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Ab initio calculation of optical absorption in semiconductors: A density-matrix description
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Coulomb renormalization effects and dielectric screening in optically excited semiconductors and semicon-
ductor nanostructures are described within a first-principles density-matrix description. Those dynamic vari-
ables and approximation schemes that are required for a proper description of dielectric screening are identi-
fied. It is shown that within the random-phase approximation the direct Coulomb interactions become screened,
with static screening being a good approximation, whereas the electron-hole exchange interactions remain
unscreened. Differences and similarities between results obtained in the present study and those obtained from
a corresponding GW approximation and Bethe-Salpeter equation Green’s function analysis are discussed.
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[. INTRODUCTION tion requires in addition a proper treatment of the attractive
Coulomb interaction between the optically excited electron-
The study of the optical properties of nanoscale semiconhole pair. This electron-hole correlation is conveniently ac-
ductor structures, such as small clusters, nanocrystals @ounted for by solving the Bethe-Salpeter equation, which
polymer chains, is acquiring increasing importance also irdescribes the propagation the two-particle Green’s function
view of optoelectronic applications. In these systems, how¢for details see Ref. 4 and references therein
ever, the theoretical description of the optical response faces On the other hand, within the last couple of years phe-
additional difficulties with respect to extended crystals, benomenological semiconductor optics, i.e., the simplified
cause correlation effects are known to be enhanced. BeSidg‘and structure and dielectric screening-description of
the single-particle energies and wave functions for electrongemiconductorg® has become an extremely vivid and suc-
and holes, also an appropriate description of Coulomb intefzessful field of research. Here, the main interest is on the
actions between electrons and holes is required. For this regscription of the nonlinear optical response of semiconduc-
son semiempirical or approximate metho@sg., based on {415 and semiconductor nanostructures, and of optically in-
the effective-mass approximatipwere often the only fea-  y,ceq coherence effects. A particularly transparent descrip-
sible treatment so far. In many cases of interest, hovyeveEion scheme for such systems is provided by the dynamics-
Sui:] Tethqu arle n?t S“fgc'kff‘“%’. accurate ﬁnd .pred|ct|\t/|e " controlled truncation of the density-matrix hierarchy:
Strong impuise fowardab Inito approaches IS recently aﬁontrary to the Green’s function approach, which describes

coming from the success of standard density function ; bod turbation th .
theory (DFT) methods to treat extended three-dimensiona y means of many-body perturbation theory tignamic

systems, with unit cells that may now include thousands of ProPagation of quasiparticles, within the framework of den-
atoms. In semiconductors, however, such DFT approachedly matrices one selects an appropriately chosen setef
are known to account only insufficiently for Coulomb corre- time correlation functions. If Coul_omp interactions conserve
lation effects. The main reason for this shortcoming is thafh® number of electron-hole pairs, it becomes possible to
the dynamics of electron-hole excitations is not only gov-figorously classify these correlation functions in powers of
erned by the DFT single-particle states but also by polarizathe electric field of the exciting lasthus providing a con-
tion effects, which are not fully accounted for in a standardsistent description scheme for the optical properties of semi-
DFT calculation. More specifically, in semiconductor carriersconductors.
polarize their surrounding; in turn, this induced polarization If, instead of adopting from the beginning a simplified
affects both the propagation of carridiuasiparticle renor- semiconductor description, we start from the results of a
malizationg and the Coulomb attraction between optically first-principles calculation, the most interesting question
excited electrons and holédielectric screening arises: How is it possible to describe dielectric screening and
Within the framework of Green’s functions it has been Coulomb correlation effects within a first-principles density-
known for a long time how to correct for such polarization matrix description? To the best of my knowledge, up to now
screening. For instance, Hedin and co-work@®se Refs. 2  this problem has not been addressed in the literature. Its an-
and 3 for a reviewshowed how to consistently develop a setswer, however, would be very interesting for a number of
of equations accounting for Coulomb correlation effects. Inreasons. First, it would be helpful to establish a link between
lowest order, this set of equations reduces to the calculatiothe fields of semiconductor optics and of first-principles cal-
of the screened Coulomb potenti& obtained from the so- culations; more specifically, such synthesis would allow the
lution of Dyson’'s equation folW within the random-phase first-principles calculation of nonlinear optical properties of
approximation, and the self-enerdy, which is calculated semiconductors. Second, the framework of density matrices
within the so-called GW approximatiq®WA).>3 While the  requires only some basic knowledge of quantum mechanics
GWA approach provides a strongly improved description ofand statistical physics—in contrast to the framework of
single electrons and holes, the description of optical absorpsreen’s functions, which rests on a large machinery of defi-
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nitions and auxiliary functions. Thus, one might hope thati;_. Then, e, and ¢,(r) are the DFT eigenstates of,

certain types of approximations become more transparent; —, T .
furthermore, the respective strengths of the two approach%EHoJrH » and sH=H'—H" are those Coulomb interac

: ; L L ions that are not included in the DFT approdeind which
might be helpful in establishing approximation schemes be- - Lo .
yond the presently used approaches. will be treated in this paper by means of perturbation thgory

