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We present a consistent theoretical description of few-particle effects in the optical spectra of semi-
conductor quantum dots, based on a direct-diagonalization approach. We show that, because of
the strong Coulomb interaction among electrons and holes, each configuration of the confined
few-particle system leads to its characteristic signature in the optical spectra. We discuss quantita-
tive predictions and comparison with experiments for both absorption and luminescence.

Introduction The strong three-dimensional quantum confinement in semiconductor
quantum dots (QDs) results in a discrete, atomic-like carrier density of states. In turn,
(1) the coupling to the solid-state environment (e.g., phonons) is strongly suppressed
[1, 2] and (ii) Coulomb correlations among charge carriers are strongly enhanced.
Indeed, in the optical spectra of single-dot spectrally narrow emission peaks have been
observed (indicating a small environment coupling), which undergo discrete energy
shifts when more carriers are added to the dot (indicating energy renormalizations due
to additional Coulomb interactions) [3].

In this paper we discuss how these spectral changes result from few-particle interac-
tions. A detailed discussion of excitonic and biexcitonic features in the absorption spec-
tra of parabolic QDs is presented; luminescence spectra of multi-excitons and multi-
charged excitons are presented, which are compared with experimental data.

Theory The initial ingredients of our calculations are the single-particle states ¢!
and energies ez'h for electrons (e) and holes (h), which we obtain by numerically solv-
ing the 3D single-particle Schrédinger equation within the envelope-function and
effective-mass approximations for arbitrary confinement potentials [4]. Next, the few-
particle Hamiltonian (containing all possible e—e, e—h, and h—-h Coulomb matrix ele-
ments) is expanded within the basis of the =10 to 20 energetically-lowest single-particle
states, and the few-particle states are obtained by direct diagonalization of the Hamilto-
nian matrix (see Appendix). For simplicity, in the calculation of the few-particle e—h
states interaction processes with the dot environment are neglected, and only a small
broadening of the emission peaks is introduced in the calculation of the optical spectra.

Single excitons First, we consider the linear optical response. Here, a single electron—
hole pair (exciton) is created by an external light field (e.g., laser), which propagates in
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the presence of the dot confinement and of mutual Coulomb correlations. The exciton
energies Ex and wavefunctions ¥}, are obtained from the two-particle Schrédinger
equation:

(6‘2 + EB) '1/;;1/ + Z V;;lj’,vv’ql/);’;v’ = EX'I,;/:V/ ’ (1)
,u’,v’

v

with the e~h Coulomb elements V" defined in Eq. (3) of the Appendix. The optical ab-
sorption spectra are then obtained according to Ref. [4] from a(w) « > |Mx|2 Dy(w — Ex),

where My = Z‘I/" M"e, Mbe are the optical dipole elements (see Appendix), and

w; v v

D,(w) =2y/ (a) +9?) with a phenomenological damping constant y accounting for in-
teractions with the dot environment.

Figure la shows the linear optical absorption for a prototypical dot confinement
which is parabolic in the xy-plane and box-like along z.?) Such confinement potentials
have been demonstrated to be a particularly good approximation for various kinds of
self-assembled dots [1, 5]. We observe a series of pronounced absorption peaks
(X, X1, ...) with an energy splitting of the order of the confinement energy; an inspec-
tion of the exciton wavefunctions ¥}, reveals that the dominant contribution of exci-
tons Xy, X;, and X, is from the electron and hole single-particle states 1s, 1p, and

(2s,1d) (see inset of Fig.la). In analogy

— with semiconductor quantum wires [4], be-
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%) The conflnement energies due to the in-plane parabolic potential are w§ =20 meV for elec-
trons and wf} = 3.5 meV for holes (with this choice, electron and hole wavefunctions have the same
lateral extension; we use material parameters for GaAs), and the quantum-well confinement along
z is such that the intersubband splittings are much larger than wg".
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ratio of peak heights follows the degeneracy of the respective shells, i.e., 1:2:3:4);
finally, for a discussion of the additional Coulomb-induced peaks (X}’;, Xi . .) the read-
er is referred to Ref. [6, 8].

