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Local absorption spectra of artificial atoms and molecules
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We investigate theoretically the spatial dependence of the linear absorption spectra of single and coupled
semiconductor quantum dots, where the strong three-dimensional quantum confinement leads to an overall
enhancement of Coulomb interaction and, in turn, to a pronounced renormalization of the excitonic properties.
We show that—because of such Coulomb correlations and the spatial interference of the exciton wave
functions—unexpected spectral features appear whose intensity depends on spatial resolution in a highly
nonmonotonic way when the spatial resolution is comparable with the excitonic Bohr radius. We finally
discuss how the optical near-field properties of double quantum dots are affected by their coupling.

[. INTRODUCTION absorption coefficient thabcally relates the absorbed power
density with the light intensity[since the susceptibility
In recent years much attention has been devoted to thg(r,r’) cannot be approximated by a local terisdn the
properties of semiconductor quantum do@Ds9). In these linear regime, a local absorption coefficient can still be de-
systems, carriers are subjected to a confining potential in afined, which is, however, a complicated function that de-
spatial directions, giving rise to a discrete energy spectrunpends on the specific EM-field distributiéhThe interpreta-
(“artificial atoms”) and to novel phenomena of interest for tion of near-field spectra therefore requires calculations
fundamental physics as well as for applications to electronigased on a reasonable assumption for the profile of the EM
and optoelectronic devicé€.The extension and the shape of fie|d.
the QD confining potential varies, depending on the nano- second, the quantum states that are actually probed are
structure fabrication technique: The dots that are studiege_particle states of the interacting electrons and holes pho-
most extensively by optical methods are induced Dbyigexcited in the dot. Even in the linear regime, excitonic
quantum-wellQW) thickness fluctuation’,° or obtained by ottacts are known to dominate the optical spectra of dots

spontaneous island formation in strained Iegéer epitaxy, since Coulomb interactions are strongly enhanced by the
self-organized growth on patterned substratesiressor- three-dimensional confinement. Near-field spectra probe ex-

induced QW potential modulatiod, cleaved edge . functi d thei il coh q I
overgrowthi? as well as chemical self-aggregation Con Wave functions, and their spafial coherence and overiap
techniques®!* The resulting confinement lengths fall in a \;Vggorgzgr?4EM'f'eld profile  will determine the local

id betw d 10 nm. .
wide range between Lm an nm In this paper, we show how the above phenomena affect

In spite of the continuing progress, all the available fab- . . X
rication approaches still suffer from the effects of inhomoge-IOCaI spectra of QDs, paying special attention to the case of

neity and dispersion in the dot size, which lead to large lineoupled dotg“artificial molecules”) where carriers interact
widths when optical experiments are performed on large QIRCross the barrier via tunneling and/or Coulomb coupfhg.
ensembles. A major advancement in the field has come frorfideed, the optical properties of coupled dots are currently of
different types of local optical experiments, which allow the great interest not only in view of the unavoidable interdot
investigation of individual quantum dots thus avoiding inho-interactions occurring in real samples with dense QD pack-
mogeneous broadenirig* ing, but also in view of their relevance for designing novel
Among local spectroscopies, the approaches based dafevices including possible solid-state implementations of
scanning near-field optical microscog$NOM) (Ref. 15 quantum information processifg.
are especially interesting as they bring the spatial resolution We will show that the relative phase of the exciton wave
well below the diffraction limit of light: With the develop- function in adjacent coupled dotsr in different regions of
ment of small-aperture optical fiber probes, subwavelengtithe same dgtcan induce dramatic changes in the selection
resolutions were achieved [8—\/5 or A/40) (Refs. 16 and rules with respect to far-field spectra: A realistic prediction
17) and the first applications to nanostructures becamef these effects requires accurate calculations taking into ac-
possible>®18-23 As the resolution increases, local optical count quantum confinement as well as Coulomb interactions.
techniques in principle allow direct access to the space an@ur theoretical scheme is especially designed to allow a re-
energy distribution of quantum states within the dot. Thisalistic description of the quantum states of the interacting
opens, however, a number of questions regarding the inteelectrons and holes photoexcited in the linear regime. In this
pretation of these experiments that were often neglected irespect we improve drastically over previous approaches,
the past. which generally focused on a more detailed treatment of the
First of all, for spatially inhomogeneous electromagneticEM-field distributions?’~3!
(EM) fields it is no longer possible to define and measure an Our theoretical framework for dots is summarized in Sec.
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Il, while Sec. Ill and IV discuss our results and conclusionswe obtain the excitonic eigenvalue probléfr
for single and coupled dots.