This paper is devoted to the discussion ofafirst-principlesThe basic Hamiltonian describing the carrier system is thus

calculation of dielectric screening within the framework of of the form
density matrices. It will be shown that non-pair-conserving
Coulomb couplings, whose neglect is at the heart of the

dynamics-controlled truncation approach, have to be retainegith the single-particle HamiltonianH,; the light-

for a proper first-principles density-matrix description of di- semiconductor couplingl,,; and the Coulomb interactions
electric screening and quasiparticle renormalizations in optizH which are not included in DFT. Note that for simplicity
cally excited semiconductors. Adopting the usual randomin Eq. (1) we have neglected all types of carrier-phonon in-
phase approximation and keeping our analysis at the lowegkractions or other environment couplings. In the spirit of the
level of approximation, we will propose a method for #f®  GwaA approach, in this work we consider in the subtractions
initio calculation of optical absorption which closely re- 1o sH only the Hartree and exchange terms, thus ignoring
sembles that of a corresponding Green's function analysigiossible double counting of Coulomb correlations.

first,_the exciton energ_ieEX and wave fur'1cti0n$1’X ar€  Hence, with the fermionic field operatoggr), which create
obtained from the solutions of the two-particle electron-holeg glectron at position, we obtain

Schralinger equation, where the electron and hole interact
with each other through the screened direct Coulomb term SO () (') ()
%jd(rr') | —fd(rr’)
r

H=Ho+Hop+ oH, (1)

and the unscreened exchange one; second, the optical transi- oH=
tion energies are given b, whose oscillator strengths are
calculated from*. As the main difference with respect to _yr Nt (r!
the corresponding Green'’s function analysis, our prepscription XLon(r) A=+ rr 1) ¢Ln). @
suggests to use static screening in the calculation of the di- In the DFT semiconductor ground state all states below
rect Coulomb term. the fundamental band gap are occupiealence-band states
This paper is organized as follows. In Sec. Il we presentand all states above the band gap are unoccupied
our model Hamiltonian and introduce the framework of den-(conduction-band statesNext, we transform to the electron-
sity matrices; a short overview over one of the most widelyhole picture and introduce the fermionic field operatots
used truncation schemes in phenomenological semiconductghdd®, wherec! creates an electron in the conduction-band
optics, the_dynamlcs-controlled truncation, W|I_I be given. state ¢¢(r) with energy € (henceforth, we use numbers
Section Il is devoted to the analysis of dielectric screening; »  ~ tg|apel single-particle statgsd} creates a hole in

within the framework of density matrices; the pertinent dy he valence-band sta@(r) with energyeg Since the hole
namic variables and approximation schemes are Identlfle‘iﬂescribes the properties of a missing electron in the valence

Iglclijﬁzgoz:raigal)ésslf c?r?eglrtgpf a:n%?xss;bféggtglslnogg;gands, we adopt the usual definitions that for a valence-band
postp PP . o Statev the corresponding hole state 2 is related throu@h
IV we compare our results with those obtained within the

- hir) = i .
GWA and Bethe-Salpeter-equation approach. Finally, in Sec. . € and ¢5(r) =[¢,(r)]" (with a properly chosen zero

V we draw some conclusions and summarize our prescrip?®int energy. With these operators: the single-particle

tion for the ab initio calculation of optical absorption in Hamiltonian is of the formH,=3;e5clc; +3,ed1d,; the
semiconductors. light-matter coupling within the dipole and rotating-wave ap-

proximations i3°

r=r’

Il. DENSITY MATRICES Hop="— %50% (e“'Mhed,c,+e 1 tMehctdl),  (3)
A. Hamiltonian
with &, exp*iwt the electric field of the exciting laser light

: . and M) the optical dipole matrix elements; the Coulomb
wave functions¢,(r) of the semiconductor system under 12 o '
$alr) y terms can be split into three partsH=sH© + sH®

investigation are obtained from a DFT calculation. Although
9 9 + 8H®@ 8 where sH® conserves the number of electron-

we shall not be too specific about the details of the underly—hole pairs.oH™) changes the number of electron-hole pairs

ing ab initio approach, we assume that the Hartree and exB WH® b A dix A for detai
change interactions are included without approximatioas; Y 0ne, an y two (see Appendix A for details

discussion of differences with respect to the local-density

approximation(LDA) will be given below. LetH, denote B. Density-matrix hierarchy

that part of the Hamiltonian that includes the kinetic energy  Having established our model in Sec. Il A, we next dis-
and the lattice interactions, amtl’ that part of the electron- cuss how to treat Coulomb correlation effects duestd.
electron Coulomb interactiortd’ that are included through Within the framework of density matrices the central quan-
the Hartree, exchange, and correlation potentiglstv,  tities are the one-time correlation functiofgl),=tr(p.A),

Let us assume that the single-particle energigsand
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with p, the statistical operator at timie tr( ) denoting the linear optical response of semiconductors. Their temporal
trace over a complete set of basis functions, @nah opera-  €evolution is given by Eq.(4), and we find after some
tor consisting ofc, d, ¢, and d'; for instance,(c'c),  straightforward algebre

