functions 3 THEORY

spherical particles, obtain the surface charge and then go to numerical methods for more
difficult geometries.

Consider an electric field polarized along the ẑ axis of the form

V (r) = −E0ẑ · r (12)

exciting a sphere with radius a. In spherical coordinates (11) does not depend on the
azimuthal angle and can therefore be solved with the Ansatz

V (r, θ) =
∞∑
l=0

(
Alr

l +
Bl

rl+1

)
Pl(cos θ) (13)

with Pl being the Legendre polynomials, which leads to the result

V (r, θ) =

−
(

3εout
εin+2εout

)
E0r cos θ, for r ≤ a(

εin−εout
εin+2εout

)
a3

r2
E0r cos θ − rE0 cos θ, for r > a

(14)

with the boundary conditions

• (Vout − Vin)|r=a = 0
• V → −zE0r for large r
• (εin

∂Vin
∂r

)r=a = (εout
∂Vout
∂r

)r=a

The first term of the potential outside is an induced part with the form of a dipole
only relevant close to the sphere with a dipole moment

p = 4πεout

(
εin − εout
εin + 2εout

)
a3E0ẑ (15)

The surface charge can be calculated from (14) with

σpol = −ε0(E⊥out − E⊥in) = 3ε0

(
εin − εout
εin + 2εout

)
(16)

For metallic materials εin(ω) can become negative below the plasma-frequency which
can result in very large surface charges. Such excitations are called particle plasmons.
They usually have a very high amplitude with one resonance frequency and are confined
to the sphere. [4, S. 123-130]

3.2. Green’s functions

Green’s functions are a very useful tool to solve differential equations. A Green function
is defined as

L(r)G(r, r0) = −δ(r− r0) (17)

where L(r) is a linear differential operator. Green’s functions are defined such that they
are solving equations of the form
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3.3 Boundary integral method 3 THEORY

L(r)f(r) = −s(r) (18)
The solution f(r) can be obtained by

f(r) =

∫
G(r, r′) s(r′) d3r′ (19)

The proper boundary conditions need to be built into a Green function. Green functi-
ons are extremely useful for solving linear differential equations (for example Maxwell’s
equations) and can physically be interpreted as the response of system to a point like
source. [4, S. 67-79]

3.3. Boundary integral method

To compute the surface charge for arbitrary geometries other methods are needed. One
of these is the boundary integral method. Here the potential is written as a sum of the
potential inside, Vinc(r), and on the boundary of the particle

V (r) = Vinc(r) +

∮
∂S

G(r, s)σ(s)dS (20)

with G(r, s) being the Green function for the Poisson equation

G(r, s) =
1

4π|r− s|
(21)

r is position inside the sphere and s is a position on the surface S. The surface charge
can be calculated by using the boundary conditions via the Dirichlet and Von Neumann
trace. The result for the surface charge is

Λ(ω)σ(s) +

∮
∂S

∂G(s, s′)

∂n
dS ′ = −∂Vinc(s)

∂n
(22)

with ∂/∂n being the normal derivative. One big advantage of (22) is that it can be
solved by expanding σ(s) into eigenmodes

σ(s) =
∑
k

ckuk(s) (23)

The eigenvalue equation for equation (23) reads∮
∂Ω

∂G(s, s′)

∂n
uk(s

′)dS ′ = λkuk (24)∮
∂Ω

ũk(s
′)
∂G(s′, s)

∂n
dS ′ = λkũk (25)

with uk being the right and ũk being the left eigenvectors. In terms of these eigenvectors
equation (22) can be solved in the form

σ(s) = −
∑
k

(Λ(ω) + λk)
−1

[∮
∂S

ũk(s)
∂Vinc(s

′)

∂n′
dS ′
]
uk(s) (26)

An exact derivation is given in [4, S. 135-140]
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3.4 Plasmonic coupling 3 THEORY

3.4. Plasmonic coupling

For plasmonic particles that are close enough together, the induced electric field in the
rod results in a coupling with another rod to minimize the systems energy. This coupling
can be described analogous to the molecular orbital theory. The system is described by a
surface charge σ(r) which can , like in molecular orbital theory, be expressed as a linear
combination

σ(r) =
∑
i

ciψ̃i (27)

ψ̃i are the eigenstates or eigenmodes of the of the constituent particles. Like in molecular
orbital theory, the ψ̃i either are binding (symmetric) or anti-binding (antisymmetric)
modes.

