
Simulating electron energy loss spectroscopy with the MNPBEM toolbox

Ulrich Hohenester

Institut für Physik. Karl–Franzens–Universität Graz, Universitätsplatz 5, 8010 Graz, Austria

Abstract

Within the MNPBEM toolbox, we show how to simulate electron energy loss spectroscopy (EELS) of
plasmonic nanoparticles using a boundary element method approach. The methodology underlying our
approach closely follows the concepts developed by Garćıa de Abajo and coworkers [for a review see Rev.
Mod. Phys. 82, 209 (2010)]. We introduce two classes eelsret and eelsstat that allow in combination
with our recently developed MNPBEM toolbox for a simple, robust, and efficient computation of EEL spectra
and maps. The classes are accompanied by a number of demo programs for EELS simulation of metallic
nanospheres, nanodisks, and nanotriangles, and for electron trajectories passing by or penetrating through
the metallic nanoparticles. We also discuss how to compute electric fields induced by the electron beam and
cathodoluminescence.

Keywords: Plasmonics, metallic nanoparticles, boundary element method, electron energy loss
spectroscopy (EELS)

Program summary

Program title: MNPBEM toolbox supplemented by a collection of demo files
Programming language: Matlab 7.11.0 (R2010b)
Computer: Any which supports Matlab 7.11.0 (R2010b)
Operating system: Any which supports Matlab 7.11.0 (R2010b)
RAM required to execute with typical data: ≥ 1 GByte
Has the code been vectorised or parallelized?: yes
Keywords: Plasmonics, electron energy loss spectroscopy, boundary element method
CPC Library Classification: Optics
External routines/libraries used: MESH2D available at www.mathworks.com
Nature of problem: Simulation of electron energy loss spectroscopy (EELS) for plasmonic nanoparticles
Solution method: Boundary element method using electromagnetic potentials
Running time: Depending on surface discretization between seconds and hours

1. Introduction

Plasmonics has emerged as an ideal tool for light confinement at the nanoscale [1–4]. This is achieved
through light excitation of coherent charge oscillations at the interface between metallic nanoparticles and a
surrounding medium, the so-called surface plasmons, which come together with strongly localized, evanescent
fields. While the driving force behind plasmonics is downscaling of optics to the nanoscale, conventional
optics cannot be used for mapping of plasmonic fields because to the Abbe diffraction limit of light. To

Email address: ulrich.hohenester@uni-graz.at (Ulrich Hohenester)
URL: http://physik.uni-graz.at/~uxh (Ulrich Hohenester)

Preprint submitted to Elsevier December 3, 2013



                          eeslsbase 

                          comparticle 

exc = eels__(p,impact,width,vel) 

pot = exc(enei) 

       BEM solver       

bemstat, bemret 

Surface charge 

sig 

MNPBEM Toolbox 

                          eeslstat 

                          eeslsret 

ploss = exc(sig) EELS probability 

Field map 
Light scattering 

Figure 1: Overview of the EELS software and its relation to MNPBEM toolbox. The classes eelsstat and eelsret for the
simulation of electron energy loss of plasmonic nanoparticles, within the quasistatic limit or for the full Maxwell equations, are
initialized with a comparticle object [29], which stores the particle boundaries and the dielectric materials, together with the
impact parameters of the electron beam. The EELS classes provide the external potentials, which can be used by the MNPBEM

toolbox to compute the surface charges sig, which, in turn, allow to determine electron energy loss probabilities as well as field
maps or scattered light (cathodoluminescence).

overcome this limit, various experimental techniques, such as scanning near field microscopy or scanning
tunneling spectroscopy [5], have been employed.

In recent years, electron energy loss spectroscopy (EELS) has become an extremely powerful experimental
device for the minute spatial and spectral investigation of plasmonic fields [6]. In EELS, electrons with a
high kinetic energy pass by or penetrate through a metallic nanoparticle, excite particle plasmons, and lose
part of their kinetic energy. By monitoring this energy loss as a function of electron beam position, one
obtains a detailed map about the localized plasmonic fields [7, 8]. This technique has been extensively used
in recent years to map out the plasmon modes of nanotriangles [8–10], nanorods [7, 11–13], nanodisks [14],
nanocubes [15], nanoholes [16], and coupled nanoparticles [17–20] (see also Refs. [21–24] for the interpretation
of EELS maps).

Simulation of EEL spectra and maps has primarily been performed with the discrete-dipole approxi-
mation [25, 26] and the boundary element method (BEM) approach [6, 27]. Within the latter scheme, the
boundary of the metallic nanoparticle becomes discretized by boundary elements, and Maxwell’s equations
are solved by attaching artificial surface charges and currents to these elements which are chosen such that
the proper boundary conditions are fulfilled [28, 29]. The methodology for EELS simulations within the
BEM approach has been developed in Refs. [6, 28, 30], and has been successfully employed in comparison
with experimental EELS data [8, 11, 14, 15].

