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Hot electron transport in Ballistic Electron Emission
Spectroscopy: Band structure effects and k‖-space currents
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PACS. 61.16Ch – Scanning probe microscopy: scanning tunneling, atomic force, scanning opti-
cal, magnetic force, etc.

PACS. 72.10Bg – General formulation of transport theory.
PACS. 73.20At – Surface states, band structure, electron density of states.

Abstract. – Using a Green’s function approach, we investigate band structure effects in the
BEEM current distribution in k‖-space. In the elastic limit, this formalism provides a “para-
meter free” solution of the BEEM problem. At low temperatures, and for thin metallic layers,
the elastic approximation is enough to explain the experimental I(V ) curves at low voltages.
At higher voltages inelastic effects are approximately taken into account by introducing an
effective RPA-electron lifetime, much in similarity with LEED theory. For thick films, however,
additional damping mechanisms are required to obtain agreement with experiment.

Ballistic Electron Emission Microscopy (BEEM), and its spectroscopic counterpart (BEES) [1],
were originally designed as techniques extending the power of Scanning Tunneling Microscopy
(STM) to buried interfaces, particularly of metal-semiconductor systems. The standard model
describes BEEM as a convolution of three steps [2]: 1) tunneling from the tip, 2) propagation in
the metallic layer and 3) transmission through the metal-semiconductor interface. This model
clearly suggests the important potential of BEEM to focus in any of these steps separately.
However, it is unnecessary to stress that such a deconvolution process may only be safely
performed by applying for each of those steps a sufficiently elaborated theory, which should
use as few adjustable parameters as possible. In the past, the lack of such a precise method to
analyze the experiment has prompted several intense discussions: i) whether k‖ is conserved
or not at the interface [3], ii) the origin of the observed nanometric resolution and its relation
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to the tunneling injection [4], iii) the similar results obtained on Au/Si(111) and Au/Si(100)
interfaces, despite their different projected conduction-band minima [5], iv) are the electrons
in BEEM ballistic after all? [2], etc. This list of intensively debated questions in the literature
is probably an indication of the limitations associated with the standard approach based on
E-space Monte Carlo simulations, where processes crucial from a physical point of view are
simply parametrized to give agreement with experiment. In particular, in all these Monte
Carlo calculations, the energetic spectrum and the momentum distribution of the injected
electrons are taken from conventional planar tunneling theory, using a free-electron approach.
This assumption is probably the origin of the major limitation for the analysis of the BEEM
current, as the propagation of the electrons in the metal film is strongly dependent on the metal
band structure and can depart significantly from a free-electron behaviour [6]. Accordingly, the
aim of this letter is to present a microscopic formalism that incorporates those band structure
effects and yields the appropriate angular momentum distribution that, as shown below for
the case of gold films, is drastically different from the narrow forward cone assumed in E-space
Monte Carlo simulations. We shall show how most of the previous interpretations of BEEM
data for Au/Si interfaces need to be modified when using the right k-space currents.

We introduce a full quantum-mechanical description of the BEEM problem based on a
Keldysh Green’s function method written in a Linear Combination of Atomic Orbitals (LCAO)
basis. Our analysis is based on the following three-step scheme: We provide an accurate
description of the initial tunneling injection (1), and the subsequent propagation of electrons
through the metalic layer (2). Passing over the Schottky barrier (3) is taken into account
applying energy and k‖ conservation, and matching states at the two-dimensional interface.
In this paper the foregoing scheme is applied to the case study of a (111)-oriented gold metallic
layer deposited on a (111) silicon substrate; applications to other metals (e.g., CoSi2) and other
semiconductors are in progress. Perfect unrelaxed surfaces and bulk-like ideal geometries are
assumed in our analysis, but it is seen from the nature of our results that a relatively small
amount of disorder (e.g., confined to 4-5 layers close to the interface) would not fundamentally
change our conclusions.