As mentioned in 2.1, plasmonic coupling leads to strong enhanced electric fields in the
gap and the excitation frequency redshifts if the distance decreases.

3.5. Scattering cross-section

The general form of an induced dipole moment induced by an incoming electric field
Einc is

p = ¯̄a(ω) · Einc (28)

with ¯̄a(ω) being the frequency dependent polarizability, a second rank tensor.
The general expression for the scattered Power of an rotating dipole is

Psca =
1

2

∮
∂Ω

Re( Esca ×H∗sca) · r̂ dS (29)

Inserting the electric, Esca, and magnetic field, Hsca, for an oscillating dipole in the
far field approximation (kr << 1)

Esca =
eikr

r

k2

4πε0
p⊥ (30)

Hsca = Z−1 e
ikr

r

k2

4πε0
r× p⊥ (31)

p⊥ = p− r̂(r̂ · p) (32)

yields

Psca = Z−1 k
4p2

12πε20
(33)

Dividing this through the intensity of the incident wave 1
2
Z−1|E0|2 results in the scatte-

ring cross section of a polarizable particle

Csca =
k4

6πε0
|¯̄a · ε0|2 (34)
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3.5 Scattering cross-section 3 THEORY

¯̄a is the polarization tensor of the particle. Csca describes the scattering cross-section of
a particle hit by an incident wave of the form E0ε0. [4, S. 132-133]
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4 MNPBEM TOOLBOX

4. MNPBEM toolbox

The MNPBEM( metallic nanoparticles boundary element method) is a MATLAB-toolbox
used for simulating the behaviour of metallic nanoparticles embedded in a dielectric
environment. This is done by solving Maxwell’s equations with appropriate boundary
conditions. The method works best for metallic nanoparticles with scales around a few
nanometres to a few hundred nanometres. The following steps are necessary in each
simulation [5]

• define the dielectric functions
• define particle boundaries
• specify how particle is embedded in dielectric environment
• set up solver for the BEM equations
• specify the excitation scheme
• solve the BEM equations for the given excitation by computing the axillary surface

charges
• compute the response of the plasmonic nanoparticle for the given excitations
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5 CODE DESCRIPTION AND SYSTEM SIMULATED

5. Code description and system simulated

Th system to be simulated consists od two rods with either two rods made out of gold
with spherical and rectangular caps as shown in Figure 2 and 3 in a vacuum environment
excited with light in ẑ-direction.

Figure 2: Rods with spherical caps

For the initialisation a few commands are important.

op = bemoptions ( op , PropertyName , PropertyValue )

sets the standard options for the simulations

exc = planewave ( pol , op , PropertyName , PropertyValue )

initialises the planewave-excitation with polarisation pol and options op set by the com-
mand bemoptions.

After this, a loop follows which iterates over all wavelengths in

ene i = l i n s p a c e ( 400 , 900 , 1000)
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5 CODE DESCRIPTION AND SYSTEM SIMULATED

Figure 3: Rods with rectangular caps

During each step of the loop the folllowing has the be done:

p = t r i r o d ( diameter , he ight , [ nphi , ntheta , nz ] ) ;

creates a discretized spherical rod. To eventually get the system of two rods

p1 = s h i f t ( p , [ 0 , 0 , − 0 .5 ∗ ( he ight + gap (n) ) ] ) ;
p1 = s h i f t ( p , [ 0 , 0 , 0 . 5 ∗ ( he ight + gap (n) ) ] ) ;

is used to shift the rods in the z-axis. This has to be done at each step of the loop.

pp = compar t i c l e s ( vara rg in )

takes the input and and initialises a compound system with specifications as given
through varargin.