1.1. Purpose of EELS software and its relation to the MNPBEM toolbox

The purpose of the EELS software described in this paper is to allow for a simple and efficient computation
of electron energy loss spectroscopy of plasmonic nanoparticles and other nanophotonic structures. The
software consists of two classes eelsret and eelsstat devoted to the simulation of EEL spectroscopy
and mapping of plasmonic nanoparticles, see Fig. 1, which can be used in combination with the MNPBEM

toolbox [29] that provides a generic simulation platform for the solution of Maxwell’s equations. Our
implementation for EELS simulation of plasmonic nanoparticles relies on a BEM approach [6, 28] that has
been successfully employed in various studies [11, 14, 22, 24]. A typical simulation scenario consists of the
following steps.
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1. First, one sets up the particle boundaries and the dielectric environment within which the nanoparticle
is embedded. This step has been described in detail in our previous MNPBEM paper [29].

2. We next initialize an eelsret or eelsstat object which defines the electron beam. This object stores
the beam positions and the electron velocity. For a given electron loss energy, it then returns the
external scalar and vector potentials φext and Aext which can be used for the solution of the BEM
equations [28].

3. For given φext and Aext, we solve the full Maxwell equations or its quasistatic limit, using the classes
bemret or bemstat of the MNPBEM toolbox [29]. The solutions are provided by the surface charge
and current distributions σ and h, which allow to compute the potentials and fields at the particle
boundary and everywhere else [28] (using the Green function of the Helmholtz equation).

4. Finally, we use σ and h to compute the electron energy loss probabilities, which can be directly
compared with experimental EEL data.

Rather than providing the additional classes separately, we have embedded them in a new version of the
MNPBEM toolbox which supersedes the previous version [29]. The main reason for this policy is that also the
Mie classes mieret and miestat had to be modified, which allow a comparison with analytic Mie results and
can be used for testing. The new version of the toolbox also corrects a few minor bugs and inconsistencies.
However, we expect that all simulation programs that performed with the old version should also work with
the new version.

We have organized this paper as follows. In Sec. 2 we discuss how to install the toolbox and give a few
examples demonstrating the performance of EELS simulations. The methodology underlying our approach
as well as a few implementation details are presented in Sec. 3. Finally, in Sec. 4 we present results of our
EELS simulations and provide a detailed toolbox description.

2. Getting started

2.1. Installation of the toolbox

To install the toolbox, one must simply add the path of the main directory mnpbemdir of the MNPBEM

toolbox as well as the paths of all subdirectories to the Matlab search path. This can be done, for instance,
through

addpath(genpath(mnpbemdir));

To set up the help pages, one must once change to the main directory of the MNPBEM toolbox and run the
program makemnpbemhelp

>> cd mnpbemdir;

>> makemnpbemhelp;

Once this is done, the help pages, which provide detailed information about the toolbox, are available in
the Matlab help browser. Note that one may have to call Start > Desktop Tools > View Start Button

Configuration > Refresh to make the help accessible. Under Matlab 2012 the help pages can be found
on the start page of the help browser under Supplemental Software. The toolbox is almost identical to our
previously published version [29]. The only major difference concerns the inclusion of EELS simulations,
which will be described in more detail in this paper.

2.2. Brief overview of the EELS software

The MNPBEM toolbox comes together with a directory demoeels containing several demo files. To get a
first impression, we recommend to work through these demo files. By changing to the demo directory and
typing

>> demotrianglespectrum
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Figure 2: EEL spectra at three different positions of the electron beam, indicated in the inset, as computed with the MNPBEM
toolbox and the demo program demotrianglespectrum.m for a silver triangle with a base length of approximately 80 nm and
a height of 10 nm. In our simulations we use dielectric functions extracted from optical experiments [31]. The dashed lines
report the energetic positions of the plasmon resonances where the spatial EELS maps of Fig. 3 are computed.

at the Matlab prompt, a simulation is performed where the EEL spectra are computed for a triangular silver
nanoparticle. The run time is reported in Table 1, and the simulation results are shown in Fig. 2. One ob-
serves a number of peaks associated with the different plasmon modes of the nanoparticle. Note that through
plot(p,’EdgeColor’,’b’) one can plot the nanoparticle boundary. By running next demotrianglemap.m
we obtain the spatial EELS maps at the plasmon resonance energies indicated by dashed lines in Fig. 2.
Figure 3(a) reports the map for the degenerate dipolar modes, whereas panels (b–d) show the EELS maps
for higher excited plasmon modes (see Ref. [8] for experimental results).

