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Inelastic vibrational bulk and surface losses of swift electrons in ionic nanostructures
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In a recent paper [Lagos et al., Nature (London) 543, 533 (2017)] we have used electron energy loss spectroscopy
with sub-10 meV energy and atomic spatial resolution to map optical and acoustic, bulk and surface vibrational
modes in magnesium oxide nanocubes. We found that a local dielectric description works well for the simulation
of aloof geometries, similar to related work for surface plasmons and surface plasmon polaritons, while for
intersecting geometries such a description fails to reproduce the rich spectral features associated with excitation
of bulk acoustic and optical phonons. To account for scatterings with a finite momentum exchange, in this paper
we investigate molecular and lattice dynamics simulations of bulk losses in magnesium-oxide nanocubes using
a rigid-ion description and investigate the loss spectra for intersecting electron beams. From our analysis we
can evaluate the capability of electron energy loss spectroscopy for the investigation of phonon modes at the
nanoscale, and we discuss shortcomings of our simplified approach as well as directions for future investigations.
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I. INTRODUCTION

The recent development of a new generation of monochro-
mators in electron microscopes has triggered spatially-resolved
studies of vibrational excitations in materials using atom-sized
electron probes [1]. As a result, there have been theoretical and
experimental reports on vibrational losses by swift electrons
in a small volume of matter. For instance, the mapping of
vibrational excitations in MgO nanocubes was obtained [2]. It
was demonstrated that a swift electron can couple to both bulk
and surface vibrational modes, with scattering signals located
within the cube and near the cube surfaces, respectively. From
the theory point of view, several quantum models describing
the physical aspects of the inelastic electron scattering by
phonons in infinite solids [3–6] and by vibrational modes in
molecular systems [7,8] have been reported. In spite of this
significant progress, the full understanding of the vibrational
inelastic electron scattering from nanosized systems remains
to be achieved. At the nanoscale, shape and size lead to the
generation of new surface vibrational (polariton) modes [9,10]
which play an important role for tuning the vibrational response
of nanostructures.

It is well known that the f -sum rule points out the in-
terplay between surface and bulk scattering in the dynamic
form factor [11]. This relationship between surface and bulk
scattering can be illustrated in the Begrenzung effect, and
it is useful for the understanding of scattering modulations
near nanoscale boundaries. It also might lead to the discovery
of new short-wavelength surface modes, since variations in
the bulk scattering associated with the excitation of short-
wavelength bulk phonon modes near surfaces were reported
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[2]. As a matter of fact, two different types of highly-localized
microscopic surface modes were predicted in ionic surfaces
[12–14], suggesting that bulk scattering variations might occur
within atom-scale distances near surfaces in order to fulfill
the sum rule. Therefore, a scattering theory accounting for
finite size effects on the excitations of both long and short-
wavelength phonon modes is still needed. Also, the sum
rules driving the interplay between surface and bulk scattering
(Begrenzung effect) might lead to the prediction of new surface
short-wavelength modes, resulting in atom-scale variations of
bulk and surface scattering signals near surfaces. Thus, a model
accounting for size and shape effects on the excitations of both
long and short-wavelength phonon modes is needed.

The dielectric theory, in principle, should account for the
description of the physics of the inelastic vibrational loss
scattering of finite-size objects. This method usually requires
the knowledge of the frequency and wave-vector dependent
dielectric material function. However, this represents an impor-
tant limitation in the straightforward application of the theory
due to lack of such information, because most of the available
bulk dielectric data are limited to the long wavelength range
(wave number q → 0). Thus, most of the spectroscopy studies
of nanostructures were so far limited to long-wavelength
vibrational excitations [15].

The purpose of this work is to present an alternative
semiclassical model of the vibrational inelastic scattering by
relativistic electrons in bulk materials and finite nanostructures,
which considers all phonon modes within the entire Brillouin
zone. Our theory deals with the atomistic aspects of phonon
excitations within the lattice dynamics and molecular dynam-
ics approaches. The calculation of inelastic scattering cross
sections relies on the quantum aspects of the scattering, but our
model presents a further derivation to establish a relationship
with elements of classical models. A single formula is derived
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which describes the coupling between the fast electron and the
phonon modes, including nondipole interactions. One advan-
tage of our approach over the local dielectric formalism is the
description of the inelastic scattering from both acoustic and
optical modes, and the evaluation of their relative contribution
to the scattering across the Brillouin zone. Also, our model
enables us to evaluate scattering probabilities of the probe
with varying location within the nanostructure. In particular,
this allows us to study short-wavelength excitations within the
solid and near surfaces in atom-sized systems, where the local
dielectric approach is known to break down [16].

We have used our theory to calculate the inelastic scattering
losses in a MgO cube in order to compare it with available
experimental data. In order to compute the scattering prob-
ability, we have used the rigid-ion approximation [17,18] for
the description of the lattice dynamics of the cube. In principle,
one can use more precise values derived from first-principles
calculations as input parameters. In this paper, we discuss the
range of validity of our approximations, highlight the important
parameters to be considered, and point out possible directions
for future work.

We have organized this paper as follows. In Sec. II we
develop our theory for the computation of bulk and surface
phonon losses using either a local dielectric description or
molecular and lattice dynamics simulations based on a rigid ion
model description. The validity of the rigid-ion approximation
underlying our approach is briefly discussed in Sec. III. In
Sec. IV we present results for the different model descriptions
and identify the pertinent physical mechanisms underlying
bulk losses in ionic crystals. Finally, in Sec. V we summarize
and provide a critical discussion of our approach. Some details
of our theoretical framework have been moved to the various
appendices.

