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Density-matrix approach to nonequilibrium free-carrier screening in semiconductors
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We address the problem of how to derive quantum kinetic transport equations for electrically or optically
excited semiconductor systems, where the electron dynamics is dominated by Coulombic interparticle colli-
sions. In particular for the density-matrix approach we show how, in contrast to the frequently used approxi-
mation of a~statically! prescreened Hamiltonian, to obtain consistently the screening of the Coulomb interac-
tions. In this connection we present a critical comparison between the generalized Boltzmann equations as
obtained within the frameworks of density matrices and nonequilibrium Green’s functions. Particular emphasis
is given to a general formulation of the problem that allows an extension of our approach to a wide range of
different systems.@S0163-1829~97!08443-9#
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I. INTRODUCTION

Experimental improvements within the last decade h
made it possible to optically excite and probe semicondu
systems on a time scale of their shortest scattering tim
opening the door to a variety of exciting effects. Particu
interest has been devoted to the interplay of scatterings
the coherent excitation dynamics,1–5 and to the quantum ki-
netic peculiarities of the carrier dynamics.6–8

The theoretical analysis of such experiments, on the o
hand, has to provide transport equations which improve
semiclassical Boltzmann equation. In order to account pr
erly for coherent phenomena, a fully quantum-mechan
treatment, based on a microscopic description, is requir9

Various approaches have been used in the literature,
Green’s functions,10–14 density matrices,15–23 the projection-
operator technique,24 or the functional-integral approach.25

Among these different methods, the framework of noneq
librium Green’s functions has the appealing feature of be
extensively used and critically reviewed over many years
various fields of physics~see, e.g., Refs. 26–29!. However,
when coming down to numerically feasible expressions, s
eral severe approximations have to be introduced. Many
thors have, thus, preferred the density-matrix approa
which describes a many-particle system in terms of corr
tion functions and has the advantage that its derivation o
requires some basic knowledge of statistical physics; m
over, the approximations needed to obtain transport eq
tions have an apparently simple form, and the underly
quantities are more directly related to physical observable30

We note in this connection that a similar controversy b
tween different approaches to describe many-particle
tems can also be found in other fields of physics, like
nuclear many-body problem.31

A loose end of the density-matrix approach has been,
many years, the puzzling question of how to incorpor
free-carrier screening of interparticle interactions, which
comes extremely important for highly excited semicond
tors where the carrier dynamics is dominated by th
560163-1829/97/56~20!/13177~13!/$10.00
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carrier-carrier collisions.32 Many authors, confronted with
this problem, have come to the conclusion that screen
indeed, is a problem in itself which requires further analys
But most of these authors have decided to introduce fr
carrier screening already within the basic Hamiltonian; su
a procedure has, even when screening is treated as
consistent, noa priori justification, but can be physically
motivated, e.g., through the successful screened-exch
approach for equilibrium systems.33 However, we think that
a more rigorous analysis has to reveal how screening ca
consistently described within the framework of density m
trices.

It is somewhat surprising that similar problems had be
tackled and solved by Prigogine,34 Balescu,35 and Résibois36

in the early 1960s, but had very little impact on the comm
nity of semiconductor transport. Balescu derived transp
equations for both classical and quantum-mechanical p
mas; unfortunately, the intermediate steps in his derivati
are rather involved, and it is not very likely that his resu
can be applied to the problems of our present concern. R´si-
bois, on the other hand, developed a more elementary d
vation of the kinetic equation and showed, for a classi
plasma, how to describe free-carrier screening within
random-phase approximation~RPA!.37

The aim of this paper is twofold. First, we extend th
method of Re´sibois in a general fashion to quantum
mechanical systems, and derive a quantum kinetic trans
equation within the RPA. We are aware that a treatmen
free-carrier screening beyond the RPA-approach could b
some importance,38,39 and has to be clarified in more deta
however, it is hoped that our present analysis provides a
step into this difficult topic. Second, we present a critic
comparison of the results as obtained within the framewo
of nonequilibrium Green’s functions and density matrice
which should reveal the differences and similarities of t
two approaches. This work has been basically inspired
two motivations. First, we think that, in view of the increa
ing interest in investigating carrier dynamics within th
quantum kinetic regime, such a somewhat formal analysi
13 177 © 1997 The American Physical Society
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13 178 56U. HOHENESTER AND W. PO¨ TZ
of importance for future work related to this challengin
field. Second, we feel a necessity to give a subsequent j
fication for the hitherto used prescreening of the Coulom
interparticle interactions.

We have organized the paper as follows: In Sec. II
introduce our basic Hamiltonian. In Sec. III a short surv
over the method of density matrices is given, together w
the discussion of how to treat free-carrier screening prop
within this approach. To avoid cumbersome notations,
perform our analysis in real space; here, most of our nota
has been adopted from Refs. 40 and 41. The compar
with the results of the nonequilibrium Green’s function a
proach is presented in Sec. IV. In order to make our anal
more transparent, we have postponed major parts of
rather lengthy calculations to the appendixes.

II. HAMILTONIAN

Let us specify the Hamiltonian under consideration:

H5Ho1He1Hi

5Tr1c†~1!«~1!c~1!1Tr1u~1;t !c†~1!c~1!

1 1
2 Tr12v~12!c†~1!c†~2!c~2!c~1!. ~2.1!

Here thec ’s are single-particle field operators, and the nu
bers 1,2, . . . label positionsr1 ,r2 , . . . in real space and the
spin orientations of the particles. The symbol Tr1 stands for
the integration over the entire space and the sum over
spin degrees of freedom; we will extend this definition fu
ther below. The Hamiltonian of the free particles is given

«~1!52
¹1

2

2mo
1(

R
Vei~r12R!,

wheremo is the free-electron mass, theR’s are the positions
of the ions of the crystal, andVei is the potential between
electrons and ions; we set\51. In order to simplify things
we will not consider the effects of phonons, and hence
assume that all ions are at their equilibrium positions. In
~2.1! we introduced a local coupling to an external tim
dependent potentialu(1;t), which is treated classically; a
generalization to different perturbations is straightforwa
Finally v(12) is the Coulomb potential~energy! e2/ur12r2u
between particles 1 and 2, with the elementary chargee.
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The field operatorsc and c† obey the usual~anti!com-
mutation rules

@c~1!,c†~18!#2h[c~1!c†~18!2hc†~18!c~1!5d~118!,
~2.2!

and zero otherwise. Hereh511 for bosons and21 for
fermions; although we will only consider electrons, we pr
fer to stick to the explicit use ofh. Finally,d(118) represents
Dirac’s delta functiond(r12r18), together with the Kro-
necker delta for the spin orientations.