2.3. A first example

In the following we briefly discuss the demo file demotrianglespectrum.m (see Sec. 4 for a detailed
description of the software). We first set up a comparticle object p for the nanotriangle, which stores the
particle boundary and the dielectric materials, as well as a BEM solver bem for the solution of Maxwell’s
equations. These steps have been described in some length in a previous paper [29]. Additional information
is also provided by the help pages. To set up the EELS simulation, we need the impact parameters of the
electron beam, a broadening parameter for the triangle integration (see Sec. 4.1 for details), and the electron
velocity in units of the speed of light. Initialization is done through

b = [ - 45, 0; 0, 0; 26, 0 ]; % impact parameters (triangle corner, middle, edge)

vel = 0.7; % electron velocity in units of speed of light

width = 0.2; % broadening of electron beam

exc = eelsret( p, b, width, vel ); % initialize EELS excitation

Table 1: Demo programs for EELS simulations provided by the MNPBEM toolbox. We list the names of the programs, typical
runtimes, and give brief explanations. The programs were tested on a standard PC (Intel i7–2600 CPU, 3.40 GHz, 8 GB RAM).

Demo program Runtime Description

demomie.m 26.3 sec Comparison of BEM simulations with analytic Mie results
demomiestat.m 14.7 sec Same as demomie.m but for quasistatic limit
demodiskspectrum.m 29.4 sec EEL spectra for nanodisk at selected beam positions
demodiskspectrumstat.m 14.6 sec Same as demodiskspectrum.m but for quasistatic limit
demodiskmap.m 105.6 sec Spatial EELS maps for nanodisk at selected loss energies
demotrianglespectrum.m 173.5 sec EEL spectra for nanotriangle at selected beam positions
demotrianglemap.m 104.6 sec Spatial EELS maps for nanotriangle at selected loss energies
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Figure 3: Spatial EELS maps for same nanotriangle as investigated in Fig. 2 at the plasmon resonances indicated by dashed
lines. The maps have been computed with the demo program demotrianglemap.m, with color axes scaled to the maxima of the
respective maps (see Fig. 6 for color bar).

The exc object returns through exc(enei) the external potentials for a given loss energy, which allow for
the solution of the BEM equations by means of artificial surface charges and currents sig [28, 29]. From
sig we can obtain the surface and bulk loss probabilities for the electron.

sig = bem \ exc( enei ); % surface charges and currents

[ psurf, pbulk ] = exc.loss( sig ); % surface and bulk losses

Finally, the EEL spectrum can be computed by performing a loop over loss energies, and EEL maps can be
obtained by providing a rectangular grid of impact parameters. A more detailed description of the EELS
classes will be given in Sec. 4.

3. Theory

3.1. Boundary element method (BEM)

For the sake of completeness, we start by briefly summarizing the main concepts of the BEM approach for
the solution of Maxwell’s equation (see Refs. [6, 28, 29] for a more detailed discussion). We consider dielectric
nanoparticles, described through local and isotropic dielectric functions εj(ω), which are separated by sharp
boundaries ∂Vj . Throughout, we set the magnetic permeability µ = 1 and consider Maxwell’s equations in
frequency space ω [32]. In accordance to Refs. [6, 28, 29], we adopt a Gaussian unit system.

The basic ingredients of the BEM approach are the scalar and vector potentials φ(r) and A(r), which
are related to the electromagnetic fields via

E = ikA−∇φ , B = ∇×A . (1)

Here k = ω/c and c are the wavenumber and speed of light in vacuum, respectively. The potentials are
connected through the Lorentz gauge condition ∇·A = ikεφ. Within each medium, we introduce the Green
function for the Helmholtz equation defined through

(
∇2 + k2j

)
Gj(r, r

′) = −4πδ(r − r′) , Gj(r, r
′) =

eikj |r−r
′|

|r − r′|
, (2)
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with kj =
√
εjk being the wavenumber in the medium r ∈ Vj . For an inhomogeneous dielectric environment,

we then write down the solutions of Maxwell’s equations in the ad-hoc form [6, 28]

φ(r) = φext(r) +

∮
Vj

Gj(r, s)σj(s) da (3a)

A(r) = Aext(r) +

∮
Vj

Gj(r, s)hj(s) da , (3b)

where φext and Aext are the scalar and vector potentials characterizing the external perturbation. Owing
to Eq. (2), these expressions fulfill the Helmholtz equations everywhere except at the particle boundaries.
σj and hj are surface charge and current distributions, which are chosen such that the boundary conditions
of Maxwell’s equations at the interfaces between regions of different permittivies εj hold. This leads to a
number of integral equations. Upon discretization of the particle boundaries into boundary elements, one
obtains a set of linear equations that can be inverted, thus providing the solutions of Maxwell’s equation
in terms of surface charge and current distributions σj and hj . Through Eqs. (3a,b) one can compute the
potentials everywhere else. For further details about the working equations of the BEM approach the reader
is referred to Refs. [6, 28, 29].