A Green’s function formalism presents the important advantage of being free of any ad-
justable parameter in the strictly elastic limit, where we only add an arbitrarily small positive
imaginary part to the energy (η), necessary to ensure attenuation of the wave at infinity.
Moreover, inelastic effects associated with the electron-electron interaction can be added
incorporating a complex energy-dependent self-energy, η(E). We shall view the self-energy
as a single parameter to be adjusted to the experiment, representing an effective inelastic

electron-electron mean free path producing attenuation: λatt ≈
√

2E
2η . This method has been

succesfully adopted to different fields, like Low-Energy Electron Diffraction.

In an LCAO basis, we write the Hamiltonian as

Ĥ = ĤT + ĤS + ĤI , (1)

where ĤT =
∑
εαn̂α+

∑
T̂αβ ĉ

†
αĉβ defines the tip (Greek subindices), ĤS =

∑
εin̂i+

∑
T̂ij ĉ

†
i ĉj

designates the metal substrate (Latin subindices), and ĤI =
∑
T̂αj ĉ

†
αĉj describes the coupling

between the tip and the metal surface in terms of a hopping matrix, T̂αj , expressed as a
function of the different atomic orbitals in the tip and the surface by using a tight-binding
formalism [7,8] (n̂α, ĉ†α, and ĉα, are number, creation and destruction operators defined in the
usual way).

Since the system under investigation is out of equilibrium, a convenient way to compute
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the current between two sites i and j in real space is given by Keldysh’s technique [9]

Jij =

∫
Tr{T̂ij(Ĝ

+−
ij − Ĝ

+−
ji )}dE . (2)

The matrices Ĝ+−
ji are non-equilibrium Keldysh Green’s functions that can be calculated in

terms of the standard retarded and advanced Green’s functions [6, 10]. We notice that this
formalism allows us to compute on the same footing the tunneling current between the tip
and the sample, and the current propagating in the metal (steps 1 and 2). To this point, all
our expressions are exact, and the main task is to determine how to compute the retarded and
advanced Green functions, and which approximations are introduced there.

Previously [6], we have analyzed the electron propagation in real space, using a semiclassical
approximation for these Green functions, and we have found important focusing effects in gold
films. Now, we concentrate on calculating the full quantum-mechanical current distribution in
2D reciprocal space, using a formalism based on renormalization group techniques [11]. This
k‖-current distribution will allow us to obtain the spectral I(V ) characteristics. In particular,
the current between two layers a and b inside the metal, at a given energy E and k‖, can be
expressed as [6, 12]

Jab(E, k‖) =
2e

πh̄
< Tr{T̂abĝ

R
b1T̂10ρ̂00T̂01ĝ

A
1a} , (3)

where ĝ
R(A)
b1 (E, k‖) is the retarded (advanced) Green’s function for the unperturbed metal

linking the layer b and the surface layer, 1, T̂ab(k‖) is a hopping matrix connecting layers
a and b, and ρ̂00(E) is the density of states on the last atom of the tip (0), considered for
simplicity to be the only tip active atom for tunneling (this is a good approximation, since
usually BEEM experiments are performed under conditions where the tip-metal distance is
large). The trace denotes a summation over the orbitals forming the chosen basis.

Step 3 of our scheme involves computing the transmission coefficient for the two-dimensional
interface. Applying a surface Green’s function matching formalism [13] in the neighbourhood of
the M point (corresponding to projections of X and L points in the 3D fcc Brillouin zone [2]),
we obtain a transmission coefficient T (E, k‖) [12] that can be used in k-space to give the
injected current in the semiconductor

I(V ) =

∫ EF+eV

EF+eV0

dE

∫
1stBZ

dk‖Jc−1,c(E, k‖)× T (E, k‖) , (4)

where c refers to the metal layer at the interface, and V0 is the Schottky barrier height (assumed
to be 0.86 eV); note that the transmission coefficient is zero outside the ellipsoids allowed by
energy conservation (see fig. 1). The integral inside the first Brillouin zone is performed
summing over a dense grid of special points [14].

