The Role of Particle Size in the Dispersion Engineering of Plasmonic Arrays

Veronika Tretnak, Ulrich Hohenester, Joachim R. Krenn,* and Andreas Hohenau

ABSTRACT: Grazing diffraction orders on metal gratings give rise to peculiar optical effects that were contemplated by Wood, Rayleigh, and Fano. With plasmonic nanoparticles as resonant grating elements, the phenomenology of such surface lattice resonances becomes quite rich, including spectrally narrow extinction peaks and optical band gap formation. It has been observed that at perpendicular incidence, either the higher- or lower-energy branch corresponding to the first grazing diffraction orders is bright, that is, couples strongly to light. Reviewing the literature, it appears that particle size is the factor determining which dispersion branch lights up. However, a consistent explanation for this effect is lacking. After revisiting the effect experimentally and by numerical simulation, we clarify the underlying physics by analyzing nanoparticle gratings in terms of, first, an oscillator model and, second, a photonic crystal description. Both approaches reveal the central role of a particle size dependent phase shift in the back-scattering of grazing light fields by the particle grating. This phase shift determines the symmetry of the resulting field profiles corresponding to the dispersion branches and thus their ability to couple to the exciting light. This physical understanding could considerably simplify the dispersion engineering of plasmonic nanoparticle gratings for specific applications as sensing or lasing.

INTRODUCTION

When light is diffracted by a grating along the grating plane, anomalies in the zero-order reflection or transmission spectra appear as sudden intensity changes at defined wavelengths and incidence angles. These changes occur due to diffraction orders switching from propagating to evanescent (Rayleigh anomalies), and, in the case of metal gratings, due to the excitation of surface plasmon polaritons (Wood anomalies). For gratings built from regular arrays of metal nanoparticles, grazing diffraction orders coupling to the particle plasmon modes (local surface plasmon resonances, LSPRs) give rise to surface lattice resonances (SLRs). Depending on the mutual spectral positions of LSPRs and SLRs, the optical response of a grating can be significantly modified, resulting in spectrally narrow and energy-tunable extinction peaks. These narrow line-width modes rely on the dipolar far-field coupling between particles that is in-phase with the exciting light wave, leading to strong local fields and the opening of energy gaps. The appearance of SLRs in regular metal nanoparticle arrays was first theoretically described by Meier et al. and Carron et al. Early experimental evidence was retrieved from lithographically defined silver and gold particle arrays, however hampered by the presence of a glass/air interface that suppresses effective radiative coupling. SLR-related effects were then shown for nanowire gratings on slab waveguides and SLRs were clearly demonstrated on particle arrays in a homogeneous environment. More recent studies were looking into the role of particle and array dimensions, the grating symmetry, and applications as sensing and lasing.

When looking at the dependence of SLR frequency on the incidence angle θ, of the exciting light, one always finds two SLR branches of the same order number that tend toward the same frequency (or photon energy) for perpendicular incidence (Figure 1). However, even for perpendicular incidence, their mutual coupling can give rise to two distinct SLR resonances due to the formation of a band gap. Interestingly, experimental extinction spectra show that either the higher energy or the lower energy SLR branch loses strength upon approaching θ = 0 where actually only one branch couples to light, that is, "bright". This is caused by the symmetry of the coupling-induced field distribution with respect to the particle center, as for perpendicular incidence only the symmetric case can couple to light. It is however unclear at this point if the symmetric field profile corresponds to the low- or high-energy SLR. Although this effect has been noticed and analogies exist on corrugated surfaces, it has been rarely addressed and no comprehensive interpretation in physical terms has been given to the best of our knowledge. However, the reported data suggest that particle size plays a central role. Indeed, particles with a length l (measured perpendicular to the polarization of incident light) exceeding half the grating pitch d are observed to give rise to a bright high-energy SLR branch at θ = 0. This includes, for example,
Illumination geometry in the arrows. The insets show SEM images of the arrays (scale bar: 500 nm), and the illumination polarization direction is marked with the red double that fulfills the translational and mirror symmetries of the array. (b) Illumination geometry in the x−z plane: \(k_x = 2\pi/\lambda, k_y = k \sin \theta_i \) and \(\theta_i \) is the incidence angle. (c) Sketch of the empty lattice dispersion of grazing diffraction orders, i.e., energy \(E \) vs \(k_x \). When coupling of the \((\pm 1,0)\) diffracted waves is taken into account, a band gap opens at \(k_x = 0 \) (gray lines, arrow).