h N eh N Y
(+eMwr + > ve W g (2.3
Il. THEORY p ) Mt Tt s

In this section, we summarize our theoretical approach foAs will be shown in the following, the exciton spectruy
computing local absorption spectra for semiconductor QDsdirectly provides the optical transition energies, whereas the
We first show in Sec. Il A how to compute the single-particleexcitonic wave functionsW* determine the oscillator
eigenstates for electrons and holes subjected to a threstrengths of the corresponding transitions. In B33 we
dimensional confinement potential. These single-particlhave introduced the electron-hole Coulomb matrix
states are then used in Sec. IIB for the calculation oflements®®’
electron-hole(i.e., optica) excitations. In analogy to semi-

; ; s h h
conductor systems of higher dimensionality, we shall referto_ e, drd bpr(re) b (1) ¥ (rn) ey, (rp)
these excitations axcitons the properties of such excitons, Yuu'.vv'~ € fedlh Kolle= Tl ’
however, are not only governed by the attractive electron- (2.9

hole Coulomb interaction, but in addition by the strong quan-

tum confinement. Finally, we use in Sec. Il C the above in-\VN€reeis the elementary charge ard is the static dielec-

gredients to derive the equations needed for the calculatiofyi¢ constant of the.bUIk semiconduc{arote that in EQ(Z'.4)

of local optical-absorption spectra. we haV(_a not considered Fhe electron-hole exchange interac-
tion]. Within our computational approach, we consider in Eq.

(2.3 typically a basis of 12 states for electrons and holes,

respectively, and obtain the excitonic eigenfunctions by di-

In semiconductor QDs, carriers are confined in all threerect diagonalization of the Hamiltonian matrix.

space directions. To simplify our analysis, we assume that a

suitable parametrization of the dot confinement potential is C. Local optical absorption

known (e.g., from experimepiand that the confinement po- The light-matter coupling is described within the usual

tential varies sufficiently slowly on the length scale of therotatin “wave and envelope-function aporoximations:
lattice constant. We thus shall make use of the envelope- 9 P PP '

function approacli? moreover, since the energy region of o o

our present concern is relatively close to the semiconductor Hop=f dré,(n[e“tP(r)+e PT(r)], (2.5
band gap, we describe the material band structure in terms of

a single electron and hole band within the usual effectivewhere&,(r) is the electromagnetic field distribution of the

mass approximation. More specifically, the envelopenear-field probe an®(r) = o io(r) #n(r) is the interband-

function equation for single electrons and holes reads polarization operatofwith ;le,h(r) creating an electron or

2y2 hole at positionr, and i, the dipole-matrix element of the
+VEh(r) | ¢S (r)=e5"¢S"(r), (2.1  bulk semiconductdr In Eq.(2.5), we have used that in linear
response it suffices to consider only monofrequent laser ex-
citations.

When the semiconductor nanostructure is excited by a
local near-field probe, the total absorbed powdw) at a
given frequencyw is proportional to [dré,(r)P(r,w);
within linear response, the induced interband polarization
P(r,w) is related to&,(r) through

A. Single-particle states

2Mg

wheremg(my) is the effective mass andg (V’C‘) is the con-
finement potential energy for electroiisoles. Following
our approach developed earlrwe numerically solve Eq.
(2.2) for arbitrary confinement potentials by use of a plane
wave expansion with periodic boundary conditideee Ap-
pendix.