3.2. Electron energy loss spectroscopy (EELS)

In the following we consider the situation where an electron passes by or penetrates through a metallic
nanoparticles, and loses energy by exciting particle plasmons. We assume that the electron kinetic energy
is much higher than the plasmon energies (for typical electron microscopes operating with electron energies
of several hundreds of keV this assumption is certainly fulfilled). We can thus discard in the electron
trajectory the small change of velocity due to plasmon excitation, and describe the loss process in lowest
order perturbation theory. We emphasize that our approach is correspondingly not suited for low electron
energies or thick samples.

For an electron trajectory r(t) = r0 + vt, with v = vẑ, the electron charge distribution reads

ρ(r, ω) = −e
∫
eiωtδ(r − r0 − vt) dt = − e

v
δ(R−R0)eiq(z−z0) . (4)

Here −e and v are the charge and velocity of the electron, respectively, R0 is the impact parameter in the
xy-plane, and q = ω/v is a wavenumber. The potentials associated with the charge distribution of Eq. (4)
can be computed in infinite space analytically (Liénard-Wiechert potentials [32]), and we obtain [6, 28]

φext(r) = − 2

vεj
K0

(
q|R−R0|

γj

)
eiq(z−z0) , Aext(r) = εj

v

c
φext(r) . (5)

K0 is the modified Bessel function of order zero, and γj = (1− εjv2/c2)−
1
2 . Within our BEM approach, we

can directly insert the expressions of Eq. (5) for the unbounded medium into Eq. (3) since the calculated
surface charge and current distributions σj and hj will automatically guarantee that the proper boundary
conditions at the interfaces are fulfilled [28].

We next turn to the calculation of the electron energy loss. Ignoring the small change of the electron
velocity caused by the interaction with the plasmonic nanoparticle, the energy loss can be computed from
the work performed by the electron against the induced field [6, 28, 33]

∆E = e

∫
v ·Eind[r(t), t] dt =

∫ ∞
0

~ωΓEELS(R, ω) dω , (6)

with the loss probability, given per unit of transferred energy,

ΓEELS(R, ω) =
e

π~ω

∫
<e
{
e−iωtv ·Eind[r(t), ω]

}
dt+ Γbulk(ω) . (7)
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Note that Eq. (7) is a classical expression, where ~ has been introduced only to relate energy and frequency.
Eind is the induced electric field, which can be computed from the potentials originating from the surface
charge and current distributions σj and hj alone. Γbulk is the bulk loss probability for electron propagation
inside a lossy medium, see Eq. (18) of Ref. [6]. Within the quasistatic approximtion, it is proportional to the
loss function ∝ =m[−1/ε(ω)] and the propagation length inside the medium. Expressions similar to Eq. (7)
but derived within a full quantum approach, based on the Born approximation, can be found in Ref. [6].

Quite generally, ΓEELS can be computed by calculating the induced electric field along the electron
trajectory and evaluating the expression given in Eq. (7). In what follows, we describe a computationally
more efficient scheme. Insertion of the induced potentials of Eq. (3) into the energy loss expression of Eq. (7)
yields

ΓEELS(R, ω) =
e

π~ω
∑
j

∫ z1j

z0j

<e

[
e−iqz

∮
∂Vj

v ·
{
ikGj(r − s)hj(s)−∇Gj(r − s)σj(s)

}
da

]
dz . (8)

Here z0j and z1j are the entrance and exit points of the electron beam in a given medium, and r = R + zẑ

parameterizes the electron trajectory. We next introduce a potential-like term ϕj(s) =
∫ z1j
z0j
e−iqzGj(r−s) dz,

associated with the electron propagation inside a given medium. Performing integration by parts, we can
rewrite the second term in parentheses of Eq. (8) as∫ z1j

z0j

e−iqz
∂Gj(r − s)

∂z
dz = e−iqzGj(r − s)

∣∣∣z1j
z0j

+iq e−iqzϕj(s) .

The first term on the right-hand side gives, upon insertion into Eq. (8), e−iqz
∮
Gj(r − s)σj(s) da

∣∣z1j
z0j

. The

integral expression precisely corresponds to the scalar potential at the crossing points of the trajectory with
the particle boundary. As the potential is continuous across the boundaries, the contributions of all crossing
points sum up to zero. Thus, we arrive at our final result

ΓEELS(R, ω) = − e

π~ω
∑
j

=m

[∮
∂Vj

ϕj(s)
{
kv · hj(s)− qvσj(s)

}
da

]
. (9)

In comparison to Eq. (8), this expression has the advantage that the integration is only performed over the
particle boundary, where the surface charge and current distributions σj and hj are readily available, and
we don’t have to compute the induced electric field along the electron trajectory.

