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We address the problem of how to derive quantum kinetic transport equations for electrically or optically
excited semiconductor systems, where the electron dynamics is dominated by Coulombic interparticle colli-
sions. In particular for the density-matrix approach we show how, in contrast to the frequently used approxi-
mation of a(statically) prescreened Hamiltonian, to obtain consistently the screening of the Coulomb interac-
tions. In this connection we present a critical comparison between the generalized Boltzmann equations as
obtained within the frameworks of density matrices and nonequilibrium Green’s functions. Particular emphasis
is given to a general formulation of the problem that allows an extension of our approach to a wide range of
different systems.S0163-182607)08443-9

l. INTRODUCTION carrier-carrier collisiond> Many authors, confronted with
this problem, have come to the conclusion that screening,
Experimental improvements within the last decade havendeed, is a problem in itself which requires further analysis.
made it possible to optically excite and probe semiconductoBut most of these authors have decided to introduce free-
systems on a time scale of their shortest scattering timegarrier screening already within the basic Hamiltonian; such
opening the door to a variety of exciting effects. Particulara procedure has, even when screening is treated as self-
interest has been devoted to the interplay of scatterings withonsistent, nca priori justification, but can be physically
the coherent excitation dynamits, and to the quantum ki- motivated, e.g., through the successful screened-exchange
netic peculiarities of the carrier dynamit$ approach for equilibrium system$However, we think that
The theoretical analysis of such experiments, on the othest more rigorous analysis has to reveal how screening can be
hand, has to provide transport equations which improve theonsistently described within the framework of density ma-
semiclassical Boltzmann equation. In order to account proptrices.
erly for coherent phenomena, a fully quantum-mechanical It is somewhat surprising that similar problems had been
treatment, based on a microscopic description, is reqdiredtackled and solved by Prigogirié Balescu?® and Reibois®
Various approaches have been used in the literature, likim the early 1960s, but had very little impact on the commu-
Green’s functiond®~**density matriced>~>*the projection-  nity of semiconductor transport. Balescu derived transport
operator techniqué& or the functional-integral approaéh. equations for both classical and quantum-mechanical plas-
Among these different methods, the framework of nonequimas; unfortunately, the intermediate steps in his derivations
librium Green’s functions has the appealing feature of beingre rather involved, and it is not very likely that his results
extensively used and critically reviewed over many years ircan be applied to the problems of our present concersi-Re
various fields of physicgsee, e.g., Refs. 26—2However, bois, on the other hand, developed a more elementary deri-
when coming down to numerically feasible expressions, sewation of the kinetic equation and showed, for a classical
eral severe approximations have to be introduced. Many aylasma, how to describe free-carrier screening within the
thors have, thus, preferred the density-matrix approachrandom-phase approximatigRPA).>’
which describes a many-particle system in terms of correla- The aim of this paper is twofold. First, we extend the
tion functions and has the advantage that its derivation onlynethod of Rsibois in a general fashion to quantum-
requires some basic knowledge of statistical physics; moremechanical systems, and derive a quantum kinetic transport
over, the approximations needed to obtain transport equaquation within the RPA. We are aware that a treatment of
tions have an apparently simple form, and the underlyingree-carrier screening beyond the RPA-approach could be of
quantities are more directly related to physical observablles. some importanc&° and has to be clarified in more detail;
We note in this connection that a similar controversy be-however, it is hoped that our present analysis provides a first
tween different approaches to describe many-particle sysstep into this difficult topic. Second, we present a critical
tems can also be found in other fields of physics, like thecomparison of the results as obtained within the frameworks
nuclear many-body problef. of nonequilibrium Green’s functions and density matrices,
A loose end of the density-matrix approach has been, fowhich should reveal the differences and similarities of the
many years, the puzzling question of how to incorporateawo approaches. This work has been basically inspired by
free-carrier screening of interparticle interactions, which betwo motivations. First, we think that, in view of the increas-
comes extremely important for highly excited semiconduc-4ng interest in investigating carrier dynamics within the
tors where the carrier dynamics is dominated by thesguantum kinetic regime, such a somewhat formal analysis is
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of importance for future work related to this challenging The field operatorsy and ' obey the usualant)com-

field. Second, we feel a necessity to give a subsequent justmutation rules

fication for the hitherto used prescreening of the Coulombic

interparticle interactions. , _ , , ,
We have organized the paper as follows: In Sec. Il we[lﬂ(l)"ﬁ(1 )-p= YY) =71 9(1)= 8(11)),

introduce our basic Hamiltonian. In Sec. Il a short survey (2.2

over the method of density matrices is given, together with

the discussion of how to treat free-carrier screening properl . B
within this approach. To avoid cumbersome notations, wi nd _zerq otherwise. Her_a—+1 for _bosons and-1 for
ermions; although we will only consider electrons, we pre-

perform our analysis in real space; here, most of our notatio ) o ) ,
has been adopted from Refs. 40 and 41. The Comparisofg_r tO,St'Ck to the ex_pI|C|t use of. Finally, 5(11 ) represents
irac’s delta functioné(r;—r4/), together with the Kro-

with the results of the nonequilibrium Green’s function ap- . . .
proach is presented in Sec. IV. In order to make our analysiQecker delta for the spin orientations.
more transparent, we have postponed major parts of the
rather lengthy calculations to the appendixes. lll. DENSITY-MATRIX APPROACH
Density-matrix hierarchy

II. HAMILTONIAN The concept of density matrices is based on the descrip-

Let us specify the Hamiltonian under consideration: tion of a system using its correlations at one instant of time.
If the time evolution of a system is completely determined
by the knowledge of its dynamic variables at one instant of

H=H,+H+H; time, as, e.g., in the density-matrix approach, we say that the
time evolution isMarkovian In contrast to this, the method
of Green’s functions additionally uses dynamic correlations,
=Tryg"(1)e(1) (1) + Trau(L;t) ' (1) g(1) and its equation of motions will, in general, be non-

Markovian. For many problems it is sufficient to consider the

one-particle density matrix

+3Tri (12 ¢ (1) ¢ (2) y(2) (1), (2.1

p(L' L=y (1) p(1))(1), (3.

