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We employ the boundary integral method for the calculation of plasmon resonances in single and coupled
metallic nanoparticles. A generic and versatile scheme is developed that allows us to compute the optical
properties of arbitrarily shaped nanoparticles embedded in dielectric environments with complex geometry. In
the static limit an eigenvalue problem is formulated whose solutions directly provide the plasmon resonances.
We present results for spherical, cylindrical, and cubic particles, and discuss the role of coupling and
retardation.
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I. INTRODUCTION

Noble-metal nanoparticles can interact strongly with vis-
ible light due to the resonant excitation of surface plasmon
modes. These modes are characterized by spectrally selective
absorption and scattering, and give rise to an enhancement of
the local field with respect to the exciting light field.1 A
variety of applications are based on these effects, such as
surface-enhanced Raman scattering,2,3 biochemical
detection,4 or optical addressing of subwavelength volumes.5

Of specific interest is the electromagnetic interaction of two
or more nanoparticles in close proximity to one another.
Such configurations give rise to tunable spectral shifts of the
plasmon bands and to exceptionally strong field
enhancements.6,7 Indeed, the general interest in this field has
strongly increased in recent years as improved nanofabrica-
tion methods now allow advanced control of nanoparticle
shape and arrangement patterns of particle ensembles. It is
evident that this advancement has to be complemented by
accordingly powerful computational schemes.

In the theoretical description of the optical response of
metallic nanoparticles with arbitrary shape one usually em-
ploys the finite difference time domain �FDTD�8–10 or the
dyadic Green-function technique.11 Within the latter ap-
proach, the volume of the nanoparticle is discretized into
small volume elements. The linear response to an external
field is then obtained by computing the response of each
volume element to the total field, produced by the external
probe and the polarization of all other elements, and putting
together the responses of all volume elements. Here, the ac-
tion from one volume element to another one is mediated by
the dyadic Green function. This allows to incorporate effects
of nontrivial dielectric environments of the nanoparticles,
such as surfaces12 or multilayers,13 by choosing the corre-
sponding Green functions. Contrary to the FDTD technique,
whose computationally complexity is of the order N of the
number of discretization elements, the complexity of the
Green-function approach is of the order N3. Accurate solu-
tions for high-permittivity scatterers can thus only be ob-
tained for small nanoparticles with sufficiently simple
shapes.14

A substantial simplification of the Green-function ap-
proach can be achieved for nanoparticles with homogeneous

dielectric properties, i.e., when the dielectric function ��r�
=�0 is constant within the volume of the nanoparticle ��0
might still be frequency dependent�. In this case, one can
convert the volume integration of the dyadic Green-function
approach to a surface integration. This approach has the ad-
vantage that, instead of discretizing the complete volume of
the particle, one only has to discretize the particle surface,
which allows for much finer discretizations and more accu-
rate results. Different implementations of such boundary in-
tegral method approaches exist, which are either based on
Green’s second theorem that directly relates the volume in-
tegration to a surface integration �direct methods�,15,16 or on
an ad hoc solution with some auxiliary quantities which are
chosen such that the appropriate boundary conditions are ful-
filled �indirect methods�.17,18 Advantages and disadvantages
of the different methods have been discussed in the
literature.19,20

In this paper we employ the boundary-integral-method
approach for computing the optical properties of metallic
nanoparticles of arbitrary shape. To this end, we approximate
the particle surface by a set of triangles. For the calculation
of the retarded response, we directly follow the approach
presented in Refs. 17 and 18 where the boundary conditions
imposed by Maxwell’s equation are accounted for through
auxiliary surface charges and currents �indirect method�. For
the nonretarded limit, we show that in case of a simplified
Drude-like dielectric description the problem can be mapped
onto an eigenvalue problem, whose solutions directly pro-
vide the plasmon energies and eigenfunctions �direct
method�. We show that such approach is particularly useful
in visualizing the surface plasmon resonances of single and
coupled particles.