3.3. Refined integration over boundary elements

In the calculation of the external potential, Eq. (5), and the EELS probability of Eq. (9) the points
where the electron trajectory crosses the boundary have to be treated with care. For small distances, the
potential scales with K0(ρ) ∼ − log ρ. When integrating this expression within our BEM approach over a
small area, we find in polar coordinates that

∫
K0(ρ)ρ dρ remains finite. The same is true for the surface

derivative of the potential.
In a computational approach it is somewhat tedious to perform such integration properly, in particular

for crossing points that are located close to the edges or corners of boundary elements. For this reason, we
suggest a slightly different approach. The main idea is to replace the Delta-like transversal trajectory profile
δ(ρ) by a smoothened distribution. The potential at the transverse position R = (x, 0) then reads

φ(x, 0) = const×
∫ ∞
0

ρdρ

∫ 2π

0

dθK0

(
λ
√

(x− ρ cos θ)2 + (ρ sin θ)2
)[ 1

π

ρ20
(ρ2 + ρ20)2

]
. (10)

Here λ = q/γ [see Eq. (5)] and the term in brackets is our smoothing function, with ρ0 being a parameter
that determines the transversal extension. For small arguments, we can expand K0(λr) ≈ γ − log(λr/2),
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where γ is the Euler constant, and perform all integrations analytically to obtain γ − log(λ
√
x2 + ρ20/2).

This suggests replacing the potential of Eq. (5) by the smoothened function

φext(r) = − 2

vεj
K0

(
qR̃

γj

)
eiq(z−z0) , R̃ =

√
|R−R0|2 + ρ20 . (11)

For large arguments this expression coincides with the Liénard-Wiechert potential, but remains finite for
small arguments. A corresponding smoothening is also performed in the potential-like function ϕ of Eq. (9).

3.4. Quasistatic approach

In the quasistaic approximation one assumes that the size of the nanostructure L is significantly smaller
than the wavelength of light, such that kL � 1. This allows us to keep in the simulations only the scalar
potential and to set in the Green function k = 0. We are thus left with the solution of the Laplace or
Poisson equation, rather than the Helmholtz equation, but we keep the full frequency-dependence of the
permittivities ε(ω).

The calculation of EELS probabilities with the BEM approach has been described in some detail in
Ref. [30]. In the following we briefly describe the basic ingredients. First, we compute the external potential
from the solution of Poisson’s equation

φext(r, ω) =

∫
ρext(r

′, ω)

ε(r′, ω)|r − r′|
dz′ , (12)

with ρext being the charge distribution of Eq. (4). We next compute the surface charge distribution σ(s, ω)
from the solution of the boundary integral equation, which, for a nanoparticle described by a single dielectric
function ε1 embedded in a background of dielectric constant ε2, reads [29, 30]

Λ(ω)σ(s, ω) =

∮
∂G(s, s′)

∂n
σ(s′, ω) da′ +

∂φext(s, ω)

∂n
, Λ(ω) =

ε2(ω) + ε1(ω)

ε2(ω)− ε1(ω)
. (13)

Here G is the static Green function and ∂
∂n = n̂ · ∇ denotes the surface derivative, where n̂ is the outer

surface normal of the boundary. For materials consisting of more than one material, Eq. (13) has to be
replaced by a more general expression [29]. Finally, we compute the electron energy loss probability from
(see also Eq. (18) of Ref. [30])

ΓEELS(R, ω) = − 2e

π~v

∮
K0(q|R−R0|)=m

{
σ(s, ω)eiqz

}
da+ Γbulk(ω) , (14)

where Γbulk is the bulk loss probability (see Eq. (19) of Ref. [6]).

4. Results and detailed toolbox description

We first discuss the demo file demomie.m that simulates the energy loss probability for an electron passing
by a silver nanosphere. Figure 4 shows results of our BEM simulations which are in good agreement with
analytic Mie results [6]. Let us briefly work through the demo program.

In the first lines we define the dielectric materials and the nanosphere (for a more detailed discussion of
the MNPBEM toolbox see Ref. [29]).

epsm = epstable( ’silver.dat’ ); % metal dielectric function

epstab = { epsconst( 1 ), epsm }; % table of dielectric functions

diameter = 80; % sphere diameter in nanometers

% define nanosphere and dielectric environment

p = comparticle( epstab, { trisphere( 256, diameter ) }, [ 2, 1 ], 1 );
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Figure 4: Loss probability for electron trajectory passing by a silver nanosphere, as shown in inset. We compare the results of
our BEM simulations with analytic results derived within Mie theory [6]. In our simulation program demomie.m, the nanosphere
diameter is 80 nm, the silver dielectric function is extracted from optical experiments [31], the background dielectric constant
is one, and the minimal distance between electron beam and nanosphere is 10 nm. We assume a kinetic electron energy of 200
keV.

