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Abstract

In my bachelor thesis I studied Bose-Einstein Condensates described by a two-
mode model using a MATLAB [4] program. I was especially interested in external
influences on the system. In this case the trap for bosons was a double well
potential. The investigated external influences corresponded to the shape of the
double well potential. Three cases were simulated in particular:
First, the inequality of the depth of both wells was constant over time. Second the
difference had a maximum on the first step and decreased exponentially. Third
the difference oscillated with certain fixed frequencies. The basic program was
from my supervisor Mag. Dr. Hohenester. My task was to extend it and to
include the inequalities in the double well potential mentioned before. To solve
the problem, the wave function was calculated using the Schrödinger equation.
Another possibility to solve this is called ”mean field theory”, which only uses the
wave function’s mean and standard deviation for description of the result. This is
the reason why I implemented the solution also via mean field theory to be able
compare those obtained results.



Zusammenfassung

In meiner Bachelor-Arbeit untersuchte ich anhand eines Computerprogramms Bose-
Einstein-Kondensate (BEK) und wie sie sich verhielten, wenn spezielle externe
Einflüsse auf dieses System einwirkten. Bei einem BEK handelt es sich um einen
Atomchip, auf dem sich stromdurchflossene Leiterdrähte befinden und somit eine
Falle für Bosonen entsteht. Diese Falle sieht aus wie ein harmonischer Oszil-
lator, in dessen Mitte eine Barriere aufgebaut wird, sodass zwei Potenzialtöpfe
entstehen. Hauptsächlich wurde untersucht, welchen Einfluss es hat, wenn die
beiden Potenzialtöpfe nicht die gleiche Tiefe besaen. Es wurde dabei distinguiert,
ob die Unterschiede der Tiefen konstant blieben, wieder verschwanden oder sich
veränderten bzw. oszillierten. Zur Umsetzung wurde MATLAB [4] gewählt. Als
Basisprogramm diente ein Programm von Herrn Mag. Dr. Hohenester, welches
von mir erweitert und untersucht wurde. Dieses Programm benutzt zur Lösung der
Wellenfunktion die Schrödingergleichung. Ein anderer Ansatz zur Lösung nennt
sich ”mean field theory”, worin nicht mit der Wellenfunktion gerechnet wird, son-
dern nur der Mittelwert und die Standardabweichung dieser genommen wird. Eine
weitere Aufgabe für mich war anhand eines Beispiels zu vergleichen, ob diese bei-
den Lösungsansätze wirklich gleichwertig seien.



Chapter 1
Theory

1.1 Bose-Einstein Condensates

A Bose-Einstein condensate, short BEC, consists of a gas of weakly interacting
bosons which are confined in an external potential and cooled down to tempera-
tures near to absolute zero. Due to the low temperature most of the bosons occupy
the ground state (lowest state) of the external potential, whereby quantum effects
on a macroscopic scale can be observed. Through freezing single degrees of free-
dom, low dimensional systems with novel physical characteristics are generated.

In former times it was necessary to build huge hardware to create such BECs,
but nowadays when microelectronics meet quantum mechanics all one needs is the
so called Atom chip to fabricate a BEC. Such a chip has the size of approximately
4 square centimeters. Its core consists of micro fabricated circuit paths that are
arranged in a special order. By using different voltages and currents one can
build traps near the surface of an Atom chip to hold the gas consisting of bosons.
Furthermore it is possible to cool those bosons down and manipulate them.

For example BECs are used to analyze the structure of local magnetic fields or
the transport of electrons in metal. Moreover it is possible to manipulate the trap
by raising a potential barrier in the middle of the chip in such a way that the BEC
is split into two halves. After turning off the magnetic trap the wave function of
both halves overlap and interfere [1].

The aim of physicists is to understand the Josephson effect, which controls the
tunneling current between two weakly coupled superconductors that are separated
by a very thin isolating barrier - at least this was the way this effect was first proven.
More generally spoken, this effect describes two weakly coupled macroscopic wave
functions that are separated by a tunnel barrier [2].



Figure 1: δ is called tunneling rate of a particle in the double well potential. This
rate stands for the movement of the particle in between both wells.

1.2 Two-Mode Model

In my bachelor thesis I concentrated on the theoretical description of a double
trap, where a BEC is split into two halves. To describe this the two-mode model
was chosen.

