
Jakob Philipp Ebner

Optical Properties of
Semiconductor-Metal Hybrid

Nanoparticles

Diplomarbeit

zur Erlangung des akademischen Grades eines
Magisters

an der Naturwissenschaftlichen Fakultät der
Karl-Franzens-Universität Graz

Betreuer: Ao. Univ. Prof. Mag. Dr. Ulrich Hohenester

Institut für Physik
Fachbereich Theoretische Physik

2013



Contents

1. Introduction 1
1.1. Prologue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2. Structure of this thesis . . . . . . . . . . . . . . . . . . . . . . . . 3

2. Basic Principles 4
2.1. Electromagnetic fields . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1. Direct Coulomb interaction . . . . . . . . . . . . . . . . . 4
2.1.2. Maxwell’s equations . . . . . . . . . . . . . . . . . . . . . 6
2.1.3. Quasistatic approximation . . . . . . . . . . . . . . . . . . 7

2.2. Plasmons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1. Dielectric function of metals . . . . . . . . . . . . . . . . . 9
2.2.2. Surface Plasmons . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3. Particle Plasmons . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Semiconductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1. Excitons . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.2. Effective Mass . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3. Interband Polarization . . . . . . . . . . . . . . . . . . . . 16

2.4. Nano and Quantum optics . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1. Dipole Approximation . . . . . . . . . . . . . . . . . . . . 18
2.4.2. Rotating Wave Approximation . . . . . . . . . . . . . . . . 18
2.4.3. Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . 19

3. Theory 22
3.1. Describing the System . . . . . . . . . . . . . . . . . . . . . . . . 22
3.2. Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3. Optical response . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4. Numerics 30
4.1. Discretizing the Hamiltonian . . . . . . . . . . . . . . . . . . . . . 30
4.2. Boundary Element Method . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1. BEM theory . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.2. Surface discretization . . . . . . . . . . . . . . . . . . . . . 32

4.3. Program outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

i



Contents

5. Results 35
5.1. Combining Particles . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2. Charge carrier densities . . . . . . . . . . . . . . . . . . . . . . . . 37
5.3. Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4. Optical response . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.5. Influence of numerical parameters . . . . . . . . . . . . . . . . . . 43

5.5.1. Grid size . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5.2. Number of states . . . . . . . . . . . . . . . . . . . . . . . 44

5.6. Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.7. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Acknowledgements 46

A. Calculations 47
A.1. Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2. Potentials in media . . . . . . . . . . . . . . . . . . . . . . . . . . 49
A.3. Exciton wave functions . . . . . . . . . . . . . . . . . . . . . . . . 51

B. Conventions and Conversions 53
B.1. Atomic Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
B.2. Gaussian-CGS Units . . . . . . . . . . . . . . . . . . . . . . . . . 54
B.3. Energy conversion . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Bibliography 56

ii



Abstract

In this thesis I study the optical properties of a hybrid nanoparticle consisting

of a metal and a semiconductor part. I examine the electrostatic influence of

the metallic particle on the exciton states. Further, I calculate the effect of the

semiconductor on the plasmon that is optically created on the metal surface. I

derive a framework to calculate the polarization of the semiconductor due to the

external and plasmonic fields, and use it to obtain the scattering and absorption

spectra for the combined particle.

I treat a model system where the semiconductor is approximated by a few mate-

rial specific parameters and the geometry is a match stick shaped structure with

a semiconducting rod and a metallic tip. For our simulations I use the MNPBEM

[1] toolbox for Matlab, which uses the boundary element method [2] for the cal-

culation of electromagnetic potentials.

I find that the optical response of the combined particle is enhanced with respect

to the response of separated particles. Exciton resonances are shifted to lower

energies in the presence of a metal and the exciton-dipole self interaction via the

environment appears to have very little effect on the optical properties.
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1. Introduction

1.1. Prologue

Particles whose dimensions do not exceed the nanometer scale at least in one

dimension are called nanoparticles. They live at the boundary of the quantum

and the classical world, small enough to exhibit quantum mechanical behaviour

but still consisting of thousands to millions of atoms. Since great progress has been

made in manufacturing such small particles, many new effects can be studied and

new applications can be found in this area.

A very interesting feature of metallic nanoparticles, that was even used in Roman

times, is the occurrence of particle plasmons. These are oscillations of electrons

in a metal that can be driven by an electromagnetic wave. They exhibit optical

properties strongly depending on the size and geometry of the particles, and not

only on the material, as common pigments do. The ancient example for particle

plasmons mentioned above is the Lycurgus cup (Fig. 1.1) which appears to have

different colors depending on the direction of illumination. It appears green if

lighted from the front but looks red if illuminated from the back or from inside.

This behaviour comes from different resonance properties of plasmons in light

absorption and scattering. In the first case one sees the reflected light, and in

the second case one sees the light after specific frequencies are absorbed. This

technique, namely adding tiny portions of gold and silver nanoparticles to the

glass, was also used in more “recent” history for colorful church windows where

normal dyes would have dissolved long ago.

A very important feature for the application of plasmons is the occurrence of a

very strong electric field at the metallic surface that can be several magnitudes

stronger than the exciting light field. This so called evanescent field is strongly

1



1. Introduction

Figure 1.1.: Lycurgus cup at the British Museum in London. Different wave-
lengths are absorbed in reflection (left) and transmission (right).

localized and decays exponentially when moving away from the surface. The

fact that plasmon resonances are very sensitive to the dielectric function of the

surrounding medium makes them very interesting for sensor applications. Further

possible applications of plasmonic structures are submicron optical waveguides for

optoelectronics, medical treatments[3] and the use as catalysts because of their

high surface to volume ratio.

Nanoparticles whose surfaces exhibit two or more distinct physical properties are

called Janus particles. This can either be achieved by combining different materi-

als or different surface treatments of distinct parts of the particle. The progress in

synthesis has not only made it possible to shape one material at an ever smaller

scale, but also to combine different materials at the nanoscale. This gives the op-

portunity to directly combine the promising properties of metallic nanoparticles

with the widely used properties of semiconductors.

The purpose of this thesis is to study and simulate the optical properties of such

a hybrid semiconductor metal particle. In this case we have to consider not only

that the enhanced field of the metallic particle does influence the charge carrier

response inside the semiconductor but also that a plasmon is very sensitive to

changes in the dielectric environment and therefore its properties also depend on

the size and shape of the semiconductor attached to the metallic nanoparticle.

2



1. Introduction

In particular, we are interested in the influence of the exciton excitations on the

optical properties of the system. In this thesis we treat a matchstick shaped

structure consisting of a semiconductor nanorod with an attached gold sphere,

which is dissolved in toluene, as an example for such a system.

1.2. Structure of this thesis

After this introduction we summarize some textbook knowledge that is necessary

for our further investigations in chapter 2. Chapter 3 will show our theoretical

approach to the systems Hamiltonian and the optical response. In chapter 4 we

translate our findings of chapter 3 into a numerical scheme. Our final results will

be presented in chapter 5 where we will compare the behaviour of the combined

particles to its components and show its scattering and absorption cross sections.

Some auxiliary calculations can be found in Appendix A.

Throughout the theory part we use Hartree atomic units and CGS units (Appendix

B). The results are presented in milli-electron Volts (meV) and nanometers (nm).

Operators are not emphasized explicitely but should be recognizable as such.

3



2. Basic Principles

In this chapter we will gather some textbook results of the topics that are crucial

for the understanding of this thesis. Most of them will only be touched briefly,

but further references will be given in each section.

2.1. Electromagnetic fields

In this section we will give a short overview of some aspects of classical electrody-

namics following references [4] and [5]. We remind you that all formulas will be

in the cgs unit system.

