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Ab initio calculation of optical absorption in semiconductors: A density-matrix description
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Coulomb renormalization effects and dielectric screening in optically excited semiconductors and semicon-
ductor nanostructures are described within a first-principles density-matrix description. Those dynamic vari-
ables and approximation schemes that are required for a proper description of dielectric screening are identi-
fied. It is shown that within the random-phase approximation the direct Coulomb interactions become screened,
with static screening being a good approximation, whereas the electron-hole exchange interactions remain
unscreened. Differences and similarities between results obtained in the present study and those obtained from
a corresponding GW approximation and Bethe-Salpeter equation Green’s function analysis are discussed.
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I. INTRODUCTION

The study of the optical properties of nanoscale semic
ductor structures, such as small clusters, nanocrystal
polymer chains, is acquiring increasing importance also
view of optoelectronic applications. In these systems, ho
ever, the theoretical description of the optical response fa
additional difficulties with respect to extended crystals, b
cause correlation effects are known to be enhanced. Bes
the single-particle energies and wave functions for electr
and holes, also an appropriate description of Coulomb in
actions between electrons and holes is required. For this
son semiempirical or approximate methods~e.g., based on
the effective-mass approximation! were often the only fea-
sible treatment so far. In many cases of interest, howe
such methods are not sufficiently accurate and predictive

A strong impulse towardsab initio approaches is recentl
coming from the success of standard density functio
theory ~DFT! methods to treat extended three-dimensio
systems,1 with unit cells that may now include thousands
atoms. In semiconductors, however, such DFT approac
are known to account only insufficiently for Coulomb corr
lation effects. The main reason for this shortcoming is t
the dynamics of electron-hole excitations is not only go
erned by the DFT single-particle states but also by polar
tion effects, which are not fully accounted for in a standa
DFT calculation. More specifically, in semiconductor carrie
polarize their surrounding; in turn, this induced polarizati
affects both the propagation of carriers~quasiparticle renor-
malizations! and the Coulomb attraction between optica
excited electrons and holes~dielectric screening!.

Within the framework of Green’s functions it has be
known for a long time how to correct for such polarizatio
screening. For instance, Hedin and co-workers~see Refs. 2
and 3 for a review! showed how to consistently develop a s
of equations accounting for Coulomb correlation effects.
lowest order, this set of equations reduces to the calcula
of the screened Coulomb potentialW, obtained from the so-
lution of Dyson’s equation forW within the random-phase
approximation, and the self-energyS, which is calculated
within the so-called GW approximation~GWA!.2,3 While the
GWA approach provides a strongly improved description
single electrons and holes, the description of optical abs
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tion requires in addition a proper treatment of the attract
Coulomb interaction between the optically excited electro
hole pair. This electron-hole correlation is conveniently a
counted for by solving the Bethe-Salpeter equation, wh
describes the propagation the two-particle Green’s func
~for details see Ref. 4 and references therein!.

On the other hand, within the last couple of years ph
nomenological semiconductor optics, i.e., the simplifi
band structure and dielectric screening-description
semiconductors,5,6 has become an extremely vivid and su
cessful field of research. Here, the main interest is on
description of the nonlinear optical response of semicond
tors and semiconductor nanostructures, and of optically
duced coherence effects. A particularly transparent desc
tion scheme for such systems is provided by the dynam
controlled truncation of the density-matrix hierarchy6

Contrary to the Green’s function approach, which descri
by means of many-body perturbation theory thedynamic
propagation of quasiparticles, within the framework of de
sity matrices one selects an appropriately chosen set ofone-
time correlation functions. If Coulomb interactions conser
the number of electron-hole pairs, it becomes possible
rigorously classify these correlation functions in powers
the electric field of the exciting laser,6 thus providing a con-
sistent description scheme for the optical properties of se
conductors.

If, instead of adopting from the beginning a simplifie
semiconductor description, we start from the results o
first-principles calculation, the most interesting questi
arises: How is it possible to describe dielectric screening
Coulomb correlation effects within a first-principles densit
matrix description? To the best of my knowledge, up to n
this problem has not been addressed in the literature. Its
swer, however, would be very interesting for a number
reasons. First, it would be helpful to establish a link betwe
the fields of semiconductor optics and of first-principles c
culations; more specifically, such synthesis would allow
first-principles calculation of nonlinear optical properties
semiconductors. Second, the framework of density matr
requires only some basic knowledge of quantum mecha
and statistical physics—in contrast to the framework
Green’s functions, which rests on a large machinery of d
©2001 The American Physical Society05-1
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nitions and auxiliary functions. Thus, one might hope th
certain types of approximations become more transpar
furthermore, the respective strengths of the two approac
might be helpful in establishing approximation schemes
yond the presently used approaches.

This paper is devoted to the discussion of a first-princip
calculation of dielectric screening within the framework
density matrices. It will be shown that non-pair-conservi
Coulomb couplings, whose neglect is at the heart of
dynamics-controlled truncation approach, have to be reta
for a proper first-principles density-matrix description of d
electric screening and quasiparticle renormalizations in o
cally excited semiconductors. Adopting the usual rando
phase approximation and keeping our analysis at the low
level of approximation, we will propose a method for theab
initio calculation of optical absorption which closely r
sembles that of a corresponding Green’s function analy
first, the exciton energiesEx and wave functionsCx are
obtained from the solutions of the two-particle electron-h
Schrödinger equation, where the electron and hole inter
with each other through the screened direct Coulomb t
and the unscreened exchange one; second, the optical tr
tion energies are given byEx whose oscillator strengths ar
calculated fromCx. As the main difference with respect t
the corresponding Green’s function analysis, our prescrip
suggests to use static screening in the calculation of the
rect Coulomb term.