Our paper has been organized as follows. In Sec. II we
develop our theoretical scheme. We present the essential in-
gredients of the direct and indirect boundary integral method
approach. We briefly outline the calculation scheme for the
retarded case,17,18 discuss in more detail our approximation
scheme for the nonretarded case, and present details of our
computational approach. In Sec. III we demonstrate the ac-
curacy of our computational scheme, and present results for
spherical, cylindrical, and cubic nanoparticles. The role of
retardation and interparticle coupling will be discussed. Fi-
nally, in Sec. IV we draw some conclusions.
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II. THEORY

A. Boundary integral method

The problem considered in this section is the solution of
the free Helmholtz equation

��2 + k2��r����r� = 0, �1�

with ��r� the space and possibly frequency dependent dielec-
tric function ��=1 throughout�, k the photon wave vector in
vacuum, and ��r� the scalar potential. Although not dis-
cussed explicitly, all conclusions drawn below also apply to
the Helmholtz equation for the vector potential. To be more
specific, we suppose that space can be decomposed into dif-
ferent regions � j within which the dielectric function ��r�
=� j, r�� j, is constant �see Fig. 1�. Depending on the choice
of � j, this approach allows for the description of metal nano-
particles embedded in a dielectric matrix or deposited on a
substrate. The description of the metal response in terms of a
constant and local dielectric function limits our approach to
nanoparticles with extensions substantially larger than the
inverse of the Fermi wave vector,21,22 and is expected to fail
for small metal clusters23 or particles with sharp edges or
corners. We next introduce the Green functions Gj�r ,r�� de-
fined through

��2 + kj
2�Gj�r,r�� = − 4���r − r��, r,r� � � j , �2�

subject to appropriate boundary conditions, where kj
2=k2� j.

In this paper we shall exclusively consider the homogeneous
case with Gj�r ,r��=exp�ikj�r−r��� / �r−r��, though other
cases, such as Green functions for surfaces or stratified
media,11,12 could be introduced in a straightforward manner.
In the sequel we describe two solution schemes of the Helm-
holtz equation by means of the Green function Gj, which we
shall refer to as direct and indirect ones. They will be respec-
tively employed in the solution of the nonretarded and re-
tarded Maxwell equations.

1. Direct method

The primary idea of the direct method is to combine Eqs.
�1� and �2� such that ��r�, r�� j, can be computed from the
knowledge of � and its surface derivative at the boundary

�� j solely. After some elementary manipulations of Eqs. �1�
and �2� one arrives by use of Green’s second theorem at15

4���r� = �
��j

ds�n̂ j�s�� · �Gj�r,s���s���s��

− ��s���s�Gj�r,s��� , �3�

with n̂ j�s� the outer surface normal. The task to determine �
and its surface derivative at the boundary is usually accom-
plished in two steps. First, one performs the limit r→s, s
��� j, in Eq. �3�. As discussed in some length in Ref. 18, the
normal derivative of the Green function at s→s� has to be
treated with care, and one obtains

2���s� = �
��j

ds�n̂ j�s�� · �Gj�s,s���s���s��

− ��s���s�Gj�s,s��� . �4�

In a second step, this integral equation for ��s� is combined
with the boundary conditions imposed by Maxwell’s equa-
tions to obtain ��s� and n̂ j�s� ·�s��s� at �� j. Once these
quantities are determined, Eq. �3� allows us to compute ��r�
everywhere in r�� j. We shall return to this approach in the
discussion of the nonretarded optical response.

2. Indirect method

The indirect method is different in philosophy. The solu-
tion of the Helmholtz equation �1� is written in the ad hoc
form17,18

��r� = � j
e�r� + �

��j

ds�Gj�r,s��� j�s��, r � � j , �5�

with � j
e�r� a solution of the free Helmholtz equation and

� j�s� a surface charge. By construction, the solution �5� sat-
isfies the free Helmholtz equation everywhere except at the
boundary �� j, and the surface charge � j has to be chosen
such that the boundary conditions imposed by Maxwell’s
equations are fulfilled. As there is some arbitrariness in the
choice of the external potential � j

e�r�, the surface charge is
not uniquely defined.18 For that reason, � j�s� in Eq. �5�
should be understood as a mathematical device rather than a
physical quantity.

We now have all ingredients at hand to compute the elec-
tromagnetic response of metal nanoparticles. Quite generally,
the choice whether to use the direct or indirect method in the
solution of Maxwell’s equation is a matter of taste. In this
work we employ the indirect method in the retarded case and
the direct method in the nonretarded case, essentially for the
following reasons. First, in the retarded case the indirect
method has the advantage that the surface charge and each
component of the surface current, which is required to ac-
count for the boundary conditions of the vector potential, can
be computed separately.17,18 Thus in a computational ap-
proach only matrices of dimension N rather than 3N have to
be manipulated. On the other hand, in the nonretarded case
we use the direct method because it allows for an interpreta-
tion of the surface charge in physical terms. This will prove

FIG. 1. �Color online� Schematic representation of the elements
involved in the boundary integral method approach. The shaded
region represents the metal nanoparticle, described by the �fre-
quency dependent� dielectric constant �1 and the particle volume �,
which is embedded in a medium of dielectric constant �2. n̂1= n̂
�n̂2=−n̂� is the outer surface normal of medium 1 �2�, and ��
denotes the nanoparticle boundary.
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helpful in deriving an eigenvalue problem for the surface
charge excitations.

