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Transport of Bose-Einstein condensates in magnetic microtraps, controllable by external parameters such as
wire currents or radio-frequency fields, is studied within the framework of optimal control theory �OCT�. We
derive from the Gross-Pitaevskii equation the optimality system for the OCT fields that allow efficient chan-
neling of the condensate between given initial and desired states. For a variety of magnetic confinement
potentials we study transport and wave-function splitting of the condensate, and demonstrate that OCT dras-
tically outperforms simpler schemes for the time variation of the microtrap control parameters.
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I. INTRODUCTION

Trapping and coherent manipulation of cold neutral atoms
in microtraps near surfaces of atomic chips is a promising
approach toward full control of matter waves on small scales
�1–3�. This field of atom optics is making rapid progress,
driven both by the fundamental interest in quantum systems
and by the prospect of new devices based on quantum ma-
nipulations of neutral atoms. Lithographic and other surface-
patterning processes nowadays allow the building of com-
plex atom chips which combine many traps, waveguides, and
other elements, in order to realize controllable composite
quantum systems �4� as needed, e.g., for the implementation
of quantum-information devices �5�. Such microstructured
surfaces have been highly successful and form the basis of a
growing number of experiments �6�.

The possibility to store, manipulate �7–12�, and measure a
single quantum system with extremely high precision has
initiated great stimulus in various fields of research, ranging
from atom interferometry �10,12–15� over quantum gates
�16–18� and resonant condensate transport �19� to micro-
scopic magnetic-field imaging �20�. In the vast majority of
these schemes the wave function of the Bose-Einstein con-
densate, trapped in the vicinity of an atom chip, is manipu-
lated through variation of the magnetic confinement poten-
tial. This is achieved by changing the currents through the
gate wires mounted on the chip or modifying the strength of
additional radio-frequency fields �3,11,21–23�. These exter-
nal, time-dependent parameters thus provide a versatile con-
trol for wave-function manipulations, and make atom chips
attractive candidates for quantum-control applications.

Consider the situation where one is aiming for an efficient
wave-function transfer from a given initial to a final desired
state, possibly by passage through a series of other states, or
for a conditional quantum gate where atoms have to interact
with each other in a well-defined manner. Here the question
arises: How should one modify the control fields in order to
achieve the most efficient transfer or coupling? This problem
was first tackled by Hänsel et al. �13� for a trapped-atom
inteferometer setup where a dilute condensate should be split

through variation of the confinement potential from a single
to a double well, such that it ends up in the ground state of
the final double-well potential. These authors devised a
scheme that optimizes adiabatic transfer by minimizing tran-
sitions to excited states.

In this paper we study quantum control of Bose-Einstein
condensates in magnetic microtraps within the framework of
optimal control theory �OCT�. Here, the objective of the con-
trol is quantified through a cost function, which is then mini-
mized subject to the condition that the time dynamics of the
condensate is governed by the Gross-Pitaevskii equation
�24,25�. We will show that optimal control theory provides a
versatile tool for determining efficient control strategies, and
is applicable for realistic confinement potentials, one- and
two-dimensional problems, and nonlinearities in the conden-
sate dynamics. Optimal control theory is a mathematical de-
vice that allows for a general determination of efficient con-
trol strategies �26,27�, and has found widespread applications
for, e.g., molecules �28,29�, atoms �30,31�, or semiconduc-
tors �32�. We believe that there are a number of reasons that
render OCT ideal for quantum control of condensates in
atom chips. First, it is only the cost function that determines
the optimal control. There is no additional bias, such as, e.g.,
in the adiabatic scheme where scattering losses are mini-
mized throughout the whole transfer process, and conse-
quently OCT allows one to explore a larger portion of the
control space. In addition, no knowledge of the stationary
solutions of the Gross-Pitaevskii equation is required in
OCT, contrary to the adiabatic scheme where ground and
excited states must be determined for every control configu-
ration. Since the optimal control corresponds to a minimum
in the control space, the solutions are robust with respect to
small fluctuations of the external parameters, which can
never be avoided in real experiments. Finally, decoherence
effects, which also play a role in atom chips �3,33–35�, can
be naturally incorporated into OCT calculations �32,36,37�.