We next define the excitation of the electron beam. For the solution of the full Maxwell equations, the
excitation and the calculation of the EELS probability is performed by the eelsret class, which is initialized
through

exc = eelsret( p, impact, width, vel, ’PropertyName’, PropertyValue, ... )

Here p is the previously computed comparticle object, which stores the particle boundaries and the dielec-
tric functions at both sides of the boundary. impact is a vector [x,y] for the impact parameter R0 = (x, y)
of the electron beam defined in Eq. (4). If simulations for various impact parameters are requested, as is
usually the case for the simulation of EELS maps, impact can also be an array [x1,y1;x2,y2;...]. width
is the broadening parameter ρ0 of the electron beam, see Eq. (11), which will be discussed in more detail
below, and vel is the electron velocity to be given in units of the speed of light in vacuum. The optional
pairs of property names (’cutoff’, ’rule’, or ’refine’) and values allow to control the performance of
the toolbox, as detailed in Sec. 4.1.

In the demomie.m program we next set up the EELS excitation with

b = 10; % minimal distance from nanosphere in nanometers

vel = eelsbase.ene2vel( 200e3 ); % electron velocity

[ width, cutoff ] = deal( 0.5, 8 ); % width of electron beam and cutoff parameter

% electron beam excitation for simulation of full Maxwell equations

exc = eelsret( p, [ diameter / 2 + b, 0 ], width, vel, ’cutoff’, cutoff );

Note that eelsbase.ene2vel allows to convert a kinetic electron energy in eV to the electron velocity in
units of the speed of light in vacuum c. In the above example, a kinetic energy of 200 keV corresponds to a
velocity of approximately 0.7 c.

We next set up the solver bemret for the solution of the BEM equations [29] and compute the loss
probabilities of Eq. (9) for various loss energies.

bem = bemret( p ); % set up BEM solver

ene = linspace( 2.5, 4.5, 80 ); % loss energies (in eV)

psurf = zeros( size( ene ) ); % initialize array for surface losses

for ien = 1 : length( ene ) % loop over energies

sig = bem \ exc( eV2nm / ene( ien ) ); % surface charges

psurf( ien ) = exc.loss( sig ); % EELS loss probabilities

end
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Figure 5: (a) Zoom of the discretized particle boundary for an electron beam passing through the nanoparticle. The density map
(red cross at center) reports the broadened electron distribution, where the broadening is controlled by the width parameter.
’cutoff’ determines those boundary elements where the external potentials φext and Aext of Eq. (5) are integrated over the
boundary element. The boundary element integration is controlled by the ’refine’ and ’rule’ properties, as described in
more detail in the text. In the figure we set refine=2. (b) EEL spectra for a silver nanodisk with a diameter of 60 nm and
a height of 10 nm. The impact parameters of the electron beams for the different spectra are reported in the inset, and the
beam propagation direction is the z-direction perpendicular to the shaded disk. We investigate different width parameters of
0.1 nm (solid lines), 0.2 nm (dashed lines), and 0.5 nm (dashed-dotted lines), finding practically no differences in the results.
The cutoff parameter is set to 10 nm.

Here sig is a compstruct object that stores the surface charges and current distributions σ1,2 and h1,2,
inside and outside the particle boundaries [28, 29], as computed for the EELS excitation of Eq. (5). With
exc.loss(sig) we finally compute the loss probabilities according to Eq. (9). Note that eV2nm defined in
units.m allows to convert between energies given in electronvolts and wavelengths given in nanometers, the
latter being the units used by the MNPBEM toolbox.

To summarize, in the following we list the most important properties of the eelsret class

exc = eelsret( p, impact, width, vel ); % initialization

pot = exc( enei ); % external potentials, see Eq. (5)

[ psurf, pbulk ] = exc.loss( sig ); % compute surface and bulk loss probabilities

We emphasize that the functionality of the eelsret class is very similar to that of the planewaveret and
dipoleret classes, which account for plane wave and dipole excitations. The only major difference is that
eelsret requires the particle boundaries p of the comparticle object already in the initialization. This
is because upon initialization eelsret computes the crossing points between the particle boundaries and
the electron trajectories (if the electron passes by the nanoparticle no crossing points are found), and these
crossing points are used in subsequent calculations of the potentials and the loss probabilities to speed up
the simulation.