B. Retarded case

Let us first consider the most general case where Max-
well’s equations are solved without further approximation. In
our approach we directly follow Refs. 17 and 18. For the
sake of completeness, we sketch the basic ingredients of the
theory and refer the interested reader for further details to the
literature.17,18 First, the electric and magnetic fields E�r� and
B�r� are expressed within the respective domains r�� j in
terms of the scalar and vector potentials � j�r� and A j�r� as

E�r� = ikA j�r� − �� j�r�, B�r� = � 	 A j�r� , �6�

where � j�r� and A j�r� fulfill the free Helmholtz equation �1�
and are related through the Lorentz gauge condition
� ·A j�r�= ik� j� j�r�. We suppose that the metal is described
by a complex-valued dielectric function and no free carriers
are present. The general solutions are then of the form

� j = � j
e + Gj� j, A j = A j

e + Gjh j , �7�

with h j a surface current vector. Here we have introduced a
compact matrix notation for the convolutions in space. The
unknown quantities � j and h j , j=1, 2, have to be determined
from the boundary conditions of Maxwell’s equations, i.e.,
the continuity of the magnetic field, of the tangential compo-
nent of the electric field, and of the normal component of the
dielectric displacement. Within this scheme one obtains a set
of eight coupled equations, whose solutions provide the un-
known surface charges and currents.18 In the following we
set �e=0 and assume for the external vector potential a plane
wave with well-defined polarization.

C. Nonretarded case

When the inverse of kj is much smaller than the extension
of the nanoparticle, one can replace the Green function by its
static limit G�r ,r��=1/ �r−r��. We shall refer to this approxi-
mation as nonretarded. Within the indirect boundary integral
method approach of Ref. 18 an eigenvalue problem can be
derived, whose solutions allow the calculation of the optical
properties of metallic nanoparticles such as nanorings,18

nanorods,24 or nanocubes.25 In this work we introduce a fur-
ther approximation and assume a dielectric function of
Drude form1,21

��
� = �0 −
4�n0


�
 + i�0�
, �8�

with �0 a static dielectric constant accounting for the contri-
bution of bound electrons to the polarizability, n0 the metal
electron density, and �0 the electron relaxation rate �we use
gauss and atomic units, e=m=�=1, throughout�. As we shall
show next, within this Drude framework it is possible to
establish a microscopic description of the electron dynamics
in the metal, and to obtain an equation of motion for the
nanoparticle charge excitations whose solutions can be inter-
preted in simple physical terms.

For the parameters of the Drude dielectric function �8� we
use the values listed in Table I which are representative for
gold. The relatively large value for �0 is due to the pro-
nounced d-band density of states close to the Fermi energy.27

A comparison of the Drude dielectric function �8� with the
experimental data of Johnson and Christy28 reveals a very
good agreement for photon energies below 2 eV, whereas at
higher energies transitions of electrons from the d bands to
the conduction band lead to a substantial modification with
respect to the simple Drude model.

Instead of using the Drude form �8� directly, we can also
describe the metal in terms of a jellium model23 with free
electrons moving in a material with dielectric constant �0. As
shown in Appendix A, within such an approach we obtain in
linear response for an external excitation Eext with frequency

 the equation of motion for the surface charge,


�
 + i�0�� − M� = − n0n̂ · Eext, �9�

with the matrix

M = 4�G−1�2� + F��2���0 + �b� + ��0 − �b�F�−1G �10�

accounting for the mediation of the force exerted by the
complete surface charge distribution. Here, �0 is the metal
background dielectric constant, �b is the dielectric constant
of the surrounding medium,29 G�s ,s�� is the static limit of
the Green function, and F�s ,s��=−n̂ · �s−s�� / ��s−s���3 is its
surface derivative. A convenient way to solve Eq. �9� is by
computing the eigenvalues and eigenvectors of the matrix M
through

Mu = 

2u. �11�

Since M is Hermitian, the eigenvalues 

2 are real and the

eigenmodes u form a complete set. We can thus expand � in
terms of the u, and obtain for the solution of Eq. �9� the
simple expression

� = − n0	


u�n̂ · Eext�

�
 + i�0� − 


2 u �12�

which allows us to compute the response of the nanoparticles
for arbitrary perturbations Eext. It is important to realize that
the complete spectrum of surface charge excitations is ob-
tained through a single diagonalization of M, and that the
eigenvalues 


2 and functions u describe the genuine exci-
tations of metal nanoparticles. For that reason, we shall refer
to them as the surface plasmon energies and eigenmodes.
They often allow for a particularly simple and intriguing
physical interpretation. In comparison to the eigenvalue

TABLE I. Parameters used in this work for the calculation of the
Drude dielectric function �8� for gold. The electron-gas parameter rs

is related to the density through n0=4�rs
3 /3 �atomic units�.