B. Exciton states P(r,w)zf dr'x(r,r';w)E,(r"). (2.6)

When the dot structure is perturbed by an external light ; - ’.
. . .2 "where the nonlocal electrical susceptibiljgr, r'; w) can be
field (e.g., lasex, electron-hole pairs are created which

. . . expressed in terms of the excitonic eigenenergies and
propagate in the presence of the mutual Coulomb 'meracuogigenfunction@
and of the dot confinement potential. Within the present pa- '
per, we shall restrict ourselves to the linear optical response, WA, WM (ror)
i.e., the dynamics of a single electron-hole pair. Then, the x(r. 1 w)=pu2>, ’ '

A

exciton dynamics is described by the electron-hole wave

function W(re,ry), with the squared modulus being the yere e have introduced a small damping constarac-
probability of finding the electron at position, when the  ¢oynting for the finite lifetime of exciton states due to envi-

E,—fo—iy @7

hole is at positiorry,. . _ ronment couplinge.g., phonons or radiative degaffo de-
~ Ifwe expand the electron-holéexciton™) eigenfunction  jye our final expression, it turns out to be convenient to
in terms of single-particle states, viz., consider for the elctromagnetic field distribution a given pro-
file ¢ centered around the beam positiety i.e., £,(r)
W1, )= e(r )W phiry, 29 =&,&(r—R). Then, the local spectrum for a given tip posi-
(Te.rr) % Sulre ¥ dulrn) 22 tion R can be expressed in the forfsee also Append)%*
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100 ::‘:é.- 1 1 e .2 113 trd
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2 %80.::53.... ‘:.:E:"'
ay(R)= f driM(r,r)&(r—R)| . (2.9 8 el sl o
] M. .°::- LN I
Two limiting cases can be identified. For a spatially homo- et ceet
geneous electromagnetic fieléfar-field), the oscillator w0l@ . . 10r(c) . .
strengtha’f‘ is given by the spatial average of the excitonic 0 20 40 60 8 0 20 40 60 80
. . A \ 2 . Distance (nm) Distance (nm)
wave function, i.e.a;z(R)=|fdr¥*(r,r)|°. In the opposite - .
(and hypothetical limit of an infinitely narrow probe, E s0F}
E(r—R)=4(r—R), one is probing the local value of the \9;40
exciton wave function, i.e.a}(R)=|¥*(R,R)|%. Finally, 230}
within the intermediate regime of a narrow but finite probe, g 20F
W(r,r) is averaged over a region which is determined by 2 ‘g b) "

the spatial extension of the light beam; therefore, excitonic . 0 7 P —,
transitions which are optically forbidden in the far field may Position (nm) Position (nm)
become visible in the near field.

A
=)

FIG. 1. Single-particle energies as a function of the distance
between the two dotsl (upper panels and the form of the confin-
Ill. RESULTS ing potential along thex axis (lower panels for d=20 nm (solid
line), d=30 nm(dashed ling andd=40 nm(dotted ling. Left and

In the following sections we consider the interaction of right panels correspond to electrons and holes, respectively.

the EM field with excitonic states of single and double QDs;
for the latter system, we focus particularly on the transition,;i, Keon

) nary ol ) h=Mep(wEM?, andfw®" is the level splittings due
between two isolated QDs and an “artificial molecule,” 1 e jn-plane harmonic potential. The shape of the double-

where the electronic states of two QDs are strongly overlapgos notential has been obtained by matching the parabolas
pIng. with opposite curvature, such that the potential is continuous
and smooth ax= *+d/4; the shape of the resulting potential
A. Single-particle states along thex direction is shown, for selected interdot distances

We shall consider a prototypical QD confinement which® in Figs. Xb) and Xd). Material and dot parameters which
is composed of a 2D harmonic potential in they) plane  aré used in this paper are listed in Table I, ywth this choice of_
and a rectangular quantum well aloagsuch confinement Parameters, electron and hole wave functions have approxi-
potentials have been demonstrated to be a good approximgiately the same lateral extension, and the QW-induced in-
tion for self-assembled QDs formed by strained-layer epiférsubband splittings are much larger thian, and o, .
taxy. We focus on cases where theonfinement is stronger  With our choice of the confinement potential, H§.1),

than the ,y) one, so that the confinement potential can bethe single-particle energies of a QD dgp=Eqw+ Enam
written as whereEgy is the confinement energy of the QW alongnd