Here they's are single-particle field operators, and the num-
bers 1,2. .. label positions';,r,, ... inreal space and the which contains information about one-particle properties in
spin orientations of the particles. The symboj §tands for the perturbed system, and about effects of collisionspon
the integration over the entire space and the sum over thidere()(t) denotes the statistical average at time
spin degrees of freedom; we will extend this definition fur-  First of all, we state some fundamental relations for an
ther below. The Hamiltonian of the free particles is given byarbitrary quantum-statistical system. The expectation value

of a (time-independenbperatorA can be obtained by taking

the average over the statistical operatoof the N-particle

? system at a given timg

1
2m,

e(1)= =5+ 2 Vel(ri—R),
(A =Try nlp(t)A] (3.2

wherem, is the free-electron mass, tles are the positions

of the ions of the crystal, anWl; is the potential between \yhereas the time variation ¢f4) can be found using Ehren-

electrons and ions; we sét=1. In order to simplify things fest's theorerf?

we will not consider the effects of phonons, and hence we

assume that all ions are at their equilibrium positions. In Eq.

(2.1) we introduced a local coupling to an external time- id(AYy=([AH]I). 3.3

dependent potentiali(1;t), which is treated classically; a

generalization to different perturbations is straightforward. From the basic relatiofB.3) we then obtain the time evo-

Finally v(12) is the Coulomb potentigenergy e?/|r{—r,| lution of the density matrices by simply evaluating the com-

between particles 1 and 2, with the elementary chatge mutators with the Hamiltoniail defined in Eq.(2.1):

ip(1'1)=[e(1)=&(1)]p(1'1)+[u(L;t)=u(1;)]p(1' 1)+ Tr[v(12) —v(1'2")]px(1'2' ,12), 3.4

ipx(1'2" 12 =[e(1)—e(1)+e(2)—e(2')]pa(1'2", 12 +[u(L;t) —u(1’;t) +u(2;) —u(2':t)]px(1'2",12)
F[o(12—v(172")]px(172",12) + Tra[v(13) —v(1'3") +v(23)—v(2'3") |pa(1'2'3",123.
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Here we have introduced the two- and three-particle densitynents of the density matrices. In the following we use the

matrices obvious shorthand notatiojfh,(1)+he(1),p] for the time

s R evolution due to the free propagation and the coupling to the
p2(1'2 112):<¢’ (1) g' (2 )‘//(2)(!’(1», 3.5 external field.

11l —/atery g toony gt The set of equation$3.4) is not closed, as each,
pa(1'2'3",123=(Y (1) ¢ ()¢ (3% $(2)i(1)). couples to the higher-density matgiy, . 1; this infinite set of

Furthermore, we have extended the definition of ifirsuch  equations has been known for a long time as the Bogoliubov-
a way that the expressions depend explicitly dnahd 2,  Born-Green-Kirkwood-Yvon(BBGKY) hierarchy®’ Unfor-
and we perform the limit 2—2 at the end of the algebraic tunately, the formulation itself does not lead to a physically
manipulations; this is necessary as the free propagéten transparent truncation scheme. At this point it is convenient
terms with &) involves the infinitesimal off-diagonal ele- to change from density matrices to correlation functiops

p2(1'2",12)=(1+ nP12)p(1'1)p(2'2)+c5(1'27,12)
p3(1'2'3",123) = (1+ 5Piot nP1gt 7Pozt+ Pi3P1ot+ PisP23)p(1'1)p(2'2) p(3'3) + (14 7P+ nP1a)p(1'1)c,(2'37,23)
+(1+ Pogt 7P p(2'2)Cy(1'3",13) + (1+ 5Pa1+ P32 p(3'3)co(1'2",12) +¢c5(1'2'3",123), (3.6

where the operatdP;, exchanges 1 and 2 in the subsequent expression, e.g., tHRygtil’ 1)p,(2'2) =p1(1'2)p4(2'1).
We should stress that there is agoriori motivation for the cumulant expansion of ES.6).
The crucial approximation inherent to most density-matrix approaches is the assumptiop=titafor m=n (to be more
specific, we will neglect in the following all correlations beyond the two-particle level,nie3). To find the time evolution
of c,, we have to insert Eq3.6) into Eq.(3.4). It has been shown that the factorization of E2}6), together with the neglect
of three-particle interactions, is compatible with the conservation laws of density and &h@twgyrather lengthy calculation
can be considerably simplified by noting that only “connected” expressions, i.e., terms that cannot be factorized into two

functions of different variables, contribute ¢g.** For the sake of completeness, we state the final set of equations:
ip(1'1)=[ho(1)+he(1),p]+Tr[v(12) ~v(1'2")][(1+ nP1)p(1'1)p(2'2) +¢p(1'2',12)], (3.7a

iC2(1'2',12)=[hy(1) +ho(2) +he(1) +he(2),C2]+[0(12) —v(12) J[(1+ 7P1)p(1'1)p(2'2) +Cp(1'2",12)]

+Tr5{(1+ 7P1)[(v(13) —v(1'3)]p(1'1)[c2(2'3",.23) + 7p(2'3)p(3'2) ]
+[v(23)-v(2'3")1p(2'2)[c5(1'3",13)+ 7p(1'3)p(3'1) ] +[v(13) —v(1'3") +v(23) —v(2'3")]