We have organized our paper as follows. In Sec. II we
introduce the realm of optimal quantum control, and derive
the optimality system for condensate transport in atom chips.
In Sec. III we present results for condensate splitting in
simple and realistic confinement potentials. We demonstrate
that our scheme is applicable for effective one- and two-
dimensional geometries, and for nonlinearities in the conden-
sate transport. Finally, in Sec. IV we summarize and draw
some conclusions.*Electronic address: ulrich.hohenester@uni-graz.at
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II. THEORY

We consider a coherent ensemble of Bose-Einstein con-
densed atoms confined in a potential V(r ,��t�) produced by a
magnetic microtrap. ��t� is a control parameter that describes
the variation of the confining potential when changing the
external parameters, such as currents through the microtrap
wires or frequency and strength of additional radio-
frequency fields �3,13,21� �for details see below�. Through
��t� it is possible to manipulate the Bose-Einstein conden-
sate, e.g., to split and reunite it by varying the potential from
a single to a double well, and vice versa. We assume that ��t�
is a single-valued, real parameter, although different situa-
tions, e.g., microtraps controlled by several parameters,
could be treated equally well. In the following we shall as-
sume for simplicity that ��t� can only take values between
zero and one. The mean-field dynamics of the condensate is
described by the Gross-Pitaevskii equation �24,25�

i�̇�r,t� = �−
1

2
�2 + V„r,��t�… + g���r,t��2���r,t� , �1�

with g a coupling constant related to the scattering length of
the atoms.1 Suppose that initially the system is in the ground
state �0 for the potential V�r ,�=0�. Upon varying ��t� in the
time interval t� �0,T� from zero to one, the system will pass
through a sequence of states and will end up in the final state
��T�. Within the field of quantum control one is usually
seeking for an optimized time evolution of ��t� that allows
channeling the system from the initial state �0 at time zero to
a desired state �d at final time T. In accordance with Ref.
�13�, we assume �d to be the ground state for the potential
V�r ,�=1� at time T. Let

J��,�� =
1

2
�1 − �	�d���T�
�2� +

�

2
�

0

T

��̇�t��2dt �2�

be the cost function that rates how well the final state ��T�
matches the desired state �d, with 	u �v
=�dr u*�r�v�r� the
usual inner product.2 The first term on the right-hand side
becomes zero for ��T�=�d and maximal if final and desired
states do not overlap.3 The second term on the right-hand
side favors control fields ��t� with a smooth time variation
and is needed to make the quantum control problem well

posed. � is a weighting parameter that determines the impor-
tance of the two different control strategies of wave-function
matching and smooth control fields. We shall use small �
values throughout, such that the cost function J�� ,�� is
dominated by the first term. The control problem under con-
sideration thus becomes the minimization of the cost func-
tion J�� ,�� subject to the condition that ��t� satisfies the
Gross-Pitaevskii equation �1�.

Within the field of optimal control theory one uses
Lagrange multipliers to turn this constrained minimization
problem into an unconstrained one. For this purpose we de-
fine the Lagrange function

