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Local absorption spectra of artificial atoms and molecules

C. D. Simserides, U. Hohenester, G. Goldoni, and E. Molinari
Istituto Nazionale per la Fisica della Materia (INFM) and Dipartimento di Fisica, Universita` di Modena e Reggio Emilia,

Via Campi 213A, I-41100 Modena, Italy
~Received 15 May 2000!

We investigate theoretically the spatial dependence of the linear absorption spectra of single and coupled
semiconductor quantum dots, where the strong three-dimensional quantum confinement leads to an overall
enhancement of Coulomb interaction and, in turn, to a pronounced renormalization of the excitonic properties.
We show that—because of such Coulomb correlations and the spatial interference of the exciton wave
functions—unexpected spectral features appear whose intensity depends on spatial resolution in a highly
nonmonotonic way when the spatial resolution is comparable with the excitonic Bohr radius. We finally
discuss how the optical near-field properties of double quantum dots are affected by their coupling.
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I. INTRODUCTION

In recent years much attention has been devoted to
properties of semiconductor quantum dots~QDs!. In these
systems, carriers are subjected to a confining potential in
spatial directions, giving rise to a discrete energy spectr
~‘‘artificial atoms’’! and to novel phenomena of interest f
fundamental physics as well as for applications to electro
and optoelectronic devices.1,2 The extension and the shape
the QD confining potential varies, depending on the na
structure fabrication technique: The dots that are stud
most extensively by optical methods are induced
quantum-well~QW! thickness fluctuations,3–6 or obtained by
spontaneous island formation in strained layer epitaxy7–9

self-organized growth on patterned substrates,10 stressor-
induced QW potential modulation,11 cleaved edge
overgrowth,12 as well as chemical self-aggregatio
techniques.13,14 The resulting confinement lengths fall in
wide range between 1mm and 10 nm.

In spite of the continuing progress, all the available fa
rication approaches still suffer from the effects of inhomog
neity and dispersion in the dot size, which lead to large li
widths when optical experiments are performed on large
ensembles. A major advancement in the field has come f
different types of local optical experiments, which allow t
investigation of individual quantum dots thus avoiding inh
mogeneous broadening.3–14

Among local spectroscopies, the approaches based
scanning near-field optical microscopy~SNOM! ~Ref. 15!
are especially interesting as they bring the spatial resolu
well below the diffraction limit of light: With the develop
ment of small-aperture optical fiber probes, subwavelen
resolutions were achieved (l/82l/5 or l/40) ~Refs. 16 and
17! and the first applications to nanostructures beca
possible.5,6,18–23 As the resolution increases, local optic
techniques in principle allow direct access to the space
energy distribution of quantum states within the dot. T
opens, however, a number of questions regarding the in
pretation of these experiments that were often neglecte
the past.

First of all, for spatially inhomogeneous electromagne
~EM! fields it is no longer possible to define and measure
PRB 620163-1829/2000/62~20!/13657~10!/$15.00
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absorption coefficient thatlocally relates the absorbed powe
density with the light intensity@since the susceptibility
x(r ,r 8) cannot be approximated by a local tensor#. In the
linear regime, a local absorption coefficient can still be d
fined, which is, however, a complicated function that d
pends on the specific EM-field distribution.24 The interpreta-
tion of near-field spectra therefore requires calculatio
based on a reasonable assumption for the profile of the
field.

Second, the quantum states that are actually probed
few-particle states of the interacting electrons and holes p
toexcited in the dot. Even in the linear regime, exciton
effects are known to dominate the optical spectra of d
since Coulomb interactions are strongly enhanced by
three-dimensional confinement. Near-field spectra probe
citon wave functions, and their spatial coherence and ove
with the EM-field profile will determine the loca
absorption.24

In this paper, we show how the above phenomena af
local spectra of QDs, paying special attention to the case
coupled dots~‘‘artificial molecules’’! where carriers interac
across the barrier via tunneling and/or Coulomb coupling25

Indeed, the optical properties of coupled dots are currentl
great interest not only in view of the unavoidable interd
interactions occurring in real samples with dense QD pa
ing, but also in view of their relevance for designing nov
devices including possible solid-state implementations
quantum information processing.26