III. DENSITY-MATRIX APPROACH

Density-matrix hierarchy

The concept of density matrices is based on the desc
tion of a system using its correlations at one instant of tim
If the time evolution of a system is completely determin
by the knowledge of its dynamic variables at one instant
time, as, e.g., in the density-matrix approach, we say that
time evolution isMarkovian. In contrast to this, the metho
of Green’s functions additionally uses dynamic correlatio
and its equation of motions will, in general, be no
Markovian. For many problems it is sufficient to consider t
one-particle density matrix

r~181;t ![^c†~18!c~1!&~ t !, ~3.1!

which contains information about one-particle properties
the perturbed system, and about effects of collisions onr.
Here ^ &(t) denotes the statistical average at timet.

First of all, we state some fundamental relations for
arbitrary quantum-statistical system. The expectation va
of a ~time-independent! operatorA can be obtained by taking
the average over the statistical operatorr̂ of the N-particle
system at a given timet,

^A&~ t !5Tr1 . . .N@ r̂~ t !A#, ~3.2!

whereas the time variation of^A& can be found using Ehren
fest’s theorem42

i ] t^A&5^@A,H#&. ~3.3!

From the basic relation~3.3! we then obtain the time evo
lution of the density matrices by simply evaluating the co
mutators with the HamiltonianH defined in Eq.~2.1!:
i ṙ~181!5@«~1!2«~18!#r~181!1@u~1;t !2u~18;t !#r~181!1Tr2@v~12!2v~1828!#r2~1828,12!,
~3.4!

i ṙ2~1828,12!5@«~1!2«~18!1«~2!2«~28!#r2~1828,12!1@u~1;t !2u~18;t !1u~2;t !2u~28;t !#r2~1828,12!

1@v~12!2v~1828!#r2~1828,12!1Tr3@v~13!2v~1838!1v~23!2v~2838!#r3~182838,123!.
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56 13 179DENSITY-MATRIX APPROACH TO NONEQUILIBRIUM . . .
Here we have introduced the two- and three-particle den
matrices

r2~1828,12!5^c†~18!c†~28!c~2!c~1!&,
~3.5!

r3~182838,123!5^c†~18!c†~28!c†~38!c~3!c~2!c~1!&.

Furthermore, we have extended the definition of Tr2 in such
a way that the expressions depend explicitly on 28 and 2,
and we perform the limit 28→2 at the end of the algebrai
manipulations; this is necessary as the free propagation~i.e.,
terms with «) involves the infinitesimal off-diagonal ele
ox
he
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tyments of the density matrices. In the following we use t
obvious shorthand notation@ho(1)1he(1),r# for the time
evolution due to the free propagation and the coupling to
external field.

The set of equations~3.4! is not closed, as eachrn
couples to the higher-density matrixrn11; this infinite set of
equations has been known for a long time as the Bogoliub
Born-Green-Kirkwood-Yvon~BBGKY! hierarchy.37 Unfor-
tunately, the formulation itself does not lead to a physica
transparent truncation scheme. At this point it is conveni
to change from density matrices to correlation functionscm ,
t

to two

ing
onds to
r2~1828,12!5~11hP12!r~181!r~282!1c2~1828,12!

r3~182838,123!5~11hP121hP131hP231P13P121P13P23!r~181!r~282!r~383!1~11hP121hP13!r~181!c2~2838,23!

1~11hP231hP21!r~282!c2~1838,13!1~11hP311hP32!r~383!c2~1828,12!1c3~182838,123!, ~3.6!

where the operatorP12 exchanges 1 and 2 in the subsequent expression, e.g., throughP12r1(181)r1(282) 5r1(182)r1(281).
We should stress that there is noa priori motivation for the cumulant expansion of Eq.~3.6!.

The crucial approximation inherent to most density-matrix approaches is the assumption thatcm50 for m>n ~to be more
specific, we will neglect in the following all correlations beyond the two-particle level, i.e.,n53). To find the time evolution
of c2, we have to insert Eq.~3.6! into Eq.~3.4!. It has been shown that the factorization of Eq.~3.6!, together with the neglec
of three-particle interactions, is compatible with the conservation laws of density and energy.41 The rather lengthy calculation
can be considerably simplified by noting that only ‘‘connected’’ expressions, i.e., terms that cannot be factorized in
functions of different variables, contribute toċ2.41 For the sake of completeness, we state the final set of equations:

i ṙ~181!5@ho~1!1he~1!,r#1Tr2@v~12!2v~1828!#@~11hP12!r~181!r~282!1c2~1828,12!#, ~3.7a!

i ċ2~1828,12!5@ho~1!1ho~2!1he~1!1he~2!,c2#1@v~12!2v~1828!#@~11hP12!r~181!r~282!1c2~1828,12!#

1Tr3$~11hP12!@~v~13!2v~1838!#r~181!@c2~2838,23!1hr~283!r~382!#

1@v~23!2v~2838!#r~282!@c2~1838,13!1hr~183!r~381!#1@v~13!2v~1838!1v~23!2v~2838!#

3@~11hP131hP231hP18381hP2838!r~383!c2~1828,12!1c3~182838,123!#%. ~3.7b!

It is obvious that these equations are, even forc350, too complicated to be solved without further approximations. Mak
contact with the Green’s function approach, we show in Appendix E that the random-phase approximation corresp
keeping in Eq.~3.7b! only the underlined contributions, i.e.,

i ċ2~1828,12!5@ho~1!1ho~2!1he~1!1he~2!,c2#1@v~12!2v~1828!#r~181!r~282!1Tr3$@v~13!2v~1838!#r~181!