This paper is organized as follows. In Sec. II we pres
our model Hamiltonian and introduce the framework of de
sity matrices; a short overview over one of the most wid
used truncation schemes in phenomenological semicondu
optics, the dynamics-controlled truncation, will be give
Section III is devoted to the analysis of dielectric screen
within the framework of density matrices; the pertinent d
namic variables and approximation schemes are identifi
To keep our analysis as simple as possible, details of
calculations are postponed to Appendixes A and B. In S
IV we compare our results with those obtained within t
GWA and Bethe-Salpeter-equation approach. Finally, in S
V we draw some conclusions and summarize our presc
tion for the ab initio calculation of optical absorption in
semiconductors.

II. DENSITY MATRICES

A. Hamiltonian

Let us assume that the single-particle energiesea and
wave functionsfa(r) of the semiconductor system und
investigation are obtained from a DFT calculation. Althou
we shall not be too specific about the details of the unde
ing ab initio approach, we assume that the Hartree and
change interactions are included without approximations7 a
discussion of differences with respect to the local-den
approximation~LDA ! will be given below. LetHo denote
that part of the Hamiltonian that includes the kinetic ene
and the lattice interactions, andH̄8 that part of the electron
electron Coulomb interactionsH8 that are included through
the Hartree, exchange, and correlation potentialsvH1vx
20530
t
t;

es
-

s

e
ed

i-
-
st

s:

e
ct
m
nsi-

n
i-

t
-
y
tor
.
g
-
d.
ur
c.

c.
p-

-
x-

y

y

1vc . Then, ea and fa(r) are the DFT eigenstates ofH̄o

5Ho1H̄8, and dH5H82H̄8 are those Coulomb interac
tions that are not included in the DFT approach~and which
will be treated in this paper by means of perturbation theo!.
The basic Hamiltonian describing the carrier system is t
of the form

H5H̄o1Hop1dH, ~1!

with the single-particle HamiltonianH̄o ; the light-
semiconductor couplingHop ; and the Coulomb interaction
dH, which are not included in DFT. Note that for simplicit
in Eq. ~1! we have neglected all types of carrier-phonon
teractions or other environment couplings. In the spirit of t
GWA approach, in this work we consider in the subtractio
to dH only the Hartree and exchange terms, thus ignor
possible double counting of Coulomb correlationsvc .
Hence, with the fermionic field operatorsc(r), which create
an electron at positionr, we obtain

dH> 1
2 E d~rr 8!

c†~r!c†~r8!c~r8!c~r!

ur2r8u
2E d~rr 8!

3@vH~r!d~r2r8!1vx~r,r8!#c†~r8!c~r!. ~2!

In the DFT semiconductor ground state all states be
the fundamental band gap are occupied~valence-band states!
and all states above the band gap are unoccup
~conduction-band states!. Next, we transform to the electron
hole picture and introduce the fermionic field operatorsc†

andd†, wherec1
† creates an electron in the conduction-ba

state f1
e(r) with energy e1

e ~henceforth, we use number
1,2, . . . tolabel single-particle states!; d2

† creates a hole in
the valence-band statef2

h(r) with energye2
h . Since the hole

describes the properties of a missing electron in the vale
bands, we adopt the usual definitions that for a valence-b
statev the corresponding hole state 2 is related throughe2

h

52ev and f2
h(r)5@fv(r)#* ~with a properly chosen zero

point energy!. With these operators: the single-partic
Hamiltonian is of the formH̄o5(1e1

ec1
†c11(2e2

hd2
†d2; the

light-matter coupling within the dipole and rotating-wave a
proximations is5,6

Hop52 1
2 Eo(

12
~eivtM21

hed2c11e2 ivtM12
ehc1

†d2
†!, ~3!

with Eo exp6ivt the electric field of the exciting laser ligh
and M12

eh the optical dipole matrix elements; the Coulom
terms can be split into three partsdH5dH (0)1dH (1)

1dH (2),6 where dH (0) conserves the number of electro
hole pairs,dH (1) changes the number of electron-hole pa
by one, anddH (2) by two ~see Appendix A for details!.

B. Density-matrix hierarchy

Having established our model in Sec. II A, we next d
cuss how to treat Coulomb correlation effects due todH.
Within the framework of density matrices the central qua
tities are the one-time correlation functions^A& t5tr(rtA),
5-2
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Ab initio CALCULATION OF OPTICAL ABSORPTION . . . PHYSICAL REVIEW B64 205305
with rt the statistical operator at timet, tr( ) denoting the
trace over a complete set of basis functions, andA an opera-
tor consisting of c, d, c†, and d†; for instance, ^c†c& t
(^d†d& t) describes the occupation of electron~hole! single-
particle states at timet, whereas higher-order correlatio
functions, such as, e.g.,^c†d†dc& t , account for correlations
among two or more carriers. As the central approximat
within any density-matrix description one has to restrict o
self to a limited number of correlation functions. The temp
ral evolution of the correlation functionŝA& t is then pro-
vided by Ehrenfest’s theorem5,8

] t^A& t5^@A,H#& t , ~4!

which, together with the restriction to a finite number
correlation functions, provides the basis of the framework
density matrices. Before addressing the problem of dielec
screening in Sec. III, in the following we briefly review on
of the most commonly used truncation schemes in phen
enological semiconductor optics: Thedynamics-controlled
truncation.6 This discussion will help us to establish some
the basic concepts and notations.