((d'd),) describes the occupation of electr@role) single- _ _ o .

particle states at timeé, whereas higher-order correlation iV ,=(eS+€))Y,— %Eoe"“’tM‘iQ—(Vi%zg—vizzewﬁ,
functions, such as, e.g.¢'d'dc),, account for correlations (6)
among two or more carriers. As the central approximation o )

within any density-matrix description one has to restrict oneWhere we have implicitly assumed summation over barred
self to a limited number of correlation functions. The tempo-indices 1and 2 On the right-hand side of E6): the first

ral evolution of the correlation function&), is then pro-  term accounts for the single-particle states available for add-

vided by Ehrenfest’s theoretf ing an electron-hole pair; the second term describes the cre-
ation of electron-hole pairs through coupling to the light
(A= AHy, (4)  field; finally, the third term accounts for the electron-hole

Coulomb interactiongwith VV¢&"" the direct andve""® the
which, together with the restriction to a finite number of exchange terppand is responsible for excitonic renormaliza-
correlation functions, provides the basis of the framework oftions in the optical spectrawhich would be absent in a
density matrices. Before addressing the problem of dielectrisimple-minded single-particle descriptjon
screening in Sec. I, in the following we briefly review one  Equation(6) is conveniently solved by finding the polar-
of the most commonly used truncation schemes in phenonization eigenmodes. The homogeneous part of(&ds then
enological semiconductor optics: Thdynamics-controlled transformed to an eigenvalue probleffexcitonic eigen-
truncation® This discussion will help us to establish some of value problem),>®whose solutions provide the exciton en-

the basic concepts and notations. ergiesE, and wave function®,. In the optical spectra the
optical transition energies are then providedHy, and the
C. Dynamics-controlled truncation respective oscillator strengths are given|By, ¥ ,M57]°.

In describing the optical properties of conventional semi-
conductors one often relies on effective models. Besides a IIl. DIELECTRIC SCREENING
simplified band structure description in termskofp theory
or effective-mass approximations one usuallgmploys the
envelope-function approximation; neglects the non-pairproperties of semiconductors, within ab initio approach it
conserving term$H®) and 8H®); and screens the Coulomb \youid make little sense to directly employ E@) with the
interactions in6H(® by the static dielectric constarisee bare (i.e., unscreenadCoulomb matrix elementy. For in-
Sec. Il for a first-principles motivation of such approxima- siance. in conventional semiconductors, such as Si or GaAs,
tion). Hence, the remaining termd,+ oH(® conserve the dielectric screening leads to a reduction of the unscreened
number of electrons and holes, and the only source for thg’s by a factor of approximately ten. We are thus faced with
creation or destruction of electron-hole pairs is through thehe central question of this work: How can dielectric screen-
light-matter couplingH,,; more specifically, inspection of ing be described within the framework of density matrixes?
Eq. (3) reveals that the creatiddestruction of electron-hole Quite generally, dielectric screening is a process where a
pairs is through terms of the fordi,c'd" (£,dc). In the  carrier polarizes its surrounding medium. In turn, a second
pioneering work of Axt and Statfl (see Ref. 6 for a review  carrier not only feels the bare Coulomb interaction exerted
the authors first noted that, since any pair of field operatorgy the first carrier, but also the field produced by this induced
c'd™ or dc comes with an electric field,, the density ma- polarization cloud. In an electron-hole picture, such polariza-
trixes can be classified according to their power in the election effects are described lfyirtual) excitations of electron-

As it is well known that dielectric screening is of central
importance for the quantitative description of the optical

tric field. hole pairs that result in microscopic polarization fields. Thus,
Thus, in linear optical response there is only one correlaa proper first-principles description of dielectric screening
tion function requires besides the pair conserving Coulomb teis®)
also the non-pair-conserving termsi*) and sH?).
Y 15=(d5Cy) (5) Inclusion of such terms, however, spoils the concept of

the dynamics-controlled truncation of the density-matrix hi-
which is of lowest order irf,. Y describes the correlation erarchy, since electron-hole pairs are no longer solely created
between an optically excited electron and h@lete thatYis  (destroyed by the light field but, in addition, also by Cou-
a nonequilibrium quantity that is nonzero only in presence ofomb interactions. Thus, it is no longer possible to rigorously
an exciting laser and which vanishes in thermal equiliblium classify correlation functions according to their power in the
Its relation to the total interband polarizatig?(t) is given  electric field€,. However, since both the light field and the
through P(t) =% ,M ngm, with Me" the optical dipole Coulomb interactions create electrons and holes only pair-
matrix elements. Recalling that the optical absorption is rewise, we can still assume that the classification of correlation
lated through Maxwell's equation to the total interband po-functions in numbers of electron-hole pairs provides a mean-
larization P(t),>° one immediately notes that the micro- ingful concept. For simplicity, in this paper we restrict our-
scopic interband polarization¥ completely determine the selves to the case of correlation functions with at most two
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electron-hole pairs, and we show that already at this level opand polarization is of the fornd, = (d_,c,), where for no-

approximation dielectric screening is included.