3@c2~2838,23!1hr~283!r~382!#1@v~23!2v~2838!#r~282!@c2~1838,13!1hr~183!r~381!#%. ~3.8!
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One can easily check that in momentum space this appr
mation has the peculiarity that all interactions involve t
samemomentum exchange~i.e., summation of the ‘‘most
divergent contributions’’35!. Let us briefly comment on the
meaning of the various contributions of Eq.~3.8!. The first
term on the right-hand side obviously accounts for the f
propagation ofc2 and its coupling to the external field. Nex
the terms containing solely one-particle density matrices
as source terms which describe the buildup of correlati
through fluctuations in the system; here the second term
the right-hand side stands for a direct interaction betw
particles 1 and 2, whereas the two other terms can be tra
to the Pauli principle correlations.33 Finally, the correlation
transfers on the right-hand side of Eq.~3.8! are, as will be
i-

e

ct
s
n
n
ed

shown below, responsible for the proper description of d
namical screening within the RPA; these terms describe h
the field produced by the charge distribution around one p
ticle, in turn, effects a second particle.

What kinds of physical effects are missing in our RP
ansatz~3.8!? It is known that the RPA properly accounts f
the correlation hole at large distances but fails at sm
distances.33,38,43Improvements over the present RPA fram
work thus ~i! should provide a better description of th
electron-electron interactions at small distances@e.g.,
through the inclusion of the second term on the right-ha
side of Eq.~3.7b! ~Ref. 44!# and ~ii ! should correct for the
missing exchange contributions in the correlation dynam
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13 180 56U. HOHENESTER AND W. PO¨ TZ
Finally, we note that we could have included in Eq.~3.8!,
the Hartree terms, i.e., the contributions on the right-ha
side of Eq.~3.7b! containingr(33)c2(1828,12); their neglect
is somewhat arbitrary. These Hartree terms, however, ca
reintroduced at any point of our analysis. A further discu
sion of such renormalization terms will be given in Sec. I

Transport equation within the random-phase approximation

Before we proceed, it seems appropriate to clarify
goal of our further analysis. If we had neglectedc2 in the
time evolution of r, we would have recovered the time
dependent Hartree-Fock approximation. Hence we exp
that c2 describes the effects of collisions on the one-parti
density matrix. Let us assume that, at a given timeto , the
system is in a completely uncorrelated state. At later tim
however, correlations build up due to the two-particle int
actions ofHi . We still can find an expression for the corr
lations which only depends on the one-particle density m
trix, at the price of using a non-Markovian equation inste
of the original Markovian BBGKY hierarchy.42 In other
words, we can describe the temporal evolution of a t
many-particle system just knowing its one-particle corre
tions.

This formal aspect is inherent to any transport analysis
many systems, however, it turns out that the one-part
density matrix changes on a much slower time scale than
two-particle correlations. Speaking loosely, the time betw
two subsequent scatterings is much longer than the tim
takes for the scattering itself. One could solve the equa
for c2 under the assumption that during a two-particle int
action the density matrixr does not vary with time~with the
exception of the trivial time dependence due toHo , and, in
case of an external optical excitation, to the fast time dep
dence ofHe!, and insert the resulting expression into t
equation forṙ. Together with the adiabatic approximatio
this procedure would then recover a Markovian time evo
tion of r. Our following analysis, of formally solving Eq
~3.8!, is inspired by these ideas, although we shall not m
use of the Markov approximation but stick to the most ge
eral case.

We finally want to point out that equations of motion
similar to Eq. ~3.8! have been derived by variou
authors;17,18,32 however, these derivations have neglec
contributions of correlation transfers in Eq.~3.8!, i.e., terms
involving v together withc2. The correlation transfers give
as will be shown below, rise to the screening of the Coulo
potential.

In order to simplify things we introduce some addition
shorthand notations. First, we notice that all terms of
RPA expressions involve 181, 282, and 383 only pairwise;
we hence use instead of these pairs just one boldfaced n
ber, i.e.,1, 2, and3. Moreover, we introduce the ‘‘Liouvil-
lian operators’’

Lo~1![«~1!2«~18!,

L8~12![v~12!2v~1828!,
~3.9!

L̂~1!c~12![Tr3L8~13!r~1!c~32!,
d
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L̂~2!c~12![Tr3L8~23!r~2!c~13!,

From now on we shall writec instead ofc2. Equation~3.8!
then reads

i ċ~12!5@Lo~1!1Lo~2!#c~12!1@L̂~1!1L̂~2!#

3@c~12!1So~12!#. ~3.10!

We have neglected the coupling ofc to the external field,
although it is possible to carry out the following analys
without this simplification. It should be noted that this n
glect can become problematic in some systems, e.g., w
describing the intracollisional field effect.21 However, the in-
terference between the scattering dynamics and effects o
external field would mainly introduce cumbersome notat
without elucidating our discussion substantially.

Finally, we have introduced the static form factor33

So~12![r~182!@d~281!1hr~281!#

5^@c†~18!c~1!2r~181!#

3@c†~28!c~2!2r~282!#&o , ~3.11!

where^ &o means that the expectation value has to be ta
for the free ~i.e., uncorrelated! electron system.

Equation~3.10! can be solved formally,42

c~12;t !5U~12;tto!c~12;to!2 i E
to

t

dt8U~12;tt8!

3@L̂~1;t8!1L̂~2;t8!#So~12;t8!, ~3.12!

where the~super!operatorU obeys the differential equation

i ] tU~12;tt8!5@L̂~1;t !1L̂~2;t !#U~12;tt8!, ~3.13!

with U(12;tt)51. Equation~3.12! can be easily proven by
differentiating with respect tot.

An apparently striking feature of our RPA ansatz is t
fact that the correlation transfers of particles 1 and 2 oc
independently of each other, i.e.,

@L̂~1!,L̂~2!#50. ~3.14!

In the following we will show that this peculiarity gives ris
to an extremely useful factorization ofU(12;tt8).36 Assume
that we have

i ] tU~ tt8!5L~ t !U~ tt8!, ~3.15!

with U(tt)51. If we can decomposeL into two parts,

L~ t !5L1~ t !1L2~ t !, ~3.16!

then the following operator identities hold betweenU andU1:

U~ tt8!5U1~ tt8!2 i E
t8

t

dt U1~ tt!L2~t!U~tt8!