L��,p,�� = J��,�� + Rep,i�̇ − �−
1

2
�2 + V� + g���2��� ,

�3�

with the abbreviation 	u ,v
=�0
Tdt�dr u*v, and p�t� the

Lagrange multiplier. We next utilize the fact that the
Lagrange function has a saddle point at the minimum of
J�� ,��, i.e., all three derivatives �L /��, �L /�p, and �L /��
must be zero. Performing the usual functional derivatives in
Eq. �3� we obtain after some variational calculation the fol-
lowing optimality system:

i�̇ = �−
1

2
�2 + V� + g���2�� , �4a�

iṗ = �−
1

2
�2 + V� + 2g���2�p + g�2p*, �4b�

��̈ = − Re	��
�V�

��
�p
 , �4c�

which has to be solved together with the initial and terminal
conditions

��0� = �0, �5a�

ip�T� = − 	�d���T�
�d, �5b�

��0� = 0, ��T� = 1. �5c�

The right-hand side of Eq. �5b� follows from the functional
derivative �J /��. Notice that, while the state equation �4a�
with initial condition ��0�=�0 evolves forward in time, the
adjoint equation �4b� with terminal condition �5b� is march-
ing backward.4 The control equation �4c� determines the op-
timal control.

In most cases of interest one is not able to directly guess
��t� such that Eqs. �4a�–�4c� are simultaneously satisfied,

1We set �=1, and measure mass in units of the atom mass and
length in units of micrometers. For 87Rb atoms the time and energy
scales are then given by 1.37 ms and 5.58 nK, respectively.

2We assume that the wave function ��r , t� is normalized to 1. In
comparison to, e.g., Ref. �24�, where the wave function is normal-
ized to the number of atoms N in the condensate, the nonlinearity
parameter g in Eq. �1� is therefore assumed to incorporate N.

3In contrast to the ���T�−�d�2 /2 cost function used in Ref. �27�,
in expression �2� the final wave function has to match the desired
one only up to a global phase ei�. This allows the subtraction of
constant values in the confinement potential V�r ,��, as discussed in
more detail in Appendix A, which proves particularly useful for
magnetic confinement potentials with large energy offsets �21�.

4For the optimal control field ��t� the adjoint equation �4b� de-
scribes the fluctuations of the system around ��t�. For this reason it
is often referred to as the sensitivity equation. Incidentally, Eq. �4b�
for the adjoint variable p closely resembles the time-dependent
Bogoliubov–de Gennes equation �25� which usually serves as a
starting point for the treatment of collective excitations.
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and one has to employ an iterative scheme. In this work we
follow Ref. �27� and formulate a numerical algorithm that
solves the optimality system �4a�–�4c� for given initial and
desired configurations �0 and �d, respectively. To solve this
problem, we apply a gradient-type minimization algorithm,
which, starting from an initial guess for ��t�, determines a
search direction for improved control. We first solve Eq. �4a�
with initial condition ��0�=�0 forward in time. Once the
wave function ��T� at time T is computed, the final condition
for p�T� can be calculated from Eq. �5b� and the adjoint
equation of motion �4b� is solved backward in time. The
gradient of L with respect to � becomes

�L

��
= − ��̈ − Re	��

�V�

��
�p
 , �6�

which gives the search direction for an improved control that
minimizes J�� ,��. In the following we employ for the mini-
mum search either the usual conjugate gradient method or
the Broyden-Fletcher-Goldfarb-Shanno �BFGS� quasi-
Newton method �27,38�. Details of our solution scheme for
the Schrödinger-type equations are given in Appendix B.

We emphasize that the choice of our cost function �2� is
by no means unique. For instance, one could add an addi-
tional 		� , �−�2 /2+V�+g���2��
 term, with another weight-
ing parameter 	, to minimize the total energy within the
transfer process and to favor adiabatic processes. Another
possibility would be to make � in Eq. �2� time dependent and
to penalize control variations more strongly at the beginning
and end of the transfer process, such that ��t� is turned on
and off sufficiently smoothly, which might be beneficial for
experimental implementations. Alternatively, through a slight
variant of the cost function the system can be forced to pass
through a number of desired states �27� or to acquire a cer-
tain phase �17�. One could also use a slight variant of our
approach to obtain an optimization scheme for spatial geom-
etries of waveguides and two-arm interferometers through
which a condensate can propagate without creating excita-
tions, as briefly outlined in Appendix C.

