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Abstract

We study the phonon-induced dephasing dynamics in optically excited semiconductor quantum dots within the

frameworks of the independent Boson model and optimal control. It is shown that appropriate tailoring of laser pulses

allows a complete control of the optical excitation despite the phonon dephasing, a finding in marked contrast to other

environment couplings.
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1. Introduction

Quantum control in semiconductors has re-
cently become a subject of enormous scientific and
technological interest [1,2], motivated by the
tremendous success of quantum optics in atomic
and molecular systems [3], the emerging field of
quantum information processing [4,5], and the
high standards of semiconductor opto electronics.
The primary goal in the application of quantum
control is to fully exploit the quantum properties
e front matter r 2005 Elsevier B.V. All rights reserve
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of quantum systems—e.g., atoms, molecules, or
solids—, and to hereby bring the system into some
highly non-classical state or to steer it through a
sequence of desired states, the latter being a point
of central importance for quantum computation
applications. Quantum control is usually achieved
by transferring the coherence from an external
control, e.g., a laser pulse, to a quantum coherence,
which allows for isolated systems to set deliber-
ately the quantum mechanical state vector [6].
Isolated quantum systems are idealizations which
cannot be realized since any system interacts with
its environment. Through such environment cou-
plings, the quantum system becomes entangled
with the environment in an uncontrollable fashion,
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which leads to decoherence, a process within which
the pureness of the quantum state and its
controllability becomes degraded.
Within the field of quantum control one is

seeking for control strategies that allow to steer
the quantum state evolution despite the presence
of decoherence. Efficient control strategies are
known for simple systems, such as the celebrated
stimulated Raman adiabatic passage control of a
generic three-level system [7], which has found
widespread applications in atomic systems.
Although there are several proposals for related
schemes in semiconductor nanostructures [8,9], it
has become clear that, in many cases of interest,
the description of a solid state system in terms of
generic few-level systems is overly simplified and
cannot account for the enhanced environment
couplings in the solid state. A particularly inter-
esting case is found in semiconductor quantum
dots [10,11], often referred to as artificial atoms,
where the optical excitation of an electron–hole
pair in the state of lowest energy causes the
deformation of the surrounding lattice but relaxa-
tion is completely inhibited because of the atomic-
like carrier density of states. In coherent optical
spectroscopy [1,2], which is sensitive to the
optically induced coherence, this partial transfer
of quantum coherence from the electron–hole state
to the lattice degrees of freedom, i.e., phonons,
results in dephasing [12–14]. It should, however, be
noted that, contrary to other decoherence channels
in solids where the system’s wavefunction acquires
an uncontrollable phase through environment
coupling, in the independent Boson model the loss
of phase coherence is due to the coupling of the
electron–hole state to an ensemble of harmonic
oscillators which all evolve with a coherent time
evolution but different phase. This results in
destructive interference and dephasing, and thus
spoils the direct applicability of coherent carrier
control. On the other hand, the coherent nature of
the state-vector evolution suggests that more
refined control strategies might allow to suppress
dephasing losses. To address this problem, in this
paper we examine phonon-assisted dephasing
within the framework of optimal control [15–17]
aiming at a most efficient control strategy to
channel the system’s wavefunction through a
sequence of given states. We will find that
appropriate tailoring of laser pulses allows to
promote the system from the ground state through
a sequence of excited states back to the ground
state without suffering significant dephasing losses.
Despite the widespread use of the independent
Boson model, e.g., for the description of optical
properties of localized states in solids or MöXbauer
spectroscopy, to our best knowledge no such
control strategy for suppression of environment
losses has hitherto been reported in the literature.
2. Independent Boson model

In our theoretical approach we follow Refs.
[13,14,18] and start with the usual independent
Boson Hamiltonian. We describe the dot states in
terms of a generic two-level system, with ground
state 0 and excited state x, assuming a negligible
contribution of excited exciton states due to the
typically large energy splittings of several tens of
meV [10] and of biexcitons, which, in optical
experiments, can be achieved through appropriate
polarization filtering. This two-level system is
coupled to a reservoir of harmonic oscillators such
that the interaction only occurs when the system is
in the upper state [19]:

H ¼
X
l

gl ðal þ a
y

lÞ jxihxj þ
X
l

ol a
y

lal

�
1

2
ðOjxih0j þ O
j0ihxjÞ. ð1Þ

Here, the bosonic degrees of freedom l with
energy ol are described by the field operators al

and a
y

l, and gl is the coupling constant between x

and l. We describe the light-matter coupling
within the usual dipole and rotating-wave approx-
imations [20] with O the Rabi frequency, and
consider a spherical dot model and acoustic
deformation potential interactions as the only
coupling mechanism. For the description of the
time evolution of the two-level system in the
presence of the phonon coupling (1), we adopt a
density-matrix approach with u ¼ hri the Bloch
vector, sl ¼ hali the coherent phonon amplitude,
and ul ¼ hrðal � slÞi the phonon-assisted density
matrix as dynamic variables [8,18,21]. The result-
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ing, somewhat lengthy, equations of motion for u,
sl, and ul, as well as further details of our model
can be found in Refs. [8,21].
While in the absence of phonon coupling OðtÞ