In the two-mode model only two possible states of a particle are considered: the
ground state and the exited state. This assumption is correct due to the fact that
one can nearly cool down BECs to absolute zero, which leads to a drastic slowing
down of all particles in the system. According to the temperature the higher states
are artificially turned off, most of the particles tend to occupy the ground state.
A big advantage that comes along with those assumptions is the fact, that formu-
las and calculations get much easier although the results stay accurate enough.
The system that is described by the two-mode model is a so-called symmetric dou-
ble well potential, which is a modified harmonic oscillator. The modification is a
barrier in the middle, so that the well is split into two equal wells. In my bachelor
thesis I consider cases where both wells are not equally high. They can have a
constant difference but the difference can also change when time passes.
In such a system there are three key parameters to describe the behavior of the
particles. The first is the so-called nonlinearity-parameter κ, it describes the effect
of particle-particle repulsion.
The second is called single-particle tunneling rate δ and describes the movement
of a particle in between both wells.
The last key parameter is λ, which stands for the difference in height of two wells.
δ is depicted in figure 1, λ can be seen in figure 2 .
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Figure 2: In this figure one can see one of the key parameters to describe the double
well potential: λ. It stands for the inequality of height of both wells.

In a symmetric double well potential, the ground state of a particle is charac-
terized by the even wave function ψg that belongs equally to both wells of the
potential. Given that the tunneling rate depends on the height of the barrier in
between the two wells of the potential, a barrier is provided which is high enough
so that the tunneling rate between the potential wells is small. The exited odd
state ψe also belongs to both halves of the double well.
The superpositions ψl,r = 1√

2
· (ψg ±ψe) are states in which the particle is either on

the left or on the right side of the barrier. In fact those states are not stationary
- the particles can tunnel from one to the other half of the potential.
The basic assumption for the two mode model is that there are only those two
one-particle states ψg and ψe available for N observed bosons. The two-particle
contact interaction then is:

U(r1, r2) = 4πh̄2a
m

· δ(r1 − r2),

where a is the s-wave scattering length and m the atomic mass.
The many-body Hamiltonian is given by:

H = − δ
2
· (a†lar + a†ral) − 4κa†lala

†
rar.

We set h̄ = 1, al and ar are the boson operators for annihilation and creation
of the left and right-localized states of the particles. They are a combination of
the boson operators for the ground and exited wave functions ag and ae:
al = 1√

2
· (ag + ae),
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ar = 1√
2
· (ag − ae).

κ and ǫ are constants and describe the one- and two-particle matrix elements:
ǫe =

∫
d3rψe(r)[−

1

2m
∇2 + V (r)]ψe(r),

ǫg =
∫
d3rψg(r)[−

1

2m
∇2 + V (r)]ψg(r),

κee = 2πa
m

∫
d3r|ψe(r)|

2|ψe(r)|
2,

κgg = 2πa
m

∫
d3r|ψg(r)|

2|ψg(r)|
2,

κeg = 2πa
m

∫
d3r|ψe(r)|

2|ψg(r)|
2,

where V (r) is the symmetric double well binding potential. From ǫe and ǫg we
receive one of the two key parameters of this many-body problem, the single-
particle tunneling rate δ:

δ = ǫe − ǫg

The second key parameter is called nonlinearity-parameter κ:

κ = κee = κeg = κgg.

The particle number N can be calculated as follows:

N = a†eae + a†gag

N is conserved. [2]

1.3 Bose-Einstein Condensates beyond Mean Field

Theory

Mean field theory is another possibility to describe a BEC. Again we consider a
condensate in which particles can only effectively populate two second-quantized
modes, which is realized in a double well trap.
The Hamiltonian is now given by:

H = − δ
2
· (a†gae + a†eag) + κ

2
· (a†gag − a†eae)

2,
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where δ is the coupling strength between two condensate modes and κ repre-
sents the two-body interaction strength. In the next step the angular momentum
operators are defined:

Lx = 1

2
· (a†gae + a†eag)

Ly = 1

2i
· (a†gae − a†eag)

Lz = 1

2
· (a†gag − a†eae)

Inserting these formulas into the Hamiltonian we obtain:

H = −δLx + κ
2
L2

z

The Heisenberg equations of motion for the three angular momentum operators
read:

d
dt
Lx = −i[Lx, H ] = −κ

2
(LyLz + LzLy),

d
dt
Ly = −i[Ly, H ] = +δLz + κ

2
(LxLz + LzLx),

d
dt
Lz = −i[Lz , H ] = −δLy.