III. RESULTS

We first consider the more simple scenario of single atoms
or dilute condensates within microtraps, and neglect the non-
linear terms in Eqs. �4a� and �4b� by setting g=0. The influ-
ence of nonlinearities will be discussed at the end. In our
optimal quantum control calculations we set �=10−3 �smaller
values of � turned out to have no noticeable influence on the
results� and terminate the optimization loop after several tens
to hundreds iterations when the gradient �6� has become suf-
ficiently small.

We shall consider the scenario where a Bose-Einstein
condensate is split into two parts through smooth variation of
the magnetic confinement potential from a single to a double
well �10,13�. In Secs. III A and III B we simulate condensate
transport through paraboliclike confinement potentials. These
simplified case studies will allow us to grasp the essentials of
our optimal control calculations. Transport through realistic
magnetic confinement potentials is discussed in Secs. III C

and III D. Finally, in Sec. III E we investigate the influence
of nonlinearities in the Gross-Pitaevskii equation.

A. Single well

After successful splitting of the condensate the atoms in
the two wells can be further transported by shifting the loca-
tion of the minima. In our first example we will study such
transport inside a single well. We will make the assumption
that the confinement along y and z is much stronger than
along x, such that only the dynamics in the x direction has to
be considered. We assume a potential of the form

V�x,�� =
1

2
�x − �x0�2, �7�

which has its minimum at �x0. By varying within the time
interval �0,T� the control parameter from zero to one, the
potential minimum becomes shifted from zero to x0. Our
objective now is to seek for a time variation ��t� that brings
the system from the ground state �0 of the harmonic oscilla-
tor centered at x=0 to the desired ground state �d of the
displaced harmonic oscillator centered at x0. Although the
above model allows under quite general conditions for an
analytic solution �see, e.g., Ref. �39��, the following analysis
will turn out to be helpful when discussing the more compli-
cated situation of condensate splitting.

Let us first consider a linear variation ��t�= t /T. Figures
1�b�–1�e� report results of our simulations for three selected
transfer times T. Figure 1�b� shows for T=9 the modulus of
the wave function together with the confinement potential at
different times, and Fig. 1�c� shows a density plot for ���x , t��
of the same transfer process. At the bottom of Fig. 1�c� we
also plot the final wave function �solid line� which somewhat
differs from the desired one �dash-dotted line�. Similar be-
havior is observed for Figs. 1�d� T=6 and 1�e� T=3. Finally,
in Fig. 1�a� we report for the linear � variation the cost
function �2� as a function of T �solid line�, which is high for
small values of T and shows an oscillatory behavior with
decreasing amplitude for longer transfer times T. The de-
creasing amplitude is due to the fact that with increasing T
the time variation of potential �7� becomes slower, and the
system can follow almost adiabatically.

The oscillations in the cost function are due to the oscil-
lations of the wave function inside the single-well potential.
To understand their origin, consider the extreme case where
the position of the potential minimum is abruptly moved to
x0 at time zero, and the system is brought into a highly ex-
cited state where the ground-state wave function of the har-
monic oscillator is displaced by x0 with respect to the new
minimum of V�x ,�=1�. Such displaced ground states of the
harmonic oscillator are known as coherent states �40� and
have a dynamics reminiscent of classical oscillators. As time
goes on, the system will start to oscillate with amplitude x0
around its new equilibrium position. Also the ��t� variation
with finite speed can be described in terms of such coherent
states, as evidenced by the fact that in Figs. 1�b�–1�e� only
the position but not the shape of the wave packet changes
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with time.5 To enquire more into this evolution we shall ana-
lyze the Wigner function �41�

w�x,p;t� =� e−ips��x +
s

2
,t��*�x −

s

2
,t�ds �8�

for the wave function, which is a mixed position-momentum
distribution that has many, albeit not all, properties of a clas-
sical distribution function. The solid lines in Fig. 2 show
contour lines of the Wigner functions for the initial and final

wave functions �0�x� and ��x ,T�, respectively. These coher-
ent states are minimum uncertainty states with 
x
p= 1

