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ABSTRACT: Electron energy loss spectroscopy (EELS) has
emerged as a powerful tool for the investigation of plasmonic
nanoparticles, but the interpretation of EELS results in terms
of optical quantities, such as the photonic local density of
states, remains challenging. Recent work has demonstrated
that, under restrictive assumptions, including the applicability
of the quasistatic approximation and a plasmonic response
governed by a single mode, one can rephrase EELS as a
tomography scheme for the reconstruction of plasmonic
eigenmodes. In this paper we lift these restrictions by formulating EELS as an inverse problem and show that the complete
dyadic Green tensor can be reconstructed for plasmonic particles of arbitrary shape. The key steps underlying our approach are a
generic singular value decomposition of the dyadic Green tensor and a compressed sensing optimization for the determination of
the expansion coefficients. We demonstrate the applicability of our scheme for prototypical nanorod, bowtie, and cube
geometries.
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Electron energy loss spectroscopy (EELS) is a powerful tool
for the investigation of plasmonic nanoparticles.1,2 EELS is

a technique based on electron microscopy and measures the
probability of a swift electron to lose part of its kinetic energy
through plasmon excitation as a function of electron beam
position. Following first proof of principle experiments,3,4 in the
last couple of years EELS has been exhaustively used for the
investigation of plasmon modes in single and coupled
nanoparticles.
Despite its success, the interpretation of EELS data in terms

of optical quantities, such as the photonic local density of
states5 (LDOS), remains challenging.6,7 To overcome this
problem, in ref 8 we formulated EELS as a tomography
scheme9 and showed that under certain assumptions a
collection of EELS maps can be used to reconstruct the
three-dimensional mode profile of plasmonic nanoparticles. A
similar approach was presented independently by Nicoletti and
co-workers,10 who demonstrated the applicability of the scheme
for a silver nanocube. Extracting three-dimensional information
through sample tilting was also shown for a split-ring
resonator11 and a nanocrescent using cathodoluminescence
imaging.12

The problem with EELS tomography is that the measure-
ment signal (the loss probability) is not simply the integral of
local losses along the electron trajectory but involves a two-step
process where the swift electron first excites a particle plasmon
and then performs work against the induced particle plasmon
field. This leads to a nonlocal response function, which allows
for a tomographic reconstruction only under restrictive
assumptions, such as the applicability of the quasistatic
approximation or a plasmonic response governed by a single
mode. In this paper we use additional preknowledge, namely,

that the particle plasmon fields are solutions of Maxwell’s
equations and that the dyadic Green tensor5 can be
decomposed into modes, in order to rephrase EELS in terms
of an inverse problem. We develop a rather generic model for
the EELS probabilities, which depends on a few parameters,
and determine the parameters such that the model data match
as closely as possible the measured data. Within this approach
we are able to obtain the most accurate reconstructions of the
dyadic Green tensor, which, in turn, allows us to extract the
three-dimensional photonic LDOS from a collection of tilted
EELS maps. We demonstrate the applicability of our scheme
for prototypical nanorod, bowtie, and cube geometries.

■ THEORY

We start by analyzing EELS within a semiclassical framework,1

where a swift electron propagating with velocity v loses a tiny
part of its kinetic energy by performing work against the electric
field E[re(t)] produced by itself. For sufficiently large velocities,
we can ignore velocity changes in the electron trajectory re(t) ≈
R0 + vt, with R0 being the impact parameter. It is convenient to
split E = Ebulk + Esurf into a bulk contribution13 Ebulk,
corresponding to the electric field within an unbounded
homogeneous medium, and a surface contribution Esurf,
corresponding to field modifications (including surface
plasmons) from the interfaces between different materials.
Bulk losses are due to Cherenkov radiation and electronic
excitations,1 and the loss probability is obtained by simply
multiplying the loss probability per unit length γbulk

j (ω), inside
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material j and for loss energy ℏω, with the path length j of the
electron inside material j,

∑ω γ ωΓ =( ) ( )
j

j
jbulk bulk

(1)

Bulk losses can be interpreted in terms of local scatterings
where the electron emits a photon or excites electrons in the
dielectric material and loses part of its kinetic energies. To
compute the surface loss probability, we integrate the work dW
= eEsurf·vdt performed by the electron over the entire trajectory
and decompose it into the different loss energies ℏω according
to