A. Dynamic variables

Besides the interband polarizatiolfg,, we hence need
the electron(hole) distribution functionC,={(clc;) (D1,
=(d}d;)) and the two-particle correlation functidhs

@)

Nip 34~ <ng1d201>- (8)

In analogy to the physical meaning ¥fas a measure of the
electron-hole correlation an@ (D) as the occupation and
intraband coherence of single-particle electftbole) states,
we can approximately interpr&tas a measure for the coher-
ence between two electron-hole pairs amés the occupa-
tion of electron-hole pairs.

Next, we derive the equations of motion for the various

B123/=(d4C3d,C1),

tational simplicity we have dropped all band indices. The
coupling VB in Eq. (9) is then of the formZ,V(q)
X(d_p4qCpd_k+qCk), With a corresponding expression for
VN. Hence, these terms describe how the propagatiofisf
modified by the presence of polarization fluctuations in the
system; as we will show in the following, such fluctuations
are induced by the interband polarizatignthus resulting in

a self-interaction-like process, where the interband polariza-
tion Y induces polarization fluctuations through the non-pair-
conserving Coulomb coupling$H®); these fluctuations
propagate in time, which is described by the equations of
motion forB andN (to be derived beloyy and finally couple
back toY, which is described by the ternvaB andV N in Eq.

9.

Next, we derive the equations of motion fBrandN. To
keep our analysis as simple as possible, we employ from the
beginning a number of well-controlled approximations. First,
we assume that before arrival of the exciting laser no two-
particle correlation® andN are presentas will be discussed

correlation functions. Before doing so, we employ a furtherpaiow this is only an approximatiognHence,Y, B, N are
approximation. From the analysis of the nonlinear coherenf,q,ced by the light-semiconductor couplirﬂg;p ’and in

optical responséi.e., the dynamics-controlled truncation at
the level of £2, which involvesY, C, D, B, andN)® it is
known that the main effect of the carrier distribution func-

linear response it suffices to keep in the dynamics only terms
linear inY, B, N (i.e., we neglect contributions proportional
to, e.g.,Y? or YB). Second, we neglect the light coupling in

tionsC andD is to reduce the optical transition rates becausehe equations of motion foB andN (such terms would de-

of state filling (i.e., Pauli blocking. As we expect such ef-
fects to be of minor importance for the problem of our
present concern, in the following we shall neglé€candD.
Thus, our set of dynamic variables is providedYyB, and

N.

B. Equations of motion for Y, B, and N

The program pursued in the following is the derivation of
the equations of motion fol, B, and N. This is done by
using Ehrenfest’s theorem, E@}), together with the defini-
tions forY, B, andN, Egs.(5), (7), and(8) (see also Appen-
dix A). After some straightforward algebra we obtain
eehh

11,22 v

ehhe

iY 1= (€5 + €e5)Yi— 308 “MSP— (V 1220) Y12

eeeh eeeh eehen
T (Vi13s— Var1N1234T V7 43B12.34
hheh |\ hheh \, _ hhhe,, _
- (V2§,34 - 45,32) N1234— V22,43812,34 ©)

(here and henceforth we implicitly assume summation ove

all single-particle indices with exception of those appearing

on the left-hand side Comparison with Eq(5), which was

derived by neglecting non-pair-conserving Coulomb cou-
plings, reveals the appearance of an additional coupling to

the two-particle correlation® and N, which is mediated
through the non-pair-conserving Coulomb interactiort®)
and 5H?). As will be shown in the following, such terms are
needed for a proper description of dielectric screening.
Let us discuss this coupling betweeh and B, N in

slightly more detail. Suppose that the system under investi-
gation is a bulk semiconductor. Hence, the single-particle

states 1,2. .. consist of a wave vectde and a band inder.

scribe interference terms between dielectric screening and
light coupling. Third, we shall employ the so-called
random-phase approximatiotRPA):*21% For By, 3, and
Nj, 34we keep only Coulomb terms that scatter one pair of
particles 12 (34) and leave the other pair 34 (12) unaffected.
In other words, we assume that polarization fluctuations cre-
ated through light-coupling and Coulomb processes, respec-
tively, move independently of each other. Iik-apace repre-
sentation for the polarization fluctuatiof@_,, 4Cpd 4 (Ci)
and(c;d1p+qd_k+qck> one readily observes that these RPA
terms contain all those contributions that involve Coulomb
matrix elementsV(qg) with a momentum exchange aj
which is independent df andp.*®

With these approximations we then find

n h h
iBios/=(ef+ eyt €3+ €4)Bipay

+(Vi—Vits)Braast (Va5 =V )N

+(Varss—Vasad)Broat (Varg—VessoNiza
r

VIS Ve Y (Vars—Vis ) Vaz

VS5V Yo (Vaat~Vaara) Vor

+ (VIS VIS, (10
iN 1237 (€3+ €5 52)N12,34

Vi ViE Nt (Vi Vi S B

~(Viss— VasaN12a— (Vi —Visas) Brosa

(17)