Parameter Symbol Value

Background dielectric constant �0 10

Electron-gas parameter rs 3

Inverse relaxation rate �0
−1 10 fs
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problem of the indirect boundary integral method
approach,18,25,26 our scheme has the advantage that the
eigenenergies directly provide the surface plasmon energies
and that the eigenmodes can be interpreted as the surface
charge densities of the jellium model. On the other hand, its
limitation is the validity of the Drude description �8� which
may fail in some cases, where the indirect approach26 be-
comes superior because it allows us to cope with generic
dielectric functions.

D. Computational scheme

In our computational scheme we start by approximating
the boundary �� of the metal nanoparticles by a set of tri-
angles using a standard Delaunay triangulation scheme30

�Fig. 2�. Within each face of the triangulated surface we ap-
proximate the surface charges � j �or, in the nonretarded case,
�� and currents h j as constant. These piecewise constant
parts of � and h are connected through the surface Green
functions Gj and surface derivatives Fj,

Gj�s,s�� =
eikjs

s
,

Fj�s,s�� = − n̂�s�� · ê�ikjs − 1�
Gj�s,s��

s
, �13�

with s= �s−s�� the distance and ê= �s−s�� /s the unit vector. A
computationally more simple scheme is obtained by replac-

ing the 1/s terms in Eq. �13� by the softened 1/
s2+s0
2 ones,

where s0 is of the order of the discretization length �x �de-
fined as the square root of the mean area of the triangles�.
More specifically, in this work we set s0=�x /64. This soft
function has the advantage that integrations involving Green
functions can be performed more easily, and the error intro-
duced is of the same order as that of the discretization. The
Green functions connecting triangles i and j are obtained
from Eq. �13� as follows: if the distance sij is sufficiently
small, say sij �6�x, the integration over triangles i and j is
performed numerically; otherwise, we replace s and s� by the
center coordinates si and s j of the triangles. In all cases, we
approximate the phase factors eiks by eiksij. This has the ad-
vantage that the computationally costly triangle integrations
have to be performed only once.

III. RESULTS

In this work we investigate surface plasmon modes for the
spherical and cylindrical nanoparticles depicted in Fig. 2,
and for cubic particles �see discussion below�. For the sphere
discretization we use a special set of points,31 which was
obtained by minimizing the potential Coulomb energy of a
set of point charges on the surface of the unit sphere. For the
cylinders, we start from a sphere with radius r0, where the
azimuthal and polar angles are discretized in equidistant
meshes, and scale the z component according to z�r�
=z0tanh ��1− �r /r0�2�1/2 / �2 tanh ��. Here, z0 is the height of
the cylinder and � a constant that is chosen such that the
radius of curvature at z=0 equals z0. This procedure yields
cylinderlike particles whose edges are rounded off. Through-
out we use a diameter-to-height ratio of 6:1.

A. Convergence and accuracy

The eigenvalue problem �11� for a sphere can be solved
analytically within Mie theory, and one obtains for �0=�b
=1


�
2 =

�

2� + 1

pl

2 , �14�

with � the angular momentum of the plasmon mode and

pl= �4�n0�1/2 the plasma frequency. The corresponding
eigenfunctions with degeneracy 2�+1 are given by the
spherical harmonics Y�m�� ,��. In the following we use these
results to test the accuracy of our computational scheme.
Table II shows a comparison of our computed results with
the analytic ones for different discretizations of the triangu-
lated surface. Throughout, the discretization error is of the
order of maximally a few percent and decreases monotoni-
cally with an increasing number of triangles �faces�. The
values in parentheses report the standard deviations for the
degenerate eigenstates, which are negligible throughout.32

From the comparison of the results obtained with and with-
out triangle integration �see different columns in Table II�,
we find that triangle integration is essential in order to obtain
converged and quantitatively correct results.