Figure 1. (a) Sketch of a grating formed by a nanoparticle array in homogeneous environment with pitch \(d \). \(l \) is the particle length in x direction, \(w \) is the particle width. (i) and (ii) show the intensity profile (red) and a momentary snapshot of the electric field \(E \) distribution (blue) of the standing waves formed by the \((\pm 1,0)\) diffraction orders that fulfill the translational and mirror symmetries of the array. (b) Illumination geometry in the x−z plane: \(k_x = 2\pi/\lambda, k_y = k \sin \theta_i \) and \(\theta_i \) is the incidence angle. (c) Sketch of the empty lattice dispersion of grazing diffraction orders, i.e., energy \(E \) vs \(k_x \). When coupling of the \((\pm 1,0)\) diffracted waves is taken into account, a band gap opens at \(k_x = 0 \) (gray lines, arrow).

Here, we aim at a clear physical understanding of these intriguing characteristics in SLR light coupling of a regular nanoparticle array in a symmetric environment. We first discuss general aspects and experimental observations and inspect the effect by the coupled dipole approximation and numerical simulation. We then employ an oscillator model and a 1D photonic crystal description as simple intuitive physical models to extract the underlying physical effects. We choose this approach rather than focusing on just one model, as the different viewpoints allow us to elaborate the effects from different perspectives. Depending on further questions to be addressed, one model might furthermore prove more effective and convenient than the other.

We consider a regular 2D square array of nanoparticles (pitch \(d \), width \(w \), and length \(l \)) in a homogeneous environment of refractive index \(n \) (Figure 1a). A light field with wave vector \(\mathbf{k} \), and wavelength \(\lambda = \lambda_0/n \) is incident under an angle \(\theta_i \) in the x−z plane (Figure 1b). The incident s-polarized (i.e., parallel to y) light wave polarizes the particles in the y direction, and their dipolar scattering being thus preferentially emitted to directions in the x−z plane. The first grazing diffraction orders in the x−z plane occur for \(\lambda = d/(1 \pm \sin \theta_i) \), with the plus sign for diffraction orders in the +x or \((+1,0)\) direction and the minus sign for diffraction orders in the −x or \((-1,0)\) direction. This is conveniently visualized by the empty lattice dispersion of diffracted light propagating parallel to the substrate, that is, photon energy \(E \) vs. \(k_x \) folded into the first Brillouin zone (Figure 1c). When including coupling between the \((\pm 1,0)\) diffraction orders, energy repulsion and anticrossing arise at the crossing points of the empty lattice dispersion (arrow in Figure 1c), giving rise to the opening of a band gap and thus two separate SLRs at perpendicular incidence. However, fundamental symmetry considerations suggest that at perpendicular incidence, only one SLR branch can couple to light.

At \(\theta_i = 0 \), the system of the particle array and incoming light is mirror-symmetric with respect to a y−z plane through the particle center, thus both diffraction orders are identical in amplitude and phase. The intensity profile of the interference pattern formed by the superposition of the \((+1,0)\) and \((-1,0)\) waves has to adhere to this mirror symmetry as well as the translational symmetry of the array. Thus, only two options exist, with either an intensity minimum or a maximum above the particle centers, sketched as (i) and (ii) in Figure 1a, corresponding to the two SLR branches. When considering the field instead of intensity, it is evident that only the standing wave with an intensity maximum at the particle center fulfills the symmetry requirement. However, this does not clarify whether this SLR corresponds to the low- or the high-energy branch. To address this question, in the following, we first revisit the effect experimentally and by numerical simulation, before moving on to the oscillator and photonic crystal models.