As the light field couples electron and hole states with ap{i et us analyze the various contributions to these equations in

proximately opposite&k values, the optically induced inter-

slightly more detail. On the right-hand side of H40) the
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first term corresponds to the free propagatiopthe terms terms in parentheses. One readily observeskrspace rep-

in the second and third line, respectively, describe Coulomisesentation that for the polarization fluctuations
renormalization processes in the propagatioB@V/B) and  (d_psoCpd—k+oCk) and(c;diqu,kmck) these terms cor-
Coulomb couplings betweed andB (VN); the terms in the respond to Coulomb interactiohgq), where the exchanged
fourth and fifth lines are the source terms that describe hownomentumg is independenbf the momentek and p; the
polarization fluctuations are created through coupling to théemaining terms involve exchanged momenta depending on
interband polarizationsY. In addition, there is a term kandp. The more general expressions of E(d€) and(11),
(veheh_veheh that describes the buildup of polarization Which contain both the direct and exchange contributions

12,347 V14,32 . . .
fluctuations even in the absence of light couplings. Quitehave been given for the purpose of our later discussion about

generally, its appearance is not unexpected since up to noWeDscrglenir;g of th? ?'ethOR-h0|efexcl:Ehange inéerlalction.
we have assumed that the semiconductor ground state is ob- etails of our solution scheme for Eq40) and(11) are

. : - . - .~ _presented in Appendix B. The key to the solution is the
ﬁltr;]egHb(g) Sc::]n?rlé fgl::n_[g_] vzil—ufr:ngi:gvs:\;g(rzIewzt?rtr?r?{eg\icatg? Dysonlike character of the equations of motion BandN.
' ' Yin fact, solving Egs(10) and (11) by iteration we observe

obzetrr\]/e t?at dCto ulomb mttira?.tlons (;rfr?teD?:I(_arctron—hole Xa'rﬁilat the repeated action &f(B+N) precisely reproduces
and thus lead to renormafizations ot the vacuum. As yson’s equation for the screened Coulomb potential

first approximation, in this paper we assume that such renor;\/[“\/m_(Vp)z+ ...]=V+WPV: hereP is the usual

mallzatlons are not of qrumal Importance for the descrlptlonretarded polarization function within random-phase approxi-
of dynamic processes in the propagationYpfand we thus

. mation. Finally, we arrive affor details see Appendix
neglect this term. Y aff pp B

In the equation of motion foN, Eq. (11), we observe in N/ (e h eeee .\ hh.hh ~
. S 7 o 1Y ,=(e;t €)Y+t D> Yi,+ D55 Y

analogy to the dynamics d8 single-particle contributions 1= (€1+ €)1t Dy i(012) Yia Doy g5(w12) Yoz
(first line) and Coulomb renormalizations and couplings _lg g-ietygeh_e&hh  peehh,
(second and third line but no source terms are present. zvo 127 Viio0 " Pryppl @12)
Similar to the semiconductor Bloch equaticriswhich de- + DI 1) — VR v, (12)
scribe the nonequilibrium optical response at the level of : '
two-point functions(i.e., C, D, andY) and where the light with
field drives the electron-hole coheren¥e which, in turn, o
acts as a source term for the electidmwle) occupationsC ) — Dy(ss';w) .,
(D), we here have the situation that Coulomb coupling first P(T.r ?w):f d(ss w)W(r,s,0) —=——-V(s',I'),

. . L w—w+i0
drives the electron-hole pair cohererigenhich, in turn, acts (13)

as a source for the electron-hole pair occupatibn

Equations(9)—(11) are the central equations of this work. [the relation between the real-space and single-particle rep-
Before showing how to solve this set of equations, we introresentations oD is in analogy to Eq(A4)]; D, is related to
duce two further approximations. First, we keep in H4€) the imaginary part of the polarization function through
and (11) only self-interaction-like processes. The electron-D(r,r’;w)=—a"13P(r,r’;w>0) [Egs.(B5) and (B8)]. A
hole coherencery, (Y;3) between the states21(12) is particu!arly_simple expression of E¢L2) follows for static
initially created through the coupling to the light field. In a Screening, i.e., for
self-interaction process, this coherence is transferred through . . ,
Coulomb coupIiF:]g of the electrofhole) to 12 and to a sec- ’ D(r,r';0=0)=3[W(r,r’;0)=V(r,r], (14)
ond electron-hole pair 3fourth line in Eq.(10)]; the second  where the expression in the second line of B) reduces

electron-hole pair 34 propagates in the presence of Coulomfpy [Weghg(O)—VEh'h—e]YE. Thus, in Eq(12) the D terms in

. . . . . 11,2 12,21
.re'n.ormal_|zat|on{th|rq lines in Eqs.(l'O). and (11).] and the the first line describe renormalization effects in the propaga-
initial pair 12 remains unscattered; finally, this coherenc