2.1.1. Direct Coulomb interaction

Electrostatics is based on Coulomb’s law, which was discovered in the second half

of the 18th century and first published by Charles Auguste de Coulomb [6]. It

describes the vectorial force of an arbitrary charge distribution ρ(r′) on a charge

q at position r in vacuum

F = q

∫
ρ(r′)

(r− r′)

|r− r′|3
dτ ′. (2.1)

The concept to describe electrostatics and electrodynamics in modern physics, is

with fields and potentials

Φ(r) =

∫
ρ(r′)

|r− r′|
dτ ′. (2.2)

4



2. Basic Principles

Figure 2.1.: The potential of a charge in medium 1 near a flat surface of medium
2 can be described as the potential of two charges in medium 1. The position of
the second charge is just the inversion of position 1 with respect to the surface.
The charge depends on the material, it is exactly opposite to the original charge if
medium 2 is a metal.

Usually in solids the charge densities of the negative electrons and positive cores

cancel each other out, at least if one does not look to closely. But if we look at

a solid with an additional free charge present, the situation differs. The positive

and negative charges in the solid react differently on the additional potential

generating an effective charge density inside the material. This creates a potential

which acts back on the free charge, leading to an effective self interaction of free

charges in the presence of media. In the hypothetical case where we consider the

medium to fill a half space, the induced potential is identical to the potential of

another charge situated exactly symmetric with respect to the solid surface (Fig.

2.1). This example coins the term image charge for this effect. A detailed analysis

of self interaction in more complex geometries can be found in [7]. This effect will

play an important role for the charges confined in the semiconductor part of our

hybrid matchstick.

5



2. Basic Principles

2.1.2. Maxwell’s equations

Between 1861 and 1865 Clark Maxwell cast the whole knowledge about electro-

dynamics in dielectric media into the four following equations [8]

∇ · D(r, t) = 4πρ(r, t), (2.3a)

∇ · B(r, t) = 0, (2.3b)

∇×H(r, t) =
4π

c
j(r, t) +

1

c

∂D(r, t)

∂t
, (2.3c)

∇× E(r, t) = −1

c

∂B(r, t)

∂t
. (2.3d)

Where D is the dielectric displacement, E the electric field, B and H are the

magnetic induction and magnetic field and ρ and j are the free charge and current

densities. In isotropic linear media the dielectric displacement simply reads D =

εE and the magnetic fields are related via B = µH. ε is the permittivity which

we assume constant in space, for each medium, throughout this thesis. µ is the

magnetic permeability which can be set to one at optical frequencies.

From these four equations we deduce that the electric and magnetic fields are not

independent. Indeed they can be rewritten in form of the scalar potential φ and

the magnetic vector potential A as

E = −∇φ− 1

c

∂

∂t
A, B = ∇×A . (2.4)

One can easily see that the potentials automatically fulfill the homogeneous Maxwell

equations (2.3b) and (2.3d). But these definitions do not uniquely define the po-

tentials and leave a so called freedom of gauge. To reduce these redundancies one

can introduce conditions on the potentials that may simplify the problem at hand.

We want to derive wave equations for the potentials and therefore introduce the

Lorentz condition

6



2. Basic Principles

∇ · A +ε
1

c

∂

∂t
φ = 0. (2.5)

If we consider harmonic electromagnetic waves with a time dependence e−iωt and

the wave vector k = ω/c the time derivative simplifies to ∂/∂t = −iω and we can

deduce from (2.3a)

∇ · E = ∇ · (−∇φ+ ikA) = −∇2φ+ ik∇A = 4π
ρ

ε
. (2.6)

In combination with the Lorenz condition this gives

∇2φ+ k2εφ = −4π
ρ

ε
. (2.7)

By starting from (2.3c) we can analogously derive a similar equation for the vector

potential

∇2 A +k2εA = −4π

c
j. (2.8)

These equations are called the Helmholtz equations for potentials and are equiva-

lent to Maxwell’s equations.

2.1.3. Quasistatic approximation

If we examine a particle much smaller than the light wavelength we can neglect

retardation effects and assume the electromagnetic field constant throughout the

particle. Thus, we set k ≈ 0 which leads to a vanishing vector potential A

in Lorentz gauge (2.5) and the Helmholtz equation of the scalar potential (2.7)

simplifies to the Poisson equation

∇2Φ = −4π
ρ

ε
. (2.9)

For the homogeneous case, in which no free charges are present, this results in the

Laplace equation

7



2. Basic Principles

∇2φ = 0. (2.10)

For the solution of the Poisson equation we can employ the Green’s function

formalism. Green’s functions are a well established tool to solve inhomogeneous

differential equations. The inhomogeneous part of a differential equation can be

solved with the help of such a Green’s function which is defined as a solution of

D̂ G(r, r′) = −4πδ(r, r′). (2.11)

For the Poisson equation, D̂ = ∇2, in a homogeneous unbound medium there

exists a relatively simple solution to this problem. The so-called electrostatic

Green’s function

G(r, r′) =
1

ε|r− r′|
, (2.12)

where the factor 1/ε, which appears on the right hand side of (2.9), is already

incorporated into the Green’s function. With this Green’s function we can write

the solution of the Poisson equation (2.9) as φ(r) =
∫
G(r, r′, ε)ρ(r′)dr′ plus any

function that satisfies the Laplace equation (2.10).

Thus, in homogeneous media where ε is constant inside the medium, we can

transform the volume integral into a surface integral using Gauss’s theorem and

write the solution for the potential in the ad-hoc form [2, 9]

φ(r) = φext(r) +

∮
G(r, s)σ(s)da. (2.13)

2.2. Plasmons

Plasmons are the quasiparticles of quantized collective oscillations of the free elec-

tron gas in solids, similar to phonons, the quasiparticles of vibrations. They can

be divided into bulk plasmons, surface plasmons and particle plasmons. Bulk plas-

mons, which are e.g. responsible for the shiny appearance of metals, are situated

8



2. Basic Principles

throughout the whole volume of a solid, surface plasmons are located at interfaces

between a metal and a dielectric, and particle plasmons occur at metallic particles

which are smaller than the light wavelength.

The topics treated in this section are discussed in more detail in [10] and [11].

2.2.1. Dielectric function of metals

A simple, but very effective, way to describe the response of a metal to an applied

electric field is the Drude-Sommerfeld theory. The free electron gas is treated in

a classical kinetic fashion, and a damped harmonic oscillator is obtained for the

equation of motion

m
∂2r

∂t2
+mγ

∂r

∂t
= eE0 e

−iωt, (2.14)

where γ is a material specific damping term, m and e are the mass and charge of

an electron respectively, E0 is the amplitude and ω the frequency of the external

electric field. With the ansatz r = r0e
−iωt we can derive the polarization of the

metal and therefore get the dielectric function in Drude form

ε(ω) = 1−
ω2
p

ω2 + iγω
, (2.15)

where ωp is the bulk plasma frequency that depends on the electron density in the

corresponding metal. If we assume a negligible damping we can conclude that the

refractive index n =
√
ε becomes strictly imaginary and light can not penetrate

the metal very far if the exciting frequency ω is smaller than ωp.

What the formulas above do not take into account is that electrons can absorb

the energy of the electric field to be excited into a higher band. This leads to a

breakdown of the theory around and above the transition energies, for gold this

is the case for wavelengths around 550 nm. There exist theoretical approaches

to include these interband transitions [11], but in this thesis we use experimental

values for the dielectric functions [12].

9



2. Basic Principles

2.2.2. Surface Plasmons

In this section we will discuss plasmons located at an interface between a metal

and a dielectric. We will derive the necessary requirements for the existence of

such a plasmon. Therefore we will start by applying Maxwell’s equations to such

an interface.