X[(1+ 7Pia+ 7Post+ 7P1ia + 7Para3)p(3'3)Cy(1'2',12)+ c5(17273",123 ). (3.7b

It is obvious that these equations are, evercfpr 0, too complicated to be solved without further approximations. Making
contact with the Green’s function approach, we show in Appendix E that the random-phase approximation corresponds to
keeping in Eq(3.7b only the underlined contributions, i.e.,

iC5(1'2",12)=[hy(1) +ho(2) +he(1) +he(2),c5] +[v(12) ~v(1'2") ]p(1'1)p(2'2) + Traf[v(13) —v(1'3")]p(1'1)
X[€2(2'3",23+ 7p(2'3)p(3'2) ] +[v(23) ~v(2'3")]p(2'2)[c(1'3' 13 + 7p(1'3)p(3' V). (3.9

One can easily check that in momentum space this approxshown below, responsible for the proper description of dy-
mation has the peculiarity that all interactions involve thenamical screening within the RPA, these terms describe how
samemomentum exchangé.e., summation of the “most the field produced by the charge distribution around one par-
divergent contributions®). Let us briefly comment on the ticle, in turn, effects a second particle.

meaning of the various contributions of E@®.8). The first What kinds of physical effects are missing in our RPA

term on the right-hand side obviously accounts for the free,, < .3 g7 |t is known that the RPA properly accounts for
propagation ot and its coupling to the external field. Next, e correlation hole at large distances but fails at small

the terms containing solely one-particle density matrices acg.‘ 33843
as source terms which describe the buildup of correlation istances™****Improvements over the present RPA frame-

through fluctuations in the system; here the second term ofOrk thus (i) should provide a better description of the
the right-hand side stands for a direct interaction betweef€ctron-electron interactions at small distancpsg.,
particles 1 and 2, whereas the two other terms can be tracdBrough the inclusion of the second term on the right-hand
to the Pauli principle correlatior’s.Finally, the correlation side of Eq.(3.7b (Ref. 44] and (i) should correct for the
transfers on the right-hand side of E&.8) are, as will be missing exchange contributions in the correlation dynamics.
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Finally, we note that we could have_ included in E§3|..8), 2(2)c(12)=TrsL' (23)p(2)c(13),
the Hartree terms, i.e., the contributions on the right-hand
side of Eq.(3.7b containingp(33)c,(1'2’,12); their neglect From now on we shall write instead ofc,. Equation(3.8)
is somewhat arbitrary. These Hartree terms, however, can dgen reads
reintroduced at any point of our analysis. A further discus- . . ~
sion of such renormalization terms will be given in Sec. IV. iIc(12)=[Lo(1) +L(2)]c(12 +[L(D) + L(2)]

X[c(12)+S,(12)]. (3.10
Transport equation within the random-phase approximation . .
We have neglected the coupling ofto the external field,

Before we proceed, it seems appropriate to clarify theythough it is possible to carry out the following analysis
goal of our further analysis. If we had neglectegdin the  \ithout this simplification. It should be noted that this ne-
time evolution ofp, we would have recovered the time- glect can become problematic in some systems, e.g., when
dependent Hartree-Fock approximation. Hence we expegjescribing the intracollisional field effe#tHowever, the in-
thatc, describes the effects of collisions on the one-particlaerference between the scattering dynamics and effects of the
density matrix. Let us assume that, at a given titpethe  external field would mainly introduce cumbersome notation
system is in a completely uncorrelated state. At later timesyjthout elucidating our discussion substantially.

however, correlations build up due to the two-particle inter-  Finally, we have introduced the static form facfor
actions ofH;. We still can find an expression for the corre-

lations which only depends on the one-particle density ma- So(12)=p(1'2)[6(2'1)+ np(2'1)]

trix, at the price of using a non-Markovian equation instead ta ,

of the original Markovian BBGKY hierarch§? In other =([¢"(1") (1) —p(1'1)]

words, we can descri_be the te.mpc_)ral evolutiqn of a true X[¢T(2')$(2)—P(2'2)])o, (3.1
many-particle system just knowing its one-particle correla-

tions. where( ), means that the expectation value has to be taken

This formal aspect is inherent to any transport analysis. Irfor the free (i.e., uncorrelatedelectron system.
many systems, however, it turns out that the one-particle Equation(3.10 can be solved formall§?
density matrix changes on a much slower time scale than the .
two-particle correlatlons: Spe_akmg loosely, the time betyveer_1 c(12;t):u(lz;tto)c(lz;to)—iJ dt'u(12tt")
two subsequent scatterings is much longer than the time it t
takes for the scattering itself. One could solve the equation . .
for ¢, under the assumption that during a two-particle inter- XLL(LY)+ L(21)]S,(12t), (3.12
action the density matrig does not vary with timéwith the
exception of the trivial time dependence dueHg, and, in
case of an external optical excitation, to the fast time depen- : St T P o oy
dence ofH.), and insert the resulting expression into the OUAZW) =LY+ LZHRAZW), (313
equation forp. Together with the adiabatic approximation, With 2(12;tt)=1. Equation(3.12 can be easily proven by
this procedure would then recover a Markovian time evoludifferentiating with respect to.
tion of p. Our following analysis, of formally solving Eq.  An apparently striking feature of our RPA ansatz is the
(38), is inspired by these ideasl a_|though we shall not makéact that the correlation transfers of partiCIeS 1 and 2 occur
use of the Markov approximation but stick to the most genindependently of each other, i.e.,
eral case. . -

We finally want to point out that equations of motions [£(1),£(2)]=0. (3.19
similar to Eg. (3.8) have been derived by various |
authorst’1832 however, these derivations have neglected,
contributions of correlation transfers in E@®.8), i.e., terms
involving v together withc,. The correlation transfers give,
aStWi”t'bIe shown below, rise to the screening of the Coulomb g U(tt) = LU, (3.15
potential.