Enam IS the confinement energy of the 2D harmonic poten-
7 tial. Single-particle energies and envelope functions have
Vﬁ'h(x,y,z)=Vﬁh(x,y)+vg'h0(|z|—EO), (3.)  been computed numerically within a plane-wave scheme.
However, for a single QD the 2D eigenstates can be found
wherez, is the width of the quantum well an\zlg'h is the  analytically and are the well-known “Fock-Darwin” stafes

band offsets for electrons and holes, respectively. For a

single dot the in-plane confinement potenﬂq?;h(x,y) is of TABLE |. Material parameters for GaAs/&ba, _,As and dot

parametersgcf. Ref. 10 which were used in the calculationsf is

the form the free-electron magsEffects of valence-band anisotropies and/or
1 valence-band mixing have been neglected.
e,h
VP 0y) = Elce’h(xz+y2)’ (3.2 Description Value Units
while for two dots(i.e., double dotseparated by the distance €lectron massn, 0.067 Mo
d, hole masany, 0.38 m,
dielectric constani, 12.9
1 d\? d conduction-band offset for electrong 300 meV
>Ken <|X| 3 +y? f0r|X|>Z valence-band offset for holeg) 200 meV
V‘T'h(x,y) =1 4 & confinement energf ® for electrons 20 meV
s [(_ —x2 +y2 otherwise, confinement energﬁwg for holes 3.5 meV
27eh | 8 quantum-well widthz, 10 nm

(3.3
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TABLE II. Eigenfunctions(Fock-Darwin stateswith lowest energies for a particle with magsand for
a potential of the formV(x,y) = 3 uw2(x>+y?) =3 uw?r? (i.e., two-dimensional harmonic oscillajoMe
use X=xla,, Y=yla,, andR=r/a,, with a,= JyA/unw, Because of cylindrical symmetry, the angular
momentum in the direction is a good quantum numbin) and the angular part of the wave functions is of
the form« exp*ime; we use the notatios for m=0, p for m= =1, andd for m==*2.

Cartesian coordinates Cylinder coordinates
Energy (iw,) B(X)) = exp-3(X2+?) B(R.¢) exp—3R 2 notation
1 X1 X1 1s
2 XX
XY X R exp*ie 1p
3 X XY
X (2x2-1) X (R2%-1) 2s
X (2Y?%-1) X R 2exp+2i¢p 1d

(we stress, however, that the extension inzldirection is of ~ carriers have sufficient energy to overconfer tunnel
crucial importance for the calculation of the Coulomb matrixthrough the barrier between the two dots, the degeneracy is
elements and the optical properties, and unavoidably has t@moved, and the energy levels have a nonmonotonic behav-
be taken into account in any realistic calculation; see also thr which reflects the transition from two separated carrier
discussion in Ref. 38 For such statesE,,,=(n  systems to a single one, and is similar to the one found, e.g.,
+1)ﬁw§'h, where n=0,1, ... is theprincipal quantum for coupled QWS® For the smallest dot distances, the
number, and each level is ¢ 1)fold degenerate; in Table II double-dot potential merges into a single-dot potential, and
we summarize for convenience some properties of thesthe Fock-Darwin states of a single dot are recovered.
“Fock-Darwin” states?

Figure 1 shows the calculated single-particle energies for B. Role of the Coulomb correlation in the far-field spectra
electrons and holes for the more complex case of a double
QD with the confinement potential given in E.3 and
with parameters listed in Table I. The lower panffgs.
1(b) and Xd)] show the confinement potentials for electrons
and holes at selected interdot distances. Obviously, for Iargt larlv in the t it f ; e “artificial
dot separationsl (d=60 nm) the system can be well ap- cu ar,}’ In “e ransition rom” WO separate “artiicia

. Oy ! .. atoms” to an “artificial molecule.
proximated by two separate QDs; in this regime, the equidis- Far-field spectra can be obtained in the formalism of Sec
tance of the excited states and the correct degeneracy of tfl1|e b '

Fock-Darwin states is obtained. Whdiis small enough that dis(,:tr?bstljrt]igna probeg with a spatially homogeneous EM-field

Before turning to the analysis of near-field spectra, we
briefly discuss the limiting case of very broad EM-field dis-
tribution (far-field spectra This discussion allows us to elu-
(éidate the role of the electron-hole Coulomb correlation, par-

without Coulomb interactions with Coulomb interactions

. without “ouromio interactions Wi Lodlomb Interactons
(a) (b)

Distance: Distance:

2
. (3.9

ag(r)—const: f dr\If"(r,r)