We already know that the Helmholtz equation (2.7) follows directly from

Maxwell’s equations in a source free environment, and in terms of the dielectric

function it looks like

(
∇2 + ε(r, ω)

ω2

c2

)
E(r, ω) = 0 (2.16)

If we look at a flat interface perpendicular to the z-axis at z=0, we can describe

the environment with the dielectric function

ε(r, ω) =

ε1(ω), if z > 0,

ε2(ω), if z < 0,
(2.17)

with ε1 being positive and therefore representing a dielectric, while ε2 is negative

and corresponds to the metal. If we split the electric field into a transversal

electric (TE) and a transversal magnetic (TM) mode one can show that there is

no solution to the Helmholtz equation in the TE case [11]. Therefore we will now

take a closer look at the TM mode, where the electric fields in the media are

Ej = Ej,x

 1

0

−kx/kj,z

 ei(kxx+kj,zz−ωt), (2.18)

where j is the index to the respective medium. Because the parallel component

of the wave vector is conserved at the interface, we get the condition

k2x + k2j,z = εjk
2. (2.19)

10



2. Basic Principles

Since we do not consider free charges in our current examination we find from

(2.3a) that

kxEj,x + kj,zEj,z = 0. (2.20)

Inserting this into (2.18) we arrive at

Ej = Ej,x

 1

0

−kx/kj,z

 ei(kxx+kj,zz−ωt). (2.21)

The surface plasmons also have to obey the boundary conditions for the electric

field (section A.1):

E1,x − E2,x = 0,

ε1E1,z − ε2E2,z = 0. (2.22)

If we want to satisfy equations (2.20) and (2.22) we arrive at two alternatives.

The first one is kx = 0, where clearly no wave is propagating along the surface.

The second possibility is

ε1k2,z − ε2k1,z = 0. (2.23)

Together with (2.20) this yields the following dispersion relations

k2x =
ε1ε2
ε1 + ε2

k2 =
ε1ε2
ε1 + ε2

ω2

c2
, (2.24)

k2j,z =
ε2j

ε1 + ε2
k2. (2.25)

Since we are interested in a propagating wave in x-direction we require a real kx,

which imposes certain relations on the dielectric functions. If we look at (2.24) we

11



2. Basic Principles

see that the product and the sum of the dielectric functions need to have the same

sign. Furthermore, we demand an imaginary kz because we want waves localized

at the surface and not propagating into the media. This gives for the dielectric

functions

ε1(ω) · ε2(ω) < 0, (2.26)

ε1(ω) + ε2(ω) < 0. (2.27)

These relations are fulfilled if we combine a metal which has a negative dielectric

function with a dielectric which usually has a positive dielectric function smaller

than that of the metal.

Figure 2.2.: Dispersion relation of a surface plasmon. Here we assume a surface
between vacuum and metal. The dispersion relation of light in vacuum (yellow
solid line) does not cross the dispersion relation of the surface plasmon (red). An
incoming wave in the dielectric (yellow dashed) crosses the red line and and a
surface plasmon with this frequency can be excited (source: [13]).

In Fig. 2.2 the dispersion relation of the surface plasmon is plotted together with

that of light in the dielectric ω = kxc/nd. We see that no surface plasmon can

be excited by such an electromagnetic wave because the lines of the dispersion

relations do not cross, which means, that energy-momentum conservation can not

12



2. Basic Principles

εg

εm

εb εm
εb

a) b)

εg

Figure 2.3.: Excitation of surface plasmon. If the dielectric of the prism is higher
than that of the background total can occur and the dispersion in the prism is less
steep than in the background. The evanescent field of the totally reflected wave
in the prism has the same dispersion relation as the wave itself, therefore it can
excite a surface plasmon at the interface between background and metal. For a)
the Otto geometry it is difficult to keep the distance constant whereas for b) the
Kretschmann-Raether geometry the thickness of the metal film has to be smaller
than the skin depth of the evanescent field.

be fulfilled. A solution to achieve such an excitation is to “tilt” the light line by

slowing down the exciting light. This means that the light has to come in through

an optically thicker medium than the dielectric along which the surface plasmon

propagates. This can be accomplished in the Kretschmann-Raether geometry [14]

or the Otto geometry [15] which are shown in Fig. 2.3.

2.2.3. Particle Plasmons

If we turn from a planar interface to a metallic nanoparticle that is smaller than

the exciting wavelength we do not have propagating waves but localized plasmons.

The free electron gas in the metal gets polarized and the ionic background exhibits

a restoring force. Thus the particle acts as an oscillator whose resonance not only

depends on the properties of the involved media but is also strongly influenced by

the geometry and size of the particle.

13



2. Basic Principles

Figure 2.4.: Particle plasmon. The whole particle gets polarized by the electro-
magnetic wave (source: [13]).

2.3. Semiconductors

Semiconductors are shaping our everyday lives because most of our electronic

devices contain a computer chip which can only work because of the special prop-

erties of semiconductors. But not just their electric transport properties make

them interesting, they also have unique optical properties. Semiconductors in the

ground state would behave like an insulator but the low energy gap between the

valence band filled with electrons and the empty conduction band makes it rela-

tively easy to optically excite electrons into the conduction band.

The electrical properties can be described by intraband transitions, carrier-carrier

interactions inside the respective bands. But we are interested in the optical

properties which are connected to interband transitions, processes that change

the band of an electron. One way to achieve an excitation of an electron into the

conduction band is to shine light, that matches the energy difference between the

bands, onto the semiconductor. The bandgap of many semiconductors is in the

visible or near infrared light regime.

We will now derive some of the optical properties of semiconductors following

[16].

2.3.1. Excitons

If a bound electron gets excited it leaves behind a positively charged hole. These

two different charge carriers will then be coupled by an attractive Coulomb force.

14



2. Basic Principles

This can be described quantum mechanically through a quasiparticle called exci-

ton. We can distinguish two limiting cases - strongly bound Frenkel excitons and

loosely bound Wannier or Wannier-Mott excitons. Frenkel excitons are created

in materials where the Coulomb interaction is strong between electron and hole.

This is the case in materials with a low dielectric constant and can e.g. be found

in organic semiconductor crystals. In inorganic semiconductors we usually have a

high dielectric constant and the interaction between the charges is screened, lead-

ing to Wannier-Mott excitons. The binding energy of a Wannier-Mott exciton is

only a few meV in contrast to a Frenkel exciton which can have binding energies

up to several hundred meV.

2.3.2. Effective Mass

With quantum mechanics we can calculate the equation of motion for an electron

in a crystal with an applied electric field E as

d2r

dt2
=

1

h̄2
d2E(k)

dk2
qE, (2.28)

where E(k) is the energy as function of the wavenumber of the electron [17]. If we

compare this with the equation of motion for a free electron in an electric field

d2r

dt2
=

1

m
qE, (2.29)

we see that we can describe the electron in the crystal as a free electron with a

modified mass

m∗ =

(
1

h̄2
d2E(k)

dk2

)−1
, (2.30)

which is called the effective mass of the electron.

Since any smooth function can be approximated by a parabola near a local ex-

tremum and the second derivative of a parabola is constant we can assume a

constant effective mass for our charge carriers. This assumption is justified be-

cause any excess energy that a hole or electron might have directly after the

excitation will be transferred to the crystal lattice. This process happens rapidly

compared to the lifetime of the exciton, and therefore the exciton will spend most

15



2. Basic Principles

Figure 2.5.: Band structure of Gallium-Arsenide. The physical processes we are
considering take place at the maximum of the valence band and the minimum of
the conduction band.

of its lifetime in its lowest possible energy state. Because the conduction band

is empty or at least sparsely populated the lowest possible energy state is at the

band minimum.