In order to simplify things we introduce some additional with Z/(tt)=1. If we can decomposg£ into two parts,
shorthand notations. First, we notice that all terms of the
RPA expressions involve’l, 2'2, and 33 only pairwise; L= L1 () + La(1), (3.1
we hence use instead of these pairs just one boldfaced Nunen, the following operator identities hold betwa@éandi/;
ber, i.e.,1, 2, and3. Moreover, we introduce the “Liouvil-
lian operators”

where the(supejoperatorl/ obeys the differential equation

n the following we will show that this peculiarity gives rise
o0 an extremely useful factorization of(12;tt’).3® Assume
that we have

Uttt ) =uUy(tt")—i ft,dT Ur(tT) Lo(T)U(TL")
Lo(D=e(1)—e(1"), ‘

=Uy(tt")—i ft,dT UL T) Lo(T)U (L),
L'(12=v(12)—v(1'2"), 3.9 t
) (3.17

E(l)c(lZ)ETr3£’(13)p(1)c(32), wherel{; obeys the differential equation
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iU (T )= Lo (U (L"), (3.18 It is instructive to analyze the various contributions to Eq.

_ _ o (3.22 in more detail*® Obviously the first term on the right-
W|th.u1(tt)_=1. With the help of these identities we then pand side of Eq(3.22 describes, once again, the free propa-
obtain the important result gation of p together with the coupling to the external field,

TN Tt ! while the second term represents the mean-field contribu-
U1z ) =ULe )2, (3.19 tions. Next, the third term describes the effects of the scat-
wherel(1) obeys Eq(3.17) [with U, =U,(1) and/=14(1)] tering dynamics orp. It has the familiar structure thdt)
and correlations are created at tirte (i) they propagate frortY
, , , , to t, and(iii ) are finally destroyed at time The propagation
Up(Litt) =exp[—i[e(1)—e(1)](t=t)}. (320  of the correlation between particles 1 and 2 has, due to our
Here we have used tha{(]_) commutes at all times with RPA ansatz of EQ(?J].Q, the peculiarity that the correlation
Lo(2) and £(2), and have exploited the properties transfers of particle 1 and 2, described Byoccur indepen-
dently of each othef® this was the origin of the factorization
(3.21) of U(12). Finally, the fourth term on the right-hand side of
) Eq. (3.22 represents the effects of initial correlations on the
Us(Ltot)Up(Litats) =Us(Litot2), time evolution ofp; in the following we will neglect this
with t,>t,>t,. Corresponding expressions hold 2). contribution. Such an approximation is justified if we have a

Note that throughout this whole section we use retarde§OMmpletely uncorrelated initial state before the external per-

quantities, i.e., any function that depends on two time argu'gurbation is turned ofe.g., an intrinsic semiconductor which

mentstt’ vanishes fot’ >t (with the only exception of ad- 1S optically excited, with the onset of the laser pulseat
vanced quantities introduced further bejow However, the approximation becomes rather delicate in con-

We finally put all results together and obtain the quanturdunction with the above mentioned Markov approximation,
kinetic transport equation where the neglect of initial correlations would be in the spirit
of Boltzmann’s StoRRzahlansatz. We will return to this point
p(Lt)=—i[ho(1)+he(1),p]—i TroL'(12)S,(12t below.
P(LD=~1lho(1)*he(1).p] 2L (125,(121) Details of the solution of Eq(3.22) are sketched in Ap-
pendix C. We finally arrive at the result

+(—i)thdt'Trz,c'(12)u(1;tt’)U(2;tt’)
tO

K[E(Lt) + B2t 1S,(121) p(L;0)==i[h5"(1) +he(1),p]+C(Litko), (323
—i Tro L' (12)U(1;tt,)U(2;tt,)c(12;t,). (3.2  with the abbreviations

[heF(1),p]=[No(1),p]+ Tra[v(12)S)(12t) —H.c1],
C(l;tto)z(—i)zftdt’dr d7Tr a3 So(12tt v (13;t7)Sy(33; 77)vd(32; 7t')
t0

— S (2Lt t)v(13;t7)S,(33;77)vd(32; rt') +H.cl,
So(12:tt")= 0(t—t" Uy (Ltt")Sy(12t") + (1’ —t)Uo(2t'1)Sy(121).

Here H.c. means that one has to take the complex conjugateil. We have chosen the dynamic form factor as our basic
of the preceding expression together with an exchangé of 1quantity, because it furnishes a direct measure of the excita-
and 1, and the prime on the dynamic form fac&jris a  tion spectrum of the system; for an extensive discussion of
reminder that one does not have to perform the final limitthis particularly important quantity the reader is referred to
1’—1. In addition we have introduced the retarded and adRef. 33. To simplify our analysis, we restrict ourselves to a
vanced components of the screened Coulomb potential homogeneous bulk material. Moreover, we make use of the
which, as shown in Appendixes A and B, have to be obtainedarkov gpproximation, i.e., we assume that the statistical
additionally from Dyson-like equations. We finally empha- operatorp can be kept constant in time during a scattering
size that the derivation of E¢3.23) contains only very few process, and we turn on the carrier-carrier interaction
a_ssum_ptions about the peculiarities of the system under comdiabatically*® These approximations, together with the ne-
sideration. glect of initial correlations, recover a purely kinetic descrip-
tion of the particles, where “free” carriers are redistributed
due to their mutual Coulomb interactions, but collective ex-
The generalized collision integrél of Eq. (3.23 has an citations like plasmons can be neither absorbed, nor emitted,
apparently simple form that we want to explore in more de-and only show up as virtual excitations in scattering events.