s i g = bem( vararg in )

solves Maxwell’s equations specified with varargin.
With the solutions of Maxwell’s equations the scattering cross-section can be calcula-

ted and the biggest value is stored in a preallocated array.
The increase precision and save time

s p l i n e ( vara rg in )

is used.
An example of a spectrum for the wavelength of 900 nm and gap distance 25 nm is in

Figure 4 and a pseudo-code is in Figure 5
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5 CODE DESCRIPTION AND SYSTEM SIMULATED

Figure 4: Example spectrum for λ = 900 nm and gap distance 25 nm

Figure 5: Pseudo-code for calculating the resonance frequency

This is done analogues for spherical and rectangular caps.
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5 CODE DESCRIPTION AND SYSTEM SIMULATED

The expansion coefficients in

σ =
∑
i

ciui

are calculated in a different script ( Appendix C and Appendix D). Here, again, this
is done analogues for spherical and rectangular caps and at the beginning is the same
initialization as above. The only difference is a loop (line 68-72) over the number of
eigenvalues (nev) according to

σ(s) = −
∑
k

(Λ(ω) + λk)
−1

[∮
∂S

ũk(s)
∂Vinc(s

′)

∂n′
dS ′
]
uk(s)

The left eigenvectors are obtained by (line 56)

[~ , ~ , u l ] = plasmonmode ( pp , nev ) ;

In Figure 6 is a pseudo-code for the calculation of the coefficients

Figure 6: Pseudo-code for calculating the expansion coefficients
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6 RESULTS

6. Results

6.1. Redshift of resonance frequency

Figure 7: Resonance wavelength vs distance

In Figure 7 the change of the resonance frequency of the two rod system with gap
distance is shown. It can be clearly seen that the resonance wavelength is subject to
a redshift as the distance decreases. This behaviour can also be seen in [3]. Depicting
smaller distances is not possible since quantum effects become relevant that are not
considered in the MNPBEM toolbox.
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6.2 Expansion coefficients 6 RESULTS

6.2. Expansion coefficients

Figure 8: Coefficients for rectangular rods as function of gap distance and number of
coefficients

In Figure 8 and Figure 9 the coefficients of the expansion

σ(s) =
∑
n

cnun

for one spherical and one rectangular rod are depicted. Both rods show a similar be-
haviour the dipole and quadrupole moment are present in both cases and only vary
in magnitude. Differences can be seen in higher modes which is probably due to the
geometry. This results in a different surface charge and thus a different coupling.
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6.2 Expansion coefficients 6 RESULTS

Figure 9: Coefficients for spherical rods as function of gap distance and number of coef-
ficients

Figure 10: Dipole coefficients for spherical and rectangular rods as function of gap di-
stance

20 / 32



7 SUMMARY

Figure 10 shows the absolute value of the expansion coefficients for the dipole mode
as a function of distance.

7. Summary

7.1. Distance variation of the Rods

The resonance length for the spherical and rectangular rod shows a red-shift with de-
creasing distance. Differences can be seen however, in the increase of the resonance
length. The spherical rod has lower resonance lengths at larger distances compared to
the rectangular rod. But the increase is larger.

7.2. Calculating the expansion coefficients

In both cases the dipole mode was the most dominant in the expansion. At the largest
distance the dipole and quadrupole mode were the first non vanishing terms in both
cases. Differences can be seen in higher orders. At smaller distances, first and third
order terms are present. This causes the dipole and quadrupole mode to decrease in
value of the modulus. The first and third order terms decrease with increasing distance.
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A CODE FOR FINDING RESONANCE FREQUENCIES (SPHERICAL CAPS)

A. Code for finding resonance frequencies (spherical
caps)

% DEMOCOEFFS f o r s p h e r i c a l

% opt ions f o r BEM s imu la t i on
op = bemoptions ( ’ sim ’ , ’ s tat ’ , ’ waitbar ’ , 0 , ’ in te rp ’ , ’ curv ’ ) ;

% gap d i s t ance
gap = 2 : 25 ;

% dimensions o f nanorod
diameter = 10 ;
he ight = 40 ;

% nanorod and gap d i s t anc e f o r r e c t angu l a r rod
p_r = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% number o f e i g enva lu e s and boundary e lements o f f i r s t rod
nev = 40 ;

