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Parametric-squeezing amplification of Bose-Einstein condensates
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We theoretically investigate the creation of squeezed states of a Bose-Einstein condensate (BEC) trapped
in a magnetic double-well potential. The number or phase squeezed states are created by modulating the
tunnel coupling between the two wells periodically with twice the Josephson frequency, i.e., through parametric
amplification. Simulations are performed with the multiconfigurational time-dependent Hartree method for
bosons. We employ optimal control theory to bring the condensate to a complete halt at a final time, thus creating
a highly squeezed state (squeezing factor of 0.12, ξ 2

S = −18 dB) suitable for atom interferometry.
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I. INTRODUCTION

In atom chips, Bose-Einstein condensates (BECs) and
ultracold atoms become trapped in the vicinity of a solid-state
chip [1]. By changing the currents running through the wires
mounted on the chip or modifying the strength of additional
radio-frequency (rf) fields [2,3], one can manipulate [3–5]
and measure single quantum systems with extremely high
precision. Possible applications range from atom interferome-
try [5–9], over quantum gates [10–12] and resonant condensate
transport [13], to nonlinear atom optics [14–18].

In particular, atom interferometry has attracted a lot of in-
terest since atoms are massive objects sensitive to gravity. This
opens new ways for measuring the gravitational constant [19],
detection of gravitational waves, or the search for dark
energy [20]. Using nonclassical (squeezed) states brings the
measurement sensitivity below the quantum noise limit [21].
Squeezed atom number states are typically created through
condensate splitting and manipulation of the condensate
around the point where the tunnel coupling strength becomes
comparable with the nonlinear atom-atom interaction [22–24].
Possible routes towards squeezing are based on quasiadiabatic
splitting [25] or one-axis twisting [26].

It is often advantageous to seek for fast squeezing, for in-
stance to achieve measurement series with high repetition rates
or to suppress dephasing losses due to thermally excited atoms.
In [27,28] we demonstrated fast squeezing protocols that were
obtained by using optimal control theory (OCT) [29,30], a
mathematical device allowing for optimization of certain con-
trol objectives. OCT protocols were successfully implemented
in atom chip experiments for twin-atom production [18] and
interferometry [31].

In this paper we theoretically investigate the generation of
squeezed states in a split BEC through parametric amplifica-
tion. For a harmonic oscillator, parametric amplification can
be achieved by modulating the spring constant with twice the
resonance frequency, leading to an exponential increase of the
oscillator’s amplitude [32]. Similarly, modulating the tunnel
coupling strength with twice the Josephson frequency leads
to an exponential increase of number and phase fluctuations.
To achieve fast squeezing, say on a time scale of 10 ms, one
needs rather large tunnel coupling modulations which lead to
additonal wave-function oscillations of the split condensate,
thus rendering the state useless for further interferometry

once the wells become separated. We demonstrate that a
final splitting stage of 2 ms, optimized with OCT, brings the
condensate at a final time to halt and freezes the system in a
highly squeezed state.

The motivation of this work lies in a direct experimental
implementation. While the combined parametric amplification
and splitting scheme investigated in this work leads to a
slightly better squeezing compared to previous work [26–28],
it is additionally simpler to implement and facilitates state
tomography by releasing the condensate at different times and
recording the time-of-flight images [18,33].

We have organized our paper as follows. In Sec. II we
discuss BEC interferometry and squeezing within a two-mode
model and introduce a convenient Bloch sphere visualization
for the many-body wave function. Squeezing through paramet-
ric amplification is discussed in Sec. III within the framework
of the multiconfigurational time-dependent Hartree method for
bosons (MCTDHB) [34], which allows for the consideration
of both wave function and atom number dynamics. We identify
the pertinent parameters that lead to fast and efficient squeezing
amplifications. In Sec. IV we employ the OCT framework
to derive control ramps that freeze the condensate in a state
with high number squeezing. Finally, Sec. V provides a short
summary.

II. TWO-MODE MODEL

BECs in double wells

For the purpose of interferometry, we consider a one-
dimensional (1D) representation of a BEC in a double-well
trap, as depicted in Fig. 1. We assume that the trap is produced
by the magnetic fields generated by an atom chip [1], which
allow us to transform the potential from a single to a double
well, thus creating a split BEC, and to change the distance
between the two wells [35] in order to control the interwell
coupling. Within the field of BEC interferometry, in the
waiting phase the atoms in the two wells are decoupled and
acquire different phases due to interactions with some external
(classical) probe, such as gravity or magnetic fields. The phase
shifts are finally read out through BEC interference.