5U1~ tt8!2 i E
t8

t

dt U~ tt!L2~t!U1~tt8!,

~3.17!

whereU1 obeys the differential equation
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56 13 181DENSITY-MATRIX APPROACH TO NONEQUILIBRIUM . . .
i ] tU1~ tt8!5L1~ t !U1~ tt8!, ~3.18!

with U1(tt)51. With the help of these identities we the
obtain the important result

U~12;tt8!5U~1;tt8!U~2;tt8!, ~3.19!

whereU(1) obeys Eq.~3.17! @with U15Uo(1) andU5U(1)#
and

Uo~1;tt8!5exp$2 i @«~1!2«~18!#~ t2t8!%. ~3.20!

Here we have used thatU(1) commutes at all times with
Lo(2) and L̂(2), and have exploited the properties

U~1;tot1!U~1;t1t2!5U~1;tot2!,
~3.21!

Uo~1;tot1!Uo~1;t1t2!5Uo~1;tot2!,

with to>t1>t2. Corresponding expressions hold forU(2).
Note that throughout this whole section we use retar
quantities, i.e., any function that depends on two time ar
mentstt8 vanishes fort8.t ~with the only exception of ad-
vanced quantities introduced further below!.

We finally put all results together and obtain the quant
kinetic transport equation

ṙ~1;t !52 i @ho~1!1he~1!,r#2 i Tr2L8~12!So~12;t !

1~2 i !2E
to

t

dt8Tr2L8~12!U~1;tt8!U~2;tt8!

3@L̂~1;t8!1L̂~2;t8!#So~12;t8!

2 i Tr2L8~12!U~1;tto!U~2;tto!c~12;to!. ~3.22!
ga
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It is instructive to analyze the various contributions to E
~3.22! in more detail.45 Obviously the first term on the right
hand side of Eq.~3.22! describes, once again, the free prop
gation of r together with the coupling to the external fiel
while the second term represents the mean-field contr
tions. Next, the third term describes the effects of the sc
tering dynamics onr. It has the familiar structure that~i!
correlations are created at timet8, ~ii ! they propagate fromt8
to t, and~iii ! are finally destroyed at timet. The propagation
of the correlation between particles 1 and 2 has, due to
RPA ansatz of Eq.~3.10!, the peculiarity that the correlation
transfers of particle 1 and 2, described byL̂, occur indepen-
dently of each other;36 this was the origin of the factorization
of U(12). Finally, the fourth term on the right-hand side
Eq. ~3.22! represents the effects of initial correlations on t
time evolution ofr; in the following we will neglect this
contribution. Such an approximation is justified if we have
completely uncorrelated initial state before the external p
turbation is turned on~e.g., an intrinsic semiconductor whic
is optically excited, with the onset of the laser pulse atto).
However, the approximation becomes rather delicate in c
junction with the above mentioned Markov approximatio
where the neglect of initial correlations would be in the sp
of Boltzmann’s Stoßzahlansatz. We will return to this po
below.

Details of the solution of Eq.~3.22! are sketched in Ap-
pendix C. We finally arrive at the result

ṙ~1;t !52 i @ho
HF~1!1he~1!,r#1C~1;tto!, ~3.23!

with the abbreviations
@ho
HF~1!,r#5@ho~1!,r#1Tr2@v~12!So8~12;t !2H.c.#,

C~1;tto!5~2 i !2E
to

t

dt8dt d t̄ Tr2,33̄@So8~12;tt8!vs
r~13;tt!So~3 3̄;t t̄ !vs

a~ 3̄2; t̄ t8!

2So8~21;t8t !vs
r~13;tt!So~ 3̄3;tt̄ !vs

a~ 3̄2; t̄ t8!1H.c.#,

So~12;tt8!5u~ t2t8!Uo~1;tt8!So~12;t8!1u~ t82t !Uo~2;t8t !So~12;t !.
sic
ita-
of

to
a

the
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e-
p-
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ts.
Here H.c. means that one has to take the complex conju
of the preceding expression together with an exchange o8
and 1, and the prime on the dynamic form factorSo8 is a
reminder that one does not have to perform the final li
18→1. In addition we have introduced the retarded and
vanced components of the screened Coulomb potentiavs
which, as shown in Appendixes A and B, have to be obtai
additionally from Dyson-like equations. We finally emph
size that the derivation of Eq.~3.23! contains only very few
assumptions about the peculiarities of the system under
sideration.

Generalized Boltzmann equation

The generalized collision integralC of Eq. ~3.23! has an
apparently simple form that we want to explore in more d
te
1

it
-

d

n-

-

tail. We have chosen the dynamic form factor as our ba
quantity, because it furnishes a direct measure of the exc
tion spectrum of the system; for an extensive discussion
this particularly important quantity the reader is referred
Ref. 33. To simplify our analysis, we restrict ourselves to
homogeneous bulk material. Moreover, we make use of
Markov approximation, i.e., we assume that the statist
operatorr̂ can be kept constant in time during a scatteri
process, and we turn on the carrier-carrier interact
adiabatically.46 These approximations, together with the n
glect of initial correlations, recover a purely kinetic descri
tion of the particles, where ‘‘free’’ carriers are redistribute
due to their mutual Coulomb interactions, but collective e
citations like plasmons can be neither absorbed, nor emit
and only show up as virtual excitations in scattering even
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However, we think that our derivation of the transport equ
tion ~3.23! is well suited for an inclusion of these addition
real plasmon processes by keeping initial correlations. H
we will not inquire into these problematics in more detail.
some systems the restriction to describe the dynamic
terms of solely one-particle quantities can lead to spuri
effects.47

In the following we consider a homogeneous bulklike m
terial. It is assumed that before and after a scattering e
the many-particle system is completely uncorrelated. If
can find a complete set of Hartree-Fock statesum&, which are
simultaneouslyeigenstates ofHo and of the statistical opera
tor r̂ of the uncorrelated system,48 i.e., Houm&5Emum& and
r̂um&5 r̂mum&, we can rewrite the dynamic form facto
within the Markov approximation as

So~12;tt8!5(
mn

^mur̂eiH ot n̄~1!e2 iH o~ t2t8!un&

3^nu n̄~2!e2 iH ot8um&,

with the density fluctuation operatorn̄ (1)5c†(1)c(1)
2r(11). We then immediately obtain the Fourie
transformed dynamic form factor

So~q,v!5(
mn

r̂mz^mu n̄~q!un& z22pd~v2vnm!.