B. Single nanoparticles

We next turn to the discussion of the surface plasmon
modes for gold nanoparticles, described by the Drude-like
dielectric function �8�, which are embedded in a homoge-
neous matrix with dielectric constant �b=2.25. In doing so,
we use the plasmon eigenmodes computed within our non-
retarded approach to discuss the general features of such
modes, and employ the retarded approach suited for the full
solution of Maxwell’s equations to compute the optical spec-
tra. Figure 3 shows the plasmon eigenmodes for a sphere as
computed within our nonretarded eigenvalue approach �Sec.
II C�. Indeed, the eigenfunctions exhibit the expected s , p,
and d-like symmetries of the spherical harmonics Y�m�� ,��.
The corresponding energies are reported in the figure cap-
tion. A word of caution is at place since the plasmon energies
are above the threshold for d-band transitions in gold, and

FIG. 2. �Color online� Shape of metal nanoparticles studied in
this work: �a� sphere and �b� cylinder with diameter-to-height ratio
of 6:1. The shapes are approximated by a set of 796 and 760 tri-
angles �faces�, respectively.
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the dielectric description of Eq. �8� is somewhat question-
able. However, it turns out that the results for the experimen-
tal dielectric function of Ref. 28 are very similar, and we
shall thus stick for conceptual simplicity to the Drude de-
scription �and keep in mind that one has to be cautious when
comparing with experiment�. Figure 4 shows the plasmon
eigenmodes for cylindrical nanoparticles. The states exhibit
cylinder symmetry, and all excited states are twofold degen-
erate. In comparison to the spheres, the eigenenergies given
in the figure caption are substantially redshifted and fall into
a spectral region where the Drude dielectric function can be
safely used. The energies become further redshifted when the
diameter-to-height ratio is further increased.

In Fig. 5 we show the scattering cross sections for differ-
ent nanoparticle diameters, which we compute within our
retarded boundary integral method approach �Sec. II B� and

for an incident light wave with polarization along y �see
insets of figure�. We emphasize that this approach is based on
the full solutions of Maxwell’s equations, which naturally
incorporates effects of retardation and radiation damping.
The arrows in the figure indicate the plasmon energies ob-
tained from the nonretarded calculations, which perfectly co-
incide with the maxima for the smallest particles. With in-
creasing particle size, the maxima shift to the red and the

TABLE II. Comparison of the results of our computational scheme with the analytic result �14� for a sphere and for �0=�b=1. We set
n0=1. The deviation �
� from the exact result is shown for different numbers of triangles �faces� and different values of �, and for the case
where the matrices Gij and Fij are obtained by integration over triangles i and j �i.e., with triangle integration� or by approximating them with
G�si ,s j� and F�si ,s j� �i.e., without triangle integration�, where si and s j are the center coordinates of triangles i and j, respectively. The values
in parentheses correspond to the standard deviations of the degenerate eigenvalues.

With triangle integration Without triangle integration

No. vertices No. faces �
0
2 �
1

2 �
2
2 �
0

2 �
1
2 �
2

2

144 284 −0.0342 0.0380 �0.0020� 0.0801 �0.0033� 0.3267 0.3806 �0.0018� 0.3898 �0.0020�
169 334 −0.0305 0.0310 �0.0011� 0.0668 �0.0024� 0.3074 0.3533 �0.0018� 0.3611 �0.0029�
196 388 −0.0277 0.0250 �0.0014� 0.0558 �0.0028� 0.2888 0.3282 �0.0015� 0.3352 �0.0028�
225 446 −0.0249 0.0207 �0.0009� 0.0472 �0.0016� 0.2728 0.3072 �0.0010� 0.3132 �0.0017�
256 508 −0.0226 0.0171 �0.0000� 0.0400 �0.0015� 0.2579 0.2880 �0.0000� 0.2934 �0.0016�
289 574 −0.0204 0.0145 �0.0004� 0.0345 �0.0007� 0.2451 0.2717 �0.0004� 0.2765 �0.0007�
324 644 −0.0184 0.0125 �0.0004� 0.0299 �0.0006� 0.2334 0.2572 �0.0004� 0.2615 �0.0006�
361 718 −0.0166 0.0108 �0.0003� 0.0262 �0.0005� 0.2228 0.2442 �0.0003� 0.2481 �0.0005�
400 796 −0.0152 0.0093 �0.0000� 0.0229 �0.0005� 0.2128 0.2320 �0.0000� 0.2356 �0.0005�
441 878 −0.0142 0.0079 �0.0003� 0.0199 �0.0005� 0.2032 0.2206 �0.0003� 0.2239 �0.0003�
484 964 −0.0129 0.0070 �0.0001� 0.0177 �0.0002� 0.1951 0.2110 �0.0000� 0.2139 �0.0002�
529 1054 −0.0119 0.0062 �0.0002� 0.0158 �0.0003� 0.1873 0.2018 �0.0002� 0.2045 �0.0003�
576 1148 −0.0110 0.0055 �0.0001� 0.0142 �0.0002� 0.1803 0.1936 �0.0001� 0.1961 �0.0002�
625 1246 −0.0101 0.0050 �0.0001� 0.0128 �0.0002� 0.1738 0.1861 �0.0001� 0.1884 �0.0002�

FIG. 3. �Color online� Surface plasmon eigenmodes as com-
puted within our nonretarded approach for a spherical nanoparticle
described by the Drude-like dielectric function �8� �see Table I for
the corresponding material parameters�. The energies of the one-,
three-, and fivefold degenerate states are 0 ��=0�, 2.3823 ��=1�,
and 2.4815 eV ��=2�, and the corresponding eigenfunctions are
given by the spherical harmonics Y�m�� ,��.