4.1. Electron beam propagation through nanoparticle and EELS maps

We next investigate the situation where the electron beam passes through the nanoparticle. The working
principle is almost identical to the previous case where the electron passes by the nanoparticle, but the width
parameter and the different optional properties have to be set with more care. In the following, we briefly
discuss these quantities in more detail.

width. We have discussed in Sec. 3.3 that the integration of the external potentials over the boundary
elements can be facilitated if we use a smoothening parameter ρ0 in the calculation of the external
potentials, see Eq. (11). It is important to stress that the integration could be also performed for
ρ → 0 and that the finite ρ0 value only facilitates the computation. In general, width should be
chosen smaller than the average size of the boundary elements, as also shown in Fig. 5(a).
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Figure 6: Density map of EEL spectra for nanodisk and for different loss energies and impact parameters, as obtained from
the demo program demodiskspectrum.m. All simulation parameters are identical to those of Fig. 5.
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Figure 7: EELS maps for dipolar disk modes and for different width parameters. We set cutoff=10 and use the same simulation
parameters as in Fig. 5. For width=0 in panel (a) the computed maps show spikes at certain points, when the impact parameter
R0 is too close to a collocation point. For the moderate width parameters of panels (b,c) the results are sufficiently smooth
and almost independent on the chosen value, whereas for too large parameters the EELS map become smeared out, see panel
(d).

’cutoff’. The cutoff parameter determines those boundary elements where the external potentials
become integrated. In more detail, we select all boundary elements fully or partially located within
a circle with radius cutoff and centered around the impact parameter R0 = (x0, y0), as shown in
Fig. 5(a) by the red circle. cutoff should be set such that at least all direct neighbours of the boundary
element crossed by the electron beam are included.

’refine’ and ’rule’. The integration over the boundary elements is controlled by ’refine’ and
’rule’. refine gives the number of integration points within a triangle. Quadfaces are divided
into two triangles. On default rule=18 is used (see doc triangle_unit_set for details), and we
recommend to use this value throughout. With refine one can split the triangles into subtriangles.
Usually the default value refine=1 should give sufficiently accurate results.

Figure 5(b) shows the EEL spectra of a nanodisk (for parameters see figure caption) for three impact
parameters, which are described in the inset. In Fig. 6 we show a density plot of identical loss spectra
for a whole range of impact parameters. One observes a number of peaks, attributed to the dipolar and
quadrupolar modes at 2.6 eV and 3.1 eV, respectively, a breathing mode at 3.5 eV [14], and the bulk losses
at 3.8 eV.

How should one chose the width, cutoff, and refine parameters? Quite generally, the results depend
rather unsensitively on the chosen parameters. In Fig. 5 we show results for various width parameters listed
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Figure 8: Electric field in z-direction for dipolar disk mode. The simulation and disk parameters are identical to those of Fig. 5,
the fields are computed with demodiskfield.m.

in the figure caption, which are almost indistinguishable. In Fig. 7 we depict EELS maps for the dipolar disk
mode at 2.6 eV and for various width parameters. For width=0 in panel (a) one observes for certain impact
parameters spikes (some of them indicated with arrows), where the loss probabilities becomes significantly
enhanced or reduced in comparison to neighbour points. This indicates that the impact parameter is located
too closely to the collocation point of the boundary element, and the numerical integration fails. For width
parameters of 0.1 or 0.2 nm, panels (b,c), these spikes are absent and the results are almost indistinguishable.
Finally, in panel (d) we report results for a too large smoothening parameter with a significant smearing of
the features visible in panels (a–c). Thus, width should be chosen significantly smaller than the size of the
boundary elements but large enough to avoid spikes in the computed EELS maps.

Let us finally briefly discuss the simulation of EELS maps for a nanotriangle, as computed with the demo
program demotrianglemap.m. Results are shown in Fig. 3. First we set up an array R = (x, y) of impact
parameters and initialize the eelsret object.

% mesh for impact parameters

[ x, y ] = meshgrid( linspace( - 70, 50, 50 ), linspace( 0, 50, 35 ) );

impact = [ x( : ), y( : ) ]; % impact parameters

vel = eelsbase.ene2vel( 200e3 ); % electron velocity

[ width, cutoff ] = deal( 0.2, 10 ); % width of electron beam and cutoff parameter

exc = eelsret( p, impact, width, vel, ’cutoff’, cutoff );

Note that in the initialization of exc we pass a matrix [x(:),y(:)] of impact parameters. As for the
BEM solver, we recommend to use for the boundary element integration the same or larger ’cutoff’ and
’refine’ values as for the eelsret object (see Ref. [29] and toolbox help pages for further details).

op = green.options( ’cutoff’, 20, ’refine’, 2 ); % options for face integration

bem = bemret( p, [], op ); % set up BEM solver

Finally, once the loss probabilities are computed one should reshape psurf and pbulk to the size of the
impact parameter mesh.

p = reshape( psurf + pbulk, size( x ) ); % reshape loss probability

4.2. Electric field and cathodoluminescence

In some cases it is useful to plot the electromagnetic fields induced by the electron beam. We briefly
discuss how this can be done. A demo program is provided by demodiskfield.m, and the simulation results
are shown in Fig. 8.