~3.24!

Here we have introducedn̄ (q)5Tr1exp(iqr1) n̄ (1) and
vnm5En2Em . By use of Eqs.~3.24! and~B3! we obtain for
the retarded polarization the Fourier-transformed expres

Po~q,v!5E dv8

2p

So~q,v8!2So~2q,2v8!

v2v81 i01
,

where the infinitesimally small quantity 01 ensures causal
ity.

Let us elucidate the meaning ofSo in more detail by
shortly discussing the simple case where an incoming ‘‘
ternal’’ particle, with the positionRe , is coupled to the sys
tem by a velocity-independent interaction potentialV ~for a
complete discussion cf. Ref. 33!

Hint5(
q
V~q! n̄~2q!eiq•Re.

According to the ‘‘golden rule’’ of second-order perturbatio
theory, the probabilityP(q,v) that the particle transfers mo
mentumq and energyv to the system is given by

P~q,v!5uV~q!u2So~q,v!,

whereas the probability that the particle absorbs momen
q and energyv from the system is given byP(2q,2v).
Although similar discussions can be found in most textbo
on many-particle systems, we have included these remark
we wanted to explicitly emphasize this strikingly simple i
terpretation ofSo .

Next, we want to derive an expression for the generali
collision integral of Eq.~3.23! within the adiabatic approxi-
mation, i.e., we turn on the interaction adiabatically and p
-

e,

in
s

-
nt
e

n

-

m

s
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d

r-

form the limit to→2`, assuming that the system is stab
We stress that this approximation has nothing to do wit
physical damping process, but is rather a mathematical
cedure to yield proper boundary conditions. After som
simple steps, we arrive at

lim
to→2`

C~1;tto!5E dv

2p i (mn,q
r̂muvs~q,v!u2S ^mu n̄~q!un&

3^nueiq–r1c†~18!c~1!um&
So~2q,2v!

v2vnm2 i01

2^mueiq–r1c†~18!c~1!un&

3^nu n̄~q!um&
So~q,v!

v1vnm2 i01
2H.c.D .

From our previous discussion of the dynamic form factor
is apparent that the second term on the right-hand side
scribes how particle 1 transfers momentum and energy to
system, whereas the first term represents the transfer of
mentum and energy from the system to the particle. In
spirit of the original Boltzmann equation these expressio
can be considered as generalized in- and out-scattering t
~note also the change in sign!.

We conclude this section with some short technical co
ments on the evaluation of the expressions presented ab
for the particularly simple example of free carriers; a gen
alization to more complex systems is obvious. First we
write the field operatorsc(1) in terms of the eigenfunction
of Ho ~plane waves!, i.e.,

c~1!5(
k

eik–r1ak ,

and a corresponding expression forc†(1). We then find for
the dynamic form factor and forqÞ0

So~q,v!5 (
mn,k

r̂mz^muak
†ak1qun& z22pd~v2vnm!.

It follows at once that the difference in energy between
two configurationsm andn is

vnm5«~k1q!2«~k![v~k,q!,

where«(k) denotes the energy of a free carrier with wa
vectork. Hence we obtain

So~q,v!5(
m,k

r̂m^muak
†ak1qak1q

† akum&2pd@v2v~k,q!#

52(
k

^ak
†ak1qak1q

† ak&o2pd@v2v~k,q!#

52(
k

f k~11h f k1q!2pd@v2v~k,q!#,

where we have introduced the distribution functio
f k5^ak

†ak&o , and the factor 2 explicitly denotes the two po
sible spin orientations. The additional steps to rewrite E
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~3.23! in terms of distribution functions are complete
analogous, and will not be presented here.

IV. COMPARISON WITH NONEQUILIBRIUM
GREEN’S FUNCTIONS

In Sec. III we showed that it is, indeed, possible to d
scribe free-carrier screening consistently within the dens
matrix approach, by introducing the RPA ansatz of Eq.~3.8!.
However, we think that an additional justification for th
ansatz would help to elucidate its limitations, as well as
indicate directions for further improvements.

A particularly important approach to describe man
particle systems has been, within the last decades, the fra
work of Green’s functions. Extensions of this formalism
systems driven out of equilibrium were developed in t
early 1960s, and have been applied successfully to m
problems in solid-state physics; for details the reader is
ferred to the literature.49,50 The Green’s-function approac
has, in contrast to the density-matrix approach, the advan
that it provides, at least for Coulombic systems, a consis
truncation scheme which has been critically reviewed
many years. However, in nonequilibrium systems, num
cally feasible transport equations are, even for the simp
problems, difficult to obtain without further approximation
like the notorious Kadanoff-Baym ansatz.49 Next we shall
compare the previously derived results to those obtai
within the framework of Green’s functions. In doing so, w
also hope to provide a more common basis for the differ
‘‘languages’’ of Green functions and density matrices.

As there exist many reviews on nonequilibrium Gree
functions,49,26,10we only present their most important ingr
dients in Appendix E. Within the framework of Green
functions the RPA ansatz neglects the dependence ofS8,
which differs from the self-energyS in that it does not con-
tain the Hartree term, on the screened potentialus , i.e.,
dS8/dus'0. We show in Appendix E that, within this ap
proximation, we recover the RPA ansatz~3.8! if we replace
the one-particle Green’s functionsg by the free propagators
go .

Although we have given additional justification for ou
basic ansatz~3.8!, this result is a severe drawback for o
previously derived transport equation~3.22!. In particular,
we find that the non-Markovian equation~3.22! solely ac-
counts for the change of the one-particle density matrix d
ing a scattering process, but completely neglectsall effects
of dynamical renormalization on the propagation of the el
tron ~described byUo). To make this point even stronger,
the end of Appendix E we rederive the non-Markovian tra
port equation, and show that only renormalized one-part
quantities show up in the corresponding Green’s-function
pressions. We note that this deficiency is in complete c
trast to the Kadanoff-Baym ansatz,49 where it is assumed tha
dynamical renormalization processes occur on a m
shorter time scale than the change of the distribut
function.51 Our RPA ansatz~3.8!, hence, is somewhat simila
to a free Kadanoff-Baym ansatz within the nonequilibriu
Green’s function approach.13

Finally, we note that the discrepancy between the res
as obtained within the frameworks of density matrices a
Green’s functions, respectively, can be attributed to our
-
-
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ny
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-
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-
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h
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ts
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glect of three-particle correlations.52 The random-phase ap
proximation is discussed in some detail in Ref. 53 for a h
mogeneous electron gas in thermal equilibrium, showing t
nonvanishing correlationscm exist up to infinite order. Im-
provements over the density-matrix approach presente
this paper, hence, certainly have to correct for this d
ciency.