. Sion of single electrons and holes, respectively, and the re-
petween electron-hole pairs .12 "?‘”d 34 affects th(_a prOpag‘?ﬁaining terms account for the Coulomb coupling between
tion of Y [second and third line in Eq9)]. In addition to the optically excited electron-hole pair

these self-interaction-like processes, there exist also scatter-
inglike contributions: here either the optically induced coher-
ence between electron-hole pair 34 is transferred through

Coulomb coupling to the pair 1Zifth line in Eq. (10)] or the Equation(12) is our final expression. Before analyzing it
coherence between pair 12 is scattered2d<econd lines in  in more detail, let us briefly recall the approximations that
Egs.(10) and(11)]. Such terms, which will be neglected in were adopted in its derivation. First, within the spirit of the
the following, describe higher-order Coulomb terfmsthin dynamics-controlled truncatiBronly dynamic variables ac-
the framework of Green’s functions they would correspondcounting at most for two electron-hole pairs were considered.
to vertex corrections a more detailed discussion of such The electron and hole distribution functio@and D were
scattering contributions has been given in Ref. 13. neglected, since from related work it is known that their
Our second approximation concerns the neglect omain influence is the blocking of optical transitions due to
electron-hole exchange interactions in the dynamid@ afid  state filling. Thus, our set of dynamic variables consists of
N: in Egs. (10) and (11) we only keep the first Coulomb the interband polarization¥, and the two-particle correla-

IV. DISCUSSION
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tions B and N, which account for the coherence betweenfrequency » (see also Ref. 14 for a discussion of the com-
electron-hole pairs and their occupation, respectively. We agsensation between effects due to dynamical screening and
sumed that before arrival of the exciting laser lighB, and  higher-order vertex corrections; the consequences of such in-
N vanish. In the equations of motion fBrandN: we adopted  terplay within our present density-matrix description will be
the random-phase approximatibhwhich assumes that po- discussed elsewhere
larization fluctuations propagate independently of each other; Next, we discuss the screening of the electron-hole ex-
we neglected the direct coupling BfandN to the light field;  change interactions®™". As we saw in the discussion of
only self-interaction-like processes were kept; finally,the screening of the direct Coulomb terms, dielectric screen-
exchange-type interactions were neglected. ing originates from a process where the interband polariza-
Quite generally, none of these approximations is compuljons v induce the electron-hole pair correlatioBsand N:

sory, and all of them could be lifted without introducing yheqe induced polarization fluctuations move independently
major conceptual modifications. However, we have kept ouly¢ ¢, other(random-phase approximatipnand finally
analysis as simple as possible in order to emphasize the twg

primary goals of this work: first, the identification of those _couple .back to the propagation d}/namlcs\bfoleEe self-
terms and approximations that are required within a density'—meracuOn'l'ke proc.esse_s resul_t in the Ferfﬁ&,zzy Ea.
matrix formalism in order to describe dielectric screening;(13), where the vertices 22and 11, respectively, reflect the
and second, to discuss the respective differences between di@upling ofY to the electron-hole pair coherenBeand the
approach and the combined GWA and Bethe-Salpeter equ&ack action of8, N on'Y; finally, the propagation dynamics
tion approach. of B andN is hidden inD, which has to be determined from

Within our density-matrix description, the central quanti- the Dysonlike equation for the screened Coulomb potential
ties are the optically induced interband polarizatiofsin ~ W. Let us now return to the full expression of E¢$0) and
general, their knowledge allows the full calculation of the (11), which, within the approximations adopted, contain all
optical absorption spectra. However, as discussed in Sepossible source terms. One immediately recognizes that nei-
Il C, the temporal evolution oF is in addition governed by ther these source terms nor the couplindoN to Y, Eq.(9),
the two-particle correlationB and N, which, within a self-  can reproduce a screening term of the fafrfi™"®. Hence,
interaction-like process, are induced through the non-pairwithin our approximation scheméRPA) the electron-hole
conserving Coulomb couplingsH®) and sH?); the details ~ exchange interactions must remain unscreened. Future work
of this coupling, Eqs(9)—(11), reflect the essential features will address possible screening contributions and vertex cor-
of dielectric screening where an electrgmole) polarizes its  rections beyond the random-phase approximation.
surrounding mediuntdescribed by the source terms 8}; Finally, we briefly comment on one of the well-known
in turn, the hole(electron not only feels the bare Coulomb shortcomings of our density-matrix description. From Egs.
term exerted by the first carrier but also the field induced by12) and (B5) one readily observes that thmrenormalized
the polarization cloudcf. terms in the last two lines of Eq. single-particle energies® ande” enter into the calculation of
(12)]; in addition, this induced polarization cloud also affectsthe screened Coulomb potential and of the polarization func-
the propagation of the carrig¢cf. D terms in the last two tion P. This result differs from the corresponding GWA and
lines of Eq.(12)]. Thus, the screening of the electron-hole Bethe-Salpeter equation result and is due to our neglect of
interaction and the quasiparticle renormalizations originaténigher-order correlation function&e., correlations between
from the samephysical process. three or more electron-hole pairsHowever, it can be