We focus on square arrays of aluminum nanorods with the long axis \(l \) oriented along x (Figure 1a). As the polarization of the incident light is in the y direction, that is, parallel to the short rod axis, the correspondingly excited LSPR is basically independent of the nanorod length. We further assume that the short-axis LSPR is spectrally well separated from the \((\pm 1,0)\) SLRs, situated at their high-energy side.

EXPERIMENT

We start by illustrating the bright versus dark SLR branch effect around normal incidence with experimentally recorded optical attenuation spectra from square nanorod arrays \((d = 600\, \text{nm})\) of aluminum nanorods of 110 nm width, 30 nm height, and lengths of \((a)\) 120 nm and \((b)\) 320 nm. The arrays rest on a 80 nm-thick ITO layer on glass and are immersed in oil with a refractive index of 1.516. The \((\pm 1,0)\) SLRs are close to 1.6 eV. The LSPR and the \((\pm 1,\pm 1)\) SLRs give rise to the features around 2.1 and 2.2 eV. The insets show SEM images of the arrays (scale bar: 500 nm), and the illumination polarization direction is marked with the red double arrows.

Figure 2. Measured attenuation (color scale) vs. angle of incidence and photon energy of square arrays \((d = 500\, \text{nm})\) of aluminum nanorods of 110 nm width, 30 nm height, and lengths of (a) 120 nm and (b) 320 nm. The arrays rest on a 80 nm-thick ITO layer on glass and are immersed in oil with a refractive index of 1.516. The \((\pm 1,0)\) SLRs are close to 1.6 eV. The LSPR and the \((\pm 1,\pm 1)\) SLRs give rise to the features around 2.1 and 2.2 eV. The insets show SEM images of the arrays (scale bar: 500 nm), and the illumination polarization direction is marked with the red double arrows.
500 nm) fabricated on indium tin oxide (ITO, 80 nm thickness)-covered glass by standard electron beam lithography (Figure 2). The rods have a width of \(w = 110 \) nm, a height of 30 nm, and lengths of (a) \(l = 120 \) nm and (b) \(l = 320 \) nm. The attenuation spectra were recorded by a microspectrometer equipped with a microscope objective with a numerical aperture (NA) of 0.075 (half opening angle about 4°) and a condenser with an NA of 0.028 (half opening angle about 1.6°). The samples were immersed in index matching oil with a refractive index of 1.516. In Figure 2, the \((\pm1,0)\) orders show up around 1.6 eV. For perpendicular incidence (\(\Theta = 0° \)), we observe only one prominent SLR peak for both arrays of long and short nanorods. This peak shifts to lower energies for the short nanorods when increasing the incidence angle, that is, it corresponds to the \((-1,0)\) SLR branch (Figure 2a). Conversely, the peak shifts to higher energies for the long nanorods, thus corresponding to the \((+1,0)\) SLR branch (Figure 2b). In both cases, the SLR branch that is dark at perpendicular incidence gains strength for increasing angles of incidence. Around an incidence angle of 4°, both SLR branches show comparable signals. The further features in Figure 2 correspond to the LSPR peak at about 2.1 eV and the \((\pm1,\pm1)\) SLRs around 2.2 eV. We note that due to the finite optical apertures in our spectrometer, the signals are averaged over some angular range. While in this case, care has to be taken in the interpretation of band gaps in the observed data, our discussions and conclusions in the following are not concerned by this point (also compare Supporting Information S11).

■ DISCUSSION

Coupled Dipole Approximation. A simple but successful approach to model SLRs is the coupled dipole approximation, giving results (Figure 3a) that are in excellent agreement with the measurements of short nanorods (Figure 2a). The scattering of the metal nanoparticles forming the array is therein approximated by that of point dipoles. The dipoles are driven by the superposition of the incoming wave and the scattered waves from all other point dipoles representing the particles in the array. Thus, the induced particle dipole moment differs from that of an isolated particle and is expressed as an effective polarizability

\[
\alpha_e = \frac{1}{1/\alpha - S}
\]

where \(\alpha \) is the the quasi-static polarizability of a particle\(^9\) and

\[
S = \sum_{a,b} \sigma(x_{ab}) \epsilon(r_{ab} \sin(\theta))^2 \left(\frac{k^2 \sin^2 \theta}{r_{ab}} \right)
\]