% a l l o c a t e expansion c o e f f i c i e n t s
c1_r = ze ro s ( 1 , nev ) ;
c_r = ze ro s ( l ength ( gap ) , nev ) ;

%% s t a r t with o the r s
f o r ngap = 1 : l ength ( gap )

% nanorod and gap d i s t anc e f o r r e c t angu l a r rod
p_r = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% coupled r e c t angu l a r rods
p1_r = s h i f t ( p_r , [ 0 , 0 , − 0 .5 ∗ ( he ight + gap ( ngap ) ) ] ) ;

% 1 s t rod
p2_r = s h i f t ( p_r , [ 0 , 0 , 0 . 5 ∗ ( he ight + gap ( ngap ) ) ] ) ;

% 2nd rod

% i n i t i a l i z e r e c t angu l a r rods
p_r = compart i c l e ( epstab , { p1_r , p2_r } , [ 2 , 1 ; 2 , 1 ] , 1 , 2 , op ) ;

% s e t up BEM so l v e r
bem_r = bemsolver ( p_r , op ) ;
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A CODE FOR FINDING RESONANCE FREQUENCIES (SPHERICAL CAPS)

% plane wave e x c i t a t i o n
exc = planewave ( [ 0 , 0 , 1 ] , [ 1 , 0 , 0 ] , op ) ;

% eigenmodes f o r s i n g l e rod
pp = compart i c l e ( epstab , { p1_r } , [ 2 , 1 ] , 1 , op ) ;

[~ , ~ , ul1_r ] = plasmonmode ( pp , nev ) ;

% resonance wavelength
ene i = max_wave _r( ngap ) ;

% su r f a c e charge
s ig_r = bem_r \ exc ( p_r , ene i ) ;

% eigenmodes f o r s i n g l e rod
pp = compart i c l e ( epstab , { p1_r } , [ 2 , 1 ] , 1 , op ) ;

% loop over eigenmodes
f o r i ev = 1 : nev

% c o e f f i c i e n t s
c1_r ( i ev ) = sum( ul1_r ( iev , : ) . ’ .∗ s ig_r . s i g ( 1 : p1_r . n ) .∗ p1_r . area ) ;

end

c_r ( ngap , : ) = abs ( c1_r ) ; % / sum_norm ; % sum( abs ( c1_r ) ) ;

end

% normal ize
c_r = c_r / sum( c_r ( 1 , : ) ) ;

% % plo t c o e f f i c i e n t s
% p lo t ( abs ( c1_r ) / sum( abs ( c1_r ) ) , ’ o−’ ) ; hold on

% p l o t t i n g both
f i g u r e
imagesc ( 1 : nev , gap , abs ( c_r ) )
% abs ( c1_r )
co l o rba r
t i t l e ( [ ’ C o e f f i c i a n t s f o r s p h e r i c a l rods with ’ , num2str ( nev ) , ’ c o e f f i c i e n t s ’ ] )
y l ab e l ( ’ gap d i s tance ’ )
x l ab e l ( ’ number o f s t a t e s ’ )

%%
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A CODE FOR FINDING RESONANCE FREQUENCIES (SPHERICAL CAPS)

f i g u r e
semi logy ( gap , abs ( c_r ( : , 2 ) ) , ’∗ ’ , ’ MarkerSize ’ , 10 )
hold on
semi logy ( gap , abs ( c_s ( : , 2 ) ) , ’∗ ’ , ’ MarkerSize ’ , 10 )
g r id on
t i t l e ( ’ Absolute va lue o f the c o e f f i c i a n t s f o r d i po l e mode as func t i on o f d i s tance ’ )
x l ab e l ( ’ d / nm ’ , ’ FontSize ’ , 14 )
y l ab e l ( ’ | c | ’ , ’ FontSize ’ , 14 )
s e t ( gca , ’ LineWidth ’ , 1 . 2 )
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B CODE FOR FINDING RESONANCE FREQUENCIES (RECTANGULAR CAPS)

B. Code for finding resonance frequencies
(rectangular caps)

%% i n i t i a l i z a t i o n

gap = 2 : 2 5 ;
max_wave_s = ze ro s ( 1 , l ength ( gap ) ) ;
max_wave_r = ze ro s ( 1 , l ength ( gap ) ) ;

% l i g h t wavelength in vacuum
ene i = l i n s p a c e ( 400 , 900 , 100 ) ;

xx = l i n s p a c e (400 , 900 ,1000 ) ;
% opt ions f o r BEM s imu la t i on
op = bemoptions ( ’ sim ’ , ’ s tat ’ , . . .