II. THEORY

In this section we present our theory for the description
of electron energy loss spectroscopy (EELS) for ionic nanos-
tructures. We closely follow the original work of Ritchie [19],
see also Refs. [20,21] for more details, and introduce only a
few modifications to explicitly account for phonon rather than
plasmon excitations. A full quantum-mechanical approach for
EELS of phonon excitations has been recently developed and
applied to bulk crystals [6]. However, for clarity we here give
precedence to the more simple and transparent semiclassical
approach.

The interaction between the swift electron at position r and
the ionic crystal with charge density ρI (r ′) is described by the
Hamiltonian

H ′ = −
∫

eρI (r ′)
|r − r ′| d3r ′ . (1)

Here −e is the electron charge and we use Gauss units
throughout. Within the rigid-ion model, which we will use
later in this paper, the ions are described as pointlike particles,
located at impact parameter values Rj and with the effective
charge eZj , and the charge distribution becomes

ρI (r ′) =
∑

j

eZj δ(r ′ − Rj ) . (2)

According to Fermi’s golden rule we can write the transition
rate between the initial and final states ψi(r) and ψf (r) of
the swift electron, with energies εi and εf , respectively, in the
usual form

γ = 2πe2

h̄

∑
f,n

∣∣∣∣
∫

ψ∗
f (r)ψi(r)〈n|ρI (r ′)|0〉

|r − r ′|
∣∣∣∣
2

× δ(εf − εi + h̄ωn − h̄ω0) . (3)

h̄ is Planck’s reduced constant, |0〉 and |n〉 denote the ground-
and excited states of the ionic system, respectively, and h̄ω0

and h̄ωn are the corresponding energies. In the above equation
we have assumed that initially the ionic system resides in the
ground state, although our approach would easily allow for an
initial thermal distribution and consider for the swift electron
only single scattering events.

To render Eq. (3) suitable for an electrodynamics descrip-
tion, we introduce the susceptibility [21]

Im[χ (r,r ′,ω)]

= −π

h̄

∑
n

〈0|ρI (r)|n〉〈n|ρI (r ′)|0〉 δ(h̄ω + h̄ωn − h̄ω0), (4)

which is also known as the density-density correlation func-
tion or the dynamic form factor [22] (the latter is usually
defined without the factor h̄ in the denominator). We next
decompose the transition rate into loss energies according
to γ = ∫ ∞

0 γ (h̄ω) dh̄ω and follow the procedure outlined in
Refs. [20,21] and briefly sketched in Appendix A, in order to
arrive at the central equation for computing the electron energy
loss probability

P (h̄ω) = 1

πh̄ω

∫
Re[E∗

el(r,ω) · J ind(r,ω)] d3r . (5)

In brief, Eq. (5) describes the electron loss probability of
a swift electron to an ionic nanosystem through coupling
between the swift electron’s electric field Eel and the induced
polarization current J ind of the ionic crystal. This expression
can be used for both local dielectric descriptions as well as
atomistic descriptions at various levels of sophistication. In the
latter case, J ind has to be related to the lattice displacements
of the ions.

A. Lattice dynamics

In the semiclassical lattice dynamics approach we introduce
an explicit description of the phonon dynamics in terms of the
so-called rigid-ion model [17,18]. We consider an infinite ionic
crystal with ions located at positions

R(κ,�) = R� + rκ + u(κ,�) .

Here R� points to the �th unit cell and rκ to the κth ion
within a unit cell, and u(κ,�) is the displacement from the
equilibrium positions. Expressing for a harmonic time depen-
dence e−iωt u the current distribution in the form J ind(κ,�) =
−iω

∑
κ� u(κ,�) eZκδ(r − R� − rκ ), the electron energy loss

probability of Eq. (5) becomes

P (h̄ω) = 1

πh̄
Im

[∑
κ�

E∗
el(R� + rκ ,ω) · eZκ u(κ,�)

]
. (6)
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As discussed in more detail in Appendix C, we can expand the
ion displacements in terms of the phonon eigenmodes ξλ(κ,q)
with energy h̄ωqλ through

u(κ,�) = M−1/2
κ

∑
qλ

eiq·R�
Fλ(q)

ω2
qλ − ω(ω + iη)

ξλ(κ,q) , (7)

where q is the phonon wave vector and the term Fλ(q) =∑
κ M

−1/2
κ eZκ ξ ∗

λ(κ,q) · E(κ,q) describes how efficiently the
swift electron couples to the phonons. Mκ is the ion mass,
η is a small damping constant accounting for environment
couplings, and the z component of the wave vector is given
by qz = ω

v
because of kinematic constraints. Inserting Eq. (7)

into Eq. (6) gives

P (h̄ω) = N

πh̄

∑
qλ

Im

[
|Fλ(q)|2

ω2
qλ − ω(ω + iη)

]
, (8)

where N is the total number of unit cells. We finally investigate
the continuum limit of Eq. (8). We first factorize Fλ(q) =
ie
πv

( 2π
L

)
2Fλ(q) into a constant prefactor together with

Fλ(q) =
∑
κ,G⊥

M−1/2
κ eZκξ

∗
λ(κ,q) · ei(q+G)·(rκ−R0)

×
[

q + G − k v
c

|q + G|2 − k2

]
, (9)

which describes the coupling between the electric field of
the swift electron and the λth phonon eigenmode with wave
number q (for the reciprocal lattice vector in the electron propa-
gation direction z we set Gz = 0, as discussed in Appendix C).
Using these definitions and performing the continuum limit in
Eq. (8) we are then led to

P (h̄ω) = 1

πh̄

e2

π2v2

(
2π

L

)2(
L3

�0

)

×
∑

λ

∫
BZ

Im

[
|Fλ(q)|2

ω2
qλ − ω(ω + iη)

]
d2q⊥ ,

where we have used L3 = N�0, with �0 being the volume
of a crystal unit cell, and the integration of the wave vector
q⊥ perpendicular to the electron propagation direction extends
over the values within the first Brillouin zone. Thus, we are
led to

P (h̄ω) = 4e2L

πh̄v2�0

∑
λ

∫
BZ

Im

[
|Fλ(q)|2

ω2
qλ − ω(ω + iη)

]
d2q⊥.