The physics of double-well BECs is conveniently described
in terms of a two-mode model, similar to Josephson junc-
tions [36], where each atom can either reside in the left or the
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FIG. 1. (Color online) Schematic of a BEC wave function in a
double-well potential. Transforming a single well slowly into a double
well produces a split BEC that can be used for interferometry. In the
two-mode model atoms can reside in either the left or right well.
Tunneling promotes atoms between the two wells, and the interwell
distance allows control over the tunneling strength �.

right well. With N atoms in the BEC, we can map the model to
a spin N/2 system that captures many phenomena of double-
well BECs. We introduce the pseudospin operators [37]

Jx = 1

2
(a†

l ar + a†
r al), (1)

Jy = i

2
(a†

l ar − a†
r al), (2)

Jz = 1

2
(a†

l al − a†
r ar ), (3)

with al/r and a
†
l/r being the annihilation and creation operators

for an atom in the left (right) well, respectively. These operators
have the following physical interpretations: Jx exchanges an
atom between the left and the right well, and Jy and Jz measure
the phase difference and atom number imbalance between the
two wells, respectively. With these operators we can write
down a model Hamiltonian in the form [37,38]

H = −�Jx + 2κ J 2
z , (4)

where � is the tunneling energy, accounting for the interwell
tunneling, and κ is the charging energy describing the nonlin-
ear interaction between atoms. For the interwell distances of
our present concern, � can be assumed to be approximately
proportional to the distance of the two wells (see Fig. 1), while
κ has in general a more complicated behavior. Both quantities
can be computed within the Gross-Pitaevskii framework [39].

States of a two-level quantum mechanical system (qubit)
are conveniently depicted on the Bloch sphere [40,41]. Such
visualization is also possible for the two-mode model with
a rather intuitive interpretation: A state where all the atoms
are in the left or right well corresponds to a Bloch state on
the north or south pole. We introduce n = (nl − nr )/2 for
the atom number imbalance, with nl/r being the number of
atoms in the left (right) well. States where the atom number
is exactly balanced, n = 0, are on the equator, and the angle
φ describes the relative phase between the two wells (see
Fig. 2). In addition to the mean values, also the atom number
and phase uncertainties �n and �φ can be seen on the Bloch
sphere: �n corresponds to the height and �φ to the width of
the distribution, as shown in Fig. 2(a).

For any interferometry experiment, the important observ-
able to be measured in the end is either the relative phase
or number imbalance between the wells. Both measurements
are subject to (shot) noise limiting the measurement precision,
and thus render states with large �n and �φ fluctuations
unfavorable. On the other hand, reduction of �n and �φ is
possible but bound by the important relation [42]

�n�φ � 1
2 , (5)

stating that we can, in principle, decrease one of the variances,
however, at the cost of increasing the other one. For a binomial
state we have �n = √

N/2 and �φ = 1/
√

N , leading to
standard quantum shot noise [23]. In contrast, for states with
smaller �n or �φ values, the so-called squeezed states, we
can achieve a measurement precision below standard quantum
shot noise [24].

In order to quantify how much a state is squeezed several
factors have been used in the literature. The so-called number
squeezing and phase squeezing factors ξn = �n/(

√
N/2) and

ξφ = �φ/(1/
√

N ), respectively, provide information about
how much a given state is squeezed in comparison to a
binomial one. Both factors equal one for a binomial state.
However, these factors completely neglect the coherence of
the split condensate, a quantity of paramount importance for
interferometry. Coherence is additionally considered by the
factor [42,43]

α = 2

N

√
〈Jx〉2 + 〈Jy〉2 = 〈cos φ〉, (6)

where we have used the fact that 〈sin φ〉 = 0 at equilibrium to
arrive at the last expression on the right-hand side. It is now

FIG. 2. (Color online) (a) State of a double-well BEC depicted on the Bloch sphere. For an equal number of atoms in the two wells,
the distribution is centered around the equator, the height of the distribution corresponding to number fluctuations and the width to phase
fluctuations. (b) Schematic view of parametric amplification on the Bloch sphere. During amplification the distribution rotates around the x axis
(driven by modulations of the tunneling strength �) and becomes more and more elongated under the influence of the atom-atom nonlinearity.
Parametric amplification leads to an alternation between number and phase squeezed states, and the overall squeezing increases over time.
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convenient to introduce the so-called coherent spin squeezing
factor [42]

ξS = �n

(
√

N/2)α
= ξn

α
, (7)

which is a direct measure of the useful number squeezing in
the context of interferometry. In the following we will refer to
states with low squeezing factors as “highly squeezed states.”