The mean field equations in the two-mode model are obtained by approximating
second order expectation values 〈LiLj〉 as products of the first order expectation
values 〈Li〉 and 〈Lj〉:
〈LiLj〉 ≈ 〈Li〉〈Lj〉.
Finally we obtain the nonlinear Bloch equations defining the single-particle Bloch
vector ~s = (Sx, Sy, Sz) = (2〈Lx〉

N
,

2〈Ly〉
N

,
2〈Lz〉

N
), κ′ = κN

2
:

Ṡx = −κ′SzSy,

Ṡy = δSz + κ′SzSx,

Ṡz = −δSy,

The norm |~s| is conserved. [3]
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Chapter 2
Implementation in MATLAB

For the implementation of the model MATLAB [4] was chosen, because it is op-
timized for vector and matrix operations and numerical calculations. Moreover it
comes along with a variety of predefined functions and supports graphical output,
which reduces the degree of difficulty of the realization by far.
The program is basically split into two sections - this is realized by two folders.
The first is named ”twomode” and contains all functions that are necessary for all
calculations. The second folder is called ”Demo” and consists of the main program
plus the plot. In the following section each component of the program is described
in detail in alphabetical order. Each title of the following sections corresponds to
a homonymous .m-file.

2.1 Description

twomode

blochtransform

This function requires two input parameters φ and θ, which stand for an azimuthal
and a polar angle, and returns a rotation matrix rot. Its task is to transform the
two angles for the pseudo spin state into the matrix rot.
Assuming the distance between the origin of the system and the point is always
constant there is only the need for two angles to be able to describe every point
on the surface of the sphere.

densitymatrix

In ”densitymatrix.m” two matrices ρ and c are calculated based on an input wave
function ψ. The matrix ρ describes the one-particle density matrix, whereas c



characterizes a two-particle correlation function for a given wave function ψ.

figbloch

A wave function is plotted on the Bloch sphere. The following input values are
accepted:

• ’save’, ’filename’

• ’load’, ’filename’

• ψ, where ψ is a wave function

The first input parameters lead to saving a certain plot to the file ’filename.mat’,
which is a binary MATLAB format for matrices. The second version leads to
loading of a certain matrix file into the workspace - if there is no extension it is
treated as a .mat-file, if there is an other extension, it is treated as an ASCII-file.
The last possibility for the input plots the wave function ψ onto the Bloch sphere
using the function ”triplot”.
It is important to notice that one has to load an empty Bloch matrix first before
a direct plot of a wave function ψ onto the sphere is possible. Because of that the
file bloch100.m in ”Demo” represents such an empty matrix.

hamtwomode

The Hamiltonian is calculated and returned in this function. The following input
parameters are required:

• δ represents the tunnel coupling

• λ describes the difference in height of the two wells

To compute the Hamiltonian the following formula is used:

H = −1

2
· δ · J1 + 4 · κ · J2

3
+ λ · J3

J1 and J3 are pseudo spin operators that are included into the function by calling
the method ”pseudospin”. κ corresponds to the nonlinearity parameter and is
included via the method ”paramtwomode”.

numberfluctuations

This method calculates the number fluctuation for a given state ψ.
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paramtwomode

The function ”paramtwomode” manages the most important values of the whole
program:

• the particle number n

• the nonlinearity parameter κ

• the tunnel function tunnelfun

It requires at least two input parameters, where the first is either ’set’ or ’get’.
The second input parameter can be either one, two or all of the values above. The
output completely depends on the chosen input which is quite self explanatory.

pseudospin

The pseudo spin operators for the two mode Hamiltonian J1, J2 and J3 are calcu-
lated in this function using the pseudo spin lowering and raising operators Jm and
Jp = J†

m:

J1 = 1

2
· (Jp + Jm)

J2 = −1

2
i · (Jp − Jm)

J3 = 1

2
· (n1 + n2)

where n1 is the number of particles in the first well and n2 is the number of
particles in the second well.
There are two possible usages: On the one hand the initialization requires the
input parameters ’init’, the total particle number n and the atom difference vector
m. On the other hand this function returns the pseudo spin operators J1, J2 and
J3 by passing the desired indices.

triplot

A figure showing the wave function on the Bloch sphere is created using this
function. To use it one has to pass three arguments: fv contains the vertices and
faces of triangulated surface. v represents the function to be plotted. The last
input value stands for a color map but is not obligatory. If it is not specified,
’default’ is used.
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twomodecrank