Generalized Boltzmann equation
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However, we think that our derivation of the transport equaform the limit t,— —o0, assuming that the system is stable.
tion (3.23 is well suited for an inclusion of these additional We stress that this approximation has nothing to do with a
real plasmon processes by keeping initial correlations. Hergghysical damping process, but is rather a mathematical pro-
we will not inquire into these problematics in more detail. Incedure to yield proper boundary conditions. After some
some systems the restriction to describe the dynamics ieimple steps, we arrive at
terms of solely one-particle quantities can lead to spurious
effects?’ do )

. . . : . _ | =% 2
In the following we consider a homogeneous bulklike ma- ~ lim C(l-tto)—f o= > pulvs(a,0)]
terial. It is assumed that before and after a scattering event o=~ ~> prd
the many-particle system is completely uncorrelated. If we S(—0,—o)
can find a complete set of Hartree-Fock states which are ><<V|eiq~r1¢‘r(1f)¢(1)|#>$
simultaneouslyigenstates dofl, and of the statistical opera- 0= cum—iO+

tor p of the uncorrelated systeffiji.e., Holu)=E,|u) and — (€T (L) (1))

plu)=p,lu), we can rewrite the dynamic form factor
within the Markov approximation as

(uln(a)|v)

_ Sy(a,
x (o] u) —2E H.c.).

a o — _ ) wtw,,—i0"
So(12;tt") =2, (ulpeen(1)e o)) N . .
wy From our previous discussion of the dynamic form factor, it
_ o, is apparent that the second term on the right-hand side de-
X(v[n(2)e” Mo | u), scribes how particle 1 transfers momentum and energy to the
system, whereas the first term represents the transfer of mo-
mentum and energy from the system to the patrticle. In the
spirit of the original Boltzmann equation these expressions
can be considered as generalized in- and out-scattering terms
L (note also the change in sign
So(q,@)=2 pun(@)|P2rs(w—w,,). We conclude this section with some short technical com-
my ments on the evaluation of the expressions presented above,
329 for the particularly simple example of free carriers; a gener-
Here we have introducech_(q)=Trlexp6qr1)n_(1) and ali_zation tp more complex systems is obviogs. First we re-
w,,=E,—E,. By use of Eqs(3.24 and(B3) we obtain for write the field operatorg/(1) in terms of the eigenfunctions

the retarded polarization the Fourier-transformed expressiofif Ho (Plane wavek i.e.,

with the density fluctuation operaton_(l)zz,/ﬁ(l)z,//(l)
—p(11). We then immediately obtain the Fourier-
transformed dynamic form factor

do' S)(q,0')—S(—q,—w') W)= ekra,,
’ k

2@ w—o' +i0t

Po(q!w):

and a corresponding expression fbf(1). Wethen find for

where the infinitesimally small quantity'Oensures causal- ;
y q y the dynamic form factor and fay+ 0

ity.

Let us elucidate the meaning &, in more detail by
shortly discussing the simple case where an incoming “ex- So(q,w)= E ;)/.L|<Iu|alak+q|V>|22775(w_w1/,u)'
ternal” particle, with the positiorR,, is coupled to the sys- I
tem by a velocity-independent interaction potentiaffor a

complete discussion cf. Ref. B3 It follows at once that the difference in energy between the

two configurationsu and v is

Hint=> W(q)n(—q)e'dRe, w,,=e(k+q)—e(k)=w(k,q),
q

wheree(k) denotes the energy of a free carrier with wave

According to the “golden rule” of second-order perturbation \actork. Hence we obtain

theory, the probability?(qg, ) that the particle transfers mo-
mentumg and energyw to the system is given by

P(q,0)=|V(0)|?S,(0, ),

whereas the probability that the particle absorbs momentum
g and energyw from the system is given bP(—q, — ).
Although similar discussions can be found in most textbooks
on many-particle systems, we have included these remarks as
we wanted to explicitly emphasize this strikingly simple in-
terpretation ofS, .

Next, we want to derive an expression for the generalizegvhere we have introduced the distribution function
collision integral of Eq.(3.23 within the adiabatic approxi- f.=(alay),, and the factor 2 explicitly denotes the two pos-
mation, i.e., we turn on the interaction adiabatically and persible spin orientations. The additional steps to rewrite Eq.

S0(0,0) = 2, pulrlacacqaks gl w)2m il o= w(k,q)]
“
=22 (&8s @k g8 02 0= (K, Q)]

:2; f(1+ nfriq) 27 0~ 0(k,q)],
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(3.23 in terms of distribution functions are completely glect of three-particle correlation$.The random-phase ap-
analogous, and will not be presented here. proximation is discussed in some detail in Ref. 53 for a ho-
mogeneous electron gas in thermal equilibrium, showing that
nonvanishing correlations,, exist up to infinite order. Im-
provements over the density-matrix approach presented in
this paper, hence, certainly have to correct for this defi-

In Sec. Ill we showed that it is, indeed, possible to de-Ci€Ncy. . o
scribe free-carrier screening consistently within the density- N conclusion, we have presented a prescription of how to
matrix approach, by introducing the RPA ansatz of @g).  obtain free-carrier screening in quantum kinetic transport
However, we think that an additional justification for this €quations consistently within the density-matrix approach,

ansatz would help to elucidate its limitations, as well as tc@nd hereby have improved over the hitherto used approxima-
indicate directions for further improvements. tion of starting already with a prescreened Hamiltonian. A

A particularly important approach to describe many-critical comparison to results obtained within the framework

particle systems has been, within the last decades, the fram@f nonequilibrium Green’s functions has revealed that the
work of Green’s functions. Extensions of this formalism to résults of both approaches coincide, if one replaces in the
systems driven out of equilibrium were developed in thenon-Markovian collision terms the dressed Green’s functions
early 1960s, and have been applied successfully to margy the bare ones.