Squeezed states cannot only be used for measurements
with precisions beyond the standard quantum limit [24], but
also have other interesting properties. For instance, number-
squeezed states are very robust against dephasing effects [44].
It is therefore important to find ways of producing number or
phase squeezed states, ideally on short time scales. A possible
route towards number squeezing is to simply increase the
distance between the two wells quasiadiabatically [25]: this
reduces tunneling and, in turn, �n, since the number squeezing
in the ground state of Eq. (4) increases with decreasing �.
Additionally �φ increases. However, this process is relatively
slow.

In this paper we will explore a different approach towards
highly phase or number-squeezed states on short time scales,
which relies on parametric amplification through a periodic
modulation of the tunnel coupling with twice the resonance
frequency. In the following we briefly recall the mechanism
underlying parametric amplification. We start with the Hamil-
tonian of Eq. (4) and rewrite it using the particle imbalance n

and the relative phase φ [45],

H = −� cos φ + 2κn2. (8)

In the coupled regime the relative phase is assumed to be very
small, so we can approximate cos φ ≈ 1 − φ2/2. Apart from
an irrelevant constant energy shift, this expansion leads to

H = �

2
φ2 + 2κn2 . (9)

From the commutation relations of the spin operators one
observes that φ and n are canonically conjugate quantities,
obeying [φ,n] = i [45]. The Hamiltonian of Eq. (9) thus
has exactly the same form as the Hamiltonian of a harmonic
oscillator, with phase and number playing the role of momen-
tum and position, and the “mass” of the oscillator given by
1/�. Starting with a small amplitude at time zero, parametric
amplification for the harmonic oscillator occurs for a time-
dependent � which is modulated with twice the Josephson
frequency ωJ = 2

√
κ�. This leads to an exponential increase

of the oscillator’s amplitude; in the case of Eq. (9) the density
n. We emphasize that parametric amplification is also possible
for higher φ values without performing a Taylor expansion of
cos φ, as discussed in more detail in Ref. [46].

Since for a split BEC we can modulate the tunneling pa-
rameter � by changing the distance between the wells, we can
use parametric amplification in order to increase squeezing.
We first start with a slightly number-squeezed ground state
of a split but still tunnel-coupled BEC in a double well. In a
next step, we modulate � with twice the Josephson frequency
to get parametric-squeezing amplification. In contrast to the
above example of the harmonic oscillator, the � modulation
leads to an amplification of the fluctuations rather than the
mean values.

III. PARAMETRIC SQUEEZING AMPLIFICATION
OF A BEC

In this section we show how to achieve parametric
amplification for a BEC in a double well with realistic
experimental parameters, in order to achieve high number
or phase squeezing. To describe the BEC correctly, a simple
two-mode model with static orbitals is not sufficient, as will be
discussed below, and one has to resort to a description scheme
that accounts for both the atom number and wave-function
dynamics. In this work we employ the MCTDHB [34] using
our recently developed MATLAB toolbox OCTBEC [48].

A. Simulation details

We simulate parametric amplification of a BEC consisting
of 1000 atoms in a double-well potential within MCT-
DHB(2) [34], which expands the BEC wave function in two
orbitals. The trap is a Lesanovsky-type potential [35], giving
rise to elongated, cigar-shaped condensates. In this potential,
the relevant splitting and amplification dynamics occurs in the
radial direction, which allows us to introduce a 1D description
scheme. The Lesanovsky potential has a single parameter λ,
associated with the amplitude of a radio frequency field, that
can turn the trap from a single into a double well, as depicted
in Fig. 3.

B. Parametric amplification

In our simulations, we start with a BEC corresponding to
the split ground state of the double well (we use λ = 0.7).
It has been demonstrated experimentally that this state can be
realized through adiabatic splitting of an elongated single atom
trap, without generating significant heating or a noticeable
thermal fraction [9]. Finite temperature effects might lead to a
slight broadening of �φ but will not significantly influence the
spin squeezing factor ξS [23]. In experiment, this might reduce
the time that is available for the parametric amplification.