700m 700m Figures 2 and 3 show the calculated far-field spectra for a
double QD as a function of the dot distart:éWNVe first con-

centrate on the calculations where Coulomb correlations

z
5
) M without Coulomb interactions with Goulomb interactions
5 [oom MM el i
g [ ] 12008, "+ 110 0 @@ | 1l Lol .
o em 8 . . LI
2 . %, L3 . ® . e L ) .
< 20 nm —_ .« . ¢ ",.53;-‘ .
2 ee : ..
L 15nm 5100_\. "’Ef. o000 ] oo :':'. : ]
Lomm A AN AMAMAY [ rom g AR RER e
[ . . 'Y ]
[ som [ 5nm "E sof °, 1 80—‘;..90:90 000
1nm 1nm _g ~. ‘lse o o 0 Ll
g e ;o
60 q 60 e q
O A N ‘011\“"‘,4)&‘ . o . 0000 0 0 ©
4 60 80 100 120 140 40 60 80 100 120 oo
Photon Energy (meV) Photon Energy (meV) w0l (a) ] ol (b) ]
1 1 1 1 1 1 1 1
i i 0 20 40 60 80 0 20 40 60 80
FIG. 2. _Optmal-_ab_sorptlon_spectra for a homogeneous electro- Distance (nm) Distance (nm)
magnetic field profilgi.e., far field for a double quantum dot and
for different distancesl: (a) Coulomb interactions neglecte¢h) FIG. 3. Same as Fig. 2; the size of each dot corresponds to the

Coulomb interactions included. We uge=1 meV. The photon height (i.e., oscillator strengbhof the corresponding absorption
energy is measured with respect to the band gap. peak.
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without Coulomb interactions with Coulomb interactions

wu |'0=0

FIG. 4. (Color) Local absorp-
tion spectra a/X,hiw) for a
single QD with[(d)—(f)] and with-
out [(@—(c)] Coulomb interac-
tions and for different values of
o. Photon energyi w is measured
with respect to the band gap, and
X is the position of the tip along
the x axis (Y=0). In these calcu-
lations we use a basis of six elec-
tron and hole states, respectively.

-4 20 1] 20 40 -40 -20 0 20 40

Photon Energy (meV)
wu OL=o

60

50

40
-40 -20 ] 20 40 -40 20 0 20 40

Position (nm)

were artificially set to zerdFigs. 2a) and 3a)]: Because of When Coulomb interaction is included, inspection of the
symmetry, only a small fraction of all possible electron-holeexciton wave functioneifzy [obtained from the solutions of
transitions is visible; from Eq3.4) and using/d¢ expi(Me  Eq. (2.3)] shows that a number of different single-particle
+My)e<dn -m We obtain that optical transitions are only transitions contributes to each excitonic stdand that Cou-
allowed between electron and hole single-particle states wittomb interaction affects the optical specfisee Figs. @)
opposite angular momentum. Indeed, for large distafiees and 3b)] in several ways. First, because of the attractive
uncoupled QDponly three strong absorption peaks are ob-electron-hole interactiofleading to the “bound” excitonic
served, with an energy splitting of approximatelywg  statey we observe a redshift of the peaks. Second, we ob-
+ﬁw2; the intensity of the peaks increases with energyserve a redistribution of the oscillator strength. In general,
(with ratio 1:2:3). These can be attributed to transitions oscillator strength is transferred from peaks of higher energy
between electron and hole single-particle stéseg Table )l  to those of lower; this effect is particularly strong, e.g., in the
of the 1s symmetry(peak at~70 meV), the b symmetry  doublet which splits from the lowest peak when the two QDs
(peak at~95 meV), and the d and X symmetriedpeak at approach and where, in contrast to the uncorrelated case, the
~120 meV). oscillator strength of the energetically higher partner is ex-
When symmetry is reduced, either because of an asyniremely weak. Finally, Coulomb interaction is responsible
metric confinement potential or by the presence of an exterfor the appearance of additional lindsee, e.g., ford
nal inhomogeneous EM fielgs will be discussed laterthe =70 nm the peak at-70 meV). While the first two effects
selection rules noted above are relaxed. Indeed, when (redshift and transfer of oscillator strengthre similar to
reduced and the two QDs begin to interact, the calculateshat is found in the absorption spectra of semiconductor
spectra show a much richer structure, as shown in Figs. 2 quantum wires® and thus can be considered as a general
and 3a), reflecting the reduction of built-in symmetry. Ob- fingerprint of Coulomb correlations in the optical properties
viously, whend=0, the usual selection rules of a single QD of semiconductor nanostructures, the origin of the additional
are recovered. peaks is best discussed in connection with the calculated
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x (nm)

