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Abstract

We theoretically investigate scanning nearfield optical microscopy (SNOM) of semiconductor quantum dots. A general

theoretical framework is developed that accounts for photo excitation and relaxation in complex dielectric environments.

We find that in the nearfield regime bright and dark excitonic states become mixed, opening new channels for the coupling

to the electromagnetic field.
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1. Introduction

Optics is a unique tool that allows a remote imag-

ing of objects. For nano systems, with dimensions L

ranging from a few to several tens of nanometers, prob-

lems arise because of the micrometer wavelength λ of

light that limits the resolution of conventianal optics

to λ/2 � L. Let us look more closely at the reasons for

this limitation. We consider a quasi two-dimensional

nanostructure located in the xy-plane that radiates at

frequency ω. The electric component of the field at po-

sition z away from the nanostructure will be given by

some Fourier transform [1]

E(r, t) =
�

σ,kx,ky

Eσ(kx, ky) exp i(kxx+kyy+kzz−ωt) ,

(1)
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2 Corresponding author. E-mail: ulrich.hohenester@uni-
graz.at

with σ the light polarization. Maxwell’s equations tells

us that for light propagating away from the nanostruc-

ture the relation

kz = �k2 − k2
x − k2

y , k2 > k2
x + k2

y (2)

must be fulfilled, where k = ωc−1 is the light wavevec-

tor. Because of this inequality a propagating light wave

can never carry a spatial resolution greater than

∆ ≈
2π

kmax

=
2πc

ω
= λ , (3)

which is reminiscent of the Abbe limit. However, some-

thing is missing. For larger values of the transverse

wave vector we get

kz = i�k2
x + k2

y − k2 , k2 < k2
x + k2

y . (4)

These evanescent waves, which provide information

about the fine spatial details of the nanostructure, de-

cay exponentially with z. The measurement of such

waves is the objective of scanning nearfield optical mi-

croscopy (SNOM) [2,3]. Conveniently, this is achieved

by exciting the nanostructure through the tip of an
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optical fiber (illumination mode) or collecting lumi-

nescence of the nanostructure through the tip (collec-

tion mode). Near-field spectroscopy has been success-

fully used for the measurement of single and coupled

semiconductor nanostructures [4–6], molecules [7,8], or

metallic nanostructures [9,10].

If the spatial near-field resolution falls below the ex-

tension of confined quantum systems, it becomes pos-

sible to directly map out the spatial probability distri-

bution of the wavefunction. This was recently achieved

by Matsuda et al. [11] for quantum dots where the

quantum confinement is induced by local monolayer

fluctuations in the thickness of a semiconductor quan-

tum well. With Ψx(re, rh) the electron-hole wavefunc-

tion of the quantum dot, the matrix elements for the

optical nearfield transitions are of the form [12–14]�
dr Eω(rtip − r)Ψx(r, r) , (5)

with Eω(rtip − r) the electromagnetic distribution

around the nearfield tip. In contrast to the far-field,

where the matrix elements governing the light-matter

coupling are determined by the quantum states alone,

in the near-field the pertinent matrix elements (5)

become a convolution of the quantum states with the

electro-magnetic field profile of the SNOM tip. This

allows to break in the near-field the usual optical selec-

tion rules, and to excite dark states whose excitation

is forbidden by symmetry in the far-field.

In this paper we theoretically investigate the spectral

response of a semiconductor quantum dot excited in

the optical near-field. We find that in order to observe

dark states directly by means of optical spectroscopy

it not only suffices to excite these states, e.g. by means

of symmetry breaking in the near-field, but addition-

ally new decay channels have to be opened that allow

coupling to propagating photon modes.

2. Theory

A proper theoretical treatment of optical nearfield

microscopy of nanostructures should account on the

same footing for the carrier states, the excitation of

the nearfield probe, the optical decay of the carrier

states in presence of a possibly modified dielectric en-

vironment, and for other environment couplings. All

this constitutes a formidable theoretical challenge. Let
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Fig. 1. (a) Schematic sketch of the confinement potential
for excitons and biexcitons, which is induced by local mono-
layer fluctuations in the thickness of a semiconductor quan-
tum well, and the probing SNOM tip. (b) Photoexcitation
scenario assumed in our calculations. A biexciton state is
excited by SNOM within a two-photon process. Because of
the biexciton binding δEb ∼ 4 meV the luminescence of the
biexciton-to-exciton transition is red-, and the exciton-to–
groundstate transition blue-shifted with respect to ω. The
insets report the square modulus of the center-of-mass part
of the exciton and biexciton wave functions [14,15] (left
columns) and the spatial near-field maps (right columns)
for a terrace of dimension 100 × 70 nm (dashed line) and
for a Bethe-Bouwkamp near-field probe with a full-width
of half maximum of approximately 25 nm. In the optical
far-field only X0 and B0 are allowed, whereas X1 and B1

are forbidden because of symmetry.