In the split ground state the spin squeezing factor is initially
already smaller than 1 (ξS = 0.65 for λ = 0.7). Starting at
time zero, the distance between the double well is modulated
with twice the Josephson frequency ωJ /(2π ) = 220 Hz, giving
rise to a parametric amplification of squeezing. The squeezing

Position (μm)
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FIG. 3. (Color online) Lesanovsky-type potential [35], as used in
our simulations, which allows one to change from a single to a double
well by modifying the control parameter λ associated with rf fields
of an atom chip. The dashed lines indicate the 5% modulations used
in our simulations. λ primarily controls the distance between the two
wells, but additionally also modifies the barrier height.
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FIG. 4. (Color online) Parametric amplification with an ampli-
tude of the control parameter λ of 1%: (a) Coherent spin squeezing
factor ξS and (b) BEC density. Same color bar as in Fig. 2.

value mainly depends on the amplitude of the modulation.
Figures 4 and 5 show the spin squeezing factor ξS and
the atomic density during parametric amplification for λ

modulations with amplitudes of 1% and 5%, respectively. The
density oscillates periodically for an amplitude of 1%, while
strong excitation and nonperiodic features can be observed for
5%.

Parametric amplification with an amplitude of 1% only
produces a squeezing factor of ξS ≈ 0.4 (ξ 2

S ≈ −8 dB), while
the modulation with 5% leads to a much better squeezing
of ξS ≈ 0.1 (ξ 2

S ≈ −20 dB). However, squeezing becomes
worse after roughly 10 ms. We attribute this degradation to
dephasing effects: As depicted in Fig. 6, at later times the
number distribution becomes curled around the x axis of the
Bloch sphere, indicating the partial occupation of states where
all atoms reside in the left or right well, leading to complicated
ensuing number dynamics with a net effect reminiscent of
dephasing.

A key requirement for interferometry on atom chips is
a reliable and fast generation of squeezed states. To boost
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FIG. 5. (Color online) Same as Fig. 4 but for an amplitude of 5%.
The black line reports for comparison the results for a two-parameter
optimization [47].

FIG. 6. (Color online) Snapshot of state that suffers dephasing,
as obtained from the simulation with a 5% modulation at time t =
12 ms (see Fig. 5). Through parametric amplification wave-function
components with all atoms in the left or right well become populated,
leading to a time evolution where the distribution “curls” around the
Bloch sphere and squeezing is diminished. See Fig. 2 for color bar.

parametric amplification on short time scales, one has to
use sufficiently high tunnel coupling modulations, which, in
turn, lead to excitations of the condensate wave function. In
this context, the consideration of both the atom number and
wave-function dynamics becomes mandatory in a simulation
approach, thus calling for realistic many-body simulation
approaches such as the MCTDHB framework of this work.
Additionally, following the parametric amplification one has
to modify the trap potential in such a way that the orbitals are
brought to a halt. This step will be discussed in the next section.
The main advantage of parametric-squeezing amplification
compared to other routes towards number squeezing [27,28]
is that the whole parametric amplification process can be
implemented experimentally very easily, and only the final
trapping stage requires some fine-tuning of the atom chip
potentials. For comparison, the black line in Fig. 5 reports
the results for a two-parameter optimization [47], whose final
ξS value is also comparable to genuine OCT protocols for
the optimization of number squeezing [27,28]. Note that in
comparison to these optimized protocols our simple parametric
amplification scheme already leads to higher squeezing.

IV. CONDENSATE TRAPPING

A. Optimal control theory

To make parametric amplification useful in the context of
squeezing generation, we should be able to trap the BEC after
amplification in a highly number-squeezed state and separate
the two wells far enough to inhibit interwell tunneling. We will
refer to the stage where the condensate is brought to a halt as
“trapping,” not to be confused with the atom trapping in order
to produce a BEC on the atom chip. Trapping is shown in
Fig. 7 (for details see discussion below) and is accomplished
within the framework of OCT.