FIG. 5. Contour plot of the exciton wave functidn(r,r) for three excitons which contribute to the absorption peak & meV. Solid
and dashed lines correspond to positive and negative values, respectively.

near-field optical spectra, and is postponed to the next seqve can attribute the triplet of peaks at70 meV to the
tion. single-particle transitions involving thesistate of electrons
and the &, 1p, and (Z,1d) states(in order of increasing

C. Optical near-field spectra energy of holes(see also Table )i analogously, the triplet

In this section we discuss the local absorption spectra o?t ~90fm(|av IS attnbu;e?] to tge tranjltlcgni;nvhol\l/mg the 1
single and coupled QDs. Because of the narrow well widttptate of electrons and thesl1p, an (3,1d) ole states;
of the dot confinement potentisee Table), the EM profile indeed, in Fig. 4a) the localization of the absorption peaks is

of the near-field probe alorghas only a minor influence on suggestive of thes, p- or d-type symmetry of the corre-
the results. and we use sponding Fock-Darwin states. These features are still present

at the intermediate resolutigfig. 4(b)], but disappear at the

X2t y2 opposite limit of a broad probi=ig. 4(c)]. This is expected,
g(x,y,z)xexp( - (3.5  since, when a localized EM field is present, the symmetry of
207 the whole system(nanostructureé EM field) is lower than

. . . ... that of the nanostructur@xcept when the probe is centered
T_he spatial resol_ut|on of the elgctromagnetlc—f|eld dIStrIbu'in the symmetry center of the structyrand far-field selec-
tion of Eg. (3.5 |s'then approximately given by th_e full tion rules are relaxed. When the probe is broadened, how-
width at half maxm_wm(FWHM) Of, the Gaussian(i.e., ever, the built-in symmetry of the structure is recovered, and
2y2 I? 20~2.3%). Since the Gaussian acts as an envelopgyniica| far-field selection ruleé.e., optical transitions only
onW?, in the intermediate regime of a narrow but finite  peryeen electron and hole states with opposite angular mo-

the spatial average only extends over the region where thgantumm) apply:; therefore, the spectra are almost identical
Gaussian is nonvanishing.

Since the extension of the quantum states under investi-
gation is of the order of a few tens of nanomet&se also 1.0 L
Figs. 5 and 8, to be discussed bejowm our calculations we
consider three different regimes of spatial resolutioh:a
regime where the FWHM is much larger than the extension
of the quantum state@s a characteristic value we use
=50 nm); (ii) a regime where the FWHM is comparable to
the extension of the relevant quantum stafe® use o
=10 nm); (iii) a regime with an extremely narrow probe
beam(we usec=0.1 nm). Calculations performed in this
latter (unphysical regime are used for illustrative purposes
to obtain a “cartography” of the exciton wave function, as
discussed at the end of Sec. Il C. We finally notice that the
excitonic Bohr radius=12 nm for GaAs.

A
lo (arb. units)

1. Single quantum dot

In Fig. 4 we report the calculated local absorption spectra
a (X, fiw) for a single QD as a function of the tip position.
The tip is swept along one direction, passing through the
center of the QD. o (nm)

In Figs. 4a)—4(c) we show the calculated spectra neglect- g 6. The relative contribution,} , as a function ofg, for
ing Coulomb interaction. For the highest spatial resolutioneycitons(a)—(c) (depicted in Fig. 5which are responsible for the
[Fig. 4@)], the local absorption at photon enerBy is pro-  nonmonotonic behavior of the feature at 65 meV. Fpen

portional to [dz¥(r,r)|,—o. Given the energy splitting circles correspond to the excitons shown in Fig) $Figs. &b) and
ﬁw2=3.5 meV for holes andiwg=20 meV for electrons, 5(c)].
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without Coulomb interactions with Coulomb interactions g
0.0 0.z a4 H-.E 0 1.0
d=20 nm d=20 nm d=30 nm d=40 nm
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FIG. 7. (Color) Local absorption spectra.(X,Aw) for a double QD with(d)—(1)] and without[(a)—(c)] Coulomb interactions and for
different values ofo and interdot distancd. Photon energyi w is measured with respect to the band gap, &nd the position of the tip
along thex axis (Y=0). In our calculations we use a basis of 12 electron and hole states, respectively.