(10)

This is the central expression of this section relating the energy
loss probability to the phonon energies h̄ωqλ and eigenmodes
ξλ(κ,q).

Let us analyze the different contributions to Eq. (10) in
slightly more detail, in particular in the q → 0 limit which
is relevant for long-range Coulomb interactions. Here the
matrix elementsFλ(q) depend on the inner product ξ ∗

λ(κ,q) · q
between the phonon eigenmodes and the wave vector q, which
is strongest for longitudinal phonons and weak for transversal
phonon modes, whereas the magnitude of the matrix elements
scales as ∼1/q. In overall, the loss probability approximately

scales as
∫ |F |2 dq⊥ ∼ ∫

q dq/q2 ∼ ln q, with the lower inte-
gration limit ω/v given by the kinematic constraints and the
upper limit qc by the acceptance angle of the electron collector,
see Eq. (14) below for a corresponding expression within
the local dielectric framework. At finite temperature the loss
probability should contain an additional factor 1 + n(h̄ωqλ),
withnbeing the Bose-Einstein distribution function, to account
for thermal occupation of phonons. The interpretation of
Eq. (10) becomes more difficult for electron trajectories located
closer to the atom columns, where a larger portion of the
Brillouin zone contributes to the loss probability, as will be
discussed in more detail in Sec. IV.

B. Molecular dynamics

To describe the scattering in finite nanostructures, we
additionally performed molecular dynamics (MD) simulations
which are conceptually more simple but computationally more
demanding, and thus restricted to sufficiently small nanosys-
tems. The basic idea is to approximate the ions in the crystal by
a number of pointlike particles with mass Mj and charge eZj ,
which are located at positions Rj . These particles interact with
each other via the long-range Coulomb forces and short-range
interatomic forces, and the ion dynamics is obtained from the
solution of Newton’s equations of motion

Mj R̈j + ∇Rj

∑
j ′

Vjj ′ (Rj − Rj ′) = eZj Eel(Rj ,t) . (11)

Here Vjj ′ is the potential between ions j and j ′, and Eel

is the electric field of the swift electron, whose temporal
shape approximately corresponds to an impulselike impetus
at time zero [23]. In our computational approach we use the
fast multipole method [24] for an efficient evaluation of the
long-range Coulomb interactions.

For the solution of Newton’s equations of motion we employ
a simple Verlet algorithm with a time step of 1 fs (Ref. [25]).
In our simulations we additionally include dissipative forces
−γMj Ṙj to account for finite temperature effects or other
environment couplings, with a typical value of h̄γ = 2 meV.
Every MD simulation starts with a relaxation of the ion
geometry to the ground state, either using a quasi-Newton
Broyden-Fletcher-Goldfarb-Shanno (BFGS) scheme [26] for
the minimization of the potential energy or a time evolution in
the presence of the dissipative forces described through γ .

Within our model description we can express the induced
current distribution in the form

J ind(r,t) =
∑

j

Ṙj eZkδ(r − Rj ) , (12)

where the ion trajectories Rj (t) are computed subsequent to
the initial impetus of the swift electron. Performing a Fourier
transform J ind(r,ω) = ∫ ∞

0 eiωt J(r,t) dt , where the current
distribution decays fast in time because of the damping term
and the integral only extends over a final time interval, we can
insert J ind(r,ω) into Eq. (5) to obtain the EELS loss probability.

For sufficiently small cubes, consisting of only a few
thousand atoms with corresponding cube lengths of a few
nanometers, we can solve Newton’s equations of motion
also through diagonalization of the dynamic matrices. This
approach is briefly sketched in Appendix D and is similar
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to the lattice dynamics calculations discussed above and will
be used further below to investigate the validity of additional
approximations introduced in our MD approach.

C. Local dielectric description

Similarly to plasmonics simulations [21,27,28], inelastic
bulk and surface phonon losses could be also modeled with a
local dielectric description in terms of a Lorentzian oscillator
model [29]

ε(q → 0,ω) = ε∞

[
1 + ω2

LO − ω2
TO

ω2
TO − ω(ω + iη)

]
, (13)

or some other form extracted from experiment. The limit
q → 0 is valid in the long wavelength regime. In the above
expression ωLO and ωTO are the frequencies of the longitudinal
and transversal optical phonons, respectively, η is a damping
constant, and ε∞ is the high-frequency permittivity of the
ionic crystal. For the MgO cube, to be discussed further
below, we solve Maxwell’s equations in the quasistatic ap-
proximation together with the framework discussed in detail
in Refs. [21,27,28]. In addition to the surface phonon losses
suffered by the electron we must also introduce the bulk losses
through a term [21]

Pbulk(h̄ω) = 2e2L

πh̄v2
Im

[
− 1

ε(q → 0,ω)

]
ln

(qcv

ω

)
. (14)

In the above expression L is the distance traveled by the
electron inside the ionic cube, and qc is the cutoff wave
number associated with the acceptance angle θm of the electron
spectrometer.

As we have shown in Ref. [2] and will discuss in more detail
below, the local dielectric description works perfectly well for
electrons passing by the nanocube (aloof geometry), whereas
for electron trajectories intersecting the cube Eq. (14) provides
a poor description because it doesn’t include short-wavelength
phonon contributions.

III. RIGID-ION MODEL

In this paper we investigate inelastic vibrational bulk and
surface losses of swift electrons in a MgO nanocube. For
the interatomic forces we use a simple rigid-ion model with
potentials taken from Matsui [18], see also Ref. [25] for
related work. The phonon modes for this model are here
computed for zero temperature (see Fig. 8 for the MgO phonon
dispersion), and we obtain for small wave vectors TO and LO
phonon energies of approximately 50 and 100 meV, which are
somewhat larger than other values reported in the literature
and observed in experiment. However, the purpose of our
work is to compare the results of different approaches and we
have thus given precedence to one set of consistent parameters
to facilitate the comparison. Our probability calculations are
performed for zero temperature, which produces statistical
occupational factors for loss and gain scattering processes of
one and zero, respectively.