The general goal of OCT is to solve the following inverse
problem: Suppose that the state of a system �0 is known at
some initial time t0, and we are seeking for a desired state �d

at some final time T . In order to bring the system from �0

to �d , we can tune some external control paramaters, such
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FIG. 7. (Color online) Parametric squeezing amplification (for times below 10 ms) and trapping (for times later than 10 ms, note different
time axes). We show the time evolution of the control parameter λ for trapping ramps obtained for different weighting factors γ . The inset
shows Bloch sphere representations of states which rotate clockwise around the x axis and become continuously squeezed. See Fig. 2 for color
bar.

as the λ parameter for the Lesanovsky potential. In general,
the time dependence of the control parameter that brings
the system from the initial to the desired state is unknown.
OCT allows one to find an optimal control in an iterative
process. Many variants of OCT implementations exist, such
as CRAB [49], Krotov’s method [50,51], or a gradient ascent
pulse engineering (GRAPE) scheme [27,52]. In this work we
employ the GRAPE algorithm implemented in the OCTBEC
toolbox [48].

The OCT ingredients are the initial state of our system
�0, a dynamic equation for the system’s time evolution (here
MCTDHB), and a cost function that rates the success for a
given control field λ(t). For �0 we use the system’s state after
an initial parametric amplification stage. As for the terminal
cost, we are seeking for highly number-squeezed states and
for condensates at rest. This can be accomplished through a
cost function of the form

JT = 〈�|J 2
z |�〉 + γ

N
〈�|H |�〉, (10)

which consists of two parts: the first one favors strongly
number-squeezed states; the second one minimal energy and
thus a condensate at rest. γ is a parameter that weights the
relative importance for these two optimization goals.

A slight complication arises for the squeezing term in
Eq. (10), as Jz is defined in the left-right basis, whereas the
natural MCTDHB basis is a gerade-ungerade basis [27]. To
switch between the two bases, we use

φl = 1√
2

(φg + f̃ φu), (11)

φr = 1√
2

(φg − f̃ φu), (12)

where f̃ = f/|f | is the relative phase between the orbitals,
which is obtained from the wave-function overlap for x > 0
(θ denotes the Heaviside step function):

f =
∫

θ (x)φ∗
g (x)φu(x)dx. (13)

The constraint that the BEC dynamics is governed by the MCT-
DHB equations of motion is included within a Lagrangian
framework, and the full Lagrangian contains an additional
cost term that favors control fields where the control parameter

changes smoothly [48],

L = JT + ν

2

∫ T

0
[λ̇]2 dt + Re〈�̃,i�̇ − F (�,λ)〉. (14)

Here F is a shorthand notation for the equations of motion, ν

is a weighting parameter, and 〈a,b〉 is a shorthand notation for∫ T

0 dt
∫

dx a∗(x,t)b(x,t).
We next derive from this Lagrangian the optimality system

that is needed for OCT. With the exception of the cost
function, the pertinent equations for the MCTDHB approach
can be found in Ref. [48], and we thus only comment on
the functional derivatives of the terminal cost function JT .
Because of the relative phase f̃ [see Eq. (13)] appearing in
the operator Jz, these derivatives are somewhat involved. After
some calculations, which are briefly sketched in the Appendix,
we arrive at

∂JT

∂C∗ = J 2
z |C〉 + γ

N
H |C〉, (15a)

∂JT

∂φ∗
g

= 〈C|Jz

∂Jz

∂φ∗
g

+ ∂Jz

∂φ∗
g

Jz|C〉, (15b)

∂JT

∂φ∗
u

= 〈C|Jz

∂Jz

∂φ∗
u

+ ∂Jz

∂φ∗
u

Jz|C〉 , (15c)

with

∂Jz

∂φ∗
g

= θ (x)φu

4

(
a
†
gau

|f | − a†
uag

(f ∗)2

|f |3
)

, (16a)

10 11 12 13 14 15
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FIG. 8. (Color online) Coherent spin squeezing during and after
trapping, for the ramps shown in Fig. 7. Smaller γ values lead to
better squeezing.
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FIG. 9. (Color online) BEC density maps during and after trap-
ping (dashed lines indicate end of trapping stage; see Fig. 2 for color
bar) for the ramps shown in Fig. 7. Larger γ values lead to a less
excited BEC.

∂Jz

∂φ∗
u

= θ (x)φg

4

(
a
†
uag

|f | − a†
gau

(f )2

|f |3
)

. (16b)

For the optimizations we employ the MATLAB toolbox
OCTBEC [48] (see also Refs. [33,52] for a detailed description
of our OCT implementation).