is the retarded dipole sum. The center coordinate of a particle/dipole with indices \(a \) and \(b \) (Figure 3b) is \(r_{ab} = (a, b)d, r_{ab} = \lvert r_{ab} \rvert, x_a = ad, \) and \(\phi = \arctan(a/b). \) The exciting light is polarized in the \(y \) direction and incident under an angle \(\theta_i. \) In extension to the usually used expression, here \(S \) includes a Gaussian term \(e^{-(r_{ab}/\sigma)^2} \) to account for the limited interaction length and finite spatial coherence of the incoming light. According to the approximate spatial coherence of the illumination optics, \(\sigma \) was set to 20 \(\mu \)m and the sum defining \(S \) was extended over a range of \(5\sigma \) in \(x \) and \(y \) directions. We only consider the dipolar far-field term, as we observed no obvious changes by including the near field term for the relevant array parameters.

With the dielectric function of Al from ref 25 and fitted to the experimental case (Figure 2a) in terms of the nanorod shape factor (to match the LSPR) and volume (to match the band splitting), the calculated angle-dependent attenuation is depicted in Figure 3a. There is excellent qualitative agreement with the experimental data, and in particular, only the low-energy, \((-1,0)\) SLR is bright for small incidence angles. In addition, band gap formation as well as the \((\pm1,\pm1)\) SLRs and the LSPR at higher energy fits well to the experiment, thus confirming the observation on the small nanorod arrays. Note that we had to assume particle volumes of only 1/14 of the actual values. The coupled dipole approximation fails when applied to the real nanorod volumes, yielding nonphysical results since the radiation losses of the point dipoles are not properly considered by the quasi-static polarizability.

Numerical Simulations. To fully address the nanorod size range of interest, we turn to numerical simulations with the MNPBEM toolbox\(^{26}\) that relies on the boundary element method, supplemented with periodicity. We compare aluminum nanorods of 100 and 300 nm lengths that are 100 nm
wide and 300 nm high, arranged in a square array \((d = 500 \text{ nm})\) in a homogeneous medium of a refractive index of 1.516. The dielectric function for aluminum was taken from ref 25. While there are some deviations as compared to the experimental sample for practical reasons, these lead to only minor spectral changes with no impact on the conclusions with regard to the SLR characteristics. The simulated attenuation is plotted in Figure 4 in a color scale versus energy and angle of incidence, focusing on the \((\pm 1,0)\) SLR spectral range. From the plots, the two dispersion branches are evident, as is the bright character of the low-energy branch at perpendicular incidence for the shorter nanorod (Figure 4a), while for the longer nanorod, the high-energy branch lights up (Figure 4b).

It could be assumed that further insight regarding the discussed phenomenon can be inferred from the nanorod polarization patterns, as multipolar LSPRs appear at different energies and they differ in their light coupling efficiencies in dependence on their specific polarization symmetries. However, this is hardly the case as the nanorod polarization is off-resonant and mainly reflects the local electric field strength that is a superposition of the incident light field and the diffracted \((\pm 1,0)\) orders. To illustrate this point, we depict in Figure 5

![Figure 5](https://example.com/figure5.png)

Figure 5. Simulated normalized surface charge density \(\sigma\) (color scale) of a 300 nm-long aluminum nanorod (width 100 nm and height 30 nm). Excitation with a \(y\)-polarized plane wave at 1.6 eV, propagating in \((a-c) +z\) direction and in \((d-f) +x\) direction. \(\sigma\) is plotted for the moment in time when the maximum of the exciting electric field is at (a, d) the particle center \((\text{Re}(\sigma))\) and (b, e) a quarter period later \((\text{Im}(\sigma))\). (c) and (f) The corresponding phase patterns. The bottom insets depict the electric field strength (blue) of the exciting wave along the nanorod (black) in the \(x\) direction.

conclude that the consideration of LSPR mode patterns does not contribute to solve our problem.