problems in solid-state physics; for details the reader is re-

ferred to the literaturé®>° The Green’s-function approach ACKNOWLEDGMENTS

has, in contrast to the density-matrix approach, the advantage We acknowledge a number of stimulating and fruitful dis-
that it provides, at IeasF for Coulombic systems, a.conSiSte%ussions with P. Kocevar. U. H. acknowledges the hospital-
truncation scheme Wh'c.h has beg_n f:rltlcally reviewed fo.rity of the Physics Department of the University of Illinois at
many years. However, in nonequilibrium systems, numeri- hicago, where part of this work was performed
cally feasible transport equations are, even for the simples? ' '
problems, difficult to obtain without further approximations,

like the notorious Kadanoff-Baym ansdfzNext we shall

compare the previously derived results to those obtained |n this appendix we provide some useful results for the
within the framework of Green’s functions. In doing SO, We gcreened Coulomb potentia|; a|th0ugh most of them can be
also hope to provide a more common basis for the differenfound in standard textbooks, we present this survey mainly
“languages” of Green functions and density matrices. in order to establish our notation. The following analysis can
As there exist many reviews on nonequilibrium Green'spe either applied to quantities defined on Keldysh's time
functions?***!%we only present their most important ingre- contour, or to quantities as obtained within the density-
dients in Appendix E. Within the framework of Green's matrix approach. In the latter case we extend the definition of
functions the RPA ansatz neglects the dependencE’of 12 ... insuch a way that they contain additional time ar-
which differs from the self-energﬁ in that it does not con- gumentst,,t,, .. ., and Wekeep in mind that any retarded
tain the Hartree term, on the screened potentigl i.e.,  quantity with two time arguments’ vanishes fott’ >t.
8%/ 6us~0. We show in Appendix E that, within this ap- ~ Assume that we have a system which is perturbed by an
proximation, we recover the RPA ansa&$) if we replace  external time-dependent potentia(1) [cf. Eq. (2.1)]. An
the one-particle Green’s functiomgsby thefree propagators electron, however, will not “feel” the bare potential but
%0 rather the screened one

IV. COMPARISON WITH NONEQUILIBRIUM
GREEN’'S FUNCTIONS

APPENDIX A: SCREENED COULOMB POTENTIAL

Although we have given additional justification for our
basic ansatz3.9), this result is a severe drawback for our Us(1)=u(1)+Tr(12)[p(2'2)—p(2'2;u=0)],
previously derived transport equati@8.22. In particular, (A1)

we find that the non-Markovian equatidB8.22 solely ac-  \yhere we have subtracted the density of the unperturbed sys-
counts for the change of the one-particle density matrix duriem jn the second term on the right-hand side to keep the

ing a scattering process, but completely negledt®ffects  eypression finite when performing the thermodynamic
of dynamical renormalization on the propagation of the elecyjy;t 49
tron (described by4,). To make this point even stronger, at At this point it is convenient to introduce some additional

the end of Appendix E we rederive the non-Markovian transqyantities; this can be done using the method of functional
port equation, and show that only renormalized one-particlgariyatives*5°

guantities show up in the corresponding Green’s-function ex-

pressions. We note that this deficiency is in complete con- sug(1)
trast to the Kadanoff-Baym ansdtzwhere it is assumed that K(11)= Sy
dynamical renormalization processes occur on a much ou(1’)
shorter time scale than the change of the distribution
function®! Our RPA ansat£3.8), hence, is somewhat similar . 6p(1])
to afree Kadanoff-Baym ansatz within the nonequilibrium L(11)= N
i ou(l’)
Green’s function approach. (A2)
Finally, we note that the discrepancy between the results 5p(11)
as obtained within the frameworks of density matrices and p(11)= 22

Green'’s functions, respectively, can be attributed to our ne- Sug(1") ’
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vs(11)=Trw(12)K(1'2). between polarization and density-density correlation by tak-

. . . . . . . ing the functional derivative of EQB1) with respect to the
HereK is the inverse dielectric functiorl, is the density- 5. potentiali:

density correlation functiorR is the polarization, andg the

screened Coulomb potential. L(12tt")=P(12tt’)
With the help of the relation
t -
S _f Sug(3) S +ft’dT TryaP(13;t7)v(33)L(32 7t').
du(2) du(2) duy(3)’ (B4)
we immediately obtain some useful relations between these
quantities, which we write in a very shorthand notation: APPENDIX C: DERIVATION
K=s+ul, OF THE QUANTUM-KINETIC TRANSPORT EQUATION
In this appendix we present the necessary steps in order to
L=P+PvL=P+LuvP, (A3) 9o over from Eq(3.22 to Eq.(3.23. We start with
vs=vtulo, ULt ) L(Lt)Se(12t)) = Trazth(1;tt)[ 8(13) — 5(1'3)]

X p(Lt")v(33)S,(32t").
vs=v+tuvPvs=v+uvPuv.

(Cy
Here two subsequent quantities are connected by a convolBy use of Eq.(3.17), we find
tion in space and time, together with an appropriate sum over
the spin orientations. UL 8(13)—6(1'3)]p(L;t")
t -
APPENDIX B: POLARIZATION WITHIN =iP’(13;tt’)—ij d7 TrygP' (14tm)v(44)U(4; ")
THE DENSITY-MATRIX APPROACH t
In this appendix we derive the expressions for the polar- ~ X[8(43)—8(4'3)]p(4;t"). (C2

ization P and the density-density correlation functibn as

obtained within the density-matrix approach. We follow in we have introduced the shorthand notation

this connection the work of Ref. 56, where the RPA was

recovered by considering, within the linearized time-

dependent Hartree approximation, fluctuations around the P’(13;tt')=—ild,(1;tt")[8(13)— &(1'3)]p(L;t’),
ground state.