It is interesting to compare this finding with the respectiveshowrt® that inclusion of certain types of Coulomb interac-
GWA and Bethe-Salpeter equation result. Let us first concentions at this level of many-particle correlations indeed results
trate on the case of static screening, Ef). Inspection of  in a renormalization of the single-particle energiésande".
the quasiparticle renormalizations of Efj2) with the results  For the sake of brevity, here we shall not present the details
of the GWA approachreveals that these renormalizations of such analysis.
closely resemble the screened exchange and Coulomb hole When defining the Coulomb interactions of our starting
self-energy termgnote that this comparison is somewhat Hamiltonian, Eq(2), we assumed that exchange interactions
complicated because of our use of the electron-hole picturare fully accounted for within the DFT calculations. Appar-
and the missing screening of the electron-hole exchange irently, this assumption no longer holds for DFT calculations
teractions$. If dynamic screening is considered, the inelastici-based on the celebrated local-density approximati@n? ).t
ties wy, of D(wy,) in EQ. (12) are given by the differences Inspection of Eq(2) reveals that in this case the substracted
between the light frequency and the electron-hole transi- exchange contributions would be of the form(r,r’)= &(r
tion energieseS+ €. Assuming that the exciton states are —r")v,PA(r); as consequence, ifH only the Hartree con-
composed of electron and hole single-particle states with ertributions with the filled valence band would be cancelled
ergies close to the band gap, one immediately notesdhat exactly(with no corresponding cancellation for the exchange
~ei+ 62; thus, static screening of the direct Coulomb inter-termg and the local exchange potential would give rise to
actions is expected to be a good approximation. This result ieerms proportional t@'d" anddc. In the equations of mo-
different with respect to the GWA prescription, where thetion for the dynamic variables these local-exchange contri-
inelasticities of the quasiparticle renormalizatidfisst line  butions would give rise to additional couplings between vari-
of Eq. (12)] are the quasiparticle energies themselves, andbles containing different numbers of electron-hole pairs.
the electron-hole interaction is screened at the opticaWithin the spirit of perturbation theory, such couplings are
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due to the fact that the semiconductor ground state is not ACKNOWLEDGMENTS
given by simply filling the DFT-LDA states; rather, the non-
local exchange interactions give rise to admixtures of excite%i
DFT-LDA states, which, within the electron-hole picture,
correspond to dynamic variables accounting for different
numbers of electron-hole pairs. However, it is well known APPENDIX A

that in many cases the single-particle renormalizations to the | thjs Appendix we discuss the transformation of E2).

DFT-LDA states simply lead to a rigid shift of the calculated tg the electron-hole picture. The relation between the field
band gap(scissor operatprand that the calculated wave operators andc, d is given by

functions remain unchanged. In this case, the results of our
analysis remain valid and only the electron-hole exchange

| gratefully acknowledge most helpful discussions with
ce Ruini, Marilia Caldas, and Elisa Molinari.

. . . .. T _ e T h
interactionsve™e, which correct for the missing Coulomb ¥ (r)—; [d’l(r)]*cl—’_; $3(r)d; (A1)
exchange interactions because of optical excitation, should _ _ o .
be computed within the local-density approximation. Inserting this expression into E(2), we obtain after some
straightforward algebra
0)_ 1,\,e8ee 1 1T hhhh T 1 _ \seehh
V. CONCLUSIONS AND SUMMARY SHO) = 3 (Vi1 5,01C,01C2+ Vi 5, drytida) — (Vir
In conclusion, starting from aab initio band structure - %"’gle)c%dgdzcl, (A23)

calculation we have shown how to describe dielectric screen-
ing within a density-matrix description. We have identified 5H(l)ZViZ%CId;C%Cs—ViggcldzdgderV%ggiC%CsdzCl
those dynamic variables and approximations that are re- ’ ’ '

quired at the lowest level of approximatigrandom-phase — VA odidadcy , (A2b)
approximation. We have discussed that static screening is ’
expected to be a good approximati@n contrast to the cor- SH® =1 (veheheTcldld] + Vhehed,d,cacy), (A20)

responding Green’s function resuftsyhich seem to favor S ) ) ]
screening at the optical frequendiesience, our analysis (W€ assume an implicit summation over all single-particle
suggests calculation of the optical absorption spectra frorindices the commutation relations betweerd and the vari-
the solutions of the “excitonic eigenvalue problef® ous Coulomb terms are

(0)7_yseeee t . . ,eehh ehhe .t
[c1,6H ]_V11,330503C1 (V11,33 V13,31)d§d3(:l’

(5 + ) Wipm (WiTHH0) ~ Vi3 V=BV, (15) (A3
0)7_/hh,hh —  /hhee | heeh _f —
[d2’5H( )]_V22,33d§d3d2 (V22,33 2332 C§C3d2'

with E, and ¥* the exciton energies and wave functions, (A3b)

respectively(with proper summation over barred indiges ceeh . eeeh ehhh it ot
Here, we have assumed that single-particle renormalizations [C1,8HM]=(Vi25,— Vool pckdicr— Viy 3dydyds
(scissor operator, GW correctioriead to a rigid shift of the cehey o

calculated band gap, witk®" the renormalized single- +V11,4994C5CT (A3c)
particle energiegsee Eq(12) for the more complete expres- N hheh \ hheh 1.t . ,ehee t t
sion]; the W's are the Coulomb interactions screened within [da, SHM == (V355 — Vip'sp) 30405~ V15 5C1C4Cs