In previous publications we have discussed how the propagation of electrons in the gold
periodic lattice results in focused beams and narrow Kossel-like lines in real space, with a
3-fold symmetry associated to the (111) direction of an fcc crystal [6, 10, 12]. These lines
have typical widths of around 3-4 atomic distances, explaining the nanometric resolution
of the BEEM technique even in deeply buried interfaces. These results also show how the
Bloch wave is formed after propagation by more than four or five layers, forbidding the
propagation of electrons in gap directions over longer distances. We believe that our results
are convincing enough to answer a question nowadays found in the literature related to Monte
Carlo simulations: is it realistic to assume that electrons can propagate 20 or 30 Å as free
particles along the forbidden Au(111) directions? We conclude that this is an unphysical
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Fig. 1. – a) k-space current distribution for Au(111) inside the coherence region (5th atomic layer)
(V = 1 eV, η = 0.1 eV); b) same as a), but outside the coherence region (30th atomic layer). Dark
regions correspond to higher intensities. The Si BZ (small) and the Au BZ (large) are shown together
with the ellipses where the Si conduction band minima project (notice that the outer ellipses appear
after the corresponding remapping).

scenario because of the strong deflection exerted by the lattice on electrons traveling in these
directions.

However, in this work we shall focus on our results in 2D reciprocal space, and their influence
on the I(V ) curves. An important feature observed in k‖-space is a change in the symmetry
of the current distributions when going from thin to thick layers. The expected symmetry
for a quantum-mechanical calculation is related to the projected density of states [15]. It

is six-fold in (111) fcc planes, because of the equal contribution of +~k and −~k states. This
is indeed the case for an arbitrarily small imaginary part (η) added to the energy, but as
commented above, η can be interpreted in terms of a complex self-energy arising from inelastic
events defining a coherence region of the order of λatt. Beyond that region inelastic processes
become important, and intensities rather than amplitudes add to give the final wavefield. This
takes us from a quantum-mechanical picture (six-fold) to a semi-classical one (three-fold),
as can be seen comparing fig. 1a), inside the coherence region, to fig. 1b), where the current
distribution is computed in a layer outside that area. The three-fold symmetry is progressively
built up as a function of metal thickness, and can be understood in terms of our previous
analysis [6]: the symmetry of the wavefield in the semiclassical limit is related to the Fermi
surface, reflecting the three-fold symmetry of the crystal. Therefore, this is a new example
of how a quantum system, under the influence of friction, becomes gradually classical by a
decoherence process [16]. In addition, it is seen how the current in k-space deviates for these
thick layers from a simple density of states calculation [15], concentrating around the directions
predicted by the semiclassical analysis (fig. 1b)) [6,10]. The difference observed in 2D reciprocal
space between the quantum and semiclassical regime does not significantly affect the beams
in real space (where the symmetry must always be three-fold), but could in principle affect
the I(V ) current injected through the projected ellipses into the semiconductor. However,
because of the gradual crossover seen from one regime to the other, we do not expect dramatic
effects, unless one could experimentally break the time-reversal symmetry suddenly (e.g., by
application of a magnetic field), or could selectively block the current injected in some of the
six equivalent ellipsoids. In those cases, a sudden jump between a semiclassical regime and a
quantum one should be observable. It should be noted that band structure effects result in
k-space current with enough k‖ to have the electrons injected into the outer conduction band
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Fig. 2. – Theoretical I(V ) curves for Au/Si(111), d = 75 Å. Different curves are: solid circles:
experimental values from ref. [17]; dotted line: ballistic theory; dashed line: theory using an RPA

approximation for λatt(E) (see eq. (5) with λ0 = 260 Å(eV)
2

(λ(E)-RPA is displayed in the inset as
a dashed line); solid line: theory using a λatt modified over the RPA as described in the text (λ(E)
modified is displayed in the inset as a solid line).

Fig. 3. – Theoretical I(V ) curves for Au/Si(111), d = 300 Å (solid circles: experimental values from

ref. [17]); dashed line: RPA with λ0 = 175 Å(eV)
2
; solid line: RPA with λatt = 125 Å for all E.

minima of Si (the central one is forbidden because of the gap in that direction), and explains
the long-standing puzzle of why the threshold on Au/Si(111) and Au/Si(100) is nearly the
same: our calculations show how the similar results obtained for both interfaces are related
to these nontrivial distributions in k-space, after the appropriate folding of the gold Brillouin
zone inside the silicon one is performed [12].