∫ ∫ ω ω ω= · = ℏ Γ
−∞

∞ ∞
W e t tv E r[ ( )]d ( )dsurf e

0
surf (2)

Thus, the energy loss probability becomes1

∫ω
π ω

ωΓ =
ℏ

·ω
̂

−∞

∞
−e

e t tR v E r( , ) Re{ [ ( ), ]}di t
vsurf surf e

(3)

where we have explicitly indicated the dependence on the
electron propagation direction and the impact parameter
through Rv ̂ = (v,̂R0). To understand the physical process
underlying eq 3, it is convenient to introduce the current
distribution J(r,t) = −evδ(r − re(t)) of the swift electron and
the dyadic Green tensor5 G(r,r′,ω) that relates for a given
frequency ω a current source at position r′ to an electric field at
position r via E(r,ω) = iωμ0G(r,r′,ω)·J(r′,ω). The loss
probability of eq 3 can then be rewritten in the form

∫ω
μ
π

ω ω ωΓ =
ℏ

* · ′ · ′ ′̂R J r G r r J r r r( , ) Im{ ( , ) ( , , ) ( , )}d dvsurf
0

(4)

where dr denotes integration over the spatial variable r.
Contrary to eq 1, the above expression describes a genuinely
nonlocal self-interaction process where the electron first
induces a field (through excitation of a surface plasmon) and
then performs work against the induced field.
In ref 6, the authors tried to interpret eq 4 in terms of the

photonic local density of states5 (LDOS)

ρ ω ω
πω

ω= ̂*· · ̂̂ r n G r r n( , )
6

Im{ ( , , ) }n 2 (5)

which is of paramount importance in the field of nanooptics
and describes how the decay rate of a quantum emitter located
at position r and with dipole moment oriented along n̂
becomes modified in the presence of a structured dielectric
environment. While such interpretation can be formally
established for nanostructures with translational symmetry
along one spatial dimension, it becomes problematic for
nanoparticles with generic shape.7

A different interpretation of eq 4 in terms of a tomography
scheme was formulated independently in refs 8 and 10. As a
preliminary step, let us consider the bulk losses of eq 1 for a
given Rv ̂ value. Then, each point r inside a medium j
contributes with γbulk

j to the total loss rate. Within the field of
tomography9 it is well-known that the three-dimensional profile
of γbulk(r) can be uniquely reconstructed from a sinogram,
where bulk losses are recorded for all possible propagation
directions v ̂, using the inverse Radon transform. Such
tomography reconstruction is significantly more complicated
for the surface losses of eq 4 since Γsurf is not the sum of local
losses (as in the bulk case) but governed by the self-interaction

process of excitation and back-action. Only for certain, rather
restrictive simplifications, a viable tomography scheme can be
formulated:8,10 the nanoparticles must be small enough such
that the quasistatic approximation can be employed; the
plasmonic response must be governed by a single plasmonic
eigenmode; the sinogram must only consist of electron
trajectories that do not penetrate the particle; the sign of the
eigenmode potentials must be unique. Although it has been
demonstrated that reconstruction is possible in certain cases,8,10

it is obvious that the above restrictions provide a serious
bottleneck for general plasmon field tomography.
In this paper we formulate a significantly more general

scheme, which approaches the reconstruction as an inverse
problem rather than a tomography scheme. We first describe
our approach and discuss possible problems and generalizations
at the end. First, we decompose the dyadic Green tensor into a
number of modes Ek(r,ω)

∑ω ω ω′ ≈ ⊗ ′
=

CG r r E r E r( , , ) ( , ) ( , )
k

n

k k k
1 (6)

where Ck controls how much the different modes contribute to
the decomposition. In the following we only consider positions
r and r′ outside the plasmonic nanoparticle and assume that
Ek(r,ω) is a solution of Maxwell’s equations. The expansion of
eq 6 is generally possible because G is a symmetric matrix that
can be submitted to a singular value decomposition, with Ck
being the singular values and Ek being the orthogonal matrices.
In this respect, eq 6 is similar to a wave function expansion in
quantum mechanics into a complete set of basis functions.
To be useful as a reconstruction scheme the modes Ek(r,ω)

should be sufficiently well adapted to the problem such that a
limited number n suffices for a suitable representation of
G(r,r′,ω). Possible modes are quasi normal modes of the
plasmonic nanoparticles,14−17 which have recently received
considerable interest, or natural oscillation modes of our
boundary element method approach (see Methods). With
these modes, the surface losses of eq 4 become