In Sec. IV we employ the rigid-ion approximation for the
description of the lattice dynamics in a MgO cube, using
either a molecular dynamics (MD) or lattice dynamics (LD)
approach. Figure 1 shows typical cubes for our simulations,

n = 8

n = 16

n = 325 nm

C

A

O Mg

FIG. 1. Typical cube sizes used in our MD simulations with 8,
16, and 32 unit cells along each spatial dimension, consisting of Mg
(blue) and O (red) ions. On the right of the figure we zoom into one
unit cell and mark position A and the center C. In our simulations we
usually vary the impact parameter R0 of the electron beam along the
direction AC.

oriented along the [001] direction, consisting of 8, 16, or 32
unit cells per dimension. On the right of the figure we zoom
into a single unit cell and mark position A and the center C.
Below we will vary the impact parameter of the electron beam
along the direction AC, expressing distances with respect to
the position A.

We next investigate the validity of the rigid ion model and,
in particular, our use of pointlike ions. We employ a simple de-
scription scheme using hydrogenlike atomic states for Mg and
O, together with a 1/r electric field distribution for the swift
electron [21], which is expected to be a suitable approximation
for small distances r between the impact parameter R0 of the
swift electron and the ion positions. For the two outer electrons
of the O2− ions we consider an isotropic charge distribution

0 0.05 0.1 0.15 0.2

Position (nm)

-4

-2

0

2

4

6

8

10

r 
F

(r
)

O

Mg

A 0.2 0.4 0.6 0.8 C 1.2 1.4
Position (AC)

FIG. 2. Force F (r) acting on a single ion as the impact parameter
R0 is varied along the direction AC, indicated in Fig. 1, for realistic
charge distribution of ions (for details see text). The force exerted by
the electron beam has an approximate 1/r dependence [21], in the
figure we plot r F (r) rather than the force itself. For small distances
the force approaches the atomic numbers of 12 e and 8 e for Mg and O,
respectively, whereas for larger distances it approaches the effective
ion charges of ±2 e.
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FIG. 3. Deflection angle of the electron velocity with respect to
the forward direction while passing through a n = 8 MgO nanocube.
We show the deflection angles in mrad for different impact parameters,
corresponding to position C, as well as 75%, 50%, and 25% of
direction AC shown in the inset. The vertical dashed lines indicate
the cube boundaries.

suggested by Zuo et al. [30],

ρ(r) = −2e N rne−αr , (15)

where n = 5, α = 9.04 Å
−1

, and N is a normalization constant
that depends on n and α. Figure 2 shows the force exerted by the
electron beam on the Mg (blue) and O (red) ions, where we plot
r F (r) rather than the force itself to highlight the derivations
from the simple 1/r dependence. For small distances the force
approaches the atomic numbers of 12 e and 8 e for Mg and
O, respectively, whereas for larger distances it approaches the
effective ion charges of ±2 e. From the figure we conclude that
a pointlike ion charge distribution provides a viable description
scheme for distances larger than say 0.05 nm, corresponding
to approximately 60 percent of the AC distance, see Fig. 1.
For smaller distances the detailed form of the ion charge
distribution as well as polarization effects of the electron cloud
should in principle be taken into account. For simplicity, in this
paper we will also consider electron trajectories with impact
parameters down to 25 percent of the AC distance, but the
corresponding results should be considered with caution. A
discussion of this point will be given in Sec. V.

In Fig. 3 we show results for a simulation based on Newton’s
equations of motion where a swift electron with a kinetic
energy of 60 keV passes through a n = 8 nanocube, with the
impact parameters around the cube center varied along the
direction AC indicated in Fig. 1. We observe small deflection
angles of the electron velocity with respect to the forward
direction caused by the Coulomb forces of the ions. As detailed
in Appendix A and discussed at length in Ref. [20], in our
theoretical approach we assume straight trajectories without
any deflection, an assumption approximately valid considering
the overall small deflection angles in comparison to, e.g.,
the acceptance angle of 20 mrad of the electron collector
used in experiment [2]. The above simulations thus support
our simplified rigid-ion model together with a straight-line
electron trajectory, at least for a semiquantitative modeling of
the experiments.

IV. RESULTS

A. Local dielectric description

We first consider a local dielectric description for a 50 nm
MgO nanocube, and compute the electron loss probabilities

20 40 60 80 100 120
Loss energy (meV)

0

0.1

0.2

0.3

Lo
ss

 p
ro

ba
bi

lit
y 

(e
V

-1
)

FIG. 4. Loss probability for a single 50 nm MgO nanocube and
for an electron beam with a kinetic energy of 60 keV. The results
are computed for various electron beam positions shown in the
inset using a local dielectric description and the simulation software
of Refs. [28,31]. We use the dielectric function of Eq. (13) with
values of ωTO = 50 meV, ωLO = 100 meV, η = 5 meV, and ε∞ = 3
representative for MgO (Ref. [32]). The peak at 100 meV is due to
bulk losses to LO phonons, whereas the peaks at lower energies are
due to surface phonon polariton excitations localized at the corners,
edges, and faces of the cube. Note that for the intersecting geometries
(red and blue lines) there are no excitations present below 60 meV.

using the simulation software of Refs. [28,31]. For the dielec-
tric function ε(q → 0,ω) we use the form of Eq. (13) with
parameters representative for MgO, see caption of Fig. 4, which
are chosen in accordance to our molecular dynamics and lattice
dynamics simulations to be discussed below.