us start with the carrier states. We consider quantum

confined states induced by monolayer fluctuations

in the thickness of a GaAs/AlGaAs semiconductor

quantum well, fig. 1(a) [11,14]. Since the confinement

length (several tens of nm) is much larger than both

the lattice constant and the excitonic Bohr radius, we

adopt the usual envelope function and rigid-exciton

(rigid-biexciton) approximations, the latter assum-
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ing that the correlated electron-hole wavefunctions

factorize into a center-of-mass and a relative part

given by that of the quantum well [16]. The resulting

two-dimensional Schrödinger equation for the exci-

ton and biexciton center-of-mass wavefunctions are

then solved numerically [14,15]. We describe the light-

matter coupling within the usual dipole and rotating

wave approximations [15]

Hop(t) =

�
dr �P (r)E−(r, t) + P

†(r)E+(r, t)� .

(6)

Here, P (r) = µ Ψh(r)Ψe(r) is the interband polar-

ization operator accounting for the destruction of an

electron-hole pair at position r, µ is the dipole mo-

ment of the bulk semiconductor, and E± are the elec-

tric field components propagating with positive or neg-

ative frequency components. For simplicity, we shall

not indicate explicitly the spin and polarization de-

grees of freedom. Equation (6) holds for both classical

and quantum light fields, where in the former case E±

is a c-number and in the latter case an operator. The

optical matrix elements for the vacuum-to-exciton and

exciton-to-biexciton transitions P0x(r) and Pxb(r), re-

spectively, can be computed according to [14,15]

P0x(r) = µ Ψx(r, r),

Pxb(r) = µ

�
dredrh Ψ∗

x(re, rh)Ψb(r, r, re, rh) , (7)

where Ψx and Ψb are the exciton and biexciton wave-

functions, respectively. Here we have accounted for the

fact that the photo-generated electron and hole are cre-

ated at the same position r, and in Pxb(r) the positions

of the additional electron and hole remain at the same

position re and rh. For the excitation of the nanostruc-

ture through the optical fiber tip, fig. 1(a), the elec-

tric field can be described as classical. The Rabi en-

ergies Ω(rtip), which describe the interaction between

the nearfield excitation and the quantum dot, become

a convolution of the dipole elements (7) with the elec-

tromagnetic profile Eω(rtip−r) of the nearfield tip [see

eq. (5)]. Throughout we assume a cw excitation with

a single frequency ω. The coherent time evolution is

then given by the master equation [15,17]

ρ̇ = −i �∆ + Ω + Ω
†, ρ� , (8)

with ρ be the density matrix of quantum dot states,

Ω the matrix of the tip-dependent Rabi energies, and

∆ the detunings of the exciton and biexciton energies

from the driving frequency, i.e. ∆x = Ex−ω and ∆b =

Eb − 2ω. Through the external nearfield excitation

electron-hole states are created which decay by emis-

sion of photons. To account for such emissions we have

to adopt an open-system description [18], where the

nearfield excitation introduces two conceptual prob-

lems: first, the presence of the optical fiber may lead to

a modification of the dielectric environment which, in

turn, may influence the photon modes and couplings.

Secondly, through the Rabi energies Ω in eq. (8) the

exciton and biexciton states become mixed. Scatter-

ing thus occurs between renormalized states, that re-

sult from the interplay of the coherent excitation with

the incoherent photon scatterings themselves. In other

words, exciton and biexciton states cannot be decou-

pled from the light fields, and the whole system has to

be treated self-consistently. A convenient approach to

account for such renormalization effects is to describe

photon emission processes within lowest order time-

dependent perturbation theory [18,15]