This function computes the solution of the Schrödinger equation using the Crank-
Nicholson scheme. Although this scheme is inaccurate to O(δt2) it is numerically
stable, norm conserving and has a unitary time evolution. Its input parameters
are the initial wave function ψ0, the time tout and λ. It returns the wave function
at the final time ψ, the number fluctuation dn and the output wave function ψsav

for plotting.
On every time step of tout the total Hamiltonian is calculated calling the function
”hamtwomode”. After that, the new wave function ψt is calculated as follows:

ψt = (1 + 1

2
i · δt ·H) · (1 − 1

2
· δt ·H)−1 · ψt

Last but not least the number fluctuation dn is computed using the function
”numberfluctuation”. ψsav is a matrix containing ψt for every time step t.

twomodecummulant

The cumulant expansion for the two mode model is solved in this function. It
requires the initial wave function ψ0 and the time tout as input parameters and
returns the mean value of the spin operators ρ, the quadratures of the spin oper-
ators c and the number fluctuation dn. To calculate the solutions the equation of
motion for the mean value and quadrature of the spin operators is solved.

twomodegroundstate

The ground state ψ0 for the two mode model is calculated here. At first the
Hamiltonian is computed via ”hamtwomode” and afterwards a few eigenvalues
are calculated using the MATLAB-function ”eigs”. ”eigs” returns a diagonal ma-
trix of H’s 6 largest magnitude eigenvalues and a matrix whose columns are the
corresponding eigenvectors, which is ψ0 in this case.

Demo

demotwomode

This is the main program which manages and calls all functions that are described
in the sections above.
First the values for the following parameters can be fixed: particle number n, atom
difference vector m, tunnel coupling δ, nonlinearity parameter κ, height difference
of the wells λ and time scale tout. After that, the calculation starts by calling the
functions ”pseudospin” to initialize the pseudo spin operators, ”paramtwomode”
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to set all important parameters and ”twomodegroundstate” to receive the initial
wave function. Next the Schrödinger equation is solved using ”twomodecrank”.
Finally the function offers the possibility to plot the calculated wave functions.

bloch100

”bloch100” is a .mat file, which is required to create the Bloch plots. It basically
contains an empty Bloch sphere. In detail, it consists of a 10201x101-rotation
matrix rot and a 1x1-struct fv which in turn contains a 10000x4-matrix faces and
a 10201x3-matrix vertices.

2.2 Expansions

Besides changes to existing functions like adding terms containing λ which are
already included in the descriptions above, I added the following three functions
to the existing program.

meanfield

The function ”meanfield” is located in folder ”twomode”. It calculates the mean
value using a density matrix formalism instead of a wave function approach. The
required input parameters are the number of particles n, the coupling strength be-
tween the two condensate modes ω and the initial wave function ψ0. The output
parameters are the coordinates Sx, Sy, Sz of the mean and the standard deviation
∆. The start values Sx,0, Sy,0, Sz,0 are obtained through the following formula:

Si,0 = 2

n
· (ψ†

0·pseudospin(i)·ψ0)

The values for Sx, Sy, Sz are computed using the MATLAB-function ”ode45”,
where ”Sfun” describes the differential equation to be solved.

plotbloch

After calling the main program it is useful to see the calculated results on the
Bloch sphere. This function contains the corresponding calls.
At first the figure window is rescaled to full screen. Afterwards the wave function
ψ is plotted onto the Bloch sphere every tenth time step.
Alternatively, if the mean has also been calculated using ”meanfield”, one can plot
both the wave function and the mean value onto the Bloch sphere, where the mean
is represented as a green star.
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Sfun

This function is used by the ”meanfield”-function, it contains the differential equa-
tion to calculate the values for mean field S and fluctuations ∆. The number of
particles n, the nonlinearity parameter κ and the coupling strength ω characterize
the input values. The following formula describes the used differential equation
from [3]:

Ṡx = −κ · Sz · Sy −
κ
2
· ∆yz

Ṡy = ω · Sz + κ · Sz · Sx + κ
2
· ∆xz

Ṡz = −ω · Sy

∆̇xz = −ω · ∆xy − κ · Sz · ∆yz − κ · Sy · ∆zz

∆̇yz = ω · (∆zz − ∆yy) + κ · Sz · ∆xz + κ · Sx · ∆zz

∆̇xy = (ω + κ · Sx) · ∆xz − κ · Sy · ∆yz + κ · Sz · (∆xx − ∆yy)

∆̇xx = −2 · κ · Sy · ∆xz − 2 · κ · Sz · ∆xy

∆̇yy = 2 · (ω + κ · Sx) · ∆yz + 2 · κ · Sz · ∆xy

∆̇zz = −2 · ω · ∆yz
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Chapter 3
Task

I investigated the behavior over time of the system on temporal modifications of
the control parameters. Especially the influences of an inequality of the height of
two wells λ were investigated.
So the Hamiltonian

H = −1

2
· δ · J1 + 4 · κ · J2

3

was modified as follows:

H = −1

2
· δ · J1 + 4 · κ · J2

3
+ λ · J3 .