Figure 4 shows EELS spectra for selected impact param-
eters indicated in the inset. When the electron beam passes
through the nanocube, the loss spectra consist of a major
peak at 100 meV associated with losses to LO phonons, as
computed from Eq. (14). In addition we observe at lower
loss energies additional peaks which we attribute to surface
phonon polaritons localized at the corners, edges, and faces
of the cube. These excitations have been described in detail
in Refs. [2,15,32] and will not be further discussed here.
In striking disagreement with experiment we do not observe
pronounced loss contributions at energies below say 60 meV,
see Fig. 3 of Ref. [2]. As will be discussed below, these losses
can be attributed to excitations of acoustic phonons with finite
momentum exchange, which are missing in a local dielectric
description with q → 0. To account for such losses, we next
employ molecular dynamics and lattice dynamics simulations
based on the rigid ion approximation.

B. Molecular dynamics

We next discuss MD simulations, which start with a re-
laxation of the ion geometry to the ground state as discussed
in Sec. II B. For sufficiently small nanocubes, we can then
set up the dynamic matrix using the harmonic approximation
and diagonalize it, as discussed in Appendix D. Figure 5(a)
shows the phonon density of states (DOS) for the n = 8 cube
shown in Fig. 1 on the left, Fig. 5(b) shows EELS spectra for
selected impact parameters in the unit cell located in the cube
center. As will be discussed below, the peaks at loss energies of
approximately 35 meV and 50 meV can be primarily attributed
to acoustic phonon excitations, the peaks in the range between
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FIG. 5. Results for MD simulations and for a n = 8 nanocube.
(a) Phonon density of states. (b) Loss probabilities for different impact
parameters, see Fig. 1 for the location of the points A and C or inset of
Fig. 3. Different spectra are offset for clarity. See text for a definition
of the solid and dashed lines.

60 meV and 80 meV lie in the reststrahlen band of the material
[15] and can be associated with the excitation of surface phonon
polaritons, and the peaks above 80 meV are due to optical
phonons.

Before proceeding, we comment on a few technical points.
First, we decompose the electric field of the electron beam, see
Eq. (B1), into components perpendicular and parallel to the
electron propagation direction z. When neglecting the z com-
ponent of the electrical field and setting k → 0 in Eq. (B1), the
electric field becomes independent of ω and corresponds to the
field produced by a charged wire located at the impact position
R0 where the electric field points into the radial direction and
decays with a simple (1/r) dependence. The dotted lines in
Fig. 5(b), indistinguishable from the solid ones, report results
from such simulations and show that this approximation, which
we have previously also used in Fig. 2, is extremely well
justified for the fast electrons and small loss energies of our
present concern. The dashed lines in the figure show results
of simulations without the harmonic approximation where we
solve Newton’s equations of motion for the ion dynamics using
the Verlet algorithm discussed in Sec. II B. This approach,
which is needed for larger nanocubes where the storage and
diagonalization of the dynamic matrix becomes unfeasible,
gives practically undistinguishable results.

Figure 6 shows EELS maps for the n = 8 nanocube and for
a few selected loss energies indicated by red bars in Fig. 5(a).
Although the results for electron trajectories in closest vicinity
to the ions should be treated with some care, the results
show a number of features that we consider to be of general

35 meV

1 nm

50 meV 65 meV

75 meV 90 meV 100 meV

FIG. 6. EELS maps for n = 8 cube and for selected loss energies,
indicated in Fig. 5(a). The maps at 35 meV and 50 meV correspond
to acoustic phonon excitations, the maps at 65 meV and 75 meV
correspond to edge and face surface phonon polaritons, respectively,
and the maps at 90 meV and 100 meV correspond to LO phonon
excitations. All maps are scaled with respect to the highest loss
probabilities for a given loss energy.

nature. First, the acoustic phonons at the lowest loss energies
of 35 meV and 50 meV can only be excited for electron
trajectories located in close proximity to the ion columns. A
more quantitative analysis is shown in Fig. 5(b) where we
observe that only for the distances below 0.50 AC the peaks
of the acoustic phonons exceed the LO phonon peak around
100 meV. Second, the peaks around 65 meV and 75 meV,
which have a very small density of states, see Fig. 5(a), have
significant loss probabilities outside the nanocube. This result
is in accordance to the simulations based on the local dielectric
description, and we correspondingly assign the modes to
surface phonon polaritons located at the corners, edges, and
faces of the cube. Finally, the modes at the highest loss energies
are attributed to LO phonon excitations. The mode at 90 meV
is an oscillation located at the outermost atom layers of the
cube, in agreement to the findings of Ref. [25], whereas
the almost featureless map at 100 meV is attributed to the
longitudinal-phonon bulk losses of Eq. (14) which have been
previously discussed for the local dielectric description.

Finally, in Fig. 7(a) we show EELS spectra for MD sim-
ulations of n = 16 (dashed lines) and n = 32 (solid lines)
nanocubes using the Verlet algorithm. We have divided the
loss probabilities by the length L of the nanocube to facilitate
a comparison between the two results. As can be seen, the
acoustic phonon peak of lowest energy is almost independent
for the different nanocube sizes, whereas the peak around
50 meV has a small L dependence. In contrast, the loss peaks
associated with surface phonon polaritons around 70 meV and
LO phonons around 100 meV depend decisively on L. The
loss probability to LO phonons is in principle well described
by Pbulk of Eq. (14) where q = ω/v is the momentum cutoff
due to kinematic constraints [19,21]. When q becomes smaller
than the smallest momentum π/L sustained by a nanocube,
one should replace q in Eq. (14) by π/L such that Pbulk/L ∝
ln(qcL) becomes size dependent, in accordance to the results
shown in Fig. 7(a).
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FIG. 7. EELS spectra for different impact parameters
and for (a) finite MgO nanocube and (b) infinite crystal.
(a) MD simulation results for n = 16 (dashed lines) and n = 32
(solid lines) nanocubes. The loss probabilities were scaled by the
cube size to facilitate the comparison. (b) Results of LD calculations
using Eq. (10), with data scaled by a factor of 0.8 to allow for
identical axes in both panels. Note that only for the finite nanocubes
surface phonon excitations are present in the 60–90 meV range.