We will show that the relative phase of the exciton wa
function in adjacent coupled dots~or in different regions of
the same dot! can induce dramatic changes in the select
rules with respect to far-field spectra: A realistic predicti
of these effects requires accurate calculations taking into
count quantum confinement as well as Coulomb interactio
Our theoretical scheme is especially designed to allow a
alistic description of the quantum states of the interact
electrons and holes photoexcited in the linear regime. In
respect we improve drastically over previous approach
which generally focused on a more detailed treatment of
EM-field distributions.27–31

Our theoretical framework for dots is summarized in S
13 657 ©2000 The American Physical Society
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II, while Sec. III and IV discuss our results and conclusio
for single and coupled dots.

II. THEORY

In this section, we summarize our theoretical approach
computing local absorption spectra for semiconductor Q
We first show in Sec. II A how to compute the single-partic
eigenstates for electrons and holes subjected to a th
dimensional confinement potential. These single-part
states are then used in Sec. II B for the calculation
electron-hole~i.e., optical! excitations. In analogy to semi
conductor systems of higher dimensionality, we shall refe
these excitations asexcitons; the properties of such excitons
however, are not only governed by the attractive electr
hole Coulomb interaction, but in addition by the strong qua
tum confinement. Finally, we use in Sec. II C the above
gredients to derive the equations needed for the calcula
of local optical-absorption spectra.

A. Single-particle states

In semiconductor QDs, carriers are confined in all th
space directions. To simplify our analysis, we assume th
suitable parametrization of the dot confinement potentia
known ~e.g., from experiment! and that the confinement po
tential varies sufficiently slowly on the length scale of t
lattice constant. We thus shall make use of the envelo
function approach;32 moreover, since the energy region
our present concern is relatively close to the semicondu
band gap, we describe the material band structure in term
a single electron and hole band within the usual effecti
mass approximation. More specifically, the envelop
function equation for single electrons and holes reads

S 2
\2

“

2

2me,h
1Vc

e,h~r ! Dfm
e,h~r !5em

e,hfm
e,h~r !, ~2.1!

whereme(mh) is the effective mass andVc
e (Vc

h) is the con-
finement potential energy for electrons~holes!. Following
our approach developed earlier,33 we numerically solve Eq.
~2.1! for arbitrary confinement potentials by use of a plan
wave expansion with periodic boundary conditions~see Ap-
pendix!.

B. Exciton states

When the dot structure is perturbed by an external li
field ~e.g., laser!, electron-hole pairs are created whic
propagate in the presence of the mutual Coulomb interac
and of the dot confinement potential. Within the present
per, we shall restrict ourselves to the linear optical respo
i.e., the dynamics of a single electron-hole pair. Then,
exciton dynamics is described by the electron-hole w
function C(re ,rh), with the squared modulus being th
probability of finding the electron at positionre when the
hole is at positionrh .

If we expand the electron-hole~‘‘exciton’’ ! eigenfunction
in terms of single-particle states, viz.,

Cl~re ,rh!5(
mn

fm
e ~re!Cmn

l fn
h~rh!, ~2.2!
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we obtain the excitonic eigenvalue problem:34,35

~em
e 1en

h!Cmn
l 1 (

m8n8
Vmm8,nn8

eh Cm8n8
l

5ElCmn
l . ~2.3!

As will be shown in the following, the exciton spectrumEl

directly provides the optical transition energies, whereas
excitonic wave functionsCl determine the oscillator
strengths of the corresponding transitions. In Eq.~2.3! we
have introduced the electron-hole Coulomb mat
elements:36,37

Vmm8,nn8
eh

52e2E dredrh

fm
e * ~re!fm8

e
~re!fn

h* ~rh!fn8
h

~rh!

koure2rhu
,

~2.4!

wheree is the elementary charge andko is the static dielec-
tric constant of the bulk semiconductor@note that in Eq.~2.4!
we have not considered the electron-hole exchange inte
tion#. Within our computational approach, we consider in E
~2.3! typically a basis of 12 states for electrons and hol
respectively, and obtain the excitonic eigenfunctions by
rect diagonalization of the Hamiltonian matrix.