C. Dynamics-controlled truncation

In describing the optical properties of conventional sem
conductors one often relies on effective models. Beside
simplified band structure description in terms ofk•p theory
or effective-mass approximations one usually5,9 employs the
envelope-function approximation; neglects the non-p
conserving termsdH (1) anddH (2); and screens the Coulom
interactions indH (0) by the static dielectric constant~see
Sec. III for a first-principles motivation of such approxim
tion!. Hence, the remaining termsH̄o1dH (0) conserve the
number of electrons and holes, and the only source for
creation or destruction of electron-hole pairs is through
light-matter couplingHop ; more specifically, inspection o
Eq. ~3! reveals that the creation~destruction! of electron-hole
pairs is through terms of the formE oc†d† (Eodc). In the
pioneering work of Axt and Stahl10 ~see Ref. 6 for a review!
the authors first noted that, since any pair of field opera
c†d† or dc comes with an electric fieldEo , the density ma-
trixes can be classified according to their power in the e
tric field.

Thus, in linear optical response there is only one corre
tion function

Y125^d2c1& ~5!

which is of lowest order inEo . Y describes the correlatio
between an optically excited electron and hole~note thatY is
a nonequilibrium quantity that is nonzero only in presence
an exciting laser and which vanishes in thermal equilibrium!.
Its relation to the total interband polarizationP(t) is given
through P(t)5(12M21

heY12,t , with Meh the optical dipole
matrix elements. Recalling that the optical absorption is
lated through Maxwell’s equation to the total interband p
larization P(t),5,9 one immediately notes that the micro
scopic interband polarizationsY completely determine the
20530
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linear optical response of semiconductors. Their tempo
evolution is given by Eq.~4!, and we find after some
straightforward algebra6,9

iẎ125~e1
e1e2

h!Y122
1
2 E oe2 ivtM12

eh2~V11̄,22̄
ee,hh

2V12,2̄1̄
eh,he

!Y1̄2̄ ,
~6!

where we have implicitly assumed summation over bar
indices 1̄and 2̄. On the right-hand side of Eq.~6!: the first
term accounts for the single-particle states available for a
ing an electron-hole pair; the second term describes the
ation of electron-hole pairs through coupling to the lig
field; finally, the third term accounts for the electron-ho
Coulomb interactions~with Vee,hh the direct andVeh,he the
exchange term!, and is responsible for excitonic renormaliz
tions in the optical spectra~which would be absent in a
simple-minded single-particle description!.

Equation~6! is conveniently solved by finding the pola
ization eigenmodes. The homogeneous part of Eq.~6! is then
transformed to an eigenvalue problem~‘‘excitonic eigen-
value problem’’!,5,6,9whose solutions provide the exciton e
ergiesEx and wave functionsC12

x . In the optical spectra the
optical transition energies are then provided byEx , and the
respective oscillator strengths are given byu(12C12

x M21
heu2.

III. DIELECTRIC SCREENING

As it is well known that dielectric screening is of centr
importance for the quantitative description of the optic
properties of semiconductors, within anab initio approach it
would make little sense to directly employ Eq.~6! with the
bare~i.e., unscreened! Coulomb matrix elementsV. For in-
stance, in conventional semiconductors, such as Si or Ga
dielectric screening leads to a reduction of the unscree
V’s by a factor of approximately ten. We are thus faced w
the central question of this work: How can dielectric scree
ing be described within the framework of density matrixe

Quite generally, dielectric screening is a process wher
carrier polarizes its surrounding medium. In turn, a seco
carrier not only feels the bare Coulomb interaction exer
by the first carrier, but also the field produced by this induc
polarization cloud. In an electron-hole picture, such polari
tion effects are described by~virtual! excitations of electron-
hole pairs that result in microscopic polarization fields. Th
a proper first-principles description of dielectric screeni
requires besides the pair conserving Coulomb termsdH (0)

also the non-pair-conserving termsdH (1) anddH (2).
Inclusion of such terms, however, spoils the concept

the dynamics-controlled truncation of the density-matrix
erarchy, since electron-hole pairs are no longer solely cre
~destroyed! by the light field but, in addition, also by Cou
lomb interactions. Thus, it is no longer possible to rigorou
classify correlation functions according to their power in t
electric fieldEo . However, since both the light field and th
Coulomb interactions create electrons and holes only p
wise, we can still assume that the classification of correlat
functions in numbers of electron-hole pairs provides a me
ingful concept. For simplicity, in this paper we restrict ou
selves to the case of correlation functions with at most t
5-3
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ULRICH HOHENESTER PHYSICAL REVIEW B64 205305
electron-hole pairs, and we show that already at this leve
approximation dielectric screening is included.

A. Dynamic variables

Besides the interband polarizationsY12, we hence need
the electron~hole! distribution functionC125^c2

†c1& (D12

5^d2
†d1&) and the two-particle correlation functions6

B12,345^d4c3d2c1&, ~7!

N12,345^c3
†d4

†d2c1&. ~8!

In analogy to the physical meaning ofY as a measure of th
electron-hole correlation andC ~D! as the occupation an
intraband coherence of single-particle electron~hole! states,
we can approximately interpretB as a measure for the cohe
ence between two electron-hole pairs andN as the occupa-
tion of electron-hole pairs.

Next, we derive the equations of motion for the vario
correlation functions. Before doing so, we employ a furth
approximation. From the analysis of the nonlinear coher
optical response~i.e., the dynamics-controlled truncation
the level ofE o

3 , which involvesY, C, D, B, and N)6 it is
known that the main effect of the carrier distribution fun
tionsC andD is to reduce the optical transition rates becau
of state filling ~i.e., Pauli blocking!. As we expect such ef
fects to be of minor importance for the problem of o
present concern, in the following we shall neglectC andD.
Thus, our set of dynamic variables is provided byY, B, and
N.