Biexcitons If the dot is populated by two electron—hole pairs, the carrier states avail-
able strongly depend on the e-h spin orientations (o4, o). In the following we only
discuss the case of two electrons (holes) with antiparallel spin orientations (for parallel
spins see Refs. [7, 8]). Then, the biexciton energies E; and wavefunctions ¥* are
obtained from the 2e-2h Schrédinger equation (accounting for the various e—e, e—h,
and h-h Coulomb interactions) which, for conceptual clarity, are written in the exciton
basis x [8, 9]:

(Ex + Ex’) l]_fi'x, + Z:, Vxx’ﬁ)’()’(’ II_I)%/ = El lIj;:vx’ ) (2)

with Vi zo the exciton—exciton Coulomb elements [8, 9], and x, X (x/, X') labeling
exciton states with oy (o)). Apparently, the exciton—exciton interaction V in Eq. (2) is
responsible for the renormalization of the biexciton spectrum. Roughly speaking, the
leading contributions to V are of dipole—dipole character, with the dipole elements
according to the excitonic transitions from x to x' (X to X') [8]; thus, in general both
optically allowed and forbidden (due to wavefunction symmetry; see also Fig. 1b) exci-
tons with their small and large values of u, respectively, contribute to ¥*.

Figure 2b, ¢ shows optical absorption for a dot which is initially prepared in the X
(X1) single-exciton state; this scenario of optically probing a non-equilibrium dot is
similar to the nonlinear coherent optical response, where a strong pump pulse creates
an exciton population at energy w, and a weak probe pulse monitors the spectral
changes due to the induced exciton population [10]. For the dot initially prepared in
state Xy (Fig. 2b), we observe: At energy Ex, negative absorption (i.e., gain) due to the

removal of the initial exciton population (i.e., stimu-

T ET——————— lated emission via Xy + Av — 2hv); the appearance
Xo X, | of an absorption peak By on the low-energy side of

Xy and of a peak multiplet (labeled B;) at spectral

() Wo>=lvoc> position X, attributed to the photo-induced forma-
tion of biexcitonic states via Xy +hv — B. To a
B B, good approximation, the biexciton groundstate B
i 1 consists of two groundstate excitons X, with anti-
Weg>=1Xy> i parallel spin orientations (because of the small
value of u for optically allowed excitons the biexci-
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B, consist of e~h pairs in the 1s and 1p shells (see
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inset of Fig. 1a), where the strong mixing with optically forbidden excitons (large u)
leads to large renormalizations and to a strong decrease of the oscillator strengths of
the absorption peaks.

Multi-excitons  Next, we turn to the case of a dot populated by a larger number of
electron—hole pairs. In a typical single-dot experiment [3], a pump pulse creates e—h
pairs in continuum states (e.g., wetting layer) in the vicinity of the QD, and some of the
carriers become captured in the QD; from experiment it is known that there is a fast
subsequent carrier relaxation due to environment coupling to the e—h states of lowest
energy [2]; finally, electrons and holes in the dot recombine by emitting a photon. By
varying in a steady-state experiment the pump intensity and by monitoring lumines-
cence from the dot states, one thus obtains information about the few-particle carrier
states. From a theoretical point of view, luminescence involves a process where one e—h
pair is removed from the interacting many-particle system and one photon is created.
Thus, luminescence spectra provide information about e—h excitations, in contrast to
transport measurements of QDs [11] which only provide information about the few-
particle groundstate.