First a certain constant value was chosen for λ and the progress over time us-
ing diverse starting parameters was investigated.

Second λ was set to a certain value on the first time step and then decreased
exponentially over time:

λ = λ0 · e
−0.2·t

Third, λ was changed such that the height of the two wells was oscillating. It
was calculated as follows:

λ = λ0 · cos(t)

Fourth, to investigate resonance the oscillation was set smaller assuming the reso-
nance frequencies of the particles were small. λ developing in time was now given
by:



λ = λ0 + η · cos(t),

This led to λ oscillating between λ0 ± η, where η was a small number like 0.1.
Finally the solution of the mean field approach was compared to the exact solution.

To realize those investigations the existing MATLAB program was modified - λ
was inserted into the according parts of the program, the Hamiltonian was ex-
tended and functions to calculate the solution using the mean field approach were
added which were described in detail in the chapter before.
The main parameters for all mentioned investigations were the inequality of the
height of both wells λ, the tunnel coupling δ and the nonlinearity parameter κ, all
other parameters like the number of particles N were constant during the process
of research.
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Chapter 4
Results

The first figures depict the normal system without external influences. The fol-
lowing numbers were chosen as parameters:
λ = 0,
n = 100,
κ = 1

n
,

δ = 10 · e−t/3,
and time t = 0 to t = 30 using 1000 steps.
I obtained a plot of all particles being on the equatorial line of the Bloch sphere,
which means that they were equally distributed in the two wells. Over time, the
distribution spread around the equator according to the chosen values for κ and δ.
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Figure 1: Density fluctuation for the first case λ = 0

Figure 2: The initial wave function ψ0 is situated on equatorial line of the Bloch
sphere. After 500 time steps it has already broadened a bit, as one can
see in the middle figure. ψ at the final time step is depicted on the right.
It has nearly equally distributed around the equator of the Bloch sphere.
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Figure 3: Density fluctuation using a constant λ 6= 0

To observe the consequences of an imbalance of the wells λ we first investigated
the influence of a constant λ to the system.
λ = 10,
n = 100,
κ = 1

n
,

δ = 10 · e−t/3,
and time t = 0 to t = 30 using 1000 steps.
Depending on the value for λ, the initial wave function was positioned along the
same meridian, on the upper half sphere for positive values and on the lower half
sphere for negative values. Due to λ being a relatively large positive integer in
this case the wave function was positioned near the north pole. During evolution
of time the particles moved towards the lower well - in case of positive λ towards
the northern pole of the Bloch sphere.
The obtained results are shown in figures 3 and 4.

– 20 –



Figure 4: The wave function ψ at the initial time step for a system containing a
constant λ is shown left. 150 time steps later, the wave function already
nearly reached the north pole. After time step 150 it only circles around
the north pole describing smaller and smaller circles until it reaches the
position depicted on the right after 1000 time steps.

Next λ was modified, all other parameters were as before.
λ0 = 10,
λ = λ0 · e

−0.2·t,
n = 100,
κ = 1

n
,

δ = 10 · e−t/3,
and time t = 0 to t = 30 using 1000 steps.
Again the initial wave function was positioned on the northern hemisphere of the
Bloch sphere near the north pole. Because of the exponential decay of λ and
tunnel coupling δ the particles tended to distribute equally during the simulation.
Finally the particles distributed around the equatorial line of the Bloch sphere, as
one can see on the figures 5 and 6.
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Figure 5: Density fluctuation for the case containing a decreasing λ

Figure 6: On the left one can see the initial wave function situated on the upper
half of the Bloch sphere. The same wave function ψ after 450 time steps
is depicted in the middle. It has broadened and lowered towards the
equatorial line. ψ at the final time step is shown on the right.
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Figure 7: Density fluctuation for κ = 1