FIG. 4. �Color online� Same as Fig. 3, but for a cylinder with a
diameter-to-height ratio of 6:1. The eigenenergies are 0.4162 �m
=0�, 1.8241 �m= ±1�, 2.0902 �m= ±2�, and 2.2279 eV �m= ±3�,
and the eigenstates depict the expected cylinder symmetry. Here,
the angular part of the plasmon eigenfunctions is given by e±im�;
the states with m= ±1 correspond to dipoles oriented along x and y,
and the states with m= ±2 to quadrupoles. The lowest eigenvalues
for an ellipsoid with the same diameter-to-height ratio are 0.2972,
1.7155, 1.9297, and 2.0423 eV, i.e., the energies are redshifted with
respect to those of our cylinderlike particles.

SURFACE PLASMON RESONANCES OF SINGLE AND … PHYSICAL REVIEW B 72, 195429 �2005�

195429-5



peaks become further broadened because of radiation
damping.

Finally, to demonstrate the versatility of our scheme in
Fig. 6 we show the plasmon eigenmodes for a cubiclike par-
ticle �other particle shapes with different or lower symmetry,
such as, e.g., triangular prisms,33,34 could be studied equally
well�. Such particles were theoretically analyzed by Fuchs25

for ionic crystals, e.g., NaCl, and have recently received in-
creasing interest after demonstration of shape-controlled syn-
thesis of monodisperse samples of silver nanocubes.35 To
avoid problems regarding diverging surface charge distribu-
tions at the sharp edges and corners of the cube we have
rounded them off, in accordance to the actual shape of such
nanoparticles.35 The lowest row of Fig. 6 shows the plasmon
eigenmode with energy close to zero, which corresponds to
the charge distribution of a charged nanocube. The eigen-
modes in the middle and upper row with energies close to 2.2
eV are those that can be probed optically. As discussed in
length in Ref. 25, only few of these modes have a substantial
oscillator strength in the optical far field. Figure 7 shows the
optical spectra for a 50-nm Au or Ag nanocube, as obtained
within our nonretarded approach using either the Drude di-

electric function �solid lines� or that of Johnson and Christy28

�JC�. A comparison of the results obtained with these differ-
ent dielectric functions shows that for Au the Drude frame-
work properly accounts for the peak position but somewhat
underestimates the peak width, which is attributed to the lack
of d-band damping in the Drude function �8� for photon en-
ergies above 2 eV. In contrast, for Ag the Drude and JC
dielectric function coincide within a larger range of photon
energies, and consequently the results of the Drude and JC
framework in Fig. 7 are in almost perfect agreement.

FIG. 5. �Color online� Scattering cross sections for �a� spheres
and �b� cylinders, as computed within our retarded approach �Sec.
II B� and using the dielectric function �8�. The different curves cor-
respond to nanoparticles with different diameter �, and the arrows
indicate the plasmon energies computed within our nonretarded ap-
proach. To compensate for the usual �2k4 dependence of the cross
section, we have scaled all curves with the inverse square volume
1/�2 of the nanoparticles.

FIG. 6. �Color online� Same as Fig. 3, but for a cubiclike nano-
particle with round edges �the surface is approximated by a set of
2400 triangles�. The eigenmodes in the lowest, middle, and upper
row have energies of 0, 2.2206, and 2.2595 eV, respectively. For the
Drude parameter �0=3.7 and �0

−1=36 fs representative for silver we
obtain energies of 0, 2.8155, and 2.8960 eV, respectively.

FIG. 7. �Color online� Same as Fig. 5 but for a 50-nm cubic
nanoparticle, and for gold and silver �Drude parameters of �0=3.7
and �0

−1=36 fs�. The solid lines show results for the Drude dielec-
tric function �8�, and the dashed lines for the dielectric function of
Johnson and Christy �Ref. 28� �JC�.
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C. Coupled nanoparticles

When two nanoparticles come close to each other, their
plasmon modes couple and, as a result, shift in energy.
Within our computational approach, coupled nanoparticles
can be simply described by replacing the boundary �� of
one particle by the �disjoint� boundaries of two particles,
whose center coordinates are displaced by the particle dis-
tance. All pertinent quantities can then be computed in the
same manner as for a single particle. Indeed, neither in the
derivation of the retarded18 nor of the nonretarded15 bound-
ary integral method is any assumption made about the con-
nectivity of the surface.