C. Local optical absorption

The light-matter coupling is described within the usu
rotating-wave and envelope-function approximations:

Hop5E drEv~r !@eivt P̂~r !1e2 ivt P̂†~r !#, ~2.5!

whereEv(r ) is the electromagnetic field distribution of th
near-field probe andP̂(r )5moĉe(r )ĉh(r ) is the interband-
polarization operator@with ĉe,h

† (r ) creating an electron o
hole at positionr , andmo the dipole-matrix element of the
bulk semiconductor#. In Eq.~2.5!, we have used that in linea
response it suffices to consider only monofrequent laser
citations.

When the semiconductor nanostructure is excited b
local near-field probe, the total absorbed powera(v) at a
given frequencyv is proportional to *drEv(r )P(r ,v);
within linear response, the induced interband polarizat
P(r ,v) is related toEv(r ) through

P~r ,v!5E dr 8x~r ,r 8;v!Ev~r 8!. ~2.6!

where the nonlocal electrical susceptibilityx~r , r 8; v! can be
expressed in terms of the excitonic eigenenergies
eigenfunctions:24

x~r ,r 8;v!5m0
2(

l

Cl~r ,r !Cl* ~r ,r 8!

El2\v2 ig
. ~2.7!

Here, we have introduced a small damping constantg ac-
counting for the finite lifetime of exciton states due to en
ronment coupling~e.g., phonons or radiative decay!. To de-
rive our final expression, it turns out to be convenient
consider for the elctromagnetic field distribution a given p
file j centered around the beam positionR, i.e., Ev(r )
5Evj(r2R). Then, the local spectrum for a given tip pos
tion R can be expressed in the form~see also Appendix!24



o

ic

e

e
b
n
ay

o
s

io
,’’
lap

ch

t
im
p
r
b

r

e

le-
olas
ous
al
es
h
of

oxi-
in-

n-
ave

e.
nd

nce

or

PRB 62 13 659LOCAL ABSORPTION SPECTRA OF ARTIFICIAL . . .
aj~R,v!}I(
l

aj
l~R!

El2 ig2\v
, ~2.8!

where

aj
l~R!5U E drCl~r ,r !j~rÀR!U2

. ~2.9!

Two limiting cases can be identified. For a spatially hom
geneous electromagnetic field~far-field!, the oscillator
strengthaj

l is given by the spatial average of the exciton
wave function, i.e.,aj

l(R)}u*drCl(r ,r )u2. In the opposite
~and hypothetical! limit of an infinitely narrow probe,
j(rÀR)5d(r2R), one is probing the local value of th
exciton wave function, i.e.,aj

l(R)5uCl(R,R)u2. Finally,
within the intermediate regime of a narrow but finite prob
Cl(r ,r ) is averaged over a region which is determined
the spatial extension of the light beam; therefore, excito
transitions which are optically forbidden in the far field m
become visible in the near field.

III. RESULTS

In the following sections we consider the interaction
the EM field with excitonic states of single and double QD
for the latter system, we focus particularly on the transit
between two isolated QDs and an ‘‘artificial molecule
where the electronic states of two QDs are strongly over
ping.

A. Single-particle states

We shall consider a prototypical QD confinement whi
is composed of a 2D harmonic potential in the (x,y) plane
and a rectangular quantum well alongz; such confinemen
potentials have been demonstrated to be a good approx
tion for self-assembled QDs formed by strained-layer e
taxy. We focus on cases where thez confinement is stronge
than the (x,y) one, so that the confinement potential can
written as

Vc
e,h~x,y,z!5Vi

e,h~x,y!1Vo
e,huS uzu2

zo

2 D , ~3.1!

wherezo is the width of the quantum well andVo
e,h is the

band offsets for electrons and holes, respectively. Fo
single dot the in-plane confinement potential,Vi

e,h(x,y) is of
the form

Vi
e,h~x,y!5

1

2
Ke,h~x21y2!, ~3.2!

while for two dots~i.e., double dot! separated by the distanc
d,

Vi
e,h~x,y!5H 1

2
Ke,hF S uxu2

d

2D 2

1y2G foruxu.
d

4

1

2
Ke,hF S d2

8
2x2D1y2G otherwise,

~3.3!
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with Ke,h5me,h(vo
e,h)2, and\vo

e,h is the level splittings due
to the in-plane harmonic potential. The shape of the doub
dot potential has been obtained by matching the parab
with opposite curvature, such that the potential is continu
and smooth atx56d/4; the shape of the resulting potenti
along thex direction is shown, for selected interdot distanc
d, in Figs. 1~b! and 1~d!. Material and dot parameters whic
are used in this paper are listed in Table I; with this choice
parameters, electron and hole wave functions have appr
mately the same lateral extension, and the QW-induced
tersubband splittings are much larger than\vo

e and\vo
h .