C. Lattice dynamics

The lattice dynamics approach discussed in Sec. II A pro-
vides a means to compute the bulk losses inside the cube,
but it cannot account for surface phonon polariton losses
or the Begrenzung effect [19]. Figure 7(b) shows the EELS
probability per unit length as computed from Eq. (10) and using
the same material parameters as in the MD approach (harmonic
approximation). The results agree well with the MD results,
however, the acoustic phonon peak at 50 meV becomes even
more pronounced, all surface phonon polariton contributions
are missing in the energy range between 60 and 80 meV, and
the LO phonon peak is stronger for the reasons discussed at
the end of the previous section.

In the LD calculations we can now decompose the loss
probabilityP (h̄ω) of Eq. (10) into phonon modes with different
wave numbers q and phonon energies ωqλ. Figure 8 shows
the relative weight for the two different impact parameters of
(a) 0.50 and (b) 0.25 × AC. As can be inferred from the figure,
for small wave numbers LO phonons contribute strongest to
P (h̄ω), whereas for larger wave numbers both longitudinal
and transversal acoustic phonons acquire a significant weight.
When summed over the entire two-dimensional Brillouin zone,
which approximately agrees with the momentum exchange
accessible by an electron spectrometer with a collection angle
of 20 mrad, we obtain the loss spectra of Fig. 7(b).

Finally, we performed simulations where we integrate in
Eq. (10) not over the entire Brillouin zone but introduce a wave

number cutoff of say qcut ≈ 0.1 Å
−1

to mimic the q → 0 limit
of the local dielectric description. The results (not shown) agree
with those of the local dielectric description, Fig. 4, and the
loss spectra consist of a single peak associated with LO phonon
excitations.
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FIG. 8. Contribution of phonon modes to electron energy loss
probability P (h̄ω) of Eq. (10). The Brillouin zone and the path
of the selected wave vectors are shown in the insets. We plot
the contributions |Fλ(q)|2 to P (h̄ωqλ), see Eq. (10), using impact
parameters of (a) 0.5× and (b) 0.25× AC. For better visibility, the
sizes of the largest dots have been set to a maximum value.

V. SUMMARY AND DISCUSSION

To summarize, in this paper we have theoretically analyzed
electron energy loss spectroscopy of phonons and phonon
polaritons in a single ionic cube, using different description
schemes based on either a local dielectric description or the
rigid ion model.

Local dielectric description. Here the system is described
in terms of a local dielectric function ε(q → 0,ω), similar
to related studies of bulk and surface plasmons in metallic
nanostructures. This approach is well suited for the simulation
of aloof geometries, with electron losses caused by surface
phonon polaritons, and to intersecting geometries where the
electron moves sufficiently far away from the ion columns and
the loss is predominantly due to Coulombic long-range inter-
actions with LO phonons. On the other hand, when the electron
trajectories are closer to the ions this approach completely fails
to reproduce losses to acoustic and TO phonons.

Molecular dynamics simulations. For sufficiently small
nanocubes one can simulate the ion dynamics using Newton’s
equations of motion for parametrized interatomic forces. This
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approach has the advantage that it uses only a small number
of approximations and thus accounts for effects such as
surface or bulk losses, as well as localized phonons and the
Begrenzung effect on the same footing. On the other hand,
simulations become computationally prohibitively difficult for
larger nanostructures.

Lattice dynamics simulations. Here the phonon dynamics
is described for an infinitely large crystal, using interatomic
forces and ion form factors at various degrees of sophistication.
By construction, this approach can only describe bulk losses,
but it cannot account for surface phonon losses or the Begren-
zung effect. Computationally, lattice dynamics simulations are
significantly more simple than molecular dynamics simula-
tions, and the approach makes direct contact with phonon
modes and dispersions commonly employed in solid state
physics.

In this paper we have presented relatively simple implemen-
tations of the different approaches. As for the molecular and
lattice dynamics simulations we have found fairly good agree-
ment, which allows us to draw a number of general conclusions.
First, for intersection geometries where the electron moves
sufficiently far away from the ions the loss spectra are governed
by long-range Coulomb interactions with LO phonons, which
could be also modelled within a local dielectric description.
When the swift electron moves closer to the ions, losses to
acoustic and TO phonons become of increasing importance.
Finally, for extremely close trajectories the loss spectra are
governed by the complete phonon spectra, although the results
have to be handled with some care due to possible failures
of our simplified rigid ion description. Quite generally, in
experiment the location of the electron beam spatially varies
on the sub-Angstrom level, due to diffraction and channeling
conditions in the crystal, and the loss spectra thus become a
convolution of various beam locations.

We foresee several improvements for our theoretical ap-
proach, which will be investigated in more detail in future
work. First, although conceptually easy, the rigid ion ap-
proximation is probably too simple for a truly quantitative
comparison. Atomistic descriptions schemes based on density
functional theory or variants could provide more accurate
phonon energies and eigenvectors, as well as the form factors
for the ionic charge distributions. Second, temperature effects,
such as phonon occupations or thermal lattice expansion,
should be included. In particular the inclusion of thermal
occupations is conceptually simple and has been already briefly
mentioned in Sec. II, and also its implementation should
be rather straightforward. Finally, one should go beyond the
semiclassical description of electron-ion losses and include a
more realistic wave-function description for the propagating
electron, possibly including multiple phonon interactions. We
also believe that different material systems, including hybrid
structures and interfaces, will be interesting candidates for both
future experimental and theoretical investigations.
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APPENDIX A