Oscillator Model. We now turn to an approach as suggested, for example, in ref 11, where the SLRs and the LSPR are qualitatively described as coupled oscillators with resonance frequencies and coupling and damping constants as fitted to the measured spectra. In the following, by some approximations, we connect this model to the physics of our nanoparticle arrays and thereby focus on the \((\pm 1,0)\) SLRs.

When neglecting the near fields of the individual particles, the electromagnetic field in the grating plane is the sum of the incident wave and the two waves propagating parallel to the grating plane in the \((\pm 1,0)\) directions. Assuming that in the \(y\) direction, the rods can be approximated as a wire-like structure, only the field along the major axis varies over the nanorods, and the problem under consideration becomes one-dimensional. The field then can be written in the form

\[
\mathbf{E}(x) = (e^{ik_x x} \mathbf{E}_x + e^{ik_y y} \mathbf{E}_y + e^{-ik_x x} \mathbf{E}_x)\hat{y}
\]

where \(\mathbf{E}_x\) and \(\mathbf{E}_y\) are the complex-valued amplitudes of the incident \((i)\) and the \((\pm 1,0)\) waves, \(k_x = k \sin \theta\) is the parallel component of the wave vector of the wave incident at angle \(\theta\), and \(k = nk_{0}\) is the wavenumber of the waves propagating in the \((\pm 1,0)\) directions.

From the simulations discussed above, we find that the rods are polarized under nonresonant conditions such that the dipole moment per unit length \(p(x)\) of the polarization charges is proportional to the electric field \(E(x)\) according to

\[
p(x) = \alpha(x)\mathbf{E}(x) = \alpha(x)(e^{ik_x x} \mathbf{E}_x + e^{ik_y y} \mathbf{E}_y + e^{-ik_x x} \mathbf{E}_x)\hat{y}
\]

with \(\alpha(x)\) being the polarizability per unit length. We can now take the reversed viewpoint and treat the dipole density as the source for the scattered electromagnetic fields. We express the scattered field produced by the dipole density \(p(x')\) of the rods through

\[
\mathbf{E}_s(x) = e^{ik_x x} \mathbf{E}_x + e^{-ik_x x} \mathbf{E}_x = \mu_0 n^2 \sum_a \int_{-l/2}^{l/2} G_{xy}(x, x + x') p(x + x') \, dx'
\]

where \(G\) is the dyadic Green tensor describing the field at \(x\) due to a column \((\text{along } y)\) of nanorod segments at \(x_o + x'\) polarized with dipole density \(p\). The index \(a\) (compare Figure 3b) labels the columns \((\text{along } y)\) of rods in the array, which have a length \(l\) and are centered at \(x_o\). In what follows, we assume that the right-moving wave with an amplitude \(E_x\) is produced by two independent sources, namely, through scattering of the incident wave into the \((+1,0)\) direction and through back-scattering of the \(E_y\) wave from \((-1,0)\) to \((+1,0)\). The scattered fields can be approximated as outgoing waves \(e^{ik(x - x' - k_o)}\) modulated by some distance-dependent factor to account for out-of-plane scattering, finite interaction length, and spatial coherence. We lump the distance dependence into effective coupling parameters \(g_1\) (coupling of incident to the \((+1,0)\) wave) and \(g_0\) (back-scattering of \((-1,0)\) to \((+1,0)\) wave), to arrive at

\[
\mathbf{E}(x) = \mathbf{E}_i(x) + \mathbf{E}_s(x) = \mathbf{E}_i(x) + \mu_0 n^2 \sum_a \int_{-l/2}^{l/2} G_{xy}(x, x + x') p(x + x') \, dx'
\]
As we will discuss in a moment, \(k \) and \(k_x \) summands of eqs 2 and 3 is a multiple of 2\(k \maxima \) at frequencies or becomes negative for excited in (a), but the high-energy mode is excited in (b).