With our choice of the confinement potential, Eq.~3.1!,
the single-particle energies of a QD areEQD5EQW1Eharm,
whereEQW is the confinement energy of the QW alongz and
Eharm is the confinement energy of the 2D harmonic pote
tial. Single-particle energies and envelope functions h
been computed numerically within a plane-wave schem
However, for a single QD the 2D eigenstates can be fou
analytically and are the well-known ‘‘Fock-Darwin’’ states1

FIG. 1. Single-particle energies as a function of the dista
between the two dots,d ~upper panels!, and the form of the confin-
ing potential along thex axis ~lower panels! for d520 nm ~solid
line!, d530 nm~dashed line!, andd540 nm~dotted line!. Left and
right panels correspond to electrons and holes, respectively.

TABLE I. Material parameters for GaAs/AlxGa12xAs and dot
parameters~cf. Ref. 10! which were used in the calculations (mo is
the free-electron mass!. Effects of valence-band anisotropies and/
valence-band mixing have been neglected.

Description Value Units

electron massme 0.067 mo

hole massmh 0.38 mo

dielectric constantko 12.9
conduction-band offset for electronsVo

e 300 meV
valence-band offset for holesVo

h 200 meV
confinement energy\vo

e for electrons 20 meV
confinement energy\vo

h for holes 3.5 meV
quantum-well widthzo 10 nm
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TABLE II. Eigenfunctions~Fock-Darwin states! with lowest energies for a particle with massm and for
a potential of the formV(x,y)5

1
2 mvo

2(x21y2)5
1
2 mvo

2r 2 ~i.e., two-dimensional harmonic oscillator!. We
useX5x/ao , Y5y/ao , andR5r /ao , with ao5A\/mvo. Because of cylindrical symmetry, the angul
momentum in thez direction is a good quantum number~m! and the angular part of the wave functions is
the form} exp6imw; we use the notations for m50, p for m561, andd for m562.

Cartesian coordinates Cylinder coordinates
Energy (\vo) f(X,Y)} exp2

1
2(X 21Y 2) f(R,w)} exp2

1
2R 2 notation

1 31 31 1s

2 3X
3Y 3R exp6iw 1p

3 3XY
3(2X 221) 3(R 221) 2s
3(2Y 221) 3R 2exp62iw 1d
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~we stress, however, that the extension in thez direction is of
crucial importance for the calculation of the Coulomb mat
elements and the optical properties, and unavoidably ha
be taken into account in any realistic calculation; see also
discussion in Ref. 38!. For such statesE harm5(n
11)\vo

e,h , where n50,1, . . . is the principal quantum
number, and each level is (n11)fold degenerate; in Table I
we summarize for convenience some properties of th
‘‘Fock-Darwin’’ states.1

Figure 1 shows the calculated single-particle energies
electrons and holes for the more complex case of a do
QD with the confinement potential given in Eq.~3.3! and
with parameters listed in Table I. The lower panels@Figs.
1~b! and 1~d!# show the confinement potentials for electro
and holes at selected interdot distances. Obviously, for la
dot separationsd (d*60 nm) the system can be well ap
proximated by two separate QDs; in this regime, the equi
tance of the excited states and the correct degeneracy o
Fock-Darwin states is obtained. Whend is small enough tha

FIG. 2. Optical-absorption spectra for a homogeneous elec
magnetic field profile~i.e., far field! for a double quantum dot an
for different distancesd: ~a! Coulomb interactions neglected;~b!
Coulomb interactions included. We useg51 meV. The photon
energy is measured with respect to the band gap.
to
e

se

r
le

e

s-
the

carriers have sufficient energy to overcome~or tunnel
through! the barrier between the two dots, the degenerac
removed, and the energy levels have a nonmonotonic be
ior which reflects the transition from two separated carr
systems to a single one, and is similar to the one found, e
for coupled QWs.39 For the smallest dot distances, th
double-dot potential merges into a single-dot potential, a
the Fock-Darwin states of a single dot are recovered.