In conclusion, we have presented a prescription of how
obtain free-carrier screening in quantum kinetic transp
equations consistently within the density-matrix approa
and hereby have improved over the hitherto used approxi
tion of starting already with a prescreened Hamiltonian.
critical comparison to results obtained within the framewo
of nonequilibrium Green’s functions has revealed that
results of both approaches coincide, if one replaces in
non-Markovian collision terms the dressed Green’s functio
by the bare ones.
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APPENDIX A: SCREENED COULOMB POTENTIAL

In this appendix we provide some useful results for t
screened Coulomb potential; although most of them can
found in standard textbooks, we present this survey ma
in order to establish our notation. The following analysis c
be either applied to quantities defined on Keldysh’s tim
contour, or to quantities as obtained within the densi
matrix approach. In the latter case we extend the definition
1,2, . . . insuch a way that they contain additional time a
gumentst1 ,t2 , . . . , and wekeep in mind that any retarde
quantity with two time argumentstt8 vanishes fort8.t.

Assume that we have a system which is perturbed by
external time-dependent potentialu(1) @cf. Eq. ~2.1!#. An
electron, however, will not ‘‘feel’’ the bare potential bu
rather the screened one

us~1![u~1!1Tr2v~12!@r~282!2r~282;u50!#,
~A1!

where we have subtracted the density of the unperturbed
tem in the second term on the right-hand side to keep
expression finite when performing the thermodynam
limit.49

At this point it is convenient to introduce some addition
quantities; this can be done using the method of functio
derivatives,54,55

K~118![
dus~1!

du~18!
,

L~118![
dr~11!

du~18!
,

~A2!

P~118![
dr~11!

dus~18!
,
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vs~118![Tr2v~12!K~182!.

Here K is the inverse dielectric function,L is the density-
density correlation function,P is the polarization, andvs the
screened Coulomb potential.

With the help of the relation

d

du~2!
5E d3

dus~3!

du~2!

d

dus~3!
,

we immediately obtain some useful relations between th
quantities, which we write in a very shorthand notation:

K5d1vL,

L5P1PvL5P1LvP,
~A3!

vs5v1vLv,

vs5v1vPvs5v1vsPv.

Here two subsequent quantities are connected by a conv
tion in space and time, together with an appropriate sum o
the spin orientations.

APPENDIX B: POLARIZATION WITHIN
THE DENSITY-MATRIX APPROACH

In this appendix we derive the expressions for the po
ization P and the density-density correlation functionL, as
obtained within the density-matrix approach. We follow
this connection the work of Ref. 56, where the RPA w
recovered by considering, within the linearized tim
dependent Hartree approximation, fluctuations around
ground state.

Within this approximation we find

i ṙ~181!5@«~1!2«~18!1us~1!2us~18!#r~181!,
~B1!

where we introduced the screened potentialus from Eq.
~A1!. Using the definitions of Appendix A, for the polariza
tion we obtain

P~12;tt8!52 iu~ t2t8!Uo~1;tt8!

3@d~12!2d~182!#r~1;t8!u18→1 . ~B2!

A more familiar expression can be obtained using the den
fluctuation operatorn̄ (1)[c†(1)c(1)2r(11),

P~12;tt8!52 iu~ t2t8!^@ n̄~1;t !, n̄~2;t8!#&o , ~B3!

with n̄ (1;t)[exp(iHot)n̄(1)exp(2iHot). We finally recover,
within the approximation of linearized screening, the relat
se

lu-
er

r-

s
-
e

ty

n

between polarization and density-density correlation by t
ing the functional derivative of Eq.~B1! with respect to the
bare potentialu:

L~12;tt8!5P~12;tt8!

1E
t8

t

dt Tr3 3̄P~13;tt!v~3 3̄!L~32̄;tt8!.

~B4!

APPENDIX C: DERIVATION
OF THE QUANTUM-KINETIC TRANSPORT EQUATION

In this appendix we present the necessary steps in ord
go over from Eq.~3.22! to Eq. ~3.23!. We start with

U~1;tt8!L̂~1;t8!So~12;t8!5Tr3 3̄U~1;tt8!@d~13!2d~183!#

3r~1;t8!v~3 3̄!So~ 3̄2;t8!.

~C1!

By use of Eq.~3.17!, we find

U~1;tt8!@d~13!2d~183!#r~1;t8!

5 iP8~13;tt8!2 i E
t8

t

dt Tr4 4̄P8~14;tt!v~4 4̄!U~ 4̄;tt8!

3@d~43̄!2d~ 4̄83!#r~ 4̄;t8!. ~C2!

We have introduced the shorthand notation

P8~13;tt8![2 iUo~1;tt8!@d~13!2d~183!#r~1;t8!,

where the prime indicates that, in contrast to the polarizat
P(13) ~cf. Appendix B!, we do not have to perform the fina
limit 1 8→1. Next, we observe thatU( 4̄) acts on an expres
sion where we have to perform the limit 48̄→ 4̄ at the end of
our algebraic manipulations, and we immediately arrive a

U~ 4̄;tt8!@d~ 4̄3!2d~ 4̄83!#r~ 4̄;t8!5 iL ~43̄;tt8!,
~C3!

with the density-density correlation functionL defined in
Appendix A. We note that, from a technical point of view
the iterative solution of the integral equation~C3! plays a
crucial role in our analysis because here we have introdu
thescreening of the Coulombic interactions, described by the
density-density correlation functionL. This shows that the
correlation transfers of Eq.~3.8! are indeed those describin
free-carrier screening within the RPA. Putting all results
gether, we then obtain
U~1;tt8!L̂~1;t8!So~12;t8!5 i E
t8

t

dt Tr3P8~13;tt!vs~32;tt8!r~2;t8!. ~C4!