To investigate the influence of the nonlinearity parameter κ it was now modified,
all the other parameters stayed the same.
κ = 1, 0.1, 0.001
One could see that the lower the value for κ the more influence the inequality of the
height of both wells had. For κ = 1 the system nearly behaved as if there would
not have been any λ, although it was initialized with 10. During the simulation the
wave function spread around the equator and after 1000 time steps it had nearly
equally distributed around it.
Regarding the second case, where κ was a tenth, the initial wave function was
situated a bit more northern and with decreasing λ it moved towards the equatorial
line. Contrary to the case before, now the wave function did not spread equally
around the equator after 1000 time steps.
In the third case κ was set to 0.001. The initial wave function ψ0 was nearly
situated on the north pole. Obviously λ had a great influence now. Moreover the
wave function never spread around the Bloch sphere in any time step, it only got a
little broader. With decreasing λ it even happened to be situated on the southern
hemisphere.
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Figure 8: The wave function at initial time for κ = 1 is depicted on the left side.
Compared to the plots before one can see that it already starts near
the equator and it is broader already in the initial time step. The same
wave function ψ after 450 time steps is shown in the middle. It nearly
has equally distributed around the equator after less than half the time.
Finally one can see ψ at the final time step on the right figure.
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Figure 9: Density fluctuation for κ = 0.1
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Figure 10: On the first time step ψ now is placed more northern and not as broad
as before. After 450 time steps it lowers down to the equator already
but still needs longer to distribute around it. Reaching the final time
step it still does not distribute completely around the equatorial line as
shown in the figure on the right.
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Figure 11: Density fluctuation for the last case κ = 0.001
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Figure 12: The initial wave function depicted on the left is not broadened now and
situated far more northern than the others before. After 500 time steps
it lowers even under the equatorial line. But finally the wave function
rises back to the equatorial line and concentrates at the back side of
the Bloch sphere as can be seen on the right figure.

To simplify the system the nonlinearity parameter κ was turned off for the next
investigations. λ oscillated as follows:
λ0 = 1, 0.1,
λ = λ0 · cos(t),
κ = 0,
n = 100,
δ = 10 · e−t/3,
time t = 0 to t = 30 using 1000 steps.
Due to the fact that κ was set 0, the wave function never broadened in any time
step. According to the chosen value for λ, the initial wave function was situated
on the northern hemisphere of the Bloch sphere. The smaller the value for λ, the
smaller the distance to the equatorial line was. When time passed, λ oscillated
and the wave function moved according to the actual value for λ to the lower of
both wells, describing circles around the x-axis of the sphere.
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Figure 13: Density fluctuation for the case λ = 1

Figure 14: The initial wave function ψ for λ = 1 is depicted on the left. When the
time passes the wave function describes circles around the x-axis, here
to be seen at time step 150 in the middle. It continues to circle around
the x-axis until it is stopped after 1000 time steps.
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Figure 15: Density fluctuation for the case λ = 0.1

Figure 16: λ = 0.1. This means that the two wells don’t oscillate as much as
before. The wave function again describes circles around the x-axis,
but the circles are far smaller. Here ψ at time step 250 is depicted in
the middle. The circles around the x-axis get smaller and smaller, until
it is stopped after 1000 time steps.
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Figure 17: Density fluctuation for the case η = 0.1

Now λ was given by:
λ0 = 1,
λ = λ0 + η · cos(t),
κ = 0, n = 100,
δ = 10 · e−t/3,
time t = 0 to t = 30 using 1000 steps.
and η = 0.1, 0.01, which ment that λ oscillated between λ0 ± η.
The initial wave function was situated on the equatorial line in both cases. When
time passed, the wave function moved towards the north pole describing circles.
In the first case it reached the pole earlier and continued to circle around it, in the
second case the wave function needed more time to reach the pole.
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Figure 18: η = 0.1. The initial wave function shown on the left is positioned at
the equator. In the first few time steps the wave function wanders in
circles to the northern pole of the Bloch sphere. In the middle the wave
function after 200 time steps is depicted. After reaching the north pole,
it describes small circles around the pole.
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Figure 19: Density fluctuation for the case η = 0.01
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Figure 20: Plots for η = 0.01. On the left the initial wave function is positioned at
the equator again. The wave function again wanders towards the pole
in circles, but it takes longer to reach it. After reaching it, the wave
function describes very small circles around the north pole.