B. Role of the Coulomb correlation in the far-field spectra

Before turning to the analysis of near-field spectra,
briefly discuss the limiting case of very broad EM-field di
tribution ~far-field spectra!. This discussion allows us to elu
cidate the role of the electron-hole Coulomb correlation, p
ticularly in the transition from two separate ‘‘artificia
atoms’’ to an ‘‘artificial molecule.’’

Far-field spectra can be obtained in the formalism of S
II C using a probej with a spatially homogeneous EM-fiel
distribution,

aj(r )5const
l 5U E drCl~r ,r !U2

. ~3.4!

Figures 2 and 3 show the calculated far-field spectra fo
double QD as a function of the dot distanced. We first con-
centrate on the calculations where Coulomb correlati

o-

FIG. 3. Same as Fig. 2; the size of each dot corresponds to
height ~i.e., oscillator strength! of the corresponding absorptio
peak.



f

d

-
.

PRB 62 13 661LOCAL ABSORPTION SPECTRA OF ARTIFICIAL . . .
FIG. 4. ~Color! Local absorp-
tion spectra aj(X,\v) for a
single QD with@~d!–~f!# and with-
out @~a!–~c!# Coulomb interac-
tions and for different values o
s. Photon energy\v is measured
with respect to the band gap, an
X is the position of the tip along
the x axis (Y50). In these calcu-
lations we use a basis of six elec
tron and hole states, respectively
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were artificially set to zero@Figs. 2~a! and 3~a!#: Because of
symmetry, only a small fraction of all possible electron-ho
transitions is visible; from Eq.~3.4! and using*dw expi(me
1mh)w}dme ,2mh

we obtain that optical transitions are on
allowed between electron and hole single-particle states
opposite angular momentum. Indeed, for large distances~i.e.,
uncoupled QDs! only three strong absorption peaks are o
served, with an energy splitting of approximately\vo

e

1\vo
h ; the intensity of the peaks increases with ene

~with ratio 1:2:3). These can be attributed to transitio
between electron and hole single-particle states~see Table II!
of the 1s symmetry~peak at;70 meV), the 1p symmetry
~peak at;95 meV), and the 1d and 2s symmetries~peak at
;120 meV).

When symmetry is reduced, either because of an as
metric confinement potential or by the presence of an ex
nal inhomogeneous EM field~as will be discussed later!, the
selection rules noted above are relaxed. Indeed, whend is
reduced and the two QDs begin to interact, the calcula
spectra show a much richer structure, as shown in Figs.~a!
and 3~a!, reflecting the reduction of built-in symmetry. Ob
viously, whend.0, the usual selection rules of a single Q
are recovered.
th

-

y

-
r-

d

When Coulomb interaction is included, inspection of t
exciton wave functionsCmn

l @obtained from the solutions o
Eq. ~2.3!# shows that a number of different single-partic
transitions contributes to each excitonic state40 and that Cou-
lomb interaction affects the optical spectra@see Figs. 3~a!
and 3~b!# in several ways. First, because of the attract
electron-hole interaction~leading to the ‘‘bound’’ excitonic
states! we observe a redshift of the peaks. Second, we
serve a redistribution of the oscillator strength. In gene
oscillator strength is transferred from peaks of higher ene
to those of lower; this effect is particularly strong, e.g., in t
doublet which splits from the lowest peak when the two Q
approach and where, in contrast to the uncorrelated case
oscillator strength of the energetically higher partner is
tremely weak. Finally, Coulomb interaction is responsib
for the appearance of additional lines~see, e.g., ford
570 nm the peak at;70 meV). While the first two effects
~redshift and transfer of oscillator strength! are similar to
what is found in the absorption spectra of semiconduc
quantum wires,33 and thus can be considered as a gene
fingerprint of Coulomb correlations in the optical properti
of semiconductor nanostructures, the origin of the additio
peaks is best discussed in connection with the calcula
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FIG. 5. Contour plot of the exciton wave functionCl(r ,r ) for three excitons which contribute to the absorption peak at;65 meV. Solid
and dashed lines correspond to positive and negative values, respectively.
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near-field optical spectra, and is postponed to the next
tion.