The effect ofU(2;tt8) on Eq.~C4! can be calculated in a completely analogous fashion:
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Tr2v~12!U~12;tt8!L̂~1;t8!So~12;t8!5 i E
t8

t

dt d t̄ Tr2,33̄P8~13;tt!vs~12;t t̄ !@Uo~2; t̄ t8!So~ 3̄2;t8!#vs~3 3̄;tt8!. ~C5!

The second part of the calculation is very similar; it turns out to be convenient to add~for the moment! the mean-field
contributions, and we obtain

Tr2v~12!@U~12;tt8!L̂~2;t8!So~12;t8!1 iSo~12;t !d~ tt8!#

5 i Tr2vs~12;tt8!Uo~1;tt8!So~12;t8!1 i E
t8

t

dt d t̄ Tr2,33̄P8~13;t t̄ !vs~12;tt8!@Uo~ 3̄;tt8!So~ 3̄2;t8!#vs~33̄;tt̄ !.

~C6!

Here we have explicitly exploited the fact that all quantities are retarded.
We then arrive, with the dynamic form factor

So~12;tt8![u~ t2t8!Uo~1;tt8!So~12;t8!1u~ t82t !Uo~2;t8t !So~12;t !,

after some minor changes, at

ṙ~1;t !5@ho~1!1he~1!,r#2 i E
to

t

dt8Tr2@vs
r~12;tt8!So8~12;tt8!2H.c.#

2 i E dt8dt d t̄ Tr2,33̄@P8~12;tt8!vs
r~13;tt!So~33̄;tt̄ !vs

a~ 3̄2; t̄ t8!2H.c.#, ~C7!
ga

e
c

r-
fe
he

e
m

n
e
-

e

,
time
om-
where H.c. means that one has to take the complex conju
of the preceding expression, and one has to exchange 18 and
1. Moreover we have introduced, in addition to the retard
component of the screened Coulomb potential, the advan
one

vs
a~12;tt8!5vs

r~21;t8t !,

and the prime onSo is a reminder that we donot have to set
18→1. It is well known that the dynamic form factor dete
mines the correlations between density fluctuations at dif
ent times, whereasP describes the linear response of t
system to an external density probe. Thus Eq.~C7! shows
explicitly how polarizations are coupled via the screen
Coulomb potential to the density fluctuations of the syste

However, in order to obtain Eq.~3.23! in its final form,
we split off once again the instantaneous part of the scree
Coulomb potentialvs

r(12;tt8) on the second term on th
right-hand side, and fort>t8, in shorthand notation, we ob
tain

vs
r2v5vs

r2vs
a5vs

r~Pr2Pa!vs
a ,

with

i @Pr~12;tt8!2Pa~12;tt8!#5So~12;tt8!2So~21;t8t !.

HerePa(12;tt8)5Pr(21;t8t). The further steps to complet
the calculation are straightforward, and will be omitted.

APPENDIX D: KELDYSH MATRICES

Consider two quantitiesa(118) andb(118), wherea can
be split up into
te

d
ed

r-

d
.

ed

a~118!5u~ t12t18!a
.~118!1u~ t182t1!a,~118!,

~D1!

and a corresponding decomposition holds forb; here under-
lined numbers label times on Keldysh’s time contour50

whereas nonunderlined numbers label times on the real-
axis. Moreover we introduce the retarded and advanced c
ponents

ar~118![u~ t12t18!@a.~118!2a,~118!#,

aa~118![2u~ t182t1!@a.~118!2a#,~118!].

We then find, for the convolution

c~118!5E d2a~12!b~218!,

the results

cr ,a~118!5E d2 ar ,a~12!br ,a~218!
~D2!

c:~118!5E d2@ar~12!b:~218!1a:~12!b~218!#,

whereas forc(118)5a(118)b(181) we obtain

cr~118!5ar~118!b:~181!1a:~118!ba~181!

c:~118!5a:~118!b:~181!. ~D3!



ers

ary
her
nts
real

13 186 56U. HOHENESTER AND W. PO¨ TZ
APPENDIX E: DETAILS OF THE GREEN’S FUNCTION
APPROACH

We define the Green’s function57

g~118![u~ t12t18!g
.~118!1u~ t182t1!g,~118! ~E1!

with the abbreviations

g.~118![2 i ^c~1!c†~18!&,

g,~118![2 ih^c†~18!c~1!&. ~E2!
c

on

i

he

en

th

b
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ty
rm
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r,

,

Throughout this whole section we assume that the numb
1,2, . . . contain additional time argumentst1 ,t2 , . . . ; more-
over, we extend times to the Keldysh time contour,50 which
runs fromto to 1` on the upper branch, and back toto on
the lower branch~further, below we will introduce Keldysh
matrices and hereby recover times on just one branch58!. It is
then possible to carry over most results from the ordin
zero-temperature Green’s function approach without furt
modifications, with the main difference that time argume
are defined on the Keldysh contour, rather than on the
axis.

With our basic Hamiltonian of Eq.~2.1!, we obtain
@ i ] t1
2«~1!2u~1!#g~118!5d~118!1 ih Tr2v~12!g2~12,1821!u t25t

1
1,

~E3!

@2 i ] t18
2«~18!2u~18!#g~118!5d~118!1 ih Tr2v~12!g2~12,1821!u t25t

18
2 ,
ies

-
gu-
der

.

r-

he
with the two-particle Green functiong2, which, using the
elegant functional derivative method of Schwinger,54,55 can
be written

g2~12,1821!5S h
d

du~2!
1g~221! Dg~118!. ~E4!

Here we have introduced the shorthand notationt1 (t2) for
a time infinitesimally later~earlier! than t. We notice that,
taking the appropriate limit of equal times in Eq.~E3!, we
recover the BBGKY hierarchy of density matrices of Se
III.

It is well known that in Coulombic systems any expansi
in terms of the bare external fieldu fails; however, we can
expect that physical quantities should vary rather slowly
their dependence on the screened fieldus ~cf. Appendix A!.
In addition, it is convenient to perform an expansion of t
self-energy

S8~118![go
21~118;us!2g21~118!,

rather than ofg; here the inverse free Green function is giv
as

go
21~118;us!5@ i ] t1

2«~1!2us~1!#d~118!,

andS8 differs from the proper self-energyS in that it con-
tains no Hartree self-energy. The RPA ansatz within
Green’s-function approach is then to neglectdS8/dus . A
physically more transparent interpretation of the RPA can
given in terms of the two-particle Green’s function, whe
two particles interact with each other through the scree
Coulomb potential within the Born approximation.