2.3.3. Interband Polarization

As discussed in the exciton section an excitation of an electron into the conduction

band is accompanied by a separation of charge which leads to a polarization of the

material, the so called interband polarization. The polarization is the expectation

value of the electric dipole operator er

P(t) =
∑
S

∫
〈Ψ†S(r, t)erΨS(r, t)〉dτ, (2.31)

where the field operators Ψ†S(r, t) and ΨS(r, t) describe the creation and annihi-

lation of an electron with spin S at position r. In spatially homogeneous systems

the field operators can be expanded in terms of Bloch functions ψλ

16



2. Basic Principles

ΨS(r, t) =
∑
λ,k

aλ,k,S(t)ψλ(k, r), (2.32)

where λ is the band index. Inserting this into (2.31) we get

P(t) =
∑

λ,λ′,k,k′

〈a†λ,kaλ′,k′〉
∫
ψ∗λ,k(r)erψλ′,k′(r)dτ, (2.33)

where we incorporated the spin index into the summation over k. The integral

over the Bloch functions can be calculated generally[16] and gives

∫
ψ∗λ,k(r)erψλ′,k′(r)dτ = δk,k′dλλ′ , (2.34)

with the dipole moment dλ,λ′ that is associated with the respective interband tran-

sition. We restrict our treatment to the transition between valence and conduction

band and get for the interband polarization

P(t) =
∑
k

〈a†c,kav,k〉dcv + c.c. . (2.35)

2.4. Nano and Quantum optics

Applying quantum mechanics to optical phenomena led to many new insights

and applications during the last century, the most prominent certainly being the

invention of the laser. A fully quantum mechanical approach would require to

quantize the particles and the electromagnetic fields. In this thesis we choose a

semi classical approach where we treat the exciton as a quantum emitter but do

not quantize the radiating field. Textbooks that discuss quantum optics are e.g.

[18] and [16].
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2.4.1. Dipole Approximation

Typically the size of an atom is small compared to the wavelengths of the light

that performs the transitions between different atomic energy levels. Thus the

variation of the electric field over the extent of the atom almost does not vary. So

we have k · r� 1 and we can expand the electric field in a power series

E(r, t) = E(t)e−ik · r = E(t)(1− ik · r + ...) (2.36)

and only take the leading term of the expansion. This is known as the electric

dipole approximation.

Taking only the leading term is equivalent to neglecting the momentum of the

photon, k→ 0, especially in comparison to the electron momentum. This means

that only vertical transitions are allowed in a band diagram like Fig. 2.5.

2.4.2. Rotating Wave Approximation

If we consider an optical two level system with the frequency ω corresponding to

the transition between the states driven by an electrical field

E(t) = E0 e
−iωt + E∗0 e

iωt, (2.37)

the interaction Hamiltonian within the dipole approximation is Hop = −d · E,

where d is the dipole moment of the transition between the states. Therefore we

can write the interaction Hamiltonian for a two state system as

Hop = −(|2〉 〈1|d21 + |1〉 〈2|d∗21)(E0 e
−iωt + E∗0 e

iωt) (2.38)

where we used d12 = d∗21. If we transform this Hamilton in the interaction picture

with the transformation U = eiH0t = eiω0t|2〉〈2|, we obtain
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Hop,I = UHopU
† =− |2〉 〈1| (d · E0 e

−i(ω−ω0)t + d · E∗0 ei(ω+ω0)t)

− |1〉 〈2| (d∗ · E0 e
−i(ω+ω0)t + d∗ · E∗0 ei(ω−ω0)t).

(2.39)

If the frequency of the electric field is near the resonance, the terms with (ω−ω0)

become nearly time independent, whereas the counter rotating terms (ω+ω0) os-

cillate rapidly and average out to zero on the timescales we are interested in. If we

neglect these fast oscillating terms we arrive at the rotating wave approximation

Hop,I = − |2〉 〈1|Ωe−i(ω−ω0)t − |1〉 〈2|Ω∗ei(ω−ω0)t, (2.40)

with Ω = d · E0 being the Rabi frequency.

2.4.3. Cross sections

This section deals with the absorption and scattering cross sections for nanopar-

ticles. It mainly follows the derivations in [19].

We define the scattering cross section as the power of the scattered electromagnetic

field integrated over a sphere around the scattering particle divided by the power

of the incoming field. The energy flux of an electromagnetic wave is given by the

Poynting vector

S =
c

4π
E×B, (2.41)

which points in the propagation direction of the wave. For a plane wave the time

average of its magnitude is given by

〈S〉 =
c

8π
E2 . (2.42)

This quantity is also called intensity.

If we apply a field E0 to a particle it induces induces a dipole moment d

d = αE0 . (2.43)
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Here α is the polarizability a tensor that links the dipole moment to the applied

field. The polarizabilty may be complex and depend on frequency if we consider

an electromagnetic wave as the applied field.

γ

d

r

E

Figure 2.6.: Electric
dipole scattering.

A driven oscillating dipole radiates in all directions, which is

the so-called Rayleigh scattering. The electric field scattered

by the dipole at a distance r far away (r � λ) is given by

Esca =
k2|d| sin γ

r
eikr, (2.44)

γ is the angle between the dipole and the direction to the

point of measurement [5]. The scattered electric field is

oriented perpendicular to r and lies in the same plane as

the dipole.

If we integrate the intensity of the scattered wave over a sphere we get the total

energy scattered per unit time

Psca =
1

3
k4c|d|2. (2.45)

Dividing this by the intensity of the incoming wave and assuming the amplitude

of E0 as unity, which we do in all our simulations, we obtain the scattering cross

section

Csca =
8π

3
k4|d|2. (2.46)

We can get the absorbed power if we integrate the total intensity over a surface

containing the scattering particle. With total intensity we mean the intensity of

the superposition of incoming and scattered field

Etot = E0 + Esca . (2.47)

If the above mentioned integration does not evaluate to zero, there has to be an

energy sink inside the surface, meaning that the particle has to absorb energy.

Although the integral over a sphere is much tougher in this case because the
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electric field is not radially symmetric we can derive the absorption cross section

similar to the scattering cross section and arrive at

Cabs = 4πk Im(e ·d), (2.48)

where e is the unit vector in direction of the incoming field.

We have now summarized the main ingredients for the derivations and simulations

that will follow in the next chapters.
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3. Theory

Figure 3.1.: Semiconductor nanorod with attached gold particle.

3.1. Describing the System

The system we investigate in this thesis is a semiconductor-metal nanoparticle em-

bedded in a dielectric environment. The environment is incorporated by classical

electromagnetic means and the optical response of the semiconductor is treated

in the exciton picture.

The general Hamiltonian of such a system is

H = H0 +Heh +Henv +Hopt +Hee +Hhh, (3.1)

where H0 denote the single particle Hamiltonian for electrons and holes, including

kinetic energy and the confinement potential, Heh describes the direct Coulomb
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interaction between electron and hole, Henv incorporates the Coulomb coupling

to the dielectric environment and Hopt accounts for optical creation of excitons.

Hee and Hhh describe the electron-electron and hole-hole interaction, respectively,

but we assume a low density of excitons and therefore neglect these interactions

in linear response.

In the two band approximation we consider only one electron and and one hole

band. Thus we can write H0 in terms of the field operators Ψ†i (r) and Ψi(r), which

create/annihilate an electron or a hole at position r, as

H0 =
∑
i=e,h

∫
Ψ†i (r)

(
− ∇

2

2mi

+ Vi(r)

)
Ψi(r)dτ, (3.2)

where mi denotes the effective mass of an electron or hole in the semiconductor.

The Coulomb term becomes

Heh = −
∫∫

G0(r, r
′)ne(r)nh(r

′)dτdτ ′, (3.3)

where the ni = Ψ†i (r)Ψi(r) are the electron and hole particle densities and

G0(r, r
′) = 1/(ε|r−r′|) is the electrostatic Green’s function in an unbound medium.

To describe the optical interaction with an external field we use dipole approxi-

mation and rotating wave approximation, this leads from (2.40) to

Hop = −
∫

Ω(r)Ψ†e(r)Ψ†h(r) + Ω(r)∗Ψe(r)Ψh(r) dτ. (3.4)

Here Ω(r) = d · E+(r) is the Rabi energy, with d the dipole moment associated

with the interband transition and E+ the external electric field with positive

frequency components. The only part that is left now is the interaction with the

environment which we describe through the bound charges ρb which are induced

due to the free charge density ρf of electrons and holes. Then this interaction can

be written in the form
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Henv =

∫∫
G0(r, r

′)ρf (r)ρb(r
′)dτdτ ′

=

∫∫
G0(r, r

′)(Ψ†hΨh −Ψ†eΨe)ρb(r
′)dτdτ ′.

(3.5)

For the Hop and Henv we will see a strong influence of the metallic nanoparticle

compared to the bare semiconductor. In the environment part the bound charges

will be much stronger because the electrons are free within the metal and the

optical response will be enhanced due to the field magnification of the particle

plasmons.