∑ω
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π
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=
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where Ak
±(Rv,̂ω) = ∫ −∞

∞ e±iωz/v v·̂Ek(R0 + vẑ,ω)dz is the
averaged mode profile along the electron propagation direction.
We can now formulate our inverse problem as follows. Suppose
that one has measured EELS spectra Γexp for a given loss energy
and for various impact parameters and electron propagation
directions. We then determine the coefficients Ck such that the
entity of measurement data differs as little as possible from the
model data of eq 7,

ω ωΓ − Γ̃̂ ̂R Rmin
1
2

( , ) ( , )
C L

v vexp surf

2

k
2 (8)

resulting in a least-squares optimization (we adopt the norm
definitions ∥x∥L2

2 = ∑i|xi|
2 and ∥x∥L1 = ∑i|xi|). Alternatively, in

this work we will use a compressed sensing optimization18,19

μ
ω ω+ Γ − Γ̃̂ ̂

⎡
⎣⎢

⎤
⎦⎥C R Rmin

1
2

( , ) ( , )
C

k L Lv vexp surf
2

k
1 2 (9)

which attempts to minimize the moduli of the expansion
coefficients, therefore the scheme is often referred to as a L1-
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optimization, and μ is a parameter that allows to switch
between genuine compressed sensing and least-squares
optimizations.19 For a sufficiently small number of expansion
modes Ek, the determination of the expansion coefficients Ck is
a highly overdetermined problem since the measured loss data
can be assembled for many propagation directions and impact
parameters Rv ̂. The only preknowledge entering our
optimization is the self-interaction-type scattering process of
the electron loss, eq 4, and the assumption that the dynamics of
the electric fields outside the plasmonic nanoparticles is
governed by Maxwell’s equations. Importantly, once the
coefficients Ck are determined, we have (approximately)
reconstructed the dyadic Green tensor of eq 6, which allows
us to compute all electrodynamic properties including the
photonic LDOS.

■ RESULTS

To prove the applicability of our reconstruction scheme, we
generate the “experimental” EELS data Γexp using the
simulation toolbox MNPBEM for plasmonic nanoparticles.20,21

We first consider a silver nanorod with dimensions 200 × 65 ×
30 nm3 and compute the loss spectra for the three selected
impact parameters indicated in Figure 1a. The two prominent
loss peaks at low energies can be attributed to the dipole and

quadrupole plasmon modes. Corresponding EELS maps at the
resonance frequencies are shown for a few selected electron
propagation directions (rotation angles) in Figure 1c. The
mode profiles are reminiscent of the dipole and quadrupole
surface charge distributions.8 For the decomposition of eq 6
into modes Ek(r,ω), we use the information about the
nanoparticle shape, which in experiment can be obtained
from additional high-angle annular dark-field (HAADF)
data22,23 and compute the 50 natural oscillation modes of
lowest energy (see Methods). Figure 1b shows the modulus of
coefficients Ck obtained from either a compressed sensing or
least-squares optimization. Although the two approaches give
quite different Ck distributions, the back-projected EELS maps,
obtained by assembling the dyadic Green tensor using eq 6 and
computing Γ̃surf from eq 4, both are in almost perfect agreement
with the original Γexp maps.
Having obtained the Ck values from the optimizations of eqs

8 and 9, we can use eq 6 to approximately reconstruct the
dyadic Green tensor, which allows us to compute any
electrodynamic response function for the plasmonic nanorod.
In the following we consider the projected photonic LDOS of
eq 5. Figure 2 shows the true and reconstructed LDOS maps
and compares the quality of compressed sensing and least-
squares optimizations. In particular, the inspection of panels