Next, we compute theoretical I(V ) curves from eq. (2). A quantitative comparison with
BEES experiments [17] will then allow us to discuss also the electronic mean free paths. First
of all, we try the hypothesis of ballistic electrons. On intuitive grounds this should suffice
for low temperature, low voltages, and very thin layers. In fig. 2 we compare experimental
results for Au/Si(111) at T = 77 K, d = 75 Å [17] with a pure ballistic calculation (η very
small and injection at first attempt). It is clear from these results that, without using any
adjustable parameter, the onset is reasonably explained by a purely ballistic theory that uses the
right current distributions in k-space. Therefore, we are able to give a reasonable explanation
of the experiment for voltages near the threshold, but it is also noticed in fig. 2 that data
beyond V = 1.2 eV can only be consistently interpreted by assuming an attenuated wave. To
introduce an attenuation mechanism, people have considered three major sources of damping:
electron-electron, electron-phonon and electron-defect interaction. As the electron-phonon
contributions are greatly reduced at 77 K, we first consider a λatt(E) dominated by the
electron-electron interaction. Within an RPA approximation for a free-electron gas with a
density representing gold (rs = 3.01), we obtain

λatt(E) = λ0 E/EF

(E −EF)2
, (5)

with λ0 = 260 Å(eV)
2
. Results considering multiple reflections [17] between the surface and
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the interface through a specular model are presented in fig. 2, where an excellent agreement is
seen again up to 1.2 eV. Beyond that voltage, a reduction in the attenuation length by about
20% on average is required to bring experimental and theoretical intensities close together.
The modified λatt(E) is displayed in the inset of fig. 2 (continuous line) together with the
pure RPA one (dashed line) for comparison. The reduction with respect to the first-principles
RPA approximation might be understood as representing either band structure or impurity
effects in the effective electron-electron interaction, and further work is currently in progress
to try to understand better its physical origin. The good agreement obtained for low voltages
is remarkable, where λatt changes quickly with energy following an RPA-like behaviour. This
is at variance with E-space Monte Carlo simulations whereby a smoother dependence of λatt

on energy was found [17]. Our results suggest, however, that for thin films and low voltages,
the main source of damping is the electron-electron interaction that is well described within a
RPA approach.

However, a different example of BEES data, where a pure ballistic theory is not sufficient
even near the threshold, is afforded by the case of thick layers (see fig. 3). In this case we
notice that if we use an RPA-like energy dependence for λatt, we find both a discrepancy in
magnitude and a different voltage dependence for I(V ) (as seen in the different slopes). If
we choose a different λ0 in the RPA expression to get the right magnitude, we still would
observe a serious discrepancy with the experiment (e.g., see fig. 3 where λ0 has been reduced
to 175 Å(eV)2). Because all the other elements in the theory that might be responsible for
the discrepancy (J(E) and T (E) in formula (4)) are calculated from first principles, we take
this as a serious indication of a different dependence of λatt(E) on energy. A possible physical
origin for this effect is the likely presence of defects (e.g., vacancies) [18]. The natural choice
for this scenario is an energy-independent attenuation length in the Green function. With this
assumption we obtain an excellent agreement with the experiment (T = 77 K, d = 300 Å [17])
for λatt = 125 Å, as seen by the solid line in fig. 3. This value is in reasonable agreement
with attenuation lengths derived by different groups in films of similar thickness [17, 18], but
a different theoretical approach, more appropriate to analyze the effect of impurities on the
BEEM current (like k-space Monte Carlo simulation) should be used to further clarify this
point on thick layers.

In conclusion, we have introduced a Green’s function formalism that in the ballistic limit
is an ab initio approach to BEEM. The particular k‖-space current distributions determined
by band structure effects are the main result of our analysis and crucial for a quantitative
comparison with experimental BEEM data. Inelastic effects have also been approximately
included by use of an imaginary self-energy. This single quantity is fitted to the experiments
to explain a number of spectroscopic data on the Au/Si interface.
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