C. Optical near-field spectra

In this section we discuss the local absorption spectra
single and coupled QDs. Because of the narrow well wi
of the dot confinement potential~see Table I!, the EM profile
of the near-field probe alongz has only a minor influence on
the results, and we use

j~x,y,z!}expS 2
x21y2

2s2 D . ~3.5!

The spatial resolution of the electromagnetic-field distrib
tion of Eq. ~3.5! is then approximately given by the fu
width at half maximum~FWHM! of the Gaussian~i.e.,
2A2 ln 2s'2.35s). Since the Gaussian acts as an envelo
on Cl, in the intermediate regime of a narrow but finites
the spatial average only extends over the region where
Gaussian is nonvanishing.

Since the extension of the quantum states under inve
gation is of the order of a few tens of nanometers~see also
Figs. 5 and 8, to be discussed below!, in our calculations we
consider three different regimes of spatial resolution:~i! a
regime where the FWHM is much larger than the extens
of the quantum states~as a characteristic value we uses
550 nm); ~ii ! a regime where the FWHM is comparable
the extension of the relevant quantum states~we use s
510 nm); ~iii ! a regime with an extremely narrow prob
beam~we uses50.1 nm). Calculations performed in th
latter ~unphysical! regime are used for illustrative purpos
to obtain a ‘‘cartography’’ of the exciton wave function, a
discussed at the end of Sec. II C. We finally notice that
excitonic Bohr radius'12 nm for GaAs.

1. Single quantum dot

In Fig. 4 we report the calculated local absorption spec
aj(X,\v) for a single QD as a function of the tip position
The tip is swept along one direction, passing through
center of the QD.

In Figs. 4~a!–4~c! we show the calculated spectra negle
ing Coulomb interaction. For the highest spatial resolut
@Fig. 4~a!#, the local absorption at photon energyEl is pro-
portional to *dzCl(r ,r )uy50. Given the energy splitting
\vo

h53.5 meV for holes and\vo
e520 meV for electrons,
c-

of
h

-

e

he

ti-

n

e

a

e

-
n

we can attribute the triplet of peaks at;70 meV to the
single-particle transitions involving the 1s state of electrons
and the 1s, 1p, and (2s,1d) states~in order of increasing
energy! of holes~see also Table II!; analogously, the triplet
at ;90 meV is attributed to the transitions involving the 1p
state of electrons and the 1s, 1p, and (2s,1d) hole states;
indeed, in Fig. 4~a! the localization of the absorption peaks
suggestive of thes-, p- or d-type symmetry of the corre
sponding Fock-Darwin states. These features are still pre
at the intermediate resolution@Fig. 4~b!#, but disappear at the
opposite limit of a broad probe@Fig. 4~c!#. This is expected,
since, when a localized EM field is present, the symmetry
the whole system~nanostructure1EM field! is lower than
that of the nanostructure~except when the probe is centere
in the symmetry center of the structure!, and far-field selec-
tion rules are relaxed. When the probe is broadened, h
ever, the built-in symmetry of the structure is recovered, a
optical far-field selection rules~i.e., optical transitions only
between electron and hole states with opposite angular
mentumm) apply; therefore, the spectra are almost identi

FIG. 6. The relative contribution,I j
l , as a function ofs, for

excitons~a!–~c! ~depicted in Fig. 5! which are responsible for the
nonmonotonic behavior of the feature at 65 meV. Full~open!
circles correspond to the excitons shown in Fig. 5~a! @Figs. 5~b! and
5~c!#.
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FIG. 7. ~Color! Local absorption spectraaj(X,\v) for a double QD with@~d!–~l!# and without@~a!–~c!# Coulomb interactions and fo
different values ofs and interdot distanced. Photon energy\v is measured with respect to the band gap, andX is the position of the tip
along thex axis (Y50). In our calculations we use a basis of 12 electron and hole states, respectively.
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to those of two separated dots in far-field spectroscopy,
ready discussed in Figs. 2 and 3.