Figure 1. EELS spectra and maps for a silver nanorod. (a) EELS spectra recorded at the positions indicated in the inset. The peaks at approximately
1.5 and 2.7 eV are attributed to the dipole and quadrupole plasmon mode. (b) Mode decomposition of the dipole and quadrupole mode from the
collection of rotated EELS maps, using either the least-squares minimization of eq 8 or the compressed sensing optimization of eq 9. For each mode,
the coefficients Ck are normalized to unity. (c) Selected EELS maps for dipole (upper part) and quadrupole (lower part) mode and for different
electron propagation directions (rotation angles), as computed with the MNPBEM toolbox.20,21 (d) Back projected EELS maps for the Ck
distribution obtained from the compressed sensing optimization, using eq 6 for the Green function decomposition and eq 4 for the calculation of the
loss probabilities. (e) Same as panel (d) but for Ck distribution obtained from the least-squares optimization.
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(b) and (c), which report the LDOS in a plane 20 nm above
the nanorod, reveals that the compressed sensing results are in
very good agreement with the true LDOS values, whereas the
least-squares optimization completely fails to provide even
qualitative agreement. This finding seems at first sight
surprising since both optimization approaches were previously
capable of reconstructing the experimental EELS data almost
perfectly, as shown Figure 1c−e. We attribute the least-squares
shortcoming to the fact that the EELS loss of eq 4 is governed
by the long-range tails of the particle plasmon field
distributions, with which the passing electron predominantly
interacts, whereas the LDOS of eq 5 is governed by the short-
range evanescent field components. Thus, when the opti-
mization has no strong bias on the Ck determination, it comes
up with the proper long-range components, resulting in high-
quality EELS maps shown in Figure 1e, but fails for the short-
range components, which contribute little to the minimization
function of eq 8. In contrast, the compressed sensing
optimization of eq 9 seeks for a Ck distribution with as few

nonzero components as possible. For suitable basis functions
Ek, this bias helps to properly select those modes that
contribute little but still noticeably to the loss probability of
eq 4. We emphasize that such a bias for selecting a sparse
expansion distribution is by no means unique to the problem of
our present concern, but has been previously highlighted in
various studies, for example, in the context of plasmon
tomography10 or single-pixel cameras,24 and lies at the heart
of the compressed sensing algorithm.
An advantage of compressed sensing is that the reconstruc-

tion can, in general, be performed, even with a very limited
amount of measurement data, and the quality of the
reconstructed data is usually not strongly affected by noise.18

In Figure 3 we show reconstructed EELS and LDOS maps for
the small number of impact parameters and rotation angles
shown in the first row of measurement data. As can be seen, the
quality of the reconstructed data is extremely good, despite the
limited amount of measurement data. This might be beneficial
for EELS experiments that typically suffer from a limited

Figure 2. Photonic LDOS of eq 5 and reconstructed LDOS. (a) Three-dimensional LDOS distribution, as computed with the MNPBEM toolbox
(LDOS),20 and the distributions reconstructed from the compressed sensing (CS) and least-squares (LSQ) optimizations. The projected LDOS
ρn̂(r,ω) is shown for different projection directions n̂ = x,̂y,̂z.̂ (b) LDOS density map in a plane 20 nm above the nanoparticle, as reconstructed from
the compressed sensing optimization. The lower (upper) part of each panel shows the dipole (quadrupole) mode, the left (right) part shows the true
(reconstructed) LDOS. (c) Same as panel (b) but for least-squares optimization. The reconstructed least-squares LDOS has also negative
contributions, which are set to zero for clarity.
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amount of rotation angles (missing wedge problem) and where
the number of measurement points is often kept low to avoid
sample contamination.
Finally, in Figure 4 we compare LDOS maps with

reconstructed maps for (a,b) a bowtie nanoparticle and (c,d)
a cube. For the bowtie geometry, we show the LDOS for the
two plasmon modes of lowest energy, which can be labeled as
bonding and antibonding according to the parallel and
antiparallel orientation of the dipole moments of the individual
nanotriangles.25 The agreement between the true and
reconstructed LDOS maps is very good; in particular, one
can clearly observe the strongly increased LDOS enhancement
in the gap region. For the cube, we show the dipole and corner
modes of lowest energy,10 finding fair agreement between the
true and the reconstructed LDOS maps. We attribute the small
differences to problems of our algorithm when dealing with
degenerate modes of symmetric particles, which might be
improved by explicitly accounting for mode symmetries.26

■ SUMMARY AND DISCUSSION

To summarize, we have shown how to extract the dyadic Green
tensor of Maxwell’s theory from a collection of EELS maps
recorded for different electron propagation directions (rotation
angles). Our reconstruction scheme is based on a singular-value
decomposition of the Green tensor and a compressed-sensing
optimization for the expansion coefficients. We have demon-
strated the applicability of our approach for various elementary
nanoparticle shapes. We foresee several improvements for
plasmon tomography based on EELS. On the experimental
side, electron holography22 can provide additional information
and could allow to disentangle the excitation and measurement
channels of plasmonic EELS. On the theoretical side, the
presented reconstruction scheme works surprisingly well for
most nanoparticle geometries, but further work is needed to
clarify the role of various ingredients.
First, there are several possibilities for choosing the basis