’ waitbar ’ , 0 , ’ in te rp ’ , ’ curv ’ ) ;

% plane wave e x c i t a t i o n with p o l a r i s a t i o n
exc = planewave ( [ 0 , 0 , 1 ; 1 , 0 , 0 ] , op ) ;

% tab l e o f d i e l e c t r i c f unc t i on s
epstab = { epsconst ( 1 ) , ep s t ab l e ( ’ go ld . dat ’ ) } ;
% dimensions o f nanorod
diameter = 10 ;
he ight = 40 ;

f o r n = 1 : l ength ( gap )
% nanorod and gap d i s t anc e f o r s p h e r i c a l rod
p_s = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% s c a l e endcap f o r s p h e r i c a l rod
z = 0 .5 ∗ ( he ight − diameter ) ;
p_s . v e r t s ( p_s . v e r t s ( : , 3 ) > z , 3 ) = z + . . .
( p_s . v e r t s ( p_s . v e r t s ( : , 3 ) > z , 3 ) − z ) ∗ 0 . 2 ;
p_s = p a r t i c l e ( p_s . ver t s , p_s . f a c e s ) ;
p1_s = s h i f t ( p_s , [ 0 , 0 , − ( max( p_s . pos ( : , 3 ) ) + 0 .5 ∗ gap (n) ) ] ) ;
p2_s = s h i f t ( f l i p ( p_s , 3 ) , [ 0 , 0 , ( max( p_s . pos ( : , 3 ) ) + 0 .5 ∗ gap (n) ) ] ) ;

p_s = compart i c l e ( epstab , { p1_s , p2_s } , . . .
[ 2 , 1 ; 2 , 1 ] , 1 , 2 , op ) ;

bem_s = bemsolver ( p_s , op ) ;
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B CODE FOR FINDING RESONANCE FREQUENCIES (RECTANGULAR CAPS)

sca_s = ze ro s ( l ength ( ene i ) , 2 ) ;

multiWaitbar ( ’BEM so lve r ’ , 0 , . . .
’ Color ’ , ’ g ’ , ’ CanCancel ’ , ’ on ’ ) ;

% loop over wavelengths
f o r i en = 1 : l ength ( ene i )

% su r f a c e charge / normal ized f o r i n c i d en t wave ( ? )
s ig_s = bem_s \ exc ( p_s , ene i ( i en ) ) ;

% s c a t t e r i n g and ex t i n c t i o n c r o s s s e c t i o n s
sca_s ( ien , : ) = exc . sca ( s ig_s ) ;

multiWaitbar ( ’BEM so lve r ’ , i en / numel ( ene i ) ) ;
end

% c l o s e waitbar
multiWaitbar ( ’ CloseAl l ’ ) ;

yy_s = sp l i n e ( ene i , sca_s ( : , 2 ) ’ , xx ) ;

[~ ,max_ind_s ] = max( yy_s ) ;
max_wave_s (n) = xx (max_ind_s ) ;

end
%% plo t toge the r
p l o t ( gap , max_wave_s , ’ ∗ ’ , gap , max_wave_r , ’ o ’ )
x l ab e l ( ’ gap d i s t anc e / nm’ )
y l ab e l ( ’ \ lambda / nm’ )
legend ( ’ s p h e r i c a l rod ’ , ’ r e c t angu l a r rod ’ )
g r i d on
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C CALCULATING COEFFICIENTS FOR RECTANGULAR RODS

C. Calculating coefficients for rectangular rods

% DEMOCOEFFS f o r r e c t angu l a r

% opt ions f o r BEM s imu la t i on
op = bemoptions ( ’ sim ’ , ’ s tat ’ , ’ waitbar ’ , 0 , ’ in te rp ’ , ’ curv ’ ) ;