Finally the solutions of the mean field approach and the two mode approach
solving the Schrödinger equation were compared. To simplify the system the tunnel
coupling δ was set constant and the nonlinearity parameter κ was set 0. The
following parameters were chosen:
n = 100,
λ = 1,
κ = 0,
δ = 1,
t = 0 to t = 30 using 1000 steps.
According to the nonlinearity parameter being zero the wave function did not
broaden. This made a comparison to the calculated mean value easier: if the
mean value was situated in the middle of the wave function, both solution were
equal. Due to the chosen values the wave function described a big circle around
the x-axis.
During the whole simulation the mean value always stayed in the center of ψ.
This led to the conclusion that both approaches for describing such a system were
equal.
The results are depicted in figure 21.
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Figure 21: On the left side one can see the initial wave function ψ0 and the initial
mean value plotted as a green star. Both the wave function and the
mean value describe a big circle counterclockwise around the x-axis. In
the figure in the middle they are shown at time step 750. At the final
time step the wave function and the mean calculated by the mean field
approach are still equal.
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Chapter 5
Conclusion

My bachelor thesis is about traps for bosons - the so called Bose-Einstein conden-
sates (BEC) - and the behavior of this system when the trap is changed.

The so-called two-mode model was chosen to describe the system. In this model
all bosons could only be in one of two states: either the ground state or the first
exited state. All other (higher) states were neglected due to the assumption that
the temperature of the system was so low that all other states were rather unlikely.
As trap a double well potential was chosen. This potential had two equal wells in
which the bosons could freely move around, tunnel from one well to the other, and
interfere.
First the normal behavior of the system was investigated, afterwards the potential
was modified as follows:
λ was introduced. This value represented the inequality in height of both wells of
the potential.

The two mode model was implemented and extended in MATLAB. Basically,
the results were obtained by solving the Schrödinger equation using the Crank-
Nicholson scheme and plotted onto a Bloch sphere afterwards. If there was an
equal amount of particles in both wells, the wave function was situated on the
equator of the Bloch sphere. If there were more particles in one of the wells, the
wave function was moved towards one of the poles of the Bloch sphere.
The following solutions were obtained:
Introducing a constant λ to the system led to a movement of the wave function
according to the chosen value. If λ was turned off during the progress of time,
for example by setting to exponential decay, the wave function tended back to the
equatorial line of the Bloch sphere.
Using oscillating values for λ like changing it via λ = λ0 · cos(t) led to movements



of the wave function according to the values. It always tended to the lower of
both wells. At approximately half-time both wells were nearly filled with the same
amount of particles, only small changes could still be determined.
Reducing the oscillations to λ = λ0 + η · cos(t) using small values for η, resonance
was expected, but did not occur. The wave function moved towards the lower well
in circles. Depending on the values for η it reached the pole earlier or later.
Finally the two mode model was solved by the mean field approach and the results
were compared. Both solutions were equal - the mean which was calculated by the
mean field approach was situated in the center of the wave function in every time
step.
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Chapter 6
Appendix

The most important code sequences of the program are presented here.
The core of the main program: Here all the functions are called and the solutions
are plotted afterwards:

1 pseudospin ( ’ i n i t ’ ,n ,m) ;
2 paramtwomode( ’ s e t ’ , ’ n ’ ,n , ’ kappa ’ , kappa , ’ tunne l fun ’ , tunne l fun ) ;
3

4 ps i 0=twomodegroundstate ( tunne l fun ( tout ( 1 ) ) , lambda ) ;
5 [ p s i t , dn , p s i s av ]=twomodecrank ( ps i0 , tout , lambda ) ;
6 [ S , Delta ]=meanf i e ld (n , tunne l fun ( tout ( end ) ) , p s i 0 ) ;
7

8 p lo tb lo ch

Every 10th time step the wave function ψ is plotted onto the Bloch sphere

9 f u l l s c r e e n=get (0 , ’ Sc r e enS i z e ’ ) ;
10 s e t ( gcf , ’ Po s i t i on ’ , [0 , −50 , f u l l s c r e e n (3 ) , f u l l s c r e e n ( 4 ) ] )
11 for i =1:10 : length ( tout )
12 c l f
13 f i g b l o c h ( ’ load ’ , ’ b loch100 . mat ’ ) ;
14 f i g b l o c h ( ps i s av ( : , i ) ) ;
15 pause ( 0 . 0 1 )
16 end

The function to calculate the Hamiltonian is as follows:

17 func t i on ham=hamtwomode( de l ta , lambda )
18

19 [ j1 , j 3 ]=pseudospin ( 1 , 3 ) ;
20 kappa=paramtwomode( ’ get ’ , ’ kappa ’ ) ;
21 ham=−0.5∗de l t a ∗ j 1+4∗kappa∗ j 3 ˆ2+lambda∗ j 3 ;

The ground state ψ0 of the wave function is obtained by calling ”twomode-
groundstate”



22 func t i on ps i 0=twomodegroundstate ( de l ta , lambda )
23

24 ham=hamtwomode( de l ta , lambda ) ;
25 [ ps i0 , ene0 ]= e i g s (ham,1 , ’ sa ’ , s t r u c t ( ’ d i sp ’ , 0 ) ) ;
26 ps i 0=ps i0 ∗ s i gn (sum( ps i 0 ) ) ;

The evolution over time is computed in ”twomodecrank”:

27 func t i on [ ps i , dn , p s i s av ]=twomodecrank ( ps i0 , tout , lambda )
28

29 [ kappa , tunne l fun ]=paramtwomode( ’ get ’ , ’ kappa ’ , ’ tunnel fun ’ ) ;
30 one=speye ( length ( p s i 0 ) ) ;
31 p s i t=ps i0 ;
32 dn=zero s ( s i z e ( tout ) ) ;
33 dn(1)= number f luctuat ion ( ps i 0 ) ;
34 ps i s av=ze ro s ( length ( one ) , length ( tout ) ) ;
35 ps i s av ( : ,1 )= p s i t ;
36

37 for i t =2: length ( tout )
38 dt=tout ( i t )− tout ( i t −1);
39 de l t a=f e v a l ( tunnel fun , tout ( i t ) ) ;
40

41 lambda2=lambda∗exp(− tout ( i t ) / 5 ) ;
42 %lambda2=lambda∗cos ( tout ( i t ) ) ;
43

44 ham=hamtwomode ( de l ta , lambda2 ) ;
45 ham=ham−one ∗( p s i t ’ ∗ham∗ p s i t ) ;
46 p s i t=(one+0.5 i ∗dt∗ham)\ ( ( one−0.5 i ∗dt∗ham)∗ p s i t ) ;
47 dn ( i t )=number f luctuat ion ( p s i t ) ;
48 i f ( nargout==3)
49 ps i s av ( : , i t )= p s i t ;
50 end
51 end
52 p s i=p s i t ;

The solution for the mean field approach is calculated as follows:

54 func t i on [ S , Delta ]= meanf i e ld (N, omega , p s i 0 )
55

56 kappa=paramtwomode( ’ get ’ , ’ kappa ’ ) ;
57 S0 = [ 0 ; 0 ; 0 ; 0 ; 0 ; 0 ; 2 /N;2/N ; 0 ] ;
58 for k=1:3
59 S0 (k)= r e a l ( p s i 0 ’ ∗pseudospin ( k )∗ ps i 0 )/ (N/2 ) ;
60 end
61 tspan=l i n spa c e ( 0 , 3 0 , 1 0 0 0 ) ;
62 ode=@( t , S ) Sfun ( t , S , omega , kappa ) ;
63 [ t , S]=ode45 ( ode , tspan , S0 ) ;
64 Delta=S ( : , 4 : end ) ;
65 S=S ( : , 1 : 3 ) ;
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with:

66 func t i on S=Sfun ( t ,y , omega , kappa )
67

68 S=[−kappa∗y(3 )∗y(2)−0.5∗kappa∗y ( 5 ) ; . . .
69 omega∗y(3)+kappa∗y(3 )∗y(1)+0.5∗kappa∗y ( 4 ) ; . . .
70 −omega∗y ( 2 ) ; . . .
71 −omega∗y(6)−kappa∗y(3 )∗y(5)−kappa∗y(2 )∗y ( 9 ) ; . . .
72 omega∗(y(9)−y(8))+kappa∗y(3 )∗y(4)+kappa∗y(1 )∗y ( 9 ) ; . . .
73 ( omega+kappa∗y ( 1 ) )∗y(4)−kappa∗y(2 )∗y(5)+kappa∗y ( 3 )∗ (y(7)−y ( 8 ) ) ; . . .
74 −2∗kappa∗y(2 )∗y(4)−2∗kappa∗y (3 )∗y ( 6 ) ; . . .
75 2∗(omega+kappa∗y ( 1 ) )∗y(5)+2∗kappa∗y(3)+y ( 6 ) ; . . .
76 −2∗omega∗y ( 5 ) ] ;
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