The lattice sums \(S_{\pm}(k) \) at different \(k \) or energies that are far from the maximum of \(S_{\pm} \) thus the coupling term of eq 4 is close to zero and the equations reduce to two uncoupled equations for \(E_+ \) and \(E_- \)

\[E_+ = \frac{2}{k - k_x} S_+(k) \sin(kl/2) E_i + \frac{1}{k} S_+(k) \sin(kl) E_i \]

\[E_- = \frac{2}{k - k_x} S_-(k) \sin(kl/2) E_i + \frac{1}{k} S_-(k) \sin(kl) E_i \]

where the expression for \(E_- \) in the second line has been derived along the same lines as the expression for \(E_+ \).

The lattice sums \(S \) are functions that show pronounced maxima at frequencies or \(k \), where the exponent in the summands of eqs 2 and 3 is a multiple of 2\(\pi \), for example, \((k - k_x) x = m2\pi \). They can be approximated by Lorentzians centered at \(k_\pm = nK/(n \pm \sin \theta) \) and \(k_x = K = 2\pi/d \).

\[S_+(k) = \frac{A_i}{k_x^2 - k^2 - i\Gamma^x_k} \]

\[S_-(k) = \frac{A_i}{k_x^2 - k^2 + i\Gamma^x_k} \]

With this, eq 4 turns into a set of equations describing two coupled, driven oscillators, however with a frequency-dependent, asymmetric stimulus.

The results of the oscillator model are depicted in Figure 6. We plot \(IE^+ + E^\pm I^2 \) for (a) \(l = 100 \text{ nm} \) and (b) \(l = 300 \text{ nm} \), with \(k = nK \) \((n = 1.516)\). The polarizability per unit length is as well approximated as a classical, driven oscillator model, \(\alpha_d = 1/(\omega_{LSPR}^2 - \omega^2 - i\Gamma_{LSPR}\omega) \) with \(\omega_{LSPR} = 0.4 \text{ eV} \) and \(\Gamma_{LSPR} = 2.1 \text{ eV} \). We find good qualitative agreement with the experiments as well as the numerical simulations, foremost the change of brightness from the low-energy to the high-energy SLR branch when going from short to long nanorods.

At inclined incidence (more than \(1^\circ \)), the maxima of \(S^+ \) and \(S^- \) are at different \(k \) or energies that are far from the maximum of \(S_{\pm} \), thus the coupling term of eq 4 is close to zero and the equations reduce to two uncoupled equations for \(E_+ \) and \(E_- \)

\[E_+ \approx \frac{2}{k - k_x} S^+(k) \sin(kl/2) E_i + \frac{1}{k} S^+(k) \sin(kl) E_i \]

\[E_- \approx \frac{2}{k + k_x} S^-(k) \sin(kl/2) E_i + \frac{1}{k} S^-(k) \sin(kl) E_i \]

Depending on \(k \), either the \(E_+ \) or the \(E_- \) wave is dominantly excited.

In contrast, at perpendicular incidence \((\sin(\theta) = 0)\), \(k_x = k_\pm = K \). When assuming equal lattice sums \(S^+ = S^+ = S_0 \), the equations are simplified to

\[E_+ = \frac{1}{k} S_0 [2\sin(kl/2)E_i + \sin(kl)E_i] \]

\[E_- = \frac{1}{k} S_0 [2\sin(kl/2)E_i + \sin(kl)E_i] \]

which are equivalent to a set of equations describing two symmetrically driven, coupled, classical oscillators. Under the given symmetric excitation, only symmetric modes with amplitude

\[E_+ = E_- = \frac{(2A_i/k)\sin(kl/2)}{k_x^2 - k^2 - i\Gamma_k - (A_i/k)\sin(kl)} \]
can be excited, whereas the antisymmetric mode with \(E_y = -E_x \) remains dark.

Importantly, within this model, we find a physical interpretation for the SLR brightness in the phase change of the nanorod length-dependent form factor for the back-scattering \(\sin(kl) \). If the SLR condition at normal incidence \(k = 2\pi/d \) is fulfilled, \(\sin(kl) \) changes the sign at \(l = d/2 \) and thus the phase of interaction between \((-1,0)\) and \((+1,0)\) wave turns by \(\pi \). If \(l < d/2 \), then \(\sin(kl) > 0 \), thus \(k_d^2 \) that defines the resonance position in eq 5 is reduced by \((A_0/k) \sin (kl)\), shifting the resonance to lower energies as compared to the uncoupled system. If \(l > d/2 \), then \(\sin(kl) < 0 \) and the resonance is shifted to higher energies.