B. Equations of motion for Y, B, and N

The program pursued in the following is the derivation
the equations of motion forY, B, and N. This is done by
using Ehrenfest’s theorem, Eq.~4!, together with the defini-
tions for Y, B, andN, Eqs.~5!, ~7!, and~8! ~see also Appen-
dix A!. After some straightforward algebra we obtain11

iẎ12>~e1
e1e2

h!Y122
1
2 E oe2 ivtM12

eh2~V11̄,22̄
ee,hh

2V12,2̄1̄
eh,he

!Y1̄2̄

1~V11̄,34
ee,eh

2V31̄,14
ee,eh

!N1̄2,341V11̄,43
ee,he

B1̄2,34

2~V22̄,34
hh,eh

2V42̄,32
hh,eh

!N12̄,342V22̄,43
hh,he

B12̄,34 ~9!

~here and henceforth we implicitly assume summation o
all single-particle indices with exception of those appear
on the left-hand side!. Comparison with Eq.~5!, which was
derived by neglecting non-pair-conserving Coulomb co
plings, reveals the appearance of an additional coupling
the two-particle correlationsB and N, which is mediated
through the non-pair-conserving Coulomb interactionsdH (1)

anddH (2). As will be shown in the following, such terms ar
needed for a proper description of dielectric screening.

Let us discuss this coupling betweenY and B, N in
slightly more detail. Suppose that the system under inve
gation is a bulk semiconductor. Hence, the single-part
states 1,2, . . . consist of a wave vectork and a band indexn.
As the light field couples electron and hole states with
proximately oppositek values, the optically induced inter
20530
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band polarization is of the formYk5^d2kck&, where for no-
tational simplicity we have dropped all band indices. T
coupling VB in Eq. ~9! is then of the form (pqV(q)
3^d2p1qcpd2k1qck&, with a corresponding expression fo
VN. Hence, these terms describe how the propagation ofY is
modified by the presence of polarization fluctuations in
system; as we will show in the following, such fluctuatio
are induced by the interband polarizationY, thus resulting in
a self-interaction-like process, where the interband polar
tion Y induces polarization fluctuations through the non-pa
conserving Coulomb couplingsdH (1); these fluctuations
propagate in time, which is described by the equations
motion forB andN ~to be derived below!; and finally couple
back toY, which is described by the termsVB andVN in Eq.
~9!.

Next, we derive the equations of motion forB andN. To
keep our analysis as simple as possible, we employ from
beginning a number of well-controlled approximations. Fir
we assume that before arrival of the exciting laser no tw
particle correlationsB andN are present~as will be discussed
below this is only an approximation!. Hence,Y, B, N are
induced by the light-semiconductor couplingHop , and in
linear response it suffices to keep in the dynamics only te
linear in Y, B, N ~i.e., we neglect contributions proportiona
to, e.g.,Y2 or YB). Second, we neglect the light coupling
the equations of motion forB andN ~such terms would de-
scribe interference terms between dielectric screening
light coupling!. Third, we shall employ the so-calle
random-phase approximation~RPA!:12,13 For B12,34 and
N12,34 we keep only Coulomb terms that scatter one pair
particles 12 (34) and leave the other pair 34 (12) unaffec
In other words, we assume that polarization fluctuations c
ated through light-coupling and Coulomb processes, resp
tively, move independently of each other. In ak-space repre-
sentation for the polarization fluctuations^d2p1qcpd2k1qck&
and ^cp

†d2p1q
† d2k1qck& one readily observes that these RP

terms contain all those contributions that involve Coulom
matrix elementsV(q) with a momentum exchange ofq
which is independent ofk andp.13

With these approximations we then find

iḂ12,34>~e1
e1e2

h1e3
e1e4

h!B12,34

1~V12,2̄1̄
eh,he

2V11̄,22̄
ee,hh

!B1̄2̄,341~V12,1̄2̄
eh,eh

2V12̄,1̄2
eh,eh

!N34,1̄2̄

1~V34,4̄3̄
eh,he

2V33̄,44̄
ee,hh

!B12,3̄4̄1~V34,3̄4̄
eh,eh

2V34̄,3̄4
eh,eh

!N12,3̄4̄

1~V11̄,34
ee,eh

2V31̄,14
ee,eh

!Y1̄22~V22̄,34
hh,eh

2V42̄,32
hh,eh

!Y12̄

1~V33̄,12
ee,eh

2V13̄,32
ee,eh

!Y3̄42~V44̄,12
hh,eh

2V24̄,14
hh,eh

!Y34̄

1~V12,34
eh,eh2V14,32

eh,eh!, ~10!

iṄ12,34>~e1
e1e2

h2e3
e2e4

h!N12,34

1~V12,2̄1̄
eh,he

2V11̄,22̄
ee,hh

!N1̄2̄,341~V12,1̄2̄
eh,eh

2V12̄,1̄2
eh,eh

!B1̄2̄,34
*

2~V43,3̄4̄
he,eh

2V3̄3,4̄4
ee,hh

!N12,3̄4̄2~V43,4̄3̄
he,he

2V4̄3,43̄
he,he

!B12,3̄4̄ .

~11!

Let us analyze the various contributions to these equation
slightly more detail. On the right-hand side of Eq.~10! the
5-4
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first term corresponds to the free propagation ofB; the terms
in the second and third line, respectively, describe Coulo
renormalization processes in the propagation ofB (VB) and
Coulomb couplings betweenN andB (VN); the terms in the
fourth and fifth lines are the source terms that describe h
polarization fluctuations are created through coupling to
interband polarizationsY. In addition, there is a term
(V12,34

eh,eh2V14,32
eh,eh) that describes the buildup of polarizatio

fluctuations even in the absence of light couplings. Qu
generally, its appearance is not unexpected since up to
we have assumed that the semiconductor ground state is
tained by simply filling DFT single-particle states. Actin
with dH (2) on the DFT vacuum, however, we immediate
observe that Coulomb interactions create electron-hole p
and thus lead to renormalizations of the DFT vacuum. A
first approximation, in this paper we assume that such re
malizations are not of crucial importance for the descript
of dynamic processes in the propagation ofY, and we thus
neglect this term.