B. Trapping

In our OCT simulations we first perform a parametric
amplification with an amplitude of 5% and t0 = 10 ms,1 as
shown in Figs. 5 and 7. The system’s state at this terminal time
is then used for �0 in our OCT algorithm. For the initial guess
of the splitting and trapping ramp we use a linear ramp for λ

and a time interval of T − t0 = 2 ms. The initial guess was
then optimized with the scheme described in Sec. IV A and for
different weighting parameters γ .

Figure 7 shows the resulting ramps for γ factors of 0, 1, and
100. For the additional cost penalization term in Eq. (14) we
use a small value of ν = 10−6 such that the control selection is
only governed byJT of Eq. (10). The difference between these
ramps is attributed to the impact of the γ factor that weights
between the different optimization objectives of squeezing and
trapping. Figure 8 depicts the resulting spin squeezing factors
ξS for the ramps shown in Fig. 7, and Fig. 9 the corresponding
atom densities.

1The success for optimizing squeezing and wave-function trapping
depends on the initial and terminal times t0 and T , respectively.
t0 = 10 ms was obtained from a line search, where we used a linear λ

ramp for trapping in order to find the “best” initial time in the interval
t0 ∈ [9,11] ms. Also the length of the trapping sequence (here 2 ms)
was optimized through a similar line search.

All three ramps produce squeezing values lower than 0.13,
corresponding to ξ 2

S ≈ −18 dB. This is roughly 10 dB above
the Heisenberg limit of −28 dB. As expected, the squeezing
values are better for optimizations with smaller γ values,
although the influence is not overly large. From the density
maps shown in Fig. 9 we infer that the ramp with γ = 0 leads
to an excited BEC, the ramp with γ = 1 produces an only
weakly excited BEC, and the ramp with γ = 100 results in a
BEC that is almost at rest.

V. SUMMARY

We have discussed a parametric amplification scheme for
creating and trapping a BEC in a highly squeezed state, with
a squeezing value of ξ 2

S ≈ −18 dB. Squeezing amplification
is achieved in a split BEC through modulation of the tunnel
coupling with twice the Josephson frequency. To achieve high
squeezing on short time scales, one has to use sufficiently
large modulation amplitudes, which, in turn, lead to condensate
oscillations. These oscillations can be brought to halt through
a splitting ramp optimized within the OCT framework.
Compared to other protocols for number squeezing [27,28], the
method presented here needs OCT only for the final trapping
stage of the squeezed state.
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APPENDIX

We describe the BEC dynamics within the framework of
MCTDHB(2) [34]. In this method, the BEC wave function
is expanded into a set of time-dependent orbitals, which, for
a spatially symmetric problem, can be classified according
to their parity as gerade and ungerade, i.e., φg(x) and φu(x).
In order to find the optimality system given in Sec. IV A we
have to calculate all the derivatives of the cost function of
Eq. (10), namely, ∂JT

∂C∗ , ∂JT

∂φ∗
g

, and ∂JT

∂φ∗
u

. The difficulty here is that

the operator Jz depends explicitly on the orbitals,

Jz = 1
2 (f̃ a†

gau + f̃ ∗a†
uag), (A1)

namely, through the factor f̃ that depends on φg and φu

[see Eq. (13)]. Performing the functional derivative ∂JT

∂C∗ is
straightforward, and we arrive at

∂

∂C∗

(
〈C|J 2

z |C〉 + γ

N
〈C|H |C〉

)
= J 2

z |C〉 + γ

N
H |C〉.

(A2)

For ∂JT

∂φ∗
g

the second term of the cost function vanishes, since

there is no dependence on the orbitals. We start by using the
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chain rule

∂JT

∂φ∗
g

= ∂JT

∂Jz

∂Jz

∂φ∗
g

= 〈C|Jz

∂Jz

∂φ∗
g

+ ∂Jz

∂φ∗
g

Jz|C〉. (A3)

To calculate ∂Jz

∂φ∗
g

we first use

∂f

∂φ∗
g

= 1

2|f |θ (x)φu,
∂f ∗

∂φ∗
g

= − (f ∗)2

2|f |3 θ (x)φu,

and arrive at

∂Jz

∂φg

= θ (x)φu

4

(
a
†
gau

|f | − a†
uag

(f ∗)2

|f |3
)

. (A4)

The calculation of ∂Jz

∂φ∗
u

is very similar and we find

∂Jz

∂φu

= θ (x)φg

4

(
a
†
uag

|f | − a†
gau

(f )2

|f |3
)

. (A5)

This leads us to our final result of Eq. (15).
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