3.2. Polarization

In a semiconductor electrons and holes are always created pairwise by incident

light. Thus, if we assume that in the ground state there are no electrons in the

conduction band and the valence band is completely filled, one can show that

every n-point function An, normal ordered with respect to the exciton-picture, is

at least of order m in the electric field [20]. Here m = max(ne, nh) where ne and

nh are the number of electron and hole field operators in the n-point function.

In this thesis we consider the linear response in the electric field therefore the

only density matrix we have to treat is the 2-point function interband polarization

p(r, r′) = 〈Ψh(r)Ψe(r
′)〉. All density matrices of higher order in the electric field

will be discarded.

To obtain the equation of motion for the interband polarization we use the Heisen-

berg equation of motion

d

dt
p = − i

h̄
[p,H] , (3.6)

the square bracket denoting the commutator of the two operators.

24



3. Theory

To get the commutators of the field operators with the Hamiltonian we use the

anti-commutation relations of fermionic field operators, see for example [21],

{Ψi(r),Ψ†j(r
′)} = δijδ(r− r′) (3.7)

{Ψi(r)†,Ψj(r
′)†} = {Ψi(r),Ψj(r

′)} = 0 (3.8)

(i = e, h), and the fact that we can discard all operators which consist of more

than one field operator of the same type after normal ordering. Thereby we get

[Ψe(r), H0] =

(
− ∇

2

2me

+ Ve(r)

)
Ψe(r), (3.9)

[Ψe(r), Heh] = −
∫
G0(r, r

′)ρhΨe(r)dτ ′, (3.10)

[Ψe(r), Henv] = −
∫
G0(r, r

′)ρbΨe(r)dτ ′, (3.11)

[Ψe(r), Hop] = −Ω(r)Ψ†h(r). (3.12)

The commutation relations for the hole operators are analog, just the sign in

the equations with Henv and Hop changes. After using the product relation for

commutators

[AB,C] = A[B,C] + [A,C]B, (3.13)

we can arrange the field operators in normal order and then neglect again all the

terms that correspond to O(E2). Hence we obtain

i
d

dt
p =

(
− ∇

2
e

2me

+ Ve(re)−
∇2
h

2mh

+ Vh(rh)−G0(re, rh)

)
p(re, rh)

−
∫

(G0(re, r)−G0(rh, r))〈Ψh(rh)ρb(r)Ψe(re)〉dτ − 〈Ψh(rh)Ψ
†
h(rh)〉Ω(re, t).

(3.14)

From (3.7) it follows that the last term is simply δ(re − rh)Ω(re, t). The second

term describes the coupling to the environment. In the integral we can replace
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(see section A.2)

G0ρb = (
G

ε
−G0)ρf = (

G

ε
−G0)(−Ψ†eΨe + Ψ†hΨh), (3.15)

where G is the full electrostatic Green’s function incorporating the geometry of

the media. After invoking the commutation relations again we can finally write

down the equation of motion for the polarization in the linear field limit

i
d

dt
p(re, rh) =

(
− ∇

2
e

2me

+ Ve(re)−
∇2
h

2mh

+ Vh(rh)−
G(re, rh)

ε

)
p(re, rh)

− δ(re − rh)Ω(re, t).

(3.16)

3.3. Optical response

To calculate the scattering and absorption spectra of the hybrid particle we have

to identify the contributions of all the different processes to the dipole moment d

and electric field E in equations (2.46) and (2.48).

For our further derivations we use exciton wave functions ψ which have to obey

the Schrödinger equation(
− ∇

2
e

2me

+ Ve(re)−
∇2
h

2mh

+ Vh(rh)−
G(re, rh)

ε

)
ψ = εψ. (3.17)

It is shown in section A.3 how they can be calculated. Since the exciton wave

functions form an orthonormal set we can expand p(r, r′) as

p(r, r′) =
∑
λ

cλψλ(r, r
′). (3.18)

Inserting this into (3.16) and assuming a harmonic driving field with frequency ω

we get

ω
∑
λ

cλψλ(re, rh) = −δ(re − rh)Ω(re) +
∑
λ

cλελψλ(re, rh) (3.19)
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Einc

E
ref

E
exc

d
surf

d
exc

Figure 3.2.: Fields and dipole moments. We have an incoming plane wave excita-
tion Einc, a field generated by polarization of the material Eref which is dominated
by the evanescent plasmon field and a dipole field of the exciton Eexc which also
polarizes the surrounding media. The induced surface charges exhibit a dipole
moment dsurf as well as the exciton itself dexc.

because the exciton wave functions are the eigenfunctions of the Hamiltonian in

(3.16). To determine the coefficients we modify the previous equation by calcu-

lating the scalar product with ψ∗µ(re, rh) and using orthonormality of the wave

functions

(ω − εµ)cµ = −
∫

Ω(r)ψµ(re, rh). (3.20)

To solve this equation we have to take a closer look at the electric field that occurs

in the Rabi energy. It is composed of the external field, the field reflected by the

surface, which is dominated by the evanescent field of the plasmon, and the dipole

self interaction of the exciton as shown in Fig. 3.2,

Ω(r) = d · [Einc + Eref (r) + Eexc(r)]. (3.21)

Since dp(r, r) is the interband dipole at r the self induced field of the exciton can

be expressed as
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Eexc(r) = k2
∫ ←→

G (r, r′)d
∑
µ

cµψµ(r′, r′)dτ , (3.22)

where
←→
G (r, r′) is the dyadic Green’s function that relates a dipole at r′ to its

reflected field at r via the environment, which lets us define the term

Kµµ′ = k2
∫
ψµ(r, r) d(r) ·

←→
G (r, r′) ·d(r′) ψµ′(r

′, r′)dτdτ ′. (3.23)

Together with the additional substitution

Ωµ =

∫
d · [Einc + Eref (r)]ψµ(r, r)dτ (3.24)

we can rewrite (3.20) as

(ω − εµ)cµ = −Ωµ −
∑
µ′

Kµµ′c
′
µ, (3.25)

which gives a set of linear equations that are easy to solve numerically.

We do not only have to split up the electric field but also have to consider what

the involved dipoles, that interact with those fields, are. First of all we consider

the dipole moment exhibited by the surface charge of the particle

dsurf =

∫
∂V

σ(s)s da =

∫
∂V

[σinc(s) + σexc(s)]s da, (3.26)

where σinc is the surface charge induced by the incoming electric field, selfconsis-

tently incorporating the reflected field of the metallic nanoparticle, and σexc is the

surface charge generated by the exciton. The other dipole moment we consider is

that of the exciton, i.e. the integral over the polarization

dexc =
∑
µ

∫
d cµψµ(r, r) dτ. (3.27)

We now have all the ingredients needed to calculate the spectra of the particle:
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Csca =
8π

3
k4 |dsurf + dexc|2 (3.28)

and

Cabs ∝ Im{Einc ·dsurf +
∑
µ

cµ

∫
ψµ(r, r)d · [Einc + Eref (r)+Eexc(r)]dτ}. (3.29)

If we take a closer look at the integral in the absorption cross section we see that

it is the same as the right hand side of (3.20) except for the sign. We can therefore

write a simpler expression

Cabs = 4πk Im{Einc ·dsurf −
∑
µ

c2µ(ω − εµ)}. (3.30)

With these results we conclude this chapter and go on to show the numerical

means we used to calculate the quantities which occurred in our derivations so

far.
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4. Numerics

Solving Maxwell’s equations and calculating the Green’s functions is not possible

for arbitrary particle geometries and we have to resort to numerics to treat our

system. This chapter will give an overview of the used numerical techniques. All

computations and the visualizations were done in Matlab with excessive use of

the MNPBEM toolbox [1]. This is a toolbox to simulate metallic nanoparticles

with the boundary element method which we will explain shortly. Other methods

of solving Maxwell’s equations may be found in [22], for example.