% gap d i s t ance
gap = 2 : 25 ;

% dimensions o f nanorod
diameter = 10 ;
he ight = 40 ;

% nanorod and gap d i s t anc e f o r r e c t angu l a r rod
p_s = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% number o f e i g enva lu e s and boundary e lements o f f i r s t rod
nev = 40 ;

% a l l o c a t e expansion c o e f f i c i e n t s
c1_s = ze ro s ( 1 , nev ) ;
c_s = ze ro s ( l ength ( gap ) , nev ) ;

%% s t a r t with o the r s
f o r ngap = 1 : l ength ( gap )

% nanorod and gap d i s t anc e f o r r e c t angu l a r rod
p_s = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% coupled r e c t angu l a r rods
p1_s = s h i f t ( p_s , [ 0 , 0 , − 0 .5 ∗ ( he ight + gap ( ngap ) ) ] ) ;

% 1 s t rod
p2_s = s h i f t ( p_s , [ 0 , 0 , 0 . 5 ∗ ( he ight + gap ( ngap ) ) ] ) ;

% 2nd rod

% s c a l e endcap f o r s p h e r i c a l rod
z = 0 .5 ∗ ( he ight − diameter ) ;
p_s . v e r t s ( p_s . v e r t s ( : , 3 ) > z , 3 ) = z + . . .

( p_s . v e r t s ( p_s . v e r t s ( : , 3 ) > z , 3 ) − z ) ∗ 0 . 2 ;
p_s = p a r t i c l e ( p_s . ver t s , p_s . f a c e s ) ;
p1_s = s h i f t ( p_s , [ 0 , 0 , − ( max( p_s . pos ( : , 3 ) ) + 0 .5 ∗ gap ( ngap ) ) ] ) ;
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C CALCULATING COEFFICIENTS FOR RECTANGULAR RODS

p2_s = s h i f t ( f l i p ( p_s , 3 ) , [ 0 , 0 , ( max( p_s . pos ( : , 3 ) ) + 0 .5 ∗ gap ( ngap ) ) ] ) ;

% i n i t i a l i z e r e c t angu l a r rods
p_s = compart i c l e ( epstab , { p1_s , p2_s } , [ 2 , 1 ; 2 , 1 ] , 1 , 2 , op ) ;

% s e t up BEM so l v e r
bem_s = bemsolver ( p_s , op ) ;

% plane wave e x c i t a t i o n
exc = planewave ( [ 0 , 0 , 1 ] , [ 1 , 0 , 0 ] , op ) ;

% eigenmodes f o r s i n g l e rod
pp = compart i c l e ( epstab , { p1_s } , [ 2 , 1 ] , 1 , op ) ;

[~ , ~ , ul1_s ] = plasmonmode ( pp , nev ) ;

% resonance wavelength
ene i = max_wave_s( ngap ) ;

% su r f a c e charge
s ig_s = bem_s \ exc ( p_s , ene i ) ;

% eigenmodes f o r s i n g l e rod
pp = compart i c l e ( epstab , { p1_s } , [ 2 , 1 ] , 1 , op ) ;

% loop over eigenmodes
f o r i ev = 1 : nev

% c o e f f i c i e n t s
c1_s ( i ev ) = sum( ul1_s ( iev , : ) . ’ .∗ s ig_s . s i g ( 1 : p1_s . n ) .∗ p1_s . area ) ;

end

c_s ( ngap , : ) = c1_s / sum( abs ( c1_s ) ) ;

end
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D CALCULATING COEFFICIENTS FOR SPHERICAL RODS

D. Calculating coefficients for spherical rods

% DEMOCOEFFS f o r s p h e r i c a l

% opt ions f o r BEM s imu la t i on
op = bemoptions ( ’ sim ’ , ’ s tat ’ , ’ waitbar ’ , 0 , ’ in te rp ’ , ’ curv ’ ) ;

% gap d i s t ance
gap = 2 : 25 ;

% dimensions o f nanorod
diameter = 10 ;
he ight = 40 ;