functions for the decomposition of the dyadic Green tensor, eq

6. In this work we have chosen biorthogonal “constant flux
states”27 that are the eigenstates of the Green function
evaluated for real frequencies (see Methods). They have the
advantage that they can be computed rather straightforwardly,
even in the case of degenerate or near-degenerate modes; on
the other hand, they have to be computed for each loss energy
separately, and several of these modes can govern the
plasmonic response. Another possibility for a basis are the
quasi normal modes evaluated at the poles of the Green
function in complex frequency space.14−17 The computation of
these modes requires an iterative solution scheme,17 however,
once they are computed, they can be used for a large frequency
range, and in general, the plasmonic response is only governed
by very few of these modes.
In this work we have considered the situation where the basis

is already computed for the true nanoparticle shape and have
shown that even in this case the EELS tomography scheme can
be quite tricky. However, our approach is less restrictive than it
may appear: in principle, for electron beams not penetrating the
nanoparticle, any basis with modes being solutions of the free-
space Maxwell’s equations can be employed. Thus, even if a
slightly different particle shape or dielectric material is
considered in the computation of the basis, this will not
necessarily degrade the quality of the reconstruction. In this
case, it might be beneficial to adapt our approach such that (i)
the modes for the Green function decomposition are expanded
in a given nonideal basis and (ii) the compressed sensing
algorithm seeks for a minimum number of decomposition
modes. Here it might be advantageous to use quasi normal
modes, because the same few modes could be optimized for a
whole range of loss energies, thus, imposing stronger
restrictions in comparison to an independent optimization at
individual loss energies.
Although further work is needed to establish EELS

tomography of plasmonic nanoparticles as a robust and out-
of-the-box scheme, we believe that our present work provides
an important step forward for reconstructing electrodynamic
quantities from EELS measurements and makes significant

Figure 3. Compressed sensing reconstruction for a strongly reduced number of measurement points. The first row shows the measurement data for
a few rotation angles. In the second row we compare the EELS data for a finer sampling mesh (upper part of panel) with the reconstructed signal
(lower part), finding almost perfect agreement. The last row reports the true (upper part of panel) and reconstructed (lower part) LDOS maps in a
plane 20 nm above the nanorod.
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progress with respect to the recently developed tomography
schemes that were bound to quasistatic approximation and
other restrictive assumptions.

■ METHODS
Simulations. In our simulation approach, we compute the

LDOS and EELS spectra using the MNPBEM toolbox20,21 and
a silver dielectric function extracted from optical experiments.28

Mode Decomposition. For the mode decomposition of eq
6, we follow the prescription of Garciá de Abajo et al.29 and
compute the natural oscillation modes through diagonalization
of the Σ matrix, see eq 21 of ref 29 for details, keeping for the
solution of the inverse problem the 50 modes of lowest energy.
A higher number of modes did not show a significant

improvement in the reconstruction results. For our mode
decomposition it turns out to be convenient to use a
biorthogonal basis, similarly to the quasistatic case.30 Our
approach closely follows recent related work,17 and we
introduce the right and left eigenmodes Ek(r,ω) and Ẽk(r′,ω)
associated with the Σ matrix, respectively. Instead of the
decomposition of eq 6, we then use

∑ω ω ω′ ≈ ⊗ ̃* ′
=

CG r r E r E r( , , ) ( , ) ( , )
k

n

k k k
1

and, accordingly, also modify eq 7. The biorthogonal expansion
turns out to be advantageous in particular for nanoparticles
with degenerate modes, as it automatically guarantees proper
mode orthonormalization.

Compressed Sensing. The least-squares optimization is
performed with the built-in Matlab functions, for the
compressed sensing optimization we use the YALL1 software
freely available at http://yall1.blogs.rice.edu/. We set the
mixing parameter μ = 5 × 10−2, and the stopping tolerance
has a value of 10−4. We take 12 rotated EEL-maps for each
structure with equidistant angles between 0 and 180°, each map
consisting of 31 × 51 points. To speed up the optimization
process, we take only 2000 random measurement points of the
generated maps. Further, only measurement points with
distance more than 15 nm away from the particle surface are
used for optimization. For the volume visualization of the
LDOS, we use the MatVTK software freely available at http://
hdl.handle.net/10380/3076.
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