In this Appendix we show how to derive our central
expression of Eq. (5). We start by explicitly working out the
square modulus | . . . |2 in Eq. (3) and multiply the expression
between the vertical bars by its complex conjugate. With the
susceptibility of Eq. (4) and the decomposition of the transition
rate into loss energies, described in the main text, we are then
led to

γ (h̄ω) = 2e2
∑
f,n

∫
ψf (r)ψ∗

i (r)Im[−Wind(r,r ′,ω)]

×ψ∗
f (r ′)ψi(r ′) d3rd3r ′ δ(h̄ω + εf − εi) , (A1)

where we have introduced the screened Coulomb interaction
[21]

Wind(r,r ′,ω) =
∫

χ (r1,r2,ω)

|r − r1| |r2 − r ′| d3r1d
3r2 . (A2)

Equation (A1) allows for a transparent interpretation of
the electron energy loss: An electron density fluctuation
ψ∗

f (r ′)ψi(r ′) couples via the bare Coulomb potential to the
ionic system, where it propagates for a while, as described by
the density-density correlation χ (r,r ′,ω), and finally couples
back to the electron density fluctuation. Through this self-
interaction process the electron transfers a tiny fraction of
its kinetic energy to the ionic system resulting in an electron
energy loss.

It is convenient to make a number of additional approxima-
tions in Eq. (A1). First, we consider an initial electron wave
packet ψi(r) = eikizφ⊥(R)/

√
L with central wave number

ki that propagates along the z direction, where L is the
quantization length of the electron trajectory. φ⊥(R) is the
wave function in the transversal direction R, and we ignore
dispersion along R (see Ref. [20] for details). The final states
are expressed in terms of plane waves ψf (r) = eikf ·r and we
neglect in the energy conservation

h̄ω = εi − εf = h̄v(ki − kf z) + h̄2k2
f

2m
≈ h̄v(ki − kf z)

the recoil term h̄2k2
f /(2m), where kf z denotes the z component

kf and m is the free electron mass. The transition probability
P (h̄ω) is obtained from the transition rate γ (h̄ω) by multi-
plying with the interaction time L/v, where v is the electron
velocity, and we are led to

P (h̄ω) = 2e2

v

∫
d3kf

(2π )3

∫
d3rd3r ′eikf ·rφ∗

⊥(R)e−iki z

× Im[−Wind(r,r ′,ω)]e−ikf ·r ′
φ⊥(R′)eikiz

′

× δ(h̄ω − h̄v[ki − kf z]) .

The z component of kf z is then determined by Dirac’s delta
function. As discussed in some detail in Ref. [20], the integra-
tion over kf ⊥ should only extend over the finite acceptance
angle θm of the electron microscope. However, for kinetic
electron energies in the 100 keV range and θm � 1 mrad one
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can safely use the following approximation [20]∫
eikf ·(R−R′) d2kf ≈ (2π )2δ(R − R′) .

Thus, we are finally led to

P (ω) = e2

πh̄v2

∫
|φ⊥(R)|2

× ei ω
v

(z′−z)Im[−Wind(r,r ′,ω)] d2Rdzdz′ . (A3)

If the transversal extension of the electron beam is strongly
peaked around the impact parameter R0 we obtain the even
more simple expression

P (ω) = e2

πh̄v2

∫
ei ω

v
(z′−z)

× Im[−Wind(R0,z,R0,z
′,ω)] dzdz′ . (A4)

We have repeated this derivation, which can be also found
in Refs. [20,21], to emphasize the following points. First,
Eqs. (A3) and (A4) are based on a genuine quantum description
subject to the approximations described above. In the main text
we critically examine these approximations, in particular for
electrons propagating in close vicinity of the ions. Second,
our central equations can be used for any kind of environment
couplings, such as to plasmons or phonons, where all details of
the environment are hidden in the susceptibility or the screened
Coulomb interaction.

Equation (A4) can be cast to a form more suitable for
simulations. First, we note that for an electron propagating with
velocity v along the z direction the Fourier transform of the
charge distribution reads [21] ρel(r,ω) = − e

v
δ(R − R0)eiωz/v .

With the induced charge distribution

ρind(r,ω) =
∫

χ (r,r1,ω)ρel(r2,ω)

|r1 − r2| d3r1d
3r2

the loss probability of Eq. (A4) can then be brought to the form

P (h̄ω) = − 1

πh̄

∫
Im[φ∗

el(r,ω)ρind(r,ω)] d3r , (A5)

which can be directly used for simulations based on a local
dielectric description. Here we have introduced the scalar
potential φel(r,ω) = ∫

ρel(r ′,ω)/|r − r ′| d3r ′ of the swift
electron.

For the explicit consideration of the phonon dynamics we
proceed further and use the continuity equation iωρ = ∇ · J
to relate the charge distribution to the current distribution. This
gives

P (h̄ω) = 1

πh̄ω

∫
Re[φ∗

el(r,ω)∇ · J ind(r,ω)] d3r .

We next perform integration by parts to bring the derivative
from the second term to the first one. Using that J ind(r,ω)
becomes zero for r → ∞ and introducing the electric field
Eel(r,ω) = −∇φel(r,ω), we are led to our final expression of
Eq. (5).

APPENDIX B

In this Appendix we compute the Fourier transform of the
electric field for a swift electron [21]

Eel(r,ω) = ie

π

∫
eiq·(r−R0)

[
q − k v

c

q2 − k2

]
δ(ω − q · v) d3q ,

(B1)

where k = ω
c

is the wave number of light. For an electron
propagating along z we can evaluate Dirac’s delta function
and obtain

Eel(r,ω) = ie

πv

∫
eiq·(r−R0)e(q) d2q⊥ , (B2)

where we have decomposed q = (q⊥, ω
v

) into the components
perpendicular and parallel to the electron propagation direc-
tion. e(q) is the expression given in the brackets of Eq. (B1).