4.1. Discretizing the Hamiltonian

Since the interaction of the charges with the dielectric media is not solvable analyt-

ically we had to use a grid for our Hamiltonian. We chose a 3-dimensional Carte-

sian grid and incorporated the Laplace operator via finite differences method

∇2f(r) =
∑
i

f(r1, .., ri + h, ..) + f(r1, .., ri − h, ..)− 2f(r1, .., ri, ..)

h2i
(4.1)

and periodic boundary conditions for the grid. For the confinement we set the

points inside the semiconductor to the negative value of the confinement potential

and the points outside to zero.

4.2. Boundary Element Method

The Boundary Element Method (BEM) is a method to solve Maxwell’s equations

developed by Garcia de Abajo and Howie [2]. As the name suggests, this tech-
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nique just discretizes the boundaries of a body rather than the whole volume of

the particle, as done in Discrete Dipole Approximation (DDA), lowering the re-

quirements for CPU time and memory. The catch is that it does not apply to

arbitrary dielectric environments but one has to make the following assumptions

for the involved media:

• homogeneous isotropic dielectric functions

• sharp boundaries between different media

But these assumptions are satisfied for most systems involving plasmonics, espe-

cially the systems covered in this thesis.

4.2.1. BEM theory

As we already mentioned, a solution to the Poisson equation (2.9) in the quasistatic

approximation can be written as

φ(r) = φext(r) +

∮
Vi

G(r, s)σ(s)da. (4.2)

φext is the external potential and σ(s) the charge density at the boundary of

medium i. This solution fulfills (2.9) everywhere except at the boundaries of

different media. Therefore we have to choose the surface charge σ so that the

boundary conditions of Maxwell’s equations (see Appendix A.1) are fulfilled. From

condition (A.11) follows that the charge density has to be the same on both sides

of the surface. For the second condition (A.12) we require the surface derivative

of the potential

lim
r→s

n∇φ(r) = lim
r→s

∂φ(r)

∂n
= lim

r→s

 ∂

∂n

∫
∂V

G(r, s′)σ(s′)da′ +
∂φext(r)

∂n

 . (4.3)

But we have to take care of the singularity in the Green’s function at s′ → s. If

one assumes a homogeneous charge density on a small area around s the integral
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Figure 4.1.: Surface discretization. Every interface between different media is
split into small planar polygons.

evaluates to ±2πσ(s), the sign depending on the direction from which the surface

is approached[13]. The whole expression then reads

lim
r→s

n∇φ(r) =
∂φ(s)

∂n
=

∫
∂V

F (s, s′)σ(s′)da′ ± 2πσ(s) +
∂φext(s)

∂n
(4.4)

where F = ∂nG and the surface integral excludes a small area around s. Now

we are almost finished because this equation can be solved after discretizing the

boundary.

4.2.2. Surface discretization

Since equation (4.4) is only solvable analytically for very few geometries, e.g.

spheres [23], we have to discretize the surface and split it into small planar faces.

We take all surface elements small enough to justify the assumption of homoge-

neous charge density throughout each face and can than rewrite equation (4.4) in

discretized form

(
∂φ(s)

∂n

)
i

=
∑
j

Fijσj ± 2πσi +
∂φext
∂n

. (4.5)

Inserting this vector equation into the boundary condition (A.12) we can simply

calculate the surface charge by matrix inversion
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σ = −(Λ̂− F̂)−1
∂φext

∂n
, (4.6)

with

Λ̂ = 2π
ε2 + ε1
ε2 − ε1

1

a matrix that incorporates the dielectric functions of the adjacent media.

With the knowledge of the surface charge we can compute the potentials, e.g. by

(2.2), and fields everywhere else. If we want to know the fields or potentials far

away, we simply put the charges in the middle of each face and treat them like

point charges. If we look closely to a particle surface we have to smear out the

charge over the face and integrate over the charge distribution to get accurate

results.

4.3. Program outline

This section outlines the structure of our approach. The approach can be divided

into three main parts:

• Initialization of particle:

Setting the geometry and discretization of the particle with MNPBEM tool-

box and defining material parameters

• Exciton wave functions:

We start with single particle wave functions of electron and hole calculated

by a simple particle-in-a-box approach. Then we calculate their self inter-

action and mutual interaction, which consists of a direct part and indirect

interaction through the environment. From this we then calculate the exci-

ton wave functions. More details can be found in section A.3.

• Optical response:

With the knowledge of the exciton wave functions we can calculate the co-

efficients for the polarization and therefore calculate the optical response as
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shown in section 3.3. Since the dielectric functions depend on light frequency

this calculations have to be looped over all incoming wavelengths.

Before we close this chapter we also want to mention the limiting factors of our

numerical approach. For the exciton self interaction we have to consider every

point of our space grid as an emitting and absorbing dipole and therefore we

have to calculate all the dyadic Green’s function for every combination of space

points. We also have to consider that many points are very close to the surface

and we can not use the approximation of point charges on the surfaces but have

to integrate over the homogeneous charge distribution on each surface element in

many cases. This two factors lead to a rapid increase of memory and time demands

dependent on the grid size. The computations for the optical response part, which

is the most time demanding task in this scheme, have to be done separately for

each excitation wavelength and the computation time increases linearly with the

energy resolution.
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The semiconductor in our simulations can be modeled by various parameters which

are listed in table 5.1. The values we took for the presented results account for

Cadmium-Selenide (CdS). For the metallic sphere we used gold. For the respective

frequency dependent dielectric functions we used literature values that can be

found in [24] for CdS and in [12] for gold. The values we used for the particle

geometry are listed in table 5.1 and are explained in Fig. 5.1. The edges of the

semiconductor cylinder are rounded to avoid possible singularities. The evanescent

field at such an edge would become unrealistically high and the results would be

dominated by a few grid points near the edges. We defined the roundness with a

parameter d which specifies the difference between the radius of the semiconductor

in the middle of the rod and the radius where it touches the gold sphere.

We took exactly these particle dimensions to compare our results with [24] and

because the exciton energies match the plasmon resonance for these dimensions.

rsc

raud

l

Figure 5.1.: Particle dimensions.
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Particle parameters value
dielectric constant of background (toluene) 2.49
radius semiconductor rsc 2.9 nm
length semiconductor l 14 nm
radius gold rau 3 nm
rounding parameter d 0.5 nm
Semiconductor parameters value
dipole strength 0.5 Debye
band gap 2.420 eV
effective mass electrom 0.067 me

effective mass hole 0.38 me

confinement potential hole 215 meV
confinement potential electron 400 meV

Table 5.1.: Parameters used in our simulations.

5.1. Combining Particles

We will delay the discussion of the exciton behaviour for a while and first of

all discuss the optical properties of the particle where the semiconductor is just

described with its dielectric function without the exciton. In Fig. 5.2 we compare

the scattering and absorption spectra for the individual components with the

spectra of the combined particles. As excitation a plane wave polarized along the

symmetry axis of the particle was assumed.

First of all we see that the optical response is dominated by the absorption which

is about three orders of magnitude stronger than the scattering. We also see

that the complete particle response is more than the sum of its parts. The cross

sections for the combined particle are larger than the sum of component cross

sections. Additionally the resonance frequency of the metallic particle is shifted

to lower frequencies in the presence of the semiconductor. These findings match

the results of [24] quite well.
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Figure 5.2.: Influence of semiconductor on plasmon behaviour. This graphs com-
pare a) scattering cross section and b) absorption cross section of the constituents
and the whole particle. The red line is the bare gold nanoparticle, the green line
shows the bare semiconductor rod, the blue line shows the simulation results for
the combined hybrid particle and the dashed blue line is the sum of red and green
line for comparison.