We saw in Sec. III that a particularly important quanti
in Coulombic many-particle systems is the dynamic fo
factor S. Hence, we want to investigate its temporal evo
tion within the framework of Green’s functions. Howeve
instead of the dynamic form factor we take the~nondiagonal!
density-density correlation functionL as our basic quantity
.

n

e

e

d

-

where, as can be inferred from Appendix A, both quantit
differ only by a trivial factor of2 i . We immediately arrive
at

L8~118,2!5 i @g2~12,1821!2g~118!g~221!# t185t
1
1

52 i ^T @c†~18!c~1!2r~181!# t185t
1
1

3@c†~2!c~2!2r~22!#&, ~E5!

with the contour-ordering operatorT that orders the subse
quent operators according to the position of their time ar
ments on the contour. The prime, once again, is a remin
that 1 does not have to equal 18 ~although we sett185t1

1).
In lowest order we then obtain the expression

Lo8~118,2![ ihg~12!g~218!, ~E6!

whereas the difference

i L̄ 8~118,2![ i @L8~118,2!2Lo8~118,2!#

gives the two-particle correlation functionc2(182,12) if we
perform the limit of equal times in such a way thatt1 (t2)
lies on the upper~lower! branch of Keldysh’s time contour
Hence we find

ṙ~181!52 i @ho
HF~1!1he~1!,r#

2 iTr2@v~12!i L̄ 8.~118,2!2H.c.# t15t2
, ~E7!

whereL8. indicates the proper choice of the two time a
guments.

Equation of motion for the two-particle correlation function

Next we want to recover the equation of motion for t
two-particle correlation function~3.8!. By use of Eq.~E4!,
we find
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L8~118,2!5 ihE d 2̄
dg~118!

dus~ 2̄ !

dus~ 2̄ !

du~2!
,

where the two expressions on the right-hand side can
rewritten as59

ih
dg~118!

dus~ 2̄ !
5Lo~118, 2̄ !1OS dS8

us
D ,

dus~ 2̄ !

du~2!
5d~22̄!1E d3 v~23̄!L~33,2!.

Within our RPA ansatz we then obtain the equation of m
tion for the nondiagonal density-density correlation functi

L8~1182!5Lo8~118,2!1E d3 d 3̄Lo8~118,3!v~3 3̄!L~44,2!

5Lo8~118,2!1E d3 d 3̄L8~118,3!v~3 3̄!Lo~44,2!.

~E8!

Moreover, we find

E d 1̄ @go
21~1 1̄!Lo8~ 1̄18,2!2Lo8~1 1̄,2!go

21~ 1̄18!#

3@d~12!2d~182!#r~181!1O~S8!.

Neglecting in lowest-order expressions that contain the s
energyS8, we find, from Eq.~E8!, the equations of motion

$ i ] t1
2@«~1!2«~18!#% L̄ ~118,2!

'Tr3 3̄@d~13!2d~183!#r~181!v~3 3̄!

3@ L̄ ~ 3̄ 3̄ ,2!1Lo~ 3̄ 3̄ ,2!#,
e

-

lf-

$ i ] t2
2@«~2!2«~28!#% L̄ ~118,228!28→21

'Tr3 3̄@ L̄ ~118,3!1Lo~118,3!#v~3 3̄!

3@d~2 3̄!2d~28 3̄ !#r~282!. ~E9!

In the second equation,L̄ (118,228)28→21 obviously means
that the drift operator@«(2)2«(28)# has to act uponL̄ be-
fore performing the limit 28→21. The sum of both expres
sions in Eqs.~E9! gives, in the proper limit of equal times
the RPA ansatz of Eq.~3.8!.

Quantum kinetic transport equation

Finally, we sketch how to derive a generalized Boltzma
equation on the basis of Eq.~E8!. This can be done by map
ping the contour-ordered quantities~e.g.,g, S8, L8), speci-
fied by the Keldysh contour, onto the Keldysh space50,28 ~we
use : instead of 12

21
); some useful relations for thes

mapped quantities are provided in Appendix D. Note th
from now on, all time arguments are defined on the real-ti
axis running fromto to `. We then find, in a shorthand
notation,

L8a5Lo8
a1Lo8

avLa5Lo8
a1L8avLo

a ,
~E10!

L̄ 8:5 L̄ 8rvLo
:1 L̄ 8:vLo

a1Lo8
rvLo

: ,

which, together with the obvious relation

~12vLo
a!Lo

a21La51, ~E11!

gives

L̄ 8:5Lo8
:1Lo8

rvs
rLo

:~11vLa!. ~E12!

Inserting this expression into Eq.~E7!, we then obtain, after
some straightforward steps, the collision integral
C~181;tto!5E d2$Lo8
.~118,2!@vs

r~12!2v~12!#2H.c.%1E d2 d3 d 3̄ @Lo8
r~1182!vs

r~13!Lo~33̄!vs
a~ 3̄2!2H.c.#; ~E13!
tic
.
the
ed

,
n.
note the similarity to Eq.~C7!. We finally follow the guide-
lines of Appendix C, and arrive at

C~118;tto!52 i E d2 d3 d 3̄ @Lo8
.~118,2!vs

r~13!

3Lo8
.~3 3̄!vs

a~ 3̄2!2Lo8
,~118,2!vs

r~13!

3Lo8
,~3 3̄!vs

a~ 3̄2!2H.c.#, ~E14!

with
Lo8
r~118,2!5 ih@gr~12!g:~218!1g:~12!ga~218!#

3Lo8
:~118,2!5 ihg:~12!g"~218!.

Equation~E14! should be compared to the quantum kine
transport equation~3.23! of the density-matrix approach
One observes that both expressions are very similar, with
main difference that dynamical renormalizations, describ
by the dressed propagatorsg, are completely missing within
the framework of density matrices.

We finally emphasize that Eq.~E14! together with Eq.
~3.23! does not form a closed set of equations, asLo still
contains the Green functionsg for different time arguments
andg has to be obtained additionally from Dyson’s equatio
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