Figure 8 shows the lowest surface plasmon eigenenergies
for coupled spherical nanoparticles as a function of interpar-
ticle distance �see, e.g., Ref. 36 for the description of such
coupling within the framework of the extended Mie theory�.
We observe that, due to coupling and the resulting lowering
of spherical symmetry, the degenerate eigenvalues become
split. The insets report the plasmon eigenmodes of lowest
energy for selected interparticle distances. These modes cor-
respond to different orientations of the dipoles induced in the
respective nanoparticles, i.e., →→, ↑↓, ↑↑, and ←→, in or-
der of increasing energy �dipole modes within an eigenvalue
approach for polarizable nanosystems are discussed in some
length in Ref. 37�. The dipole-dipole interaction energy W12
of two dipoles d1 and d2 located at positions r1 and r2 is
given by15

W12 =
d1 · d2 − 3�ê · d1��ê · d2�

�r1 − r2�3
, �15�

where ê is the unit vector in the direction r1−r2. Indeed, the
dotted lines in the figure clearly show that the simple expres-
sion �15� nicely accounts for the coupling-induced energy
splitting within a wide range of interparticle distances. Only
at the smallest distances Eq. �15� can no longer describe the
splittings, which is attributed to the increasing contribution
of higher moments in the charge distributions. A closer in-
spection of the plasmon eigenmodes reveals that here the
distributions on the spheres are distorted such that those parts
where the two spheres are charged oppositely move closer
towards each other, thus resulting in a lowering of Coulomb
energy. At the smallest distances, the states formed from the
�=1 and �=2 plasmon modes for isolated spheres �Fig. 3�
cross, and coupled quadrupole states become lower in energy
than coupled dipole states. Figure 9 shows that our findings
also prevail for cylindrical nanoparticles, with the only dif-
ference that all plasmon modes become nondegenerate as a
result of coupling.

Finally, in Fig. 10 we show spectra for coupled �a�
spheres and �b� cylinders with diameters of 10 nm and dif-
ferent interparticle distances, as computed within our re-
tarded approach. The solid and dashed curves correspond to
light polarizations along x and y, respectively �see insets�.
We observe two main peaks, associated to the optically al-
lowed coupled →→ and ↑↑ plasmon modes, which are en-
ergetically red- and blueshifted with respect to the single-
particle resonances depicted in Fig. 5. With decreasing
distance the energy splitting of the two plasmons increases
because of the enhanced Coulomb coupling. For larger par-
ticles we find, similarly to the single-particle case, a redshift
of both peaks, a reduction of the peak splittings, and a further
broadening because of radiation damping. Further details as

FIG. 8. �Color online� Energies of the plasmon eigenenergies of
coupled spherical nanoparticles as a function of interparticle dis-
tance, as computed within our nonretarded boundary integral
method approach. All distances are measured in units of the sphere
diameters. The insets report the plasmon eigenmodes of lowest en-
ergy, and for interparticle distances of �a� d=1.2 and �b� d=2. For
d=2, these modes correspond, in order of increasing energy, to
dipole orientations →→, ↑↓, ↑↑, and ←→ �note that we do not
show the degenerate modes for ↑↓ and ↑↑, whose dipole moments
are oriented along y rather than z�. The dotted lines correspond to
the simple expression �15� for the splitting due to a dipole-dipole
coupling, and for the dipole orientations depicted in the insets. In
the optical far field, only states →→ and ↑↑ couple to the light.

FIG. 9. �Color online� Same as Fig. 8, but for cylinders and for
interparticle distances of �a� d=1.1, �b� d=2 in units of the particle
diameter.
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well as a direct comparison with experiment will be pub-
lished elsewhere.