5.2. Charge carrier densities

The calculations in the previous section can easily be done with the MNPBEM

toolbox and it is just a matter of defining the right geometries. The trickier part is

to incorporate the excitonic behaviour. For this we had to calculate the densities

of the charge carriers. Therefore we take a look at the influence of the surrounding

media on the wave functions of the charge carriers. If we look at the figures 5.3 and

5.4, we see that the symmetric wave function of the particle-in-a-box approach for

the bare semiconductor is deformed by the interaction with the gold particle. The

image charge in the metal attracts the charges and the density shifts towards the

tip of the matchstick. Through the inclusion of the electron-hole interaction the

charges get attracted to each other and feel the repulsion from the image charge

of the opposite charge carrier. We can also see that the hole is stronger localized

due to its higher effective mass.
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Figure 5.3.: Electron densities. a) charge density in square well potential of
electron ground state b) density including self interaction with the environment, c)
electron charge density in the exciton ground state.
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Figure 5.4.: Hole densities. a) charge density in square well potential of electron
ground state b) density including self interaction with the environment, c) hole
charge density in the exciton ground state.
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Together with the exciton wave functions we also calculated the energies for the

exciton excitations. Including the semiconductor band gap they lie in the range

from 610 nm to 530 nm, approximately matching the plasmon resonance.

5.3. Polarization

An important step to get to the optical properties of the particle is to compute

the interband polarization p(r, r) =
∑

µ cµψµ(r, r) which is shown in Fig. 5.5 and

Fig. 5.6. We calculated the response of the particle for incident light polarized in

the same direction as the symmetry axis of the matchstick shaped particle.

Figure 5.5 shows the interband polarization at a wavelength not resonant with the

exciton energies and the plasmon peak. In this case we see that the polarization is

symmetrically distributed in the semiconductor and the imaginary part, which is

connected to the absorption of the particle, is much lower than in Fig. 5.6 which

shows the polarization at λ = 650 nm, the wavelength that matches the lowest

exciton state. The second figure also shows that for this wavelength the influence

of the plasmon is more pronounced and the semiconductor is stronger polarized

in the vicinity of the gold tip.

If we look at the real part of the polarization due to the exciton in Fig. 5.7 we

clearly see resonant behaviour at each exciton energy level. For energies higher

than a resonance the polarization is phase shifted by 180◦ and points in the op-

posite direction of the exciting field. For lower energies polarization and exciting

field are in sync. The imaginary part, which is connected to the absorption, only

has spikes at the resonances.
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Figure 5.5.: a) real part of polarization and b) imaginary part of polarization for
excitation with λ = 650 nm.

−5 0 5

0

5

10

15

20

a)

 

 

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

−5 0 5

0

5

10

15

20

b)

 

 

0

0.2

0.4

0.6

0.8

1

Figure 5.6.: a) real part of polarization and b) imaginary part of polarization for
excitation with λ = 608 nm which is the resonance of the lowest exciton state.
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Figure 5.7.: Real and imaginary part of the exciton polarization summed over the
whole particle.

5.4. Optical response

This section contains the main goal of the thesis, the optical properties of the

hybrid particle including exciton interactions.

In figures 5.8 and 5.9 we compare the optical response of the bare semiconductor

rod and the Janus particle this time including excitons. We see that the resonances

in the bare semiconductor are at a shorter wavelength, this means that the image

charge in the metallic sphere lowers the exciton energies. Further we see that the

peaks in absorption and scattering in 5.9 are higher than in 5.8, even if we would

subtract the plasmon peak from Fig. 5.2. This is caused by a stronger coupling

of the dipole to the exciting field via the evanescent plasmon field.

We also want to identify the effect of the self interaction of the exciton dipole

via the environment on the optical response. This is the term that is described

by Kµµ′ in (3.25). Therefore we compare Fig. 5.9 with 5.10 where the optical

response with Kµµ′ = 0 is plotted. We see that the self interaction just leads to a

damping of the resonances but does not influence their location.
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Figure 5.8.: Scattering and absorption spectrum of bare semiconductor rod in-
volving excitons.
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Figure 5.9.: Scattering and absorption of the whole Janus particle including ex-
citons.
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Figure 5.10.: Spectrum without dipole self interaction.

5.5. Influence of numerical parameters

Besides the physical parameters, like size, dielectric function or dipole moment,

also numerical parameters may have a big influence on the calculations. To ensure

meaningful results we have to check that our numerical approximations have as

little influence as possible.

5.5.1. Grid size

The Cartesian grid incorporates the whole particle and about half of the particle

size of background in each direction. Therefore the most interesting points that

lie inside the particle are about one eighth of number of total points.

To determine a meaningful grid size we used the energy of the lowest state as

measure of convergence. For the simulations that led to the presented results, a

30x30x50 grid was used. For these grid parameters the energy levels of the exciton

converge. For smaller grids the energies do not converge.

We also determined the energies for much higher grid resolutions, up to 90x90x130,

and they are approximately the same as for the used grid parameters. We could
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not use this high resolution for the whole calculations because of memory and

time limitations.

5.5.2. Number of states

To calculate the exciton wave functions we used products of one particle wave

functions of electrons and holes, see equation (A.28). Therefore we needed a

numerical cut off for the number of these single particle wave functions. We took

all states below the confinement energy because we are only interested in the

charges that are confined to the semiconductor (bound states).

5.6. Problems

In the first calculations we used a particle without rounded edges. But sharp

edges led to unrealistically high fields. Together with the approximation that was

incorporated by the grid approach, grid points near these edges had an dispropor-

tionately high influence on the results.

5.7. Conclusion

In this thesis we studied optical properties of a semiconductor-metal hybrid

nanoparticle. We developed a scheme to describe the polarization due to the

excitons created in the semiconductor within the linear field regime. We used the

MNPBEM toolbox [1], that is based on the boundary element method, to derive

the Green’s functions for our system. With these Green’s functions we were able

to calculate the exciton wave functions and the polarization dynamics.

In a simple dielectric simulation, neglecting exciton effects, we saw that the scat-

tering and absorption cross section of the combined particle is larger than the sum

of the optical response of the different components.
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We saw that the exciton energies in the combined particle are lowered due to

image charges in the metallic particle. This also leads to a stronger localization

of the exciton near the metal-semiconductor interface.

As expected the optical response of the excitons mainly depends on the strength

of the interband dipole moment d. Typically it is in the range from 0.1 to 1 Debye.

In our calculations we assumed it to be 0.5 Debye. The strength of the exciton

resonances also depend on their relative location to the plasmon peak because

they are enhanced by the evanescent field of the plasmonic particle. The electron

self interaction with the environment, which is described by Kµµ′ , just has a little

damping effect but no effect on the resonance frequencies.
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A. Calculations

A.1. Boundary Conditions

To study the behaviour of the normal component of the electromagnetic field at

interfaces between dielectric media we look at equations (2.3a) and (2.3b) in their

integral form [4] ∮
S

D · n da = 4π

∫
ρdτ, (A.1)∮

S

B · n da = 0. (A.2)

We now take these integrals over the cylindric volume shown in Fig. A.1 but

place some restrictions on that volume. First of all we take the limit h → 0 for

the height of the cylinder and second we take a very thin cylinder, so we can

assume constant fields at the top and bottom area of the cylinder and a constant

charge density at the interface. In these limits we get for the left hand side of the

n
Δa

h

Δl

ε1,μ1 

E1,H1 

Figure A.1.: Schematics for derivation of boundary conditions for Maxwell’s equa-
tions
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equations above ∮
S

D · n da = (D1−D2) · n ∆a, (A.3)∮
S

B · n da = (B1−B2) · n ∆a, (A.4)

with the fields in the respective medium, n the surface normal and ∆a the area of

the top of the cylinder. On the right hand side of (A.1) we just have to consider

the (constant) surface charge density in the limit h→ 0

4π

∫
ρdτ = 4πσ∆a. (A.5)

Therefore we get the boundary conditions for the normal components of the elec-

tromagnetic field

(D1−D2) · n = 4πσ, (A.6)

(B1−B2) · n = 0. (A.7)

To get the conditions for the tangential components we take the integral form of

(2.3c) and (2.3d) ∮
C

H · dl =
1

c

∫
S

(4πj +
∂D

∂t
) · n da, (A.8)∮

C

E · dl = −1

c

∫
S

∂B

∂t
· n da. (A.9)

Similar to the procedure above this leads to

n×(H2−H1) = j, (A.10)

n×(E2−E1) = 0. (A.11)

Since we do our calculations by means of potentials we rewrite the equations to

get conditions for potentials instead of fields. In homogeneous media, D = εE,
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equation (A.6) can be rewritten as

ε1
∂φ1

∂n
− ε2

∂φ2

∂n
= 4πσ (A.12)

where ∂/∂n is the derivative in the direction normal to the surface.