We try to visualize this in a mechanical model with a set of coupled pendula (Figure 6, insets). For the system sketched in Figure 6a, the symmetric oscillation mode is the low frequency mode, and as for a symmetric movement of the masses, no interaction force is exerted by the spring. The (not excitable) antisymmetric oscillation mode causes a compression and extension of the spring with additional back-driving forces, thus increasing the frequency. For the system sketched in Figure 6b, the coupling is inverted. Here, the excitable mode with symmetric movement of the masses leads to a compression or extension of the coupling spring, thus causing an additional back-driving force, shifting this mode to higher frequencies than the antisymmetric mode, where no interaction force is exerted. This finally corroborates and explains with an intuitive model the particle length-dependent light coupling of the SLR branches.

1D Photonic Crystal Model. When placing a nanoparticle array on a slab waveguide (e.g., a 80 nm-thick ITO layer as in the experiment above) for increased coherent interaction and considering \((\pm 1,0)\) SLRs only, the system resembles a 1D photonic crystal (PC), a description that we discuss in the following. For sufficiently small distances between the nanorods and \(y \) polarization (so that the nanorods mainly diffract light into waveguide modes propagating in the \(x \) direction), we can interpret the nanorod rows (along \(y \)) as domains of higher refractive index \(n_a \) while the space between the rows corresponds to regions of lower refractive index \(n_b \) (compare Figure 7).

The dispersion relation of a PC can be calculated by finding the eigenvalues of the transfer matrix \(M \) of the PC.\(^{11}\) The fields \(E_{y} \) in the \(N \)th unit cell are related to those in the \(N - 1 \)st unit cell by

\[
(E_y^{N}, E_x^{N}) = M(E_y^{N-1}, E_x^{N-1})
\]

and have to obey the periodicity \(d \) of the 1D PC due to its translational symmetry. Thus,

\[
(E_y^{N}, E_x^{N}) = \beta(E_y^{N-1}, E_x^{N-1})
\]

with \(\beta = e^{ikd} \) being the eigenvalues of \(M \) from which the wavenumber \(k \) of the eigenmode can be calculated as a function of frequency (for details see Supporting Information S12).

To adopt this model to the current problem of particle array extinction, we need to introduce an excitation term. Therefore, we assume that a light wave is excited in the \(\pm x \) directions at every interface of the 1D stack in a phase with a driving wave \(E_x \) incident at an angle \(\theta \) to the interfaces. Formally, one can write this as

\[
M(E_y^{N}, E_x^{N}) = \beta(E_y^{N}, E_x^{N}) + (E_y^{+}, E_x^{+})
\]

(\(E_x^{+} \) is not the excitation amplitudes but functions thereof, see the Supporting Information S11) and then calculate the amplitudes of the left- and right-propagating waves as

\[
(E_y^{-}, E_x^{-}) = (M - i\beta)^{-1}(E_y^{+}, E_x^{+})
\]

From this, we get the amplitudes of the \((+1,0)\) and \((-1,0)\) diffracted waves and can estimate the attenuation of the 1D PC by assuming its proportionality to \(|E_y^{+} + E_y^{-} + E_x^{+}|^2 \).