Within this approximation we find where the prime indicates that, in contrast to the polarization

P(13) (cf. Appendix B, we do not hale to perform the final
ip(1'1)=[e(1)—e(1)+ugl)—ug1)]p(1'1), |II.”ﬂIt 1’—1. Next, we observe thal(.4)._acts_on an expres-
(B1)  sion where we have to perform the limit 4> 4 at the end of

. . r algebraic manipulations, and we immediately arriv
where we introduced the screened potentiglfrom Eq. our algebraic manipulations, and we ediately arrive at

(Al1). Using the definitions of Appendix A, for the polariza-
fion we obtain UE ) 8(33)— 8(473)]p(Ait ) =IL (4B rt"),
(C3
P(12tt")=—io(t—t" U, (L;tt")
, " with the density-density correlation functidn defined in
X[8(12)=8(1'2)]p(Lit )1 —1.  (B2) Appendix A. We note that, from a technical point of view,
A more familiar expression can be obtained using the densit§he iterative solution of the integral equati¢@3) plays a
fluctuation operaton (1)= ' (1)¥(1)— p(11), crucial role in our analysis because here we have introduced
P D=y (L)1)~ p(11) thescreening of the Coulombic interactigriescribed by the
P(12:tt")= —i9(t—t’)<[n_(1;t),n_(2;t’)]) ., (B3 density-density correlation functiob. This shows that the
L o ° correlation transfers of E43.8) are indeed those describing
with n(1;t)=exp{H)n(1)expiHyt). We finally recover, free-carrier screening within the RPA. Putting all results to-
within the approximation of linearized screening, the relationgether, we then obtain

UL ) L(Lt)Se(12t) =i ftdr TrsP' (13 t7)vg(32;7t" ) p(2;t). (CH
t/

The effect oft/(2;tt’) on Eq.(C4) can be calculated in a completely analogous fashion:
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Trzv(12)U(12;tt’)2(1;t’)80(12;t’)=iJtdrdT_Trz,g?’(13;t7-)vs(12;tr_)[uo(2;;’)80(3_2;t’)]05(33_;71’). (C5)
o

The second part of the calculation is very similar; it turns out to be convenient tqfadthe moment the mean-field
contributions, and we obtain

Tr(12[UA2tt ) L(21")Se(121") +iS,(121) 8(tt)]

t _ _ _ _ -
=j Trzvs(12;tt')L{O(l;tt')So(12;t’)+if drdr TryzaP (13t 7)vg(12;tt" ) [Us(3;7t")So(32;1") Jug(33; 77).
t/

(Co)
Here we have explicitly exploited the fact that all quantities are retarded.
We then arrive, with the dynamic form factor
So(12tt" )= 0(t—t" )Us(L;1t" ) Sp(12;t") + 6(t' — 1)U (2;1'1) So(12;1),
after some minor changes, at
. t
p(l;t)=[h0(1)+he(1),p]—ij dt' Try[vg(12;tt")S,(12tt’) —H.c]
tO
—iJ dt'dr d7 Trys3f P/ (12t )o(13;t7)Sy(33, 77)v2(32; 7t') —H.cl, (C?)

where H.c. means that one has to take the complex conjugate  a(11')=6(t;—ty,)a”(11')+ 6(t, —t;)a~(11'),

of the preceding expression, and one has to exchahgad — - - — - - — (D))

1. Moreover we have introduced, in addition to the retarded

component of the screened Coulomb potential, the advanceghd a corresponding decomposition holdsliphere under-

one lined numbers label times on Keldysh's time contdur,
whereas nonunderlined numbers label times on the real-time

vi(12;tt")=vy(21;t'1), axis. Moreover we introduce the retarded and advanced com-

ponents

and the prime org, is a reminder that we doot have to set

1’—1. It is well known that the dynamic form factor deter- a'(11')=6(t;—ty)[a”(11)—a~(11)],

mines the correlations between density fluctuations at differ-

ent times, wherea® describes the linear response of the a?(11)=—6(t,, —ty)[a”(11)—a]~(11)].

system to an external density probe. Thus Egj7) shows

explicitly how polarizations are coupled via the screened

Coulomb potential to the density fluctuations of the system.
However, in order to obtain Eq3.23 in its final form,

we split off once again the instantaneous part of the screened

We then find, for the convolution

Coulomb potentialvg(12;tt’) on the second term on the c(ll’)zf d2a(12)b(21')
right-hand side, and far=t’, in shorthand notation, we ob- — - ==
tain

the results

vi—v=vg—vi=v (P'"—P®0?,
with C"a(ll’)=J' d2a"?(12)b"3(21)
(D2
I[Pr(12,tt’)—Pa(12,tt’)]=SO(12,tt’)—So(21,t’t) C%(llr):f dz[ar(lz)b2(21/)+a%(lz)b(zj_/)]'

Here P3(12;tt')=P"(21;t't). The further steps to complete
the calculation are straightforward, and will be omitted.  \yhereas forc(11')=a(11)b(1’'1) we obtain

APPENDIX D: KELDYSH MATRICES Cr(ll’)=ar(11’)bz(1’1)+a2(11’)ba(1’1)

Consider two quantitiea(11’') andb(11'), wherea can
be split up into — — c=(11)=a<(11)b=(1'1). (D3)
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APPENDIX E: DETAILS OF THE GREEN'S FUNCTION Throughout this whole section we assume that the numbers
APPROACH 1,2, ... contain additional time arguments,t,, . .. ; more-
We define the Green’s functish over, we extend times to the Keldysh time contdfwhich
runs fromt, to +o on the upper branch, and backt{pon
the lower brancHfurther, below we will introduce Keldysh
g(11)=6(t;—t,,)g~(11)+ 6(t;, —t;)g=(11') (E)  matrices and hereby recover times on just one br&hadhis
then possible to carry over most results from the ordinary
zero-temperature Green’s function approach without further
modifications, with the main difference that time arguments

with the abbreviations

g~ (11)=—i(y(1)y'(1")), are defined on the Keldysh contour, rather than on the real
axis.
g~ (11)=—ip(¢"(1") y(1)). (E2) With our basic Hamiltonian of E¢2.1), we obtain

[id,—e(1)—u(1)]g(11) = 8(11") +in Trv(12)9x(12,127)];, -+, €3

[—idy,—2(1)~u(1)]g(11) = 8(11) +in Trw(12g(12.12 ) |y- |

with the two-particle Green functiog,, which, using the where, as can be inferred from Appendix A, both quantities
elegant functional derivative method of Schwing&®> can differ only by a trivial factor of—i. We immediately arrive
be written at