In the lattice dynamics approach we will additionally need
the wave-vector decomposition of the electric field

Eel(κ,q) = 1

N

∑
�

e−iq·R� Eel(R� + rκ ,ω) , (B3)

where N is the total number of unit cells. Inserting Eq. (B2)
into Eq. (B3) gives

Eel(κ,q) = ie

πvN

∑
�

∫
e−iq·R�eiq ′·(rκ−R0)e(q) d2q ′

⊥ ,

where
∑

� ei(q ′−q)·R� = Nδq ′−q,G accounts for momentum con-
servation modulo a reciprocal lattice vector G. We then arrive
at our final expression

Eel(κ,q) = ie

πv

(
2π

L

)2 ∑
G

ei(q+G)·(rκ−R0)e(q + G) , (B4)

where we have implicitly assumed qz = ω
v

and Gz = 0. L is
the quantization length of the crystal, which we let approach
infinity at the end of our calculation, and the additional factor
of ( 2π

L
)
2

originates from the replacement of Kronecker’s delta
for momentum conservation by Dirac’s delta function in the
limit of L → ∞.

For the sake of completeness we prove that indeed the
inverse transformation

Eel(R� + rκ ,ω) =
∑

q

eiq·R� Eel(κ,q)

holds. Replacing the summation over q by an integration over
the first Brillouin zone we get

ie

πv

∑
G

∫
BZ

ei(q+G)·(R�+rκ−R0)e(q + G) d2q⊥ .

We next combine the summation over the reciprocal lattice
vectors and the integration over q⊥ to an unrestricted wave-
vector integration and obtain our final expression

Eel(R� + rκ ,ω) = ie

πv

∫
eiq·(R�+rκ−R0)e(q) d2q⊥ ,

which is the same as Eq. (B2). This completes our proof.
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APPENDIX C

In this Appendix we derive Newton’s equations of motion
in the harmonic approximation and show how to arrive at
Eq. (7) of the main text. We assume that the ion displacements
u(κ,�) from the equilibrium positions R� + rκ are sufficiently
small such that we can expand the potential term in Newton’s
equations of motion to obtain [33]

−ω2Mκ u(κ,�) +
∑
κ ′�′

�(κ,κ ′,R� − R�′) · u(κ ′,�′)

= eZκ Eel(R� + rκ ,ω) , (C1)

where � is the usual force constant matrix of lattice dynamics
[34]. It is convenient to introduce a wave-vector decomposition
for the lattice displacements U(κ,q) = N−1 ∑

� e−iq·R� u(κ,�)
and we are led to

−ω2MκU(κ,q) +
∑
κ ′�

e−iq·R��(κ,κ ′,R�) · U(κ,q)

= eZκ Eel(κ,q) , (C2)

with the electric field given by Eq. (B4). To solve Eq. (C2) we
introduce mass-weighted coordinates ξ (κ,q) = M

1/2
κ U(κ,q)

and compute the eigenvalues ω2
qλ and eigenvectors ξλ(κ,q) of

the dynamic matrix,

∑
κ ′�

(MκMκ ′)−1/2e−iq·R��(κ,κ ′,R�) · ξλ(κ,q) = ω2
qλ ξλ(κ,q) .

(C3)

The dynamic matrix contains both short-range interatomic
potentials and long-range Coulomb potentials, the latter being
evaluated through an Ewald summation following the proce-
dure discussed in Ref. [17]. Because the dynamic matrix is
symmetric the eigenvectors ξλ(κ,q) form an orthonormal basis
and allow us to solve Eq. (C1) in the form

U(κ,q) = M−1/2
κ

∑
λ

Fλ(q)

ω2
qλ − ω(ω + iη)

ξλ(κ,q) , (C4)

where we have introduced a small damping constant η to
account for environment effects together with the abbrevi-
ation Fλ(q) = ∑

κ ξ ∗
λ(κ,q) · M

−1/2
κ eZκ Eel(κ,q). This expres-

sion forms the starting point of the analysis presented in
Sec. II A.

APPENDIX D

In this Appendix we show how to solve Newton’s equations
of motion for a finite cube within the harmonic approximation.
The ions are located at positions Rj = R0

j + u(j ), with R0
j be-

ing the equilibrium position of ion j and u(j ) its displacement
from equilibrium. In the harmonic approximation we assume
that the displacements are sufficiently small such that we can
expand the potential term in Eq. (11) around the equilibrium
positions R0 in powers of u. Noting that in equilibrium the
first-order derivative vanishes and assuming a harmonic time
dependence e−iωt u, we obtain

−ω2Mj u(j ) +
∑
j ′

�(j,j ′) · u(j ′) = eZj Eel
(

R0
j ,ω

)
, (D1)

where � is the force constant matrix. To solve Eq. (D1) it
is convenient to introduce mass-weighted coordinates ξ (j ) =
M

1/2

j u(j ) and to seek for the eigenvalues ω2
λ and eigenvectors

ξλ(j ) of the dynamic matrix∑
j ′

(MjMj ′)−1/2�(j,j ′) · ξλ(j ′) = ω2
λ ξλ(j ) . (D2)

Because the dynamic matrix is symmetric the eigenvectors
ξλ(j ) form an orthonormal basis and allow us to solve Eq. (D1)
in the form

u(j ) = M
−1/2

j

∑
λ

Fλ

ω2
λ − ω(ω + iη)

ξλ(j ) , (D3)

where we have introduced a small damping constant η to
account for environment effects together with the abbreviation
Fλ = ∑

j ξ ∗
λ(j ) · M

−1/2

j eZj Eel(R0
j ,ω). To obtain the energy

loss probabilities we proceed in complete analogy to the
discussion given in Sec. II A and finally obtain an expression
similar to Eq. (8) with the only difference that the wave number
q has to be replaced by the ion index j .
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