would simply rotate u from �ê3 through a series of
excited states back to �ê3, the phonon coupling of
Eq. (1) entangles the two-level system with the
lattice degrees of freedom and leads to dephasing.
This can be seen in Fig. 1(b) which shows that
after the action of the Gaussian 2p-pulse the Bloch
vector remains in an excited state. From the inset
of the figure we observe that the final deviation of
u from the initial state �ê3 is not due to an
incomplete rotation of u but to a loss of norm of
kuk, i.e., the system has suffered dephasing losses.
3. Optimal control theory

In the following we shall address the question
whether such losses are inherent to the system
under investigation or can be suppressed by more
sophisticated control strategies. To this end, we
employ the framework of optimal control theory,
which has found widespread applications in
engineering, economy, and medical sciences, but
has received only little attention in the field of
−15 −10 −5 0 5 10 15
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

C
on

tr
ol

 (
ω

c)
 

Gauss
Optimal

Time (1/ωc)(a) (b

Fig. 1. Results of our calculations with a Gaussian 2p (dashed lin
temperature and an electron–phonon coupling of ap ¼ 0:1 [8]. Panel (a
insets the trajectories of the Bloch vector uðtÞ. For the Gaussian 2p-pu
interactions. For the optimal control decoherence losses are completely

ê3 at time zero and �ê3 at T.
solid-state spectroscopy. It is a mathematical
device that allows for a general determination of
efficient control strategies [15–17]. Within the
context of quantum optimal control, its key
elements are the quantum system, described by
the dynamic variables xðtÞ (i.e., u, sl, and ul), the
external control field OðtÞ, and the objective

functional Jðx; �Þ. The functional J expresses the
objective of the control, which we quantify
through

Jðu;OÞ ¼
1

2

Z T

�T

dtbðtÞkuðtÞ � ê3k
2þ kuðTÞ þ ê3k

2

�

þg
Z T

�T

dt kOðtÞk2
�
, ð2Þ

with b a Gaussian centered at time zero with a
narrow full-width of half maximum, and g a small
constant [8,21]. In other words, we are seeking for
solutions where u passes through the excited state
ê3 at time zero and goes back to the ground state
�ê3 at T. Optimal control theory accomplishes the
task to determine a control which minimizes J,
subject to the condition that x fulfills the dynamic
equations describing the system propagation in the
presence of the control and environment cou-
plings. This is done by introducing Lagrange
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multipliers ~x for the constraints, and turning the
constrained minimization into an unconstrained
one. Within this framework, we can derive a set of
equations for x, ~x, and O, that has to be fulfilled
simultaneously. In general, analytic solutions can
be found only for highly simplified systems,
whereas numerical calculation schemes have to
be adopted for more realistic systems. A numerical
algorithm for the solution of the optimality system
was formulated in Ref. [17].
4. Results and conclusions

Results of our optimal-control calculations are
shown in Fig. 1. Most remarkably, we can indeed
obtain a control field for which uðtÞ passes through
the desired states of ê3 at time zero and �ê3 at T.
Thus, appropriate pulse shaping allows to fully

control the two-level system even in the presence of

phonon couplings. We emphasize that, with the
exception of the somewhat pathological quantum
‘‘bang–bang’’ control [22] where the system is
constantly flipped to suppress decoherence, no
such simple control strategy for suppression of
environment losses is known in the literature. Our
surprising result is attributed to the fact that in the
process of decoherence it takes some time for the
system to become entangled with its environment.
If during this entanglement buildup the system is
acted upon by an appropriately designed control,
it becomes possible to channel back quantum
coherence from the environment to the system.
Similar conclusion also hold for finite but low
temperatures [21], which clearly highlights the
strength and flexibility of optimal quantum
control.
In conclusion, we have studied the phonon-

induced dephasing dynamics in optically excited
semiconductor quantum dots within the frame-
works of the independent Boson model and
optimal control. We have shown that appropriate
tailoring of laser pulses allows to control the dot
states without suffering significant dephasing
losses, not only at the lowest but, though exceed-
ingly difficult, also at elevated temperatures. The
requirements for such laser-pulse shaping are well
within the possibilities of presentday technology
[15]. To highlight the applicability of quantum
control, in this work we have focused on laser
pulses with durations of a few picoseconds where
the effects of dephasing losses are most pro-
nounced. For other control objectives it might be
advantageous to use shorter or longer laser pulses,
for which control becomes substantially simplified,
or to rely on more advanced control strategies.
Besides their importance for future quantum-
information processing applications, our findings
might be also useful to address more fundamental
questions regarding the detailed nature of deco-
herence in solids.
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