When we compare Figs. 4~a!–4~c! with Figs. 4~d!–4~f!,
we find that Coulomb interaction induces several effe
which are expected on the basis of the discussion of
far-field spectra. In particular, we find~i! an almost rigid
redshift of the spectra;~ii ! a transfer of oscillator strengt
from transitions at higher energies to those at lower energ
~iii ! the appearance of new features in the optical spectra
discuss the origin of these new optical features caused
Coulomb interactions, let us consider, e.g., the optical pe
at photon energy;65 meV @Figs. 4~d!– 4~f!#: They are
quite strong ats50.1 nm @Fig. 4~d!#, almost disappear a
s510 nm @Fig. 4~e!#, and are visible again in the far-fiel
limit @Fig. 4~f!#. Such behavior is rather unexpected and n
ticeably differs from that of other transitions, which—wit
increasings—either remain strong or gradually disappe
due to symmetry reasons, as discussed above. To invest
the origin of this nonmonotonic dependence, in the followi
we analyze the three excitons within the corresponding
ergy range. Figure 5 shows a contour plot of the respec
exciton wave functionCl(r ,r )uz50. Apparently, in Fig. 5~a!
the exciton hass-type symmetry, whereas the other tw
electron-hole states havep-type symmetry.~Because of the
periodicity box used in our calculations, the twofold dege
erate p-type exciton wave functions have Cartesian rat
than cylinder symmetry; note that, since the presence of
l-

s
e

s;
o

by
ks

-

r
ate

n-
e

-
r
e

near-field tip destroys the cylinder symmetry, the wave fu
tions shown in Fig. 5 indeed form a natural basis; see a
Table II.! Next, we note that the average*drCl(r ,r ) of the
p-type exciton wave functions is zero. Since with increas
s the radius within which the exciton eigenfunctionsCl are
averaged increases, we expect for thesep-type functions with
increasings a monotonically decreasing behavior. The ex
ton shown in Fig. 5~a!, on the other hand, has a nonze
average and is therefore visible in both the optical far a
near field. A closer inspection of the exciton wave functi
Cmn

l reveals that the largest contribution stems from the tr
sition between the 1s state of electrons and the 2s state of
holes, but there is also a noticeable contribution from
1s-1s and 1p-1p electron-hole transitions. Indeed, only th
latter contributions couple in the far field to the light field.
the regime of finite resolution, there is an optimal cance
tion when the FWHM of the EM near field becomes equal
the Bohr radius. This is clearly depicted in Fig. 6, where,
order to facilitate our discussion, we have introduced
quantity I j

l}*dRaj
l(R), which provides a measure of th

relative contribution of each exciton to the absorption sp
tra. Figure 6 showsI j

l for the three excitons~shown Fig. 5!
within the energy region of 65 meV: We observe that w
increasings, thep-type functions~open circles! indeed van-
ish monotonically, whereas for thes-type exciton ~full
circles! there exists an optimal cancellation when the FWH
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of the EM-field distribution becomes approximately equal
the Bohr radius. In spite of the specific carrier states o
single parabolic QD, we expect that such nonmonotonic
havior appears quite generally in semiconductor nanost
tures where carrier states are confined on a length scale
parable to the Bohr radius, and thus provides a strik
fingerprint of Coulomb correlations in the optical near-fie
spectra~we find similar behavior in our calculations for th
near-field spectra of coupled QDs discussed below!.

2. Double quantum dot

In Fig. 7 we show the calculated local absorption spec
aj(X,\v) for a double QD for selected values of the inte
dot distance ands. The tip of the probe is swept along th
direction which passes through the centers of the two Q

Let us first concentrate on the results withs50.1 nm and
with the Coulomb interaction taken into account@Figs.
7~d!,7~g!, 7~j!#. With decreasing interdot distance we obser
the transition from a system where the energetically low
exciton states are almost localized in the spatially separ
minima of the two dots, to a system where the electron-h
states extend over the whole nanostructure. Here, thes-like
ground-state excitons of Fig. 7~j! split up into a ‘‘bonding’’
and an ‘‘antibonding’’ state@Fig. 7~d!#. By comparing Figs.
7~d! and 7~f!, we find that in the optical farfield only the
symmetric ground-state exciton couples to the light field.