ρ̇(t) ∼= −

� t

t0

dt′ trR �V (t), �V (t′), ρR ⊗ ρ(t)�� , (9)

with V (t) the light-matter coupling (6) for quantized

field operators E± in the interaction representation,

ρR the photon denstity operator, assumed to repre-

sent the photon vacuum, and trR denoting the trace

over the photon degrees of freedom. After performing

in eq. (9) such trace, the whole effect of the photon en-

vironment on the quantum dot states is embodied in

the correlation functions 〈E+
i (r, t)E−

j (r′, t′)〉, with i

and j labeling the three spatial directions. To compute

these correlation functions we fortunately do not have

to introduce a proper quantization of photon modes,

which would be particularly cumbersome for absorb-

ing media. Rather we can make use of the fluctuation-

dissipation theorem [19,20]�
0 ��E+

i (r, ω)E−
j (r′, ω) ��0� = 4k2 =m Gij(r, r′; ω)

(10)

that relates the vacuum correlation functions for the

electric field components to the conventional Green

tensor Gij of Maxwell’s theory [21]. Here we have in-

troduced a Fourier transform in time. Upon insertion

of the Green tensor into the master equation (9) the

resulting time integral then accounts for the temporal

buildup of scatterings. Owing to the destructive inter-

ference of different photon modes the time period over
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Fig. 2. (a–d) Real-space map of the square modulus of the wavefunctions for the exciton (a) ground state, (b) first, (c)
second, and (d) third excited state. The dashed lines indicate the boundaries of the assumed interface fluctuation. (a’–d’)
Near-field spectra for a spatial resolution of 25 nm and (a”–d”) 50 nm. With the material parameters of Ref. [13] we find
energies of −8.686, −8.442, −8.128, and −8.043 meV for the exciton groundstate and the first three excited exciton states,
respectively, and −17.264 meV for the biexciton groundstate; exciton (biexciton) energy zero is given by the energy of the
two-dimensional exciton (biexciton) of the narrow quantum well [14].

which the integral has to be extended into the past

will be rather short. A rough estimate is provided by

Heisenberg’s energy-time uncertainty principle, which

for a typical energy of 1 eV exchanged in a photon

scattering gives a time period δt ∼ ~/δE ∼ 1 fs. This

time scale is much shorter than the pico to nano sec-

ond timescale of photo excitation and photon decay.

We thus compute the Green functions Gij(r, r′; ω0) at

a frequency ω0 of the bandgap and ignore the time in-

tegration in the master equaltion (9) by setting t′ = t.

This so-called white-noise approximation is a standard

procedure in quantum optics [18], and can be backed

by a more rigorous analysis [15]. In the follwoing we as-

sume for simplicity that the radiative decay of excitons

and biexcitons is not drastically altered by the presence

of the SNOM tip and replace the Green tensor by the

free one, i.e. =m Gij(r, r′; ω0) ∼= δij ω0/6πc. This is a

reasonable assumption since the photons can be emit-

ted into any solid-angle direction. The time evolution

of the system under consideration is then described by

the master equation [15]

ρ̇ = −i �∆ + Ω + Ω
†, ρ� (11)

−
Γ0

2
�MM

†
ρ + ρMM

† − 2M
†
ρM � + Γph(ρ) ,

with Γ0 the usual Wigner-Weisskopf decay rate, M0x

and Mxb the optical far-field matrix elements, which

are obtained by integrating the elements (7) over the

entire space [17], and Γph accounting for additional

phonon scatterings [22] described in Lindblad form.

The steady-state solutions, which results from the in-

terplay of excitation and relaxation, and the lumines-

cence spectra are finally obtained from Eq. (11) by

computing the eigenvalues and eigenvectors of the Li-

ouvillian and making use of the quantum regression

theorem [18].

3. Results

In the first row of fig. 2 we show the real-space maps

of the square modulus of the exciton (a) ground and

(b–d) excited states. The computed excitonic states

exhibit symmetries reminiscent of the two-dimensional

box-like confinement, i.e., an s-like exciton groundstate

(fig. 2a), two p-like excited states of lowest energy with

nodes along x (fig. 2b) and y (fig. 2c), and two nodes

along x for the third excited exciton state (fig. 2d). Fi-

nally, the biexciton groundstate B0 (inset of fig. 1b)
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shows a stronger degree of localization than the exci-

ton groundstate X0, which we attribute to the larger

extension of the biexciton complex owing to the weaker

biexciton binding [11,14,23]. In the second and third

rows of fig. 2 we report our calculated optical near-

field spectra for spatial resolutions of approximately 25

and 50 nm. It should be noted that the first (fig. 2b)

and second excited state (fig. 2c) are dipole forbidden,

but have large oscillator strengths for both resolutions.

Note also that, as a result of interference effects, the

spatial maps at finite spatial resolutions differ some-

what from the wavefunction maps, particularly for the

excited states: the apparent localization is weaker and,

in (d), the central lobe is very weak for both resolu-

tions.