The results of this calculation are plotted in Figure 8. Again, we find a qualitatively similar behavior to the experiments and numerical simulations, showing a dependence of branch brightness on the length of the high refractive index zone, that is, the particle length. At perpendicular incidence, the bright branch is the high-energy one for long particles and the low-energy one for smaller particles. Consistent with the oscillator model, a closer analysis reveals that upon increasing the length of the high index areas to \(l > d/2 \), the coupling between \(E_x \) and \(E_y \) changes its phase by \(\pi \). We illustrate this by calculating the reflection of a layer system as discussed above, assigning \(n_a = 1.516 \times (1.05 + 0.0008i) \) to nanorod regions and \(n_b = 1.516 \times (1.01 + 0.005i) \) to the space in between. We approximated the reflectivity from a semi-infinite PC by that of a finite one and chose 100 bilayers as a value safely assuring convergence. In Figure 9, we plot the reflection coefficient in terms of amplitude (\(R \)) and phase (\(\phi \)) in dependence of energy. We observe again a phase shift of \(\pi \) between the reflection phase of small particles (\(l = 0.2d \), Figure 9a) and large particles (\(l = 0.8d \), Figure 9b). This phase shift changes the symmetry of the standing wave over the nanorod array and is thus the underlying cause for the change in SLR branch brightness. Moreover, the amplitude and phase in Figure 9 resemble closely those of a damped harmonic oscillator around resonance, however, with an additional phase lag linear in \(k \) and the \(\pi \) phase shift for longer particles. This connects the 1D PC model firmly to the oscillator model discussed before.

For a closer look on the transition in SLR branch brightness, we simulate the array attenuation for a continuously changing nanorod length while keeping all other parameters constant (\(d = 500 \) nm, \(w = 100 \) nm, and rod height = 30 nm). In Figure 10, we plot the attenuation for an incidence angle of 0.5°, resulting from (a) MNPBM simulations and (b) PC model calculations. At short rod length, the attenuation is following the low-energy SLR branch. With increasing rod length, this peak shifts to higher energies due to the decrease of the back-scattering.
efficiency of the nanorods with increasing length, as illustrated by the oscillator model discussed above. Consequently, the coupling between forward and backward scattered SLR is reduced, evident from the reduction in band splitting. Around $l = d/2$, the bright mode changes from the low-energy to the high-energy SLR mode (due to the phase shift in backscattering) and then again shifts to higher energies for further increasing values of l as back-scattering efficiency and thus the band splitting increases again. These effects are clearly reproduced by both approaches, MNPBEM simulations (Figure 10a) and the PC model (Figure 10b), with only little model-specific differences. For example, in the MNPBEM simulation, the change in brightness appears slightly below $l = d/2$, which is related to the small but finite phase shift between exciting wave and particle polarization (compare Figure 5). We note that a figure similar to those in Figure 10 is plotted in a publication of Rodriguez et al.,18 in the context of far-field-induced transparency of nanorod arrays.

Energy Argument. Describing a regular particle array as a PC suggests to consider the field energies of the associated PC modes. We thus ask for the field energies in the 1D PC model, that is, a dielectric multilayer stack with alternating layers of refractive indices n_i. Due to basic symmetry considerations, within the layer stack, only two standing wave solutions due to the superposition of the $(\pm 1,0)$ SLRs can exist, which correspond to symmetric and antisymmetric field profiles with respect to the layer centers, as already discussed above for particle arrays (Figure 1a). Generally, these profiles have different ratios of their fields in the high and low index regions, as depicted in Figure 11. This is important as, on the one hand,
The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10235.

Additional measurements of the SLR dispersion, the derivation of the photonic crystal model, and notes on the approximation of the field energy and on the extension to nonmetallic particles (PDF)

- **AUTHOR INFORMATION**
 - **Corresponding Author**
 - Joachim R. Krenn — University of Graz, Graz, Austria;
 - Email: joachim.krenn@uni-graz.at

- **Other Authors**
 - Veronika Trettnak — University of Graz, Graz, Austria
 - Ulrich Hohenester — University of Graz, Graz, Austria
 - Andreas Hohenau — University of Graz, Graz, Austria;
 - orcid.org/0000-0002-9034-3044

Complete contact information is available at: https://pubs.acs.org/doi/10.1021/acs.jpcc.9b10235

- **ACKNOWLEDGMENTS**
 - The authors thank the Austrian Research Promotion Agency (FGF) and the Austrian Climate and Energy Funds for funding this work under the project PlasmaLED (841148).

- **REFERENCES**
(22) Vecchi, G.; Giannini, V.; Gómez Rivas, J. Surface Modes in Plasmonic Crystals Induced by Diffractive Coupling of Nanoantennas. Phys. Rev. B 2009, 80, 201401.