In the equation of motion forN, Eq. ~11!, we observe in
analogy to the dynamics ofB single-particle contributions
~first line! and Coulomb renormalizations and couplin
~second and third line!, but no source terms are prese
Similar to the semiconductor Bloch equations,5,9 which de-
scribe the nonequilibrium optical response at the level
two-point functions~i.e., C, D, andY) and where the light
field drives the electron-hole coherenceY, which, in turn,
acts as a source term for the electron~hole! occupationsC
(D), we here have the situation that Coulomb coupling fi
drives the electron-hole pair coherenceB, which, in turn, acts
as a source for the electron-hole pair occupationN.

Equations~9!–~11! are the central equations of this wor
Before showing how to solve this set of equations, we int
duce two further approximations. First, we keep in Eqs.~10!
and ~11! only self-interaction-like processes. The electro
hole coherenceY1̄2 (Y12̄) between the states 12̄ (12̄) is
initially created through the coupling to the light field. In
self-interaction process, this coherence is transferred thro
Coulomb coupling of the electron~hole! to 12 and to a sec
ond electron-hole pair 34@fourth line in Eq.~10!#; the second
electron-hole pair 34 propagates in the presence of Coul
renormalizations@third lines in Eqs.~10! and ~11!# and the
initial pair 12 remains unscattered; finally, this coheren
between electron-hole pairs 12 and 34 affects the prop
tion of Y @second and third line in Eq.~9!#. In addition to
these self-interaction-like processes, there exist also sca
inglike contributions: here either the optically induced coh
ence between electron-hole pair 34 is transferred thro
Coulomb coupling to the pair 12@fifth line in Eq. ~10!# or the
coherence between pair 12 is scattered to 12̄̄ @second lines in
Eqs.~10! and ~11!#. Such terms, which will be neglected i
the following, describe higher-order Coulomb terms~within
the framework of Green’s functions they would correspo
to vertex corrections!; a more detailed discussion of suc
scattering contributions has been given in Ref. 13.

Our second approximation concerns the neglect
electron-hole exchange interactions in the dynamics ofB and
N: in Eqs. ~10! and ~11! we only keep the first Coulomb
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terms in parentheses. One readily observes in ak-space rep-
resentation that for the polarization fluctuatio
^d2p1qcpd2k1qck& and ^cp

†d2p1q
† d2k1qck& these terms cor-

respond to Coulomb interactionsV(q), where the exchanged
momentumq is independentof the momentak and p; the
remaining terms involve exchanged momenta depending
k andp. The more general expressions of Eqs.~10! and~11!,
which contain both the direct and exchange contributio
have been given for the purpose of our later discussion ab
the screening of the electron-hole exchange interaction.

Details of our solution scheme for Eqs.~10! and ~11! are
presented in Appendix B. The key to the solution is t
Dysonlike character of the equations of motion forB andN.
In fact, solving Eqs.~10! and ~11! by iteration we observe
that the repeated action ofV(B1N) precisely reproduces
Dyson’s equation for the screened Coulomb potentialW
5V@11VP1(VP)21•••#5V1WPV; hereP is the usual
retarded polarization function within random-phase appro
mation. Finally, we arrive at~for details see Appendix B!

iẎ12>~e1
e1e2

h!Y121D11̄,1̄1̃
ee,ee

~v 1̄2!Y1̃21D22̄,2̄2̃
hh,hh

~v12̄!Y12̃

2 1
2 E oe2 ivtM12

eh2~V11̄,22̄
ee,hh

1D11̄,22̄
ee,hh

~v 1̄2!

1D22̄,11̄
hh,ee

~v12̄!2V12,2̄1̄
eh,he

!Y1̄2̄ , ~12!

with

D~r,r8;v!5E d~ss8v̄ !W~r,s;v!
Do~s,s8;v̄ !

v2v̄1 i01
V~s8,r8!,

~13!

@the relation between the real-space and single-particle
resentations ofD is in analogy to Eq.~A4!#; Do is related to
the imaginary part of the polarization function throug
Do(r,r8;v)52p21IP(r,r8;v.0) @Eqs.~B5! and ~B8!#. A
particularly simple expression of Eq.~12! follows for static
screening, i.e., for

D~r,r8;v50!5 1
2 @W~r,r8;0!2V~r,r8!#, ~14!

where the expression in the second line of Eq.~12! reduces
to @W11̄,22̄

ee,hh(0)2V12,2̄1̄
eh,he

#Y1̄2̄ . Thus, in Eq.~12! theD terms in
the first line describe renormalization effects in the propa
tion of single electrons and holes, respectively, and the
maining terms account for the Coulomb coupling betwe
the optically excited electron-hole pair.

IV. DISCUSSION

Equation~12! is our final expression. Before analyzing
in more detail, let us briefly recall the approximations th
were adopted in its derivation. First, within the spirit of th
dynamics-controlled truncation6 only dynamic variables ac
counting at most for two electron-hole pairs were consider
The electron and hole distribution functionsC and D were
neglected, since from related work it is known that th
main influence is the blocking of optical transitions due
state filling. Thus, our set of dynamic variables consists
the interband polarizationsY, and the two-particle correla
5-5
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ULRICH HOHENESTER PHYSICAL REVIEW B64 205305
tions B and N, which account for the coherence betwe
electron-hole pairs and their occupation, respectively. We
sumed that before arrival of the exciting laser lightY, B, and
N vanish. In the equations of motion forB andN: we adopted
the random-phase approximation,13 which assumes that po
larization fluctuations propagate independently of each ot
we neglected the direct coupling ofB andN to the light field;
only self-interaction-like processes were kept; final
exchange-type interactions were neglected.