to those of two separated dots in far-field spectroscopy, alrear-field tip destroys the cylinder symmetry, the wave func-
ready discussed in Figs. 2 and 3. tions shown in Fig. 5 indeed form a natural basis; see also
When we compare Figs.(@—4(c) with Figs. 4d)-4(f),  Table II) Next, we note that the averagerW¥(r,r) of the
we find that Coulomb interaction induces several effectg-type exciton wave functions is zero. Since with increasing
which are expected on the basis of the discussion of thg: the radius within which the exciton eigenfunctioftd are
far-field spectra. In particular, we find) an almost rigid averaged increases, we expect for thesgpe functions with
redshift of the spectraii) a transfer of oscillator strength increasingo a monotonically decreasing behavior. The exci-
from transitions at higher energies to those at lower energi€$y, shown in Fig. &), on the other hand, has a nonzero

(iii) the appearance of new features in the optical spectra. TQuaraqe and is therefore visible in both the optical far and
discuss the origin of these new optical features caused be

. ) . X ear field. A closer inspection of the exciton wave function

Coulomb interactions, let us consider, e.g., the optical peaks,\ I
X ) reveals that the largest contribution stems from the tran-

at photon energy~65 meV [Figs. 4d)— 4(f)]: They are g
quite strong ato=0.1 nm [Fig. 4(d)], almost disappear at sition between the 4 state of electrons and thes Ztate of
=10 nm|[Fig. 4(e)]' and are visibie again in the far-field holes, but there is also a noticeable contribution from the
limit [Fig. 4f)]. Such behavior is rather unexpected and no-1S-18 and Ip-1p electron-hole transitions. Indeed, only the
ticeably differs from that of other transitions, which—uwith latter contributions couple in the far field to the light field. In
due to symmetry reasons, as discussed above. To investigdien when the FWHM of the EM near field becomes equal to
the origin of this nonmonotonic dependence, in the followingthe Bohr radius. This is clearly depicted in Fig. 6, where, in
we analyze the three excitons within the corresponding enorder to Iacmtate our discussion, we have introduced the
ergy range. Figure 5 shows a contour plot of the respectivauantltylgmdeag(R), which provides a measure of the
exciton wave function?*(r,r)|,—o. Apparently, in Fig. 6a)  relative contribution of each exciton to the absorption spec-
the exciton hasstype symmetry, whereas the other two tra. Figure 6 showd;g for the three excitongshown Fig. 3
electron-hole states hayetype symmetry(Because of the within the energy region of 65 meV: We observe that with
periodicity box used in our calculations, the twofold degen-increasingo, the p-type functiongopen circlegindeed van-
erate p-type exciton wave functions have Cartesian rathelish monotonically, whereas for the-type exciton (full
than cylinder symmetry; note that, since the presence of theircleg there exists an optimal cancellation when the FWHM
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excitonic wave function of two states out of the six states
with E,~70 meV ford=40 nm; it can be inferred that for a
spatial resolution of the near-field probe comparable to the
excitonic Bohr radius £12 nm), there is again an optimal
cancellation. This is a remarkable finding, because it clearly
demonstrates that such behavior indeed is a general charac-
teristic of semiconductor nanostructures, and does not de-
pend on peculiar symmetries of the confining potential.

20F

y (nm)

N
o

IV. SUMMARY AND CONCLUSIONS

We have analyzed theoretically the interaction between a
model near-field probe and a zero-dimensional heterostruc-
ture: Quantum confinement of the electron and hole states, as
well as their Coulomb interaction in the linear regime, are
fully included in our description.