Figure 3a shows luminescence spectra for different numbers of e—h pairs (with dot
parameters as before, see footnote; luminescence intensity computed according to
Ref. [1] and using the few-particle states of Eq. (4)). We assume that before photon
emission the interacting e—h system is in its respective groundstate, i.e., for one e-h
pair the exciton groundstate Xy; for two e—h pairs the state By; for three e—h pairs
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Fig. 3. Luminescence spectra for QD and for different a) multi-exciton and b) multi-charged exci-
ton states. We assume that before photon emission the electron-hole system is in its groundstate,
i.e., in a): (leﬁ lhl), (16T, 161; 1hl7 1hT)’ (ZGT, 1el; 21’117 1hT)’ (36], 161;31’“7 1hT)> (36T,261; Shl72hT)’
and  (3eq,3ej;3h;,3hy); in b): (le;1hy ), (Ley,lej;1hy ), (2eq,1ej;1hy ), (3ey,lej;Thy,),
(3er,2e 5 1hy ), (3eq,3e;1hy )
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approximately a filled 1s shell and one e-h pair in the 1p shell, etc.; thus, for one
e—h pair luminescence solely originates from the decay of Xj; for two e—h pairs the
biexciton By decays into Xy, where the emission peak is slightly red-shifted because
of the biexciton binding. In case of three e-h pairs the situation is more involved:
For recombination of an e-h pair in the 1p shell, the corresponding luminescence
peak is red-shifted by ~10 meV with respect to X; because of exchange corrections
of the groundstate energy; for recombination in the 1s shell, after photon emission
the dot is in an excited biexciton state; consequently, the peak multiplet in the lumi-
nescence spectra is determined by the rather complicated density of states of biexci-
tonic resonances (see discussion above). Finally, for an increasing number of e-h
pairs we observe emission from the 1s and 1p shells, where the peak multiplet from
the 1s shell emission exhibits strong spectral changes as a function of the number of
e—h pairs. We note that our findings are similar to those obtained in the strong-con-
finement limit [7] (the difference for the 6e—6h decay is due to the coupling to high-
er shells, which are considered in our calculations). Elsewhere [12], it will be shown
that our calculated luminescence spectra are in good agreement with experimental
single-dot data, with the dots of Ref. [5].

Multi-charged excitons We finally discuss luminescence spectra of multiple-charged
excitons. Experimental realization of such carrier complexes can be found, e.g., in
Ref. [13], where GaAs/AlGaAs quantum dots are remote-doped with electrons from
donors located in the vicinity of the dot. Employing the mechanism of photo-depletion
of the QD together with the slow hopping transport of impurity-bound electrons back
to the QD, it is possible to efficiently control the number of surplus electrons in the
QD from one to approximately six [13]. Figure 3b shows luminescence spectra of
charged excitons for a varying number of surplus electrons and for the prototypical dot
confinement (see footnote). Quite generally, the spectral changes with increasing dop-
ing are similar to those presented for multi-exciton states: With increasing doping the
main peaks red-shift because of exchange and correlation effects. As in the case of
multi-exciton states, each few-particle state leads to a specific fingerprint in the optical
response. This unique assignment of peaks or peak multiplets to given few-particle con-
figurations allows to unambiguously determine the detailed few-particle configuration
of carriers in QDs in optical experiments; this fact is used in Ref. [13] to study the
impurity-dot transport.

Conclusion We have presented a detailed study of excitonic and biexcitonic features
in the optical spectra of a parabolic quantum dot. Luminescence spectra of multi-exci-
ton and multi-charged exciton states have been analyzed, and we have shown that each
few-particle configuration leads to its specific fingerprint in the optical response.
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Appendix
Matrix elements With ¢! the single-particle states for electrons and holes, the opti-
cal matrix elements are of the form [4] M}}; =u [ dr Pt (r) ¢y, (x), with u, the dipole
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matrix element of the bulk semiconductor. The Coulomb matrix elements read:

i (1) ¢, (F) P (1) i, (x)

Ko [r — 1|

Vlij’,u‘v’v = 4qiq; J dr dr’ ’ (3)

with xo the static dielectric constant of the semiconductor, i, j =e,h and g = F1
(note that we have neglected electron—hole exchange interactions).

Few-particle states 'We compute the few-particle electron—hole states within a direct-
diagonalization approach. With the creation operators ¢’ and d' for electrons and holes,

respectively, we deflne the Ne-electron and Np-hole states |u)y, = CT CLZ .. |Po) and
V)n, = dl',]dvz. |Do) (vacuum state |@p); spin degrees of freedom have ‘not been

indicated exphcltly) and we keep the ~100 few-particle states of lowest single-particle
energies. Next, the few-particle Hamiltonian H, accounting for all possible electron—
electron, electron—hole, and hole—hole Coulomb matrix elements, is expanded within
these bases; the few-particle energies £, and wavefunctions ‘I’ﬁ , are then obtained
through direct diagonalization of the Hamiltonian matrix:

EWyy =3 Nam (0¥ H W5V )y n, P - (4)
w;v
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