Quite generally, none of these approximations is comp
sory, and all of them could be lifted without introducin
major conceptual modifications. However, we have kept
analysis as simple as possible in order to emphasize the
primary goals of this work: first, the identification of thos
terms and approximations that are required within a dens
matrix formalism in order to describe dielectric screenin
and second, to discuss the respective differences betwee
approach and the combined GWA and Bethe-Salpeter e
tion approach.

Within our density-matrix description, the central quan
ties are the optically induced interband polarizationsY. In
general, their knowledge allows the full calculation of t
optical absorption spectra. However, as discussed in
II C, the temporal evolution ofY is in addition governed by
the two-particle correlationsB and N, which, within a self-
interaction-like process, are induced through the non-p
conserving Coulomb couplingsdH (1) anddH (2); the details
of this coupling, Eqs.~9!–~11!, reflect the essential feature
of dielectric screening where an electron~hole! polarizes its
surrounding medium~described by the source terms forB);
in turn, the hole~electron! not only feels the bare Coulom
term exerted by the first carrier but also the field induced
the polarization cloud@cf. terms in the last two lines of Eq
~12!#; in addition, this induced polarization cloud also affec
the propagation of the carrier@cf. D terms in the last two
lines of Eq.~12!#. Thus, the screening of the electron-ho
interaction and the quasiparticle renormalizations origin
from thesamephysical process.

It is interesting to compare this finding with the respect
GWA and Bethe-Salpeter equation result. Let us first conc
trate on the case of static screening, Eq.~14!. Inspection of
the quasiparticle renormalizations of Eq.~12! with the results
of the GWA approach3 reveals that these renormalizatio
closely resemble the screened exchange and Coulomb
self-energy terms~note that this comparison is somewh
complicated because of our use of the electron-hole pic
and the missing screening of the electron-hole exchange
teractions!. If dynamic screening is considered, the inelasti
ties v12 of D(v12) in Eq. ~12! are given by the difference
between the light frequencyv and the electron-hole trans
tion energiese1

e1e2
h . Assuming that the exciton states a

composed of electron and hole single-particle states with
ergies close to the band gap, one immediately notes thav
'e1

e1e2
h ; thus, static screening of the direct Coulomb int

actions is expected to be a good approximation. This resu
different with respect to the GWA prescription, where t
inelasticities of the quasiparticle renormalizations@first line
of Eq. ~12!# are the quasiparticle energies themselves,
the electron-hole interaction is screened at the opt
20530
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frequency,4 v ~see also Ref. 14 for a discussion of the co
pensation between effects due to dynamical screening
higher-order vertex corrections; the consequences of suc
terplay within our present density-matrix description will b
discussed elsewhere!.

Next, we discuss the screening of the electron-hole
change interactionsVeh,he. As we saw in the discussion o
the screening of the direct Coulomb terms, dielectric scre
ing originates from a process where the interband polar
tions Y induce the electron-hole pair correlationsB and N;
these induced polarization fluctuations move independe
of each other~random-phase approximation!; and finally
couple back to the propagation dynamics ofY. These self-
interaction-like processes result in the termsD11̄,22̄ , Eq.

~13!, where the vertices 22¯and 11̄, respectively, reflect the
coupling ofY to the electron-hole pair coherenceB and the
back action ofB, N on Y; finally, the propagation dynamic
of B andN is hidden inD, which has to be determined from
the Dysonlike equation for the screened Coulomb poten
W. Let us now return to the full expression of Eqs.~10! and
~11!, which, within the approximations adopted, contain
possible source terms. One immediately recognizes that
ther these source terms nor the coupling ofB, N to Y, Eq.~9!,
can reproduce a screening term of the formD eh,he. Hence,
within our approximation scheme~RPA! the electron-hole
exchange interactions must remain unscreened. Future w
will address possible screening contributions and vertex c
rections beyond the random-phase approximation.

Finally, we briefly comment on one of the well-know
shortcomings of our density-matrix description. From E
~12! and ~B5! one readily observes that theunrenormalized
single-particle energiesee andeh enter into the calculation o
the screened Coulomb potential and of the polarization fu
tion P. This result differs from the corresponding GWA an
Bethe-Salpeter equation result and is due to our neglec
higher-order correlation functions~i.e., correlations between
three or more electron-hole pairs!. However, it can be
shown15 that inclusion of certain types of Coulomb intera
tions at this level of many-particle correlations indeed resu
in a renormalization of the single-particle energiesee andeh.
For the sake of brevity, here we shall not present the det
of such analysis.

When defining the Coulomb interactions of our starti
Hamiltonian, Eq.~2!, we assumed that exchange interactio
are fully accounted for within the DFT calculations. Appa
ently, this assumption no longer holds for DFT calculatio
based on the celebrated local-density approximation~LDA !.1

Inspection of Eq.~2! reveals that in this case the substract
exchange contributions would be of the formvx(r,r8)>d(r
2r8)vx

LDA(r); as consequence, indH only the Hartree con-
tributions with the filled valence band would be cancell
exactly~with no corresponding cancellation for the exchan
terms! and the local exchange potential would give rise
terms proportional toc†d† anddc. In the equations of mo-
tion for the dynamic variables these local-exchange con
butions would give rise to additional couplings between va
ables containing different numbers of electron-hole pa
Within the spirit of perturbation theory, such couplings a
5-6
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Ab initio CALCULATION OF OPTICAL ABSORPTION . . . PHYSICAL REVIEW B64 205305
due to the fact that the semiconductor ground state is
given by simply filling the DFT-LDA states; rather, the no
local exchange interactions give rise to admixtures of exc
DFT-LDA states, which, within the electron-hole pictur
correspond to dynamic variables accounting for differ
numbers of electron-hole pairs. However, it is well know
that in many cases the single-particle renormalizations to
DFT-LDA states simply lead to a rigid shift of the calculate
band gap~scissor operator! and that the calculated wav
functions remain unchanged. In this case, the results of
analysis remain valid and only the electron-hole excha
interactionsVeh,he, which correct for the missing Coulom
exchange interactions because of optical excitation, sho
be computed within the local-density approximation.