We have specifically considered single and coupled semi-
conductor quantum dots, and shown that absorption is
strongly influenced by the spatial interference of the exciton
wave functions, which depends on the spatial extension of
the light beam. As a consequence, near-field experiments on
quantum dots are predicted to display unexpected spectral

FIG. 8. Contour plot of the exciton wave functioh(r,r) of  features whose dependence on spatial resolution is highly
the two excitons which are responsible for the nonmonotonic benontrivial.
havior of the features at-70 meV at the interdot distance When combined with an appropriate choice of the EM
=40 nm. Solid and dashed lines correspond to positive and negaeld distribution, our approach provides the necessary tool
tive values, respectively. The uppower) panel refers to an exci- - for interpretation of near-field absorption spectra of quantum
ton with energy 69.1 me\(70.3 meVi. dots as the spatial resolution of experiments becomes com-

_ o _ parable with the Bohr radius of the exciton in the nanostruc-
of the EM-field distribution becomes approximately equal totyre.

the Bohr radius. In spite of the specific carrier states of a
single parabolic QD, we expect that such nonmonotonic be-
havior appears quite generally in semiconductor nanostruc-
tures where carrier states are confined on a length scale com- We thank Fausto Rossi for very stimulating discussions.
parable to the Bohr radius, and thus provides a strikingrhis work was supported in part by INFM through PRA-99-
fingerprint of Coulomb correlations in the optical near-field SSQI, and by the EC under the TMR Network “Ultrafast
spectra(we find similar behavior in our calculations for the Quantum Optoelectronics” and the IST program “SQID.”
near-field spectra of coupled QDs discussed bglow U.H. acknowledges support by the EC through a TMR Marie
Curie Grant.
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2. Double quantum dot

In Fig. 7 we show the calculated local absorption spectra APPENDIX: PLANE-WAVE APPROACH
a(X,fiw) for a double QD for selected values of the inter- . . . . .
In this appendix, we discuss details of our numerical so-

dot distance and@. The tip of the probe is swept along the luti h based | ion. Followi
direction which passes through the centers of the two QDs.u lon schemes based on a plané-wave expansion. Following

Let us first concentrate on the results witk- 0.1 nm and our.approach developed equ?én_;ve conside_r the problem O.f
with the Coulomb interaction taken into accouffigs. a single or double QD which is located inside a box with

7(d),7(g), 7(j)]. With decreasing interdot distance we observepe”.oc.jIC boundary COI’](.thI'OnS, where the t‘>‘ox_S|ze '?, chosen
the transition from a system where the energetically lowes ufficiently large to avoid n_wteraqtlo_ns with ne_lgh_b_or dots.
s a complete set of functions, inside the periodicity box we

exciton states are almost localized in the spatially separat .

minima of the two dots, to a system where the electron-hol&'S€ & plane-wave basik), with

states extend over the whole nanostructure. Heresthe

ground-state excitons of Fig(j¥ split up into a “bonding” :27Tna

and an “antibonding” stat¢Fig. 7(d)]. By comparing Figs. “L,

7(d) and 7f), we find that in the optical farfield only the

symmetric ground-state exciton couples to the light field. HereL, denotes the sizes of the periodicity baxe use the
Next, we discuss the optical features at the photon energ§ame box for electrons and holesVe next expand the

of ~70 meV ford=40 nm. As in the case of the single dot, Single-particle wave functions for electrons and holes within

these features show a nonmonotonic dependence on tfie plane-wave basis:

probe width. As can be inferred from the calculations with

o=0.1 nm, there are several excitonic states contributing to ~eh_ -1 —ik-r geh

the spectral features in this energy range; Fig. 8 shows the b= J dre bu (1), (A2)

n,ez, a=Xx)Y,zZ (A1)
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with Q) the volume of the periodicity box. The envelope- In the calculation of the near-field spectra, we define the

function equation2.1) is then transformed to electron-hole index=(u,v). Then
h2k? h h
VWE ~eh _ _eh¥eh
% Zmehakk'+vc'k’k' b =€ bk, (A3) WNr, )= q;lkd,il(r)qggl(r), (A4)
' [

which can be solved by standard diagonalization techniques.
To keep the numerics tractable, only wave vectors smalleand we obtain forag(R) of Eqg. (2.8 the final result,
than a given cutoff wave vector are consideirggbically

2000—-3000 wave vectorsin our computational approach, 2

we perform the Fourier transform of the confinement poten- ap(R)=| 2 V'Y & (RS, @ |, (AB)
tial by storingvﬁ'h(r) on an appropriate gridwith a typical ! kk’ "

number of 30 points along each directipand approximat-

ing within each cub&/¢"(r) by its average value. with Z(R)=Q " 1fdr&(r)e’ (R,
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