In the following we investigate whether dark quan-

tum dot states can be directly probed in SNOM. For

convenience we consider a two-photon excitation of

biexcitons, fig. 1(b), where, because of the biexciton

binding energy δEb ∼ 4 meV [24], the luminescence

from the B → X and X → 0 recombinations is red-

and blue-shifted, respectively, and can thus be spec-

trally discriminated. We assume that the heterostruc-

ture is excited through a strongly inhomogeneous field

emitted by a fiber tip at the two different spots A and

B shown in Fig. 1(b). We also assume that the lu-

minescence is detected somewhere in the far-field but

not necessarily through the SNOM tip. Figure 3 shows

the corresponding luminescence spectra. For tip posi-

tion A (center of the dot) the field does not break the

symmetry of the underlying quantum states. Accord-

ingly, only the ground state biexciton B0 can be ex-

cited, whereas the transition to B1 is forbidden because

of symmetry, as in the far-field case. Correspondingly

the luminescence spectra consist of two equally strong

peaks associated to the B0 → X0 and X0 → 0 transi-

tions. The line broadenings are due to photon emissions

and are as large as Γ ∼ 100 µeV for the large coherence

volumes of the exciton and biexciton states. Note that

the far-field luminescence spectrum (not shown here)

is almost identical to that of fig. 3(a).

When the dot is excited at tip position B, which

does not coincide with the symmetry center of the

heterostructure, an additional ultra-narrow peak ap-

pears, indicated with B1 in Fig. 3(b), which is due to

the excitation of the biexciton B1. Because this dark

state couples weakly to photons, its lifetime is orders

of magnitude larger than that of the bright B0 state.
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Fig. 3. Near-field luminescence spectra for two selected tip
positions A and B, as indicated in Fig. 1(b), and different
temperatures. At position A the usual far-field selection
rules apply, and the spectrum consists of two peaks associ-
ated to the B0 → X0 and X0 → 0 transitions. At position
B an additional ultra-narrow peak appears, which is due to
the radiative decay of the dark biexciton state B1. Panel
C shows the power dependence of the optical spectra at
tip position B which have been normalized with respect to
the respective maxima. The power and temperature depen-
dence of the dark-state transition B1 is magnified in panels
D, E, and F. Photon energy zero is given by ω.

At the lowest excitation powers the broadening of this

additional peak is dominated by phonon scattering

(Γ ∼ 1 µeV for zero temperature). However, its ap-

pearence in the luminescence spectrum indicates a sub-

stantial excitation-induced mixing of excitonic states.

With increasing excitation power this mixing becomes
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stronger, resulting in a further peak broadening and the

appearence of new emission lines as shown in panel c. In

the following we concentrate on the low power regime,

corresponding to the spectra shown in Figs. 3(a) and

(b), where the dominant mixing is between the bright

B0 and dark B1 biexciton state, whereas exciton states

become less mixed because of the off-resonant excita-

tion and the larger level splittings due to the lighter

exciton mass [14]. The power and temperature depen-

dence of the dark-state transition B1 is magnified in

panels (d) to (f) We observe an ac-Stark effect and a

splitting of the line at relatively small Rabi energies

Ω. Similarly to the Mollow spectrum of a driven two-

level system [18], this splitting is due to a strong light-

biexciton coupling and occurs when the line broadening

Γ becomes comparable to the effective Rabi frequency

(note that the B1 transition is excited non-resonantly).

With increasing temperature Γ increases and the Rabi

splitting occurs at higher field strengths Ω [Figs. 3(e)

and (f)]. The essentials of these findings are expected

to prevail for dot confinements with lower symmetry

[17].

4. Conclusions

In conclusion, we have studied scanning nearfield op-

tical microscopy of semiconductor nanostructures. A

general theoretical framework has been developed that

accounts on the same footing for the quantum dot car-

rier states, the excitation of the nearfield probe, the

optical decay of the carrier states in presence of a pos-

sibly modified dielectric environment, and for other

environment couplings. When the quantum dot is ex-

cited through the SNOM tip (illumination mode) the

far-field selection rules are broken and it becomes pos-

sible to excite dark excitonic states, weakly coupled

to the light, which show up as additional ultra-narrow

peaks in the luminescence spectra. In the future, simi-

lar wavefunction mapping is expected to become possi-

ble for other scanning probe techniques, such as optical

nano antennas [25], which might pave the way for opti-

cal nano imaging of molecules or biological structures.
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