V. CONCLUSIONS AND SUMMARY

In conclusion, starting from anab initio band structure
calculation we have shown how to describe dielectric scre
ing within a density-matrix description. We have identifie
those dynamic variables and approximations that are
quired at the lowest level of approximation~random-phase
approximation!. We have discussed that static screening
expected to be a good approximation~in contrast to the cor-
responding Green’s function results,4 which seem to favor
screening at the optical frequencies!. Hence, our analysis
suggests calculation of the optical absorption spectra f
the solutions of the ‘‘excitonic eigenvalue problem’’6,5,9

~ ē1
e1 ē2

h!C12
x 2~W11̄,22̄

ee,hh
~0!2V12,2̄1̄

eh,he
!C 1̄2̄

x
5ExC12

x , ~15!

with Ex and Cx the exciton energies and wave function
respectively~with proper summation over barred indices!.
Here, we have assumed that single-particle renormalizat
~scissor operator, GW corrections! lead to a rigid shift of the
calculated band gap, withē1

e,h the renormalized single
particle energies@see Eq.~12! for the more complete expres
sion#; the W’s are the Coulomb interactions screened with
RPA, where the dielectric function is computed at zero f
quency~static-screening approximation! using the renormal-
ized single-particle energiesē1

e,h ; finally, Veh,he are the un-
screened electron-hole exchange interactions; within LD
these terms should be computed within the local approxi
tion. In the optical spectra, the optical transition energies
provided byEx , and the respective oscillator strengths a
given by u(12C12

x M21
heu2.

It is hoped that our approach might serve as an alterna
to the hitherto used GWA and Bethe-Salpeter-equation
proaches. Its advantage lies in its conceptual simplicity: o
some basic knowledge about statistical mechanics
Heisenberg’s equations of motion are required~as opposed to
the more sophisticated framework of Green’s functions!. Fi-
nally, this work might help to extend the variety of tec
niques developed recently within the field of semiconduc
optics for the description of the nonlinear optical response
first-principles studies.
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APPENDIX A

In this Appendix we discuss the transformation of Eq.~2!
to the electron-hole picture. The relation between the fi
operatorsc andc, d is given by

c†~r!5(
1

@f1
e~r!#* c1

†1(
2

f2
h~r!d2 ~A1!

Inserting this expression into Eq.~2!, we obtain after some
straightforward algebra

dH (0)5 1
2 ~V1̄1,2̄2

ee,ee
c1̄

†
c2̄

†
c1c21V1̄1,2̄2

hh,hh
d1̄

†
d2̄

†
d1d2!2~V1̄1,2̄2

ee,hh

2V1̄2̄,21
eh,he

!c1̄
†
d2̄

†
d2c1 , ~A2a!

dH (1)5V12,3̄3
eh,ee

c1
†d2

†c3̄
†
c32V12,3̄3

eh,hh
c1

†d2
†d3̄

†
d31V3̄3,21

ee,he
c3̄

†
c3d2c1

2V3̄3,21
hh,he

d3̄
†
d3d2c1 , ~A2b!

dH (2)5 1
2 ~V12,34

eh,ehc1
†c3

†d4
†d2

†1V21,43
he,hed2d4c3c1!, ~A2c!

~we assume an implicit summation over all single-parti
indices! the commutation relations betweenc, d and the vari-
ous Coulomb terms are

@c1 ,dH (0)#5V11̄,3̄3
ee,ee

c3̄
†
c3c1̄2~V11̄,3̄3

ee,hh
2V13̄,31̄

eh,he
!d3̄

†
d3c1̄ ,

~A3a!

@d2 ,dH (0)#5V22̄,3̄3
hh,hh

d3̄
†
d3d2̄2~V22̄,3̄3

hh,ee
2V23̄,32̄

he,eh
!c3̄

†
c3d2̄ ,

~A3b!

@c1 ,dH (1)#5~V11̄,34
ee,eh

2V31̄,14
ee,eh

!c3
†d4

†c1̄2V12̄,3̄3
eh,hh

d2̄
†
d3̄

†
d3

1V11̄,43
ee,he

d4c3c1̄ , ~A3c!

@d2 ,dH (1)#52~V22̄,34
hh,eh

2V42̄,32
hh,eh

!c3
†d4

†d2̄2V1̄2,3̄3
eh,ee

c1̄
†
c3̄

†
c3

1V22̄,43
hh,he

d4c3d2̄ , ~A3d!

@c1 ,dH (2)#5V12̄,34
eh,eh

c3
†d4

†d2̄
† , ~A3e!

@d2 ,dH (2)#52V1̄2,34
eh,eh

c3
†d4

†c1̄
† . ~A3f!

Finally, the Coulomb matrix elements in Eq.~A2! are defined
as

V1̄1,2̄2
m̄m,n̄n

5E d~rr 8!
1

ur2r8u
F 1̄1

m̄m
~r!F 2̄2

n̄n
~r8!, ~A4!

with

F 1̄1
ee

~r!5@f 1̄
e
~r!#* f1

e~r!, ~A5a!

F 1̄1
hh

~r!5@f 1̄
h
~r!#* f1

h~r!, ~A5b!
5-7
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F12
eh~r!5@f1

e~r!f2
h~r!#* , ~A5c!

F21
he~r!5f2

h~r!f1
e~r!. ~A5d!