IV. CONCLUSIONS

In conclusion, we have employed the boundary integral
method for the calculation of plasmon resonances in single
and coupled metallic nanoparticles of arbitrary shape. For the
solution of the full Maxwell equations �retarded case� we
have adopted an indirect method,17,18 and for the static limit
suited for small nanoparticles �nonretarded case� we have
used the direct method. In the latter approach, we have
shown that a Drude description for the dielectric function
allows to formulate an eigenvalue problem for the electron
dynamics in the metal, whose solutions directly provide the
surface plasmon resonances. This approach has been used to
compute eigenmodes for spherical, cylindrical, and cubic
nanoparticles, and to discuss the role of interparticle cou-
pling. Over a wide range of distances the simple dipole-
dipole coupling has been shown to provide an excellent de-
scription for interparticle couplings, and only at the smallest
distances significant deviations have been found. We have
used the retarded approach to investigate effects of retarda-
tion and radiation damping, which have been demonstrated
to be of importance for larger nanoparticles.

APPENDIX

In this appendix we show how to derive the equation of
motion �9� for the surface charge density within the frame-
work of the jellium �or hydrodynamic�38,39 model. Our start-
ing point is given by the Boltzmann equation for the elec-
trons,

� f

�t
+ v · �rf + F · �vf = � � f

�t
�

coll
, �A1�

with f�r ,v , t� the electron distribution function, v the veloc-
ity, and F the Lorentz force acting on the particles. Here, the

left-hand side accounts for the drift and force contributions,
and the right-hand side for electron collisions. A more sim-
plified description scheme can be obtained by introducing
the moments of f through

n�r,t� = −� dvf�r,v,t� , �A2a�

j�r,t� = −� dvvf�r,v,t� , �A2b�

with n and j the charge and current density, respectively, and
the minus sign accounting for the negative electron charge.
Higher moments, such as the kinetic stress tensor,40 will be
neglected. Performing such moment expansion in Eq. �A1�
and truncating at the level of n and j readily yields

�n

�t
+ �j = 0, �A3a�

�j

�t
+ En +

j

c
	 B = � �j

�t
�

coll
, �A3b�

where the last term on the right-hand side accounts for scat-
tering processes. Equations �A3a� and �A3b� are known as
the continuity and force equation, respectively.15,40

The equilibrium state of the metal nanoparticles is a con-
stant electron density n0, whereby the field produced by n0 is
precisely canceled by that of the positive jellium back-
ground. When the particles are subject to an external pertur-
bation, this density will be modified and a current will be
induced. Expanding Eq. �A3b� in terms of the modified den-
sity n �we use for simplicity the same symbol�, the induced
current j, and the electric field E, and keeping only lowest-
order terms, then gives together with the continuity equation

FIG. 10. �Color online� Scattering cross sections for coupled �a� spheres and �b� cylinders with a diameter of 10 nm, as computed within
our retarded approach �Sec. II B� and using the dielectric function �8�. The different curves correspond to different interparticle distances of
12, 14, 16, 18, 20 nm, and are offset for clarity. The solid and dashed lines correspond to x and y polarization of the incident light, as
indicated in the inset.
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�2n

�t2 − n0 � · E − E · �n0 + �� �j

�t
�

coll
= 0. �A4�

Here, E is the sum of the external and induced electric field,
the latter being the solution of the Poisson equation for the
induced charge n. We next follow Ref. 41 and split the den-
sity n=nv+� into a volume and surface part nv and �, re-
spectively. Using �n0=−n0n̂, with n̂, the outer surface nor-
mal, and performing a Fourier transform in time, we obtain


�
 + i�0�nv − n0 � · E = 0, �A5a�


�
 + i�0�� + n0n̂ · E = 0, �A5b�

where we have lumped all collision effects into the relax-
ation rate �0. It is easy to show15 that the solutions of Eq.
�A5a� and �A5b� are precisely those of Maxwell’s equations
with the Drude dielectric function �8�. For simplicity we
shall neglect below the volume part nv.41

The electric field E in Eq. �A5b� can be decomposed into
an external and induced part Eext and Eind, respectively. The

latter is the solution of the Poisson equation, which, in the
nonretarded limit, can be obtained by means of the scalar
potential �. From Eq. �A5b� we observe that the quantity
needed in the calculation of � is the normal component
n̂ ·Eind=−��1 of the induced field at the metal boundary ��,
where ��1= n̂ ·�� denotes the surface derivative of �. The
subscript is a reminder that the derivative has to be taken
inside the particle within which the electrons are confined.

We next use the boundary integral equation �4� to relate
��1 to the surface charge �. With n̂= n̂1 the outer surface
normal of the metal and ��2= n̂ ·�� the outer surface deriva-
tive, we obtain from Eq. �4�

2�� = ± �G��1,2 − F�� , �A6�

with F�s ,s��=−n̂ · �s−s�� / ��s−s���3 the surface derivative of
the Green function. Together with the boundary condition
n̂ · �D2−D1�=4�� for the dielectric displacement we find af-
ter some straightforward manipulations the desired expres-
sion �9�.
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