RPA, where the dielectric function is computed at zero fre- hh.he B
guency(static-screening approximatipnsing the renormal- +V2§43d403d2, (A3d)
ized single-particle energies™"; finally, Ve"® are the un- heh
; ) e (2)7=\seheh t 1
screened electron-hole exchange interactions; within LDA, [C1,0H]=V 5 3,C3d,d7, (A3e¢)

these terms should be computed within the local approxima- eheh .
tion. In the optical spectra, the optical transition energies are [dp,8H®] =~ V37 cldlc (A3f)
provided byE,, and the respective oscillator strengths are,
given by |3 ;W iM552.

It is hoped that our approach might serve as an alternative>
to the hitherto used GWA and Bethe-Salpeter-equation ap- _ 1 _ _
proaches. Its advantage lies in its conceptual simplicity: only VM'_WZJ d(rr’) O () D (1), (A4)
some basic knowledge about statistical mechanics and 1z lr—r’] t 22
Heisenberg's equations of motion are requifasl opposed to with
the more sophisticated framework of Green’s functjoifs
nally, this work might help to extend the variety of tech- ee e oy e
niques developed recently within the field of semiconductor 1 (N=[¢(N]" 410, (AS3)

optics for the description of the nonlinear optical response to hh h h
first-principles studies. O (N=[¢(N]* p1(r), (A5b)

Finally, the Coulomb matrix elements in E@\2) are defined
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<I>i£‘(r)=[¢‘i(r)¢2(r)]*, (A5c)  With the polarization in random-phase approximation
DTN = BN BS5(1). (B8 =S PEANDIS(r)  DLS(NDS)
J ,w)= - .
B | w—e—e)+i0" wtelt+el+iot
APPENDIX B (B5)

In this Appendix we sketch the derivation of our final

expressior{12). Without loss of generality, in linear response One readily recognizes that E(B4) closely resembles

Dyson’s equation for the screened Coulomb poteniial

£.671". SinceY, B, andN are driven by the light field, their "Which, in shorthand notation, reatié=\/+ WPV. Together

time dependence is alse '“!. Hence, keeping only self-
interaction-like processes and direct Coulomb terms, we find

1
for B andN the Dysonlike equations W(r,r'; =f K(sr'; B
y q (r,r';w) dﬁrTSI (sr';w), (B6)
venheg o veEneN Lo
B, =348 237 Taaziiizs g whereK is the inverse dielectric functiolf,we immediately
12,34 w1— €€~ el +i0" 12,34 obtain B+ N)=KB?. Inserting this expression into E(B3)
we find after some straightforward calculations
vheheg o+ Ve Lo
_ ‘4343 12,34 43,34' V12,34 N, e h 1 —iotaaeh eehh ehhe .\,
Nip 34~ ot St tior (B1) IY1o=(e1+€3) Y= 308 M= (V75— Vi) Y12
With w1,=0— e~ €} and eeeh, 1 ehee,,_
12 v T Wi gs(012)— e tiot V34,neY12
eeehy, hh,ehy, _ Wi~ €37 €471
B0 _ 11347127 V3534712 (B2) 1
12,34~ h .
w1y~ €5— €4 +i0" +W2%§2(w1§) S §Zjh§hY§
W12~ €Ex— €
Here, the infinitesimal imaginary part0* has been 12"
introduced to ensure causality. Next, it turns out to be con- ceeh 1 ehhh
venient to introduce the mixed representatioBg,(r) Wi o) ———F 7 Vaun iz
=3 34D5)(r)B1o,as and Nyo(r) = 234‘1’25(0'\112,34- The cou- w1~ €3 €110
pling betweenB, N andY [second and third line in Eq9)]
hh,eh N ehee,
can then be cast to the form —W2234(w12) ——— Va1 (B7)
W1 €3 €4+|O
1
j d(rr’) —{DIHN[Bra(r')+Npp(r')] with the matrix elements ofV defined in analogy to Eq.
r=r'| (A4). Finally, in case of time-reversal symmetry the wave
hh , , functions can be chosen real. Hence, the polarizé®ids of
—®(N[Bra(r) +Ngz(r) T} (B3 oo P

(note our neglect of exchange interactipnBhe sum ofB
and N, which appears on the right-hand side of E83), is
obtained by summing EqgB1) and transforming to the
mixed representation fd8 andN. We obtain

P(r,r’;w)=f do'Dy(r,r';w")
0

1

>< - b
w—w' +i0" wteo' +i0"

(B8)

B 1)+ Nusr) = | ()P ond
. with Do(r,1"; ) =S5, DS PI(r') 8(w— e~ €f), and we
X[B1xAs') +Nux(s)]+B1xr), (B4  arrive after some straightforward algebra at Ep).
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