% nanorod and gap d i s t anc e f o r r e c t angu l a r rod
p_r = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% number o f e i g enva lu e s and boundary e lements o f f i r s t rod
nev = 40 ;

% a l l o c a t e expansion c o e f f i c i e n t s
c1_r = ze ro s ( 1 , nev ) ;
c_r = ze ro s ( l ength ( gap ) , nev ) ;

%% s t a r t with o the r s
f o r ngap = 1 : l ength ( gap )

% nanorod and gap d i s t anc e f o r r e c t angu l a r rod
p_r = t r i r o d ( diameter , he ight , [ 10 , 10 , 20 ] ) ;

% coupled r e c t angu l a r rods
p1_r = s h i f t ( p_r , [ 0 , 0 , − 0 .5 ∗ ( he ight + gap ( ngap ) ) ] ) ;

% 1 s t rod
p2_r = s h i f t ( p_r , [ 0 , 0 , 0 . 5 ∗ ( he ight + gap ( ngap ) ) ] ) ;

% 2nd rod

% i n i t i a l i z e r e c t angu l a r rods
p_r = compart i c l e ( epstab , { p1_r , p2_r } , [ 2 , 1 ; 2 , 1 ] , 1 , 2 , op ) ;

% s e t up BEM so l v e r
bem_r = bemsolver ( p_r , op ) ;

% plane wave e x c i t a t i o n
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D CALCULATING COEFFICIENTS FOR SPHERICAL RODS

exc = planewave ( [ 0 , 0 , 1 ] , [ 1 , 0 , 0 ] , op ) ;

% eigenmodes f o r s i n g l e rod
pp = compart i c l e ( epstab , { p1_r } , [ 2 , 1 ] , 1 , op ) ;

[~ , ~ , ul1_r ] = plasmonmode ( pp , nev ) ;

% resonance wavelength
ene i = max_wave _r( ngap ) ;

% su r f a c e charge
s ig_r = bem_r \ exc ( p_r , ene i ) ;

% eigenmodes f o r s i n g l e rod
pp = compart i c l e ( epstab , { p1_r } , [ 2 , 1 ] , 1 , op ) ;

% loop over eigenmodes
f o r i ev = 1 : nev

% c o e f f i c i e n t s
c1_r ( i ev ) = sum( ul1_r ( iev , : ) . ’ .∗ s ig_r . s i g ( 1 : p1_r . n ) .∗ p1_r . area ) ;

end

c_r ( ngap , : ) = abs ( c1_r ) ; % / sum_norm ; % sum( abs ( c1_r ) ) ;

end

% normal ize
c_r = c_r / sum( c_r ( 1 , : ) ) ;

% % plo t c o e f f i c i e n t s
% p lo t ( abs ( c1_r ) / sum( abs ( c1_r ) ) , ’ o−’ ) ; hold on

% p l o t t i n g both
f i g u r e
imagesc ( 1 : nev , gap , abs ( c_r ) )
% abs ( c1_r )
co l o rba r
t i t l e ( [ ’ C o e f f i c i a n t s f o r s p h e r i c a l rods with ’ , num2str ( nev ) , ’ c o e f f i c i e n t s ’ ] )
y l ab e l ( ’ gap d i s tance ’ )
x l ab e l ( ’ number o f s t a t e s ’ )

%%
f i g u r e
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D CALCULATING COEFFICIENTS FOR SPHERICAL RODS

semi logy ( gap , abs ( c_r ( : , 2 ) ) , ’∗ ’ , ’ MarkerSize ’ , 10 )
hold on
semi logy ( gap , abs ( c_s ( : , 2 ) ) , ’∗ ’ , ’ MarkerSize ’ , 10 )
g r id on
t i t l e ( ’ Absolute va lue o f the c o e f f i c i a n t s f o r d i po l e mode as func t i on o f d i s tance ’ )
x l ab e l ( ’ d / nm ’ , ’ FontSize ’ , 14 )
y l ab e l ( ’ | c | ’ , ’ FontSize ’ , 14 )
s e t ( gca , ’ LineWidth ’ , 1 . 2 )
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