Next, we discuss the optical features at the photon ene
of ;70 meV ford540 nm. As in the case of the single do
these features show a nonmonotonic dependence on
probe width. As can be inferred from the calculations w
s50.1 nm, there are several excitonic states contributing
the spectral features in this energy range; Fig. 8 shows

FIG. 8. Contour plot of the exciton wave functionCl(r ,r ) of
the two excitons which are responsible for the nonmonotonic
havior of the features at;70 meV at the interdot distanced
540 nm. Solid and dashed lines correspond to positive and n
tive values, respectively. The upper~lower! panel refers to an exci
ton with energy 69.1 meV~70.3 meV!.
a
e-
c-
m-
g

a

.

e
st
ed
le

gy

the

to
he

excitonic wave function of two states out of the six sta
with El;70 meV ford540 nm; it can be inferred that for a
spatial resolution of the near-field probe comparable to
excitonic Bohr radius ('12 nm), there is again an optima
cancellation. This is a remarkable finding, because it clea
demonstrates that such behavior indeed is a general ch
teristic of semiconductor nanostructures, and does not
pend on peculiar symmetries of the confining potential.

IV. SUMMARY AND CONCLUSIONS

We have analyzed theoretically the interaction betwee
model near-field probe and a zero-dimensional heterost
ture: Quantum confinement of the electron and hole state
well as their Coulomb interaction in the linear regime, a
fully included in our description.

We have specifically considered single and coupled se
conductor quantum dots, and shown that absorption
strongly influenced by the spatial interference of the exci
wave functions, which depends on the spatial extension
the light beam. As a consequence, near-field experiment
quantum dots are predicted to display unexpected spe
features whose dependence on spatial resolution is hi
nontrivial.

When combined with an appropriate choice of the E
field distribution, our approach provides the necessary t
for interpretation of near-field absorption spectra of quant
dots as the spatial resolution of experiments becomes c
parable with the Bohr radius of the exciton in the nanostr
ture.
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APPENDIX: PLANE-WAVE APPROACH

In this appendix, we discuss details of our numerical
lution schemes based on a plane-wave expansion. Follow
our approach developed earlier,33 we consider the problem o
a single or double QD which is located inside a box w
periodic boundary conditions, where the box size is cho
sufficiently large to avoid interactions with ‘‘neighbor’’ dots
As a complete set of functions, inside the periodicity box
use a plane-wave basis,uk&, with

ka5
2pna

La
, naPZ, a5x,y,z. ~A1!

HereLa denotes the sizes of the periodicity box~we use the
same box for electrons and holes!. We next expand the
single-particle wave functions for electrons and holes wit
the plane-wave basis:

f̃m,k
e,h 5V21E dre2 ik•rfm

e,h~r !, ~A2!
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with V the volume of the periodicity box. The envelop
function equation~2.1! is then transformed to

(
k8

S \2k2

2me,h
dkk81Ṽc,k2k8

e,h D f̃m,k8
e,h

5em
e,hf̃m,k

e,h , ~A3!

which can be solved by standard diagonalization techniq
To keep the numerics tractable, only wave vectors sma
than a given cutoff wave vector are considered~typically
2000–3000 wave vectors!. In our computational approach
we perform the Fourier transform of the confinement pot
tial by storingVc

e,h(r ) on an appropriate grid~with a typical
number of 30 points along each direction!, and approximat-
ing within each cubeVc

e,h(r ) by its average value.
D

st,

y,

,

.

E

.
nd

ri,

an

o

nd
s.
er

-

In the calculation of the near-field spectra, we define
electron-hole indexl 5(m,n). Then

Cl~r ,r !5(
l

C l
lfm l

e ~r !fn l

h ~r !, ~A4!

and we obtain foraj
l(R) of Eq. ~2.8! the final result,

aj
l~R!5U(

l
C l

l(
k,k8

j̃k1k8~R!f̃m l ,k
e f̃n l ,k8

h U2

, ~A5!

with j̃k(R)5V21*drj(r )eik•(r1R).
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