APPENDIX B

In this Appendix we sketch the derivation of our fin
expression~12!. Without loss of generality, in linear respons
we consider a monofrequent laser excitation of the fo
E oe2 ivt. SinceY, B, andN are driven by the light field, their
time dependence is alsoe2 ivt. Hence, keeping only self
interaction-like processes and direct Coulomb terms, we
for B andN the Dysonlike equations

B12,345
V34,4̄3̄

eh,he
B12,3̄4̄1V34,3̄4̄

eh,eh
N12,3̄4̄

v122e3
e2e4

h1 i01
1B12,34

0

N12,3452
V43,4̄3̄

he,he
B12,3̄41V43,3̄4̄

he,eh
N12,3̄4̄

v121e3
e1e4

h1 i01
, ~B1!

with v125v2e1
e2e2

h and

B12,34
0 5

V11̄,34
ee,eh

Y1̄22V22̄,34
hh,eh

Y12̄

v122e3
e2e4

h1 i01
. ~B2!

Here, the infinitesimal imaginary parti01 has been
introduced to ensure causality. Next, it turns out to be c
venient to introduce the mixed representationsB12(r)
5(34F34

eh(r)B12,34 and N12(r)5(34F43
he(r)N12,34. The cou-

pling betweenB, N andY @second and third line in Eq.~9!#
can then be cast to the form

E d~rr 8!
1

ur2r8u
$F11̄

ee
~r!@B1̄2~r8!1N1̄2~r8!#

2F22̄
hh

~r!@B12̄~r8!1N12̄~r8!#% ~B3!

~note our neglect of exchange interactions!. The sum ofB
andN, which appears on the right-hand side of Eq.~B3!, is
obtained by summing Eqs.~B1! and transforming to the
mixed representation forB andN. We obtain

B12~r!1N12~r!5E d~ss8!P~r,s;v12!
1

us2s8u

3@B12~s8!1N12~s8!#1B12
0 ~r!, ~B4!
d

20530
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with the polarization in random-phase approximation

P~r,r8;v!5(
34

F F34
eh~r!F43

he~r8!

v2e3
e2e4

h1 i01
2

F43
he~r!F34

eh~r8!

v1e3
e1e4

h1 i01G .

~B5!

One readily recognizes that Eq.~B4! closely resembles
Dyson’s equation for the screened Coulomb potentialW,
which, in shorthand notation, readsW5V1WPV. Together
with

W~r,r8;v!5E ds
1

ur2su
K~s,r8;v!, ~B6!

whereK is the inverse dielectric function,13 we immediately
obtain (B1N)5KB0. Inserting this expression into Eq.~B3!
we find after some straightforward calculations

iẎ12>~e1
e1e2

h!Y122
1
2 E oe2 ivtM12

eh2~V11̄,22̄
ee,hh

2V12,2̄1̄
eh,he

!Y1̄2̄

1W11̄,34
ee,eh

~v 1̄2!
1

v 1̄22e3
e2e4

h1 i01
V34,1̄1̄

eh,ee
Y1̄2

1W22̄,34
hh,eh

~v12̄!
1

v12̄2e3
e2e4

h1 i01
V34,2̄2̄

eh,hh
Y12̄

2W11̄,34
ee,eh

~v 1̄2!
1

v 1̄22e3
e2e4

h1 i01
V34,22̄

eh,hh
Y1̄2̄

2W22̄,34
hh,eh

~v12̄!
1

v12̄2e3
e2e4

h1 i01
V34,11̄

eh,ee
Y1̄2̄ , ~B7!

with the matrix elements ofW defined in analogy to Eq
~A4!. Finally, in case of time-reversal symmetry the wa
functions can be chosen real. Hence, the polarizationP is of
the form3

P~r,r8;v!5E
0

`

dv8Do~r,r8;v8!

3F 1

v2v81 i01
2

1

v1v81 i01G , ~B8!

with Do(r,r8;v)5(34F34
eh(r)F43

he(r8)d(v2e3
e2e4

h), and we
arrive after some straightforward algebra at Eq.~12!.
v.

c

he
-

*Email address: ulrich.hohenester@uni-graz.at
1R. M. Dreizler and E. U. Gross,Density Functional Theory

~Springer, Berlin, 1990!.
2L. Hedin and S. Lundqvist, Solid State Phys.23, 1 ~1969!.
3F. Aryasetiawan and O. Gunnarson, Rep. Prog. Phys.61, 237

~1998!.
4M. Rohlfing and S. G. Louie, Phys. Rev. B62, 4927~2000!.
5H. Haug and S. W. Koch,Quantum Theory of the Optical an

Electronic Properties of Semiconductors~World Scientific, Sin-
gapore, 1993!.
6V. M. Axt and S. Mukamel, Phys. Rev. B70, 145 ~1998!.
7M. Stadele, J. A. Majewski, P. Vogl, and A. Gorling, Phys. Re

Lett. 79, 2089~1997!.
8E. Fick and G. Sauermann,The Quantum Statistics of Dynami

Processes~Springer, Berlin, 1990!.
9F. Rossi, Semicond. Sci. Technol.13, 147 ~1998!.

10V. M. Axt and A. Stahl, Z. Phys. B: Condens. Matter93, 195
~1995!.

11In the spirit of the rotating-wave approximations, we neglect int
dynamics ofY counterclockwise rotating contributions propor
5-8



s
ev.

Ab initio CALCULATION OF OPTICAL ABSORPTION . . . PHYSICAL REVIEW B64 205305
tional to Y* .
12J. W. Negele and H. Orland,Quantum Many-Particle System

~Addison-Wesley, Redwood, 1998!.
13U. Hohenester and W. Po¨tz, Phys. Rev. B56, 13 177~1997!.
20530
14F. Bechstedt, K. Tenelsen, B. Adolph, and R. Del Sole, Phys. R
Lett. 78, 1528~1997!.

15M. Bonitz, Quantum Kinetic Theory ~Teubner, Stuttgart,
1998!.
5-9