L'(11,2)=i[g2(12,1'27) = g(11)9(22") ], ¢

= (T W) UD=p(1' D]y, -

Here we have introduced the shorthand notatibr{t ™) for
a time infinitesimally later(earlien thant. We notice that, X[¢"(2)p(2)—p(22)]), (E5)
taking the appropriate limit of equal times in E@3), we ] ]
recover the BBGKY hierarchy of density matrices of sec. With the contour-ordering operatdf that orders the subse-
M. quent operators according to the position of their time argu-

It is well known that in Coulombic systems any expansionMents on the contour. The prime, once again, is a reminder
in terms of the bare external field fails; however, we can that 1 does not have to equal falthough we set; =t ).
expect that physical quantities should vary rather slowly inln lowest order we then obtain the expression
their dependence on the screened figJdcf. Appendix A).
In addition, it is convenient to perform an expansion of the Lo(11,2)=i7g(12)g(21"), (E6)
self-energy

02(12,12%)=

)
775u(2)+9(22+) 9(11). (B4

whereas the difference
3/(11)=g, H(11;u9) —g 1 (1), _
) o iL'(11,2)=i[L'(11',2)—L/(11,2)]

rather than ofj; here the inverse free Green function is given

as gives the two-particle correlation functia(1'2,12) if we
perform the limit of equal times in such a way that(t,)

ggl(ll’;us)=[iatl—s(l)—us(l)]5(11’), lies on the uppeflower) branch of Keldysh's time contour.

Hence we find

and,’ differs from the proper self-energy in that it con-

tains r’10 Hart_ree self—energ_y. The RPA ansa,tz within the b(l’l)z—i[hg'F(l)+he(1),p]

Green’s-function approach is then to neglé®'/su,. A

physically more transparent interpretation of the RPA can be —iTrz[v(lz)iP>(11’,2)—H.c.]t . (ED

given in terms of the two-particle Green’s function, where v

two particles interact with each other through the screenegihereL’> indicates the proper choice of the two time ar-

Coulomb potential within the Born approximation. guments.

We saw in Sec. Ill that a particularly important quantity
in Coulombic many-particle systems is the dynamic form
factor S. Hence, we want to investigate its temporal evolu-
tion within the framework of Green'’s functions. However, Next we want to recover the equation of motion for the
instead of the dynamic form factor we take {mendiagonal  two-particle correlation functiori3.8). By use of Eq.(E4),
density-density correlation functidn as our basic quantity, we find

Equation of motion for the two-particle correlation function
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[ =09(11) duy(2) {id,~[e(2)—e(2)}L(11 22 )51 o+
L'(11 ,2)_n7f dzm u2) " 2

where the two expressions on the right-hand side can be

~Trs3fL(11,3)+ Lo(11,3)]v(33)

rewritten as® X[8(23)—8(2'3)]p(2'2). (E9)
8g(11') L ' In the second equation,_(ll’,22’)2,ﬁ2+ obviously means
"7 2 =Lo(11,2)+ 0 ) that the drift operatofe(2)—¢(2')] has to act upor. be-
Us( s fore performing the limit 2—2*. The sum of both expres-
Ul sions in Eqs(E9) gives, in the proper limit of equal times,
us(2) _ 5(E+J d3v(23)L(33.2. the RPA ansatz of Eq3.8).
su(2)
Within our RPA ansatz we then obtain the equation of mo- Quantum kinetic transport equation

tion for the nondiagonal density-density correlation function  Finally, we sketch how to derive a generalized Boltzmann
equation on the basis of E¢E8). This can be done by map-
ping the contour-ordered guantitiés.g.,g, ', L'), speci-
L'(11'2)= '—6(11'72)+f d3d3L.(11,3)0(33)L (44,2 fied by the Keldysh contour, onto the Keldysh spaé&(we
use = instead of If); some useful relations for these
L L mapped quantities are provided in Appendix D. Note that,
=L,(11',2)+ f d3d3L'(11',3)v(33)L,(44,2. from now on, all time arguments are defined on the real-time
axis running fromt, to «. We then find, in a shorthand
(E8) notation,

Moreover, we find
L'@=L2+ L fvLe=L 2+ L %L3,

J d1[gyM(11)Ly(11',2)—Ly(11,2)g,(11")] (E10
L'==L"vlg+L =vLi+Lyvl;,
X[8(12)— 8(1'2)]p(1' 1)+ O(S").
Neglecting in lowest-order expressions that contain the selfwhich, together with the obvious relation
energy.’, we find, from Eq.(E8), the equations of motion
¥ ED q (1—vL3L3 1La=1, (E1D)
. T gives
figy~le(1)~e(1)THL(11,2) B
L' ==L, =+LviLs(1+vL?). (E12

~Tr3t8(13) — 8(1'3)]p(1' v (33)
Inserting this expression into E¢E7), we then obtain, after
X[L(33,2+L,(33,2)], some straightforward steps, the collision integral

C(1'1;tt0)=f d2{L§,>(11',2)[vg(12)—v(12)]—H.c.}+f d2d3d3[L."(11'2)v (13 L,(33v3(32)—H.c];  (E13

note the similarity to Eq(C7). We finally follow the guide- L"(11',2)=i7[g"(12g%(21") +g=(12)g*(21')]
lines of Appendix C, and arrive at _
XL{=(11,2)=i5g=(12)g=(21).

Equation(E14) should be compared to the quantum kinetic
transport equation(3.23 of the density-matrix approach.
C(11;tty)=—i j d2d3d3[L,”(11',2v5(13) One observes that both expressions are very similar, with the
main difference that dynamical renormalizations, described
1> AN, armoy | 1</11’ r by the dressed propagatagsare completely missing within
Lo (33)u5(32) Lo (11,2)04(13) the framework of density matrices.
><L[)<(33_)u§(3_2)—H.c.], (E14) We finally emphasize that EQE14) together with Eq.
(3.23 does not form a closed set of equations,Lgsstill
contains the Green functiomgsfor different time arguments,
with andg has to be obtained additionally from Dyson’s equation.
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