From the continuity of the tangential electric field (A.11) we get for the potential

(∇φ1)
‖ = (∇φ2)

‖ (A.13)

A.2. Potentials in media

If we look at a system with free charges ρf and bound charges ρb we can introduce

two different potentials

∇2φ0 = −4πρf , (A.14)

∇2φ = −4π(ρf + ρb). (A.15)

These correspond to the electric displacement and the electric field

D = −∇φ0, (A.16)

E = −∇φ. (A.17)

In a homogeneous medium we can use the proportionality of of these fields, D =

εE, to introduce an additional differential operator

∇2φ0 = −∇D = −∇εE = ∇ε∇φ = −4πρf ,

∇ · ε∇ = ε∇2 + (∇ε) ·∇ = ε(∇2 + e).
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Therefore the new operator is defined as

e =
1

ε
(∇ε) ·∇. (A.18)

With the help of this operator we can deduce the free charge density directly from

the potential φ

(∇2 + e)φ = −4π
ρf
ε
. (A.19)

The Green’s functions for the differential operators have to fulfill

∇2G0 = −4πδ(r− r′), (A.20)

(∇2 + e)G = −4πδ(r− r′), (A.21)

where G0 is the electrostatic Green’s function for unbound media that we already

encountered in section 2.1.3, G is a Green’s function that incorporates the geom-

etry of the system and in general has no simple analytic form. If we combine the

two equations above we can get

(∇2 + e)(G−G0) = eG0. (A.22)

Since G is the Green’s function to the occurring differential operator the solution

is

G−G0 =
1

4π
GeG0 =

1

4π
G0eG, (A.23)

where the second equality is obtained by an iterative solution to this Dyson like

equation.

We can express φ through the Green’s function for (A.19) and get

∇2φ = −4π
ρf
ε
− eφ = −4π

ρf
ε
− eGρf

ε
. (A.24)

50



A. Calculations

Inserting equation (A.14) on the left side gives

− 4π(ρf + ρb) = −4π
ρf
ε
− eGρf

ε
. (A.25)

We multiply this equation with G0 from the left and use (A.23) to get

G0ρb = G0(
1

ε
− 1)ρf + (G−G0)

ρf
ε

= (
G

ε
−G0)ρf . (A.26)

A.3. Exciton wave functions

To calculate the exciton wave functions, which we need for the calculation of

the optical response, we use products of the single particle wave functions φi of

electron and hole, i = e, h, which satisfy the Schrödinger equation

H0φ
i
µ =

(
−1

2
∇2
i + U i

conf

)
φiµ = εiµφ

i
µ. (A.27)

The exciton wave functions then are

ψ(re, rh) =
∑
µν

cµνψµν(re, rh) =
∑
µν

cµνφ
e
µ(re)φ

h
ν(rh). (A.28)

Now we can set up the following Schrödinger equation

(
−1

2
∇2
e −

1

2
∇2
h + U e

conf (re) + Uh
conf (rh)−G(re, rh)

)
ψ = Eψ, (A.29)

where G is the Greens function of the Coulomb interaction. It can be split into

three parts,

G(re, rh) = G0(re, rh) +Gind(re, rh) + Σ(re, rh). (A.30)

The direct interaction G0(r, r′) = 1/ε|r − r′|, the indirect Coulomb interaction

through induced charges Gind and Σ, the self interaction of the electron/hole via
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the environment. Here the latter two depend on the geometry of the system.

With the density matrix ρiµµ′ = φi†µφ
i
µ′ , the representations of these operators in

our basis can be written as

〈µν|G0 |µ′ν ′〉 =

∫
ρeµµ′(re)

1

ε|re − r′h|
ρhνν′(rh)dτedτh

〈µν|Gind |µ′ν ′〉 =

∫
ρeµµ′(re)G

ind(re, rh)ρ
h
νν′(rh)dτdτ

′

〈µν|Σ |µ′ν ′〉 =
1

2

∫
φ
e

µ(re)G
ind(re, re)φ

e
µ(re)dτe · δνν′

+ δµµ′ ·
1

2

∫
φ
h

µ(rh)G
ind(rh, rh)φ

h
µ(rh)dτh,

where the one-half factor in the last equation follows from the adiabatic building

of the charge distribution [7].

Now we have all ingredients to construct the Hamiltonian in the single particle

basis. By diagonalizing it, we get the energy states and coefficients in (A.28) for

the excitonic wave functions of the complete system.
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B.1. Atomic Units

Atomic units build a unit system that is based only on natural constants, it is

therefore called a natural unit system. The values of the four following constants

are set to unity by definition:

dimension symbol name SI− units

mass me rest mass of electron 9.109 · 10−31kg

charge e elementary charge 1.602 · 10−19C

electric constant 1/(4πε0) Coulomb force constant 8.987 · 109V mC−1

angular momentum h̄ reduced Planck constant 1.054 · 10−34Js

From these definitions we can derive the units for all other dimensions, the most

important are:

dimension symbol name SI− units

energy Eh Hartree Energy 4.359 · 10−18J

length a0 Bohr radius 5.291 · 10−11m

time 2.418 · 10−17s

The advantage of atomic units is simplicity of equations, e.g. the Hamiltonian of

a hydrogen atom:

HSI = − h̄

2me

∇2 − e2

4πε0r
−→ HA = −1

2
∇2 − 1

r
(B.1)
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B.2. Gaussian-CGS Units

Although the units of the electric field are pinned down in the atomic unit system

we have to introduce additional definitions to fix the units for magnetism. There

are two common variants of atomic units the SI and the Gauss-CGS systems. Since

many theoretical calculations are more convenient in CGS and some physical facts

are more inherent we used these in this thesis.

In the following table we show a comparison of Maxwell’s equations in SI and

Gaussian-CGS units:

name Gaussian SI

Gauss’s law ∇ · E = 4πρ ∇ · E = ρ
ε0

Gauss for magnetism ∇ · B = 0 ∇ · B = 0

Faraday’s law ∇× E = −1
c
∂B
∂t ∇× E = −∂B

∂t

Ampere’s law ∇×B = 4π
c j + 1

c
∂E
∂t ∇×B = µ0j + 1

c2
∂E
∂t

B.3. Energy conversion

We use vacuum wavelength as measure for the energy of incoming light. Though

strictly it has the wrong dimension it can be definitely mapped to a certain energy.

Usually in this context eV is the unit of choice but is much less descriptive.

Therefore we will give you the relation between these units.

The energy of an electromagnetic wave is given by

Eγ = h̄ω = h̄2πν = h̄2π
c

λ
, (B.2)

where c and λ are the speed of light and the light wavelength in vacuum. The

values for the occurring constants are [25]

h̄ = 6.58211899× 10−16eV s,

c = 2.99792458× 1017nm/s.
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The conversion from vacuum wavelength to eV is therefore

E[eV] =
1239.84

λ[nm]
. (B.3)

Since we used Hartree units for many of our calculations we will additionally note

the relation between eV and Eh

E[Eh] = 27.211385 ·E[eV].
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[1] Ulrich Hohenester and Andreas Trügler. Mnpbem - a matlab toolbox for the

simulation of plasmonic nanoparticles. Computer Physics Communications,

183(2):370–381, 2012.
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gen. Annalen der Physik, 330(3):377–445, 1908.

57



Bibliography

[24] Ehud Shaviv, Olaf Schubert, Marcelo Alves-Santos, Guido Goldoni, Rosa

Di Felice, Fabrice Vallee, Natalia Del Fatti, Uri Banin, and Carsten Sönnich-
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