We first set up the eelsret object and the BEM solver, following the prescription given above, and
compute the surface charge and current distributions.
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exc = eelsret( p, [ b, 0 ], width, vel, ’cutoff’, cutoff ); % EELS excitation

bem = bemret( p, [], op ); % BEM solver

sig = bem \ exc( enei ); % surface charges and currents

Next, we define the points where the electric field should be computed, using the compoint class of the
MNPBEM toolbox, and define a Green function object compgreen.

z = linspace( - 80, 80, 1001 ) .’; % z-values for field

pt = compoint( p, [ b + 0 * z, 0 * z, z ], ’mindist’, 0.1 ); % convert to points

g = compgreen( pt, p, op ); % Green function object

field = g.field( sig ); % electromagnetic fields at PT positions

e = pt( field.e ); % extract electric field

In the last two lines we compute the electromagnetic fields, and extract the electric field. The command
e=pt(field.e) brings e to the same form as z, setting fields at points too close to the boundary (which we
have discarded in our compoint initialization with the parameter ’mindist’ [29]) to NaN. Figure 8 shows
simulation results. For the electron beam passing through the nanodisk, the field amplitude Ez increases
strongly in vicinity of the nanoparticle, which we attribute to evanescent plasmonic fields, and Ez is very
small inside the nanodisk because of the efficient free-carrier screening inside conductors.

With the MNPBEM toolbox it is also possible to compute the light emitted from the nanoparticles, the so-
called cathodoluminescence. To this end, we first set up a spectrumret object for the calculation of scattering
spectra, determine the electromagnetic fields at infinity, and finally compute the scattering spectra.

spec = spectrumret; % set up sphere at infinity

field = farfield( spec, sig ); % compute far fields at infinity

sca = scattering( spec, field ); % scattering cross section

In the initialization of spec one could also use a sphere segment rather than the default unit sphere, e.g.,
to account for finite angle coverages of photodetectors.

4.3. Parallelization

Efficient parallelization can be achieved for typical energy loops of the form:

for ien = 1 : length( enei ) % loop over energies

sig = bem \ exc( enei( ien ) ); % compute surface charges

[ psurf( :, ien ), pbulk( :, ien ) ] = exc.loss( sig ); % loss probabilities

end

We can replace this loop with:

matlabpool open; % open pool for parallel computation

parfor ien = 1 : length( enei ) % parallel loop over energies

sig = bem \ exc( enei( ien ) ); % same as above ...

[ psurf( :, ien ), pbulk( :, ien ) ] = exc.loss( sig );

end

The important point is that all computations inside the loop can be performed independently, as is the case
for the BEM simulation as well as the calculation of the external potentials and loss probabilities.

4.4. Quasistatic limit

The implementation of the quasistatic limit within the eelsstat class closely follows the retarded case.
The demo program demodiskspectrumstat.m is very similar to demodiskspectrum.m discussed in Sec. 4.1.
We first set up a disk-like nanoparticle and specify the electron beam parameters. Next, we initialize an
eelsstat object by calling
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Figure 9: Same as Fig. 5, but computed within the quasistatic limit using the demo program demodiskspectrumstat.m.
The solid lines report simulation results for the full Maxwell equations (same as Fig. 5), the dashed lines report results for
the quasistatic approximation. For the dipolar mode at lowest energy, the peak position and width somewhat differ due to
retardation effects and radiation damping.

exc = eelsstat( p, b, width, vel, ’cutoff’, cutoff, ’refine’, 2 ); % EELS excitation

The definition of the various parameters is identical to the retarded case. Finally, we set up the quasistatic
bemstat or bemstateig BEM solver [29], and compute the surface charge distribution and the energy loss
probability using the equations presented in Sec. 3.4

bem = bemstat( p, [], op ); % set up quasistatic BEM solver

for ien = 1 : length( enei ) % loop over energies

sig = bem \ exc( enei( ien ) ); % compute surface charge

[ psurf( :, ien ), pbulk( :, ien ) ] = exc.loss( sig ); % electron energy loss probability

end

Simulation results are shown in Fig. 9. We observe that the results of the full and quasistatic simulations
are very similar, and only for the dipolar mode at lowest energy the peak position and width somewhat
differ due to retardation effects and radiation damping
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