2 . The
density plots in the different panels of the figure show the
time-integrated Wigner function �0

Tw�x , p ; t�dt which pro-
vides information about the trajectory in phase space. At
short transfer times, Fig. 2�c�, the system ends up in a state
that is located close to x0 but with a high momentum. Thus,
when the control parameter is kept fixed to �=1 at times
beyond T, the system will continue to oscillate around its
new equilibrium position. This final state differs substantially

5This situation corresponds to the classical analog of a particle
attached to a spring which is initially fixed at the origin, and the
point where it is fixed is moved to a different position x0 at later
time. Only for certain transfer times T will the particle end up in the
rest position and with no force acting upon it. These times corre-
spond to the minima of the cost function in Fig. 1�a�.
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FIG. 2. �Color online� Time-integrated Wigner function w�x , p�
for the single-well transfer processes shown in Fig. 1. The solid
lines show the equipotential lines for the Wigner functions of the
initial and final wave functions �0 and ��T�, respectively.
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FIG. 1. �Color online� Results of our simulation for the single-
well potential �7� and x0=5. �a� Cost function J�� ,�� for different
transfer times T and for a linear time variation of � �solid line� and
optimized variations �symbols�. The dotted line shows results of a
simulation where an additional x4 term is added to the potential �see
text�. The inset reports the optimized control fields ��t� for transfer
times of 3 �solid line�, 6 �dashed line�, and 9 �dotted line�. �b� Time
evolution of potential and wave function ���x , t�� for linear � and
T=9. �c�–�e� Density plot of ���x , t�� for linear � as a function of
time and position, and for transfer times of T= �c� 9, �d� 6, and �e�
3. On the bottom of each panel we show the desired wave function
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potential. �c��– �e�� Same as �c�–�e� but for optimized control fields.
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from the desired ground state �d of the displaced oscillator,
and consequently has a rather high cost J �see also Fig. 1�a��.
With increasing T �Figs. 2�a� and 2�b�� the momentum of the
coherent state decreases and thus J becomes smaller.

We next turn to our optimal quantum control calculations.
Here we start from the linear ��t�= t /T function as a guess
for the control, and successively improve ��t� according to
the scheme described in the previous section. The symbols in
Fig. 1�a� report the cost function for the optimized control
fields: throughout J can be drastically improved with respect
to the linear � variation. In particular, for transfer times be-
yond, say, T=3 the final wavefunctions perfectly match the
desired one. Figures 1�b��–1�e�� report the wave-function
evolution for the optimized control fields depicted in the in-
set of Fig. 1�a�. For T=6 and 9 the fields deviate only little
from the linear dependence, and minor to moderate correc-
tions of ��t� suffice to finally bring the system at x0 to rest.
This is also apparent from the Wigner functions shown in
Fig. 2 where the final state �solid contour line� is centered at
x0 and has zero momentum.6 For T=3 the control strategy
shown in Fig. 1�e�� becomes noticeably modified: at early
times the center of the parabolic confinement potential is
quickly shifted and the system is put into a highly nonequi-
librium state where it starts to oscillate from left to right.
Once it decelerates and reaches the right turning point, the
position of the potential minimum is further shifted and the
system becomes frozen in the ground state of the shifted
harmonic oscillator. Note that only the quasi-Newton BFGS
method is capable of coming up with such control, whereas
the more simple gradient scheme cannot and is trapped in a
suboptimal extremum.

We emphasize that all optimal transport processes dis-
cussed here rely on nonequilibrium coherent states, and the
resulting transfer processes strongly differ from adiabatic
schemes. Finally, in Fig. 1�a� the dotted line reports that
similar behavior is also found when an additional nonlinear
potential term 	�x−�x0�4 /4 is added, with 	=0.2 in the fig-
ure. Also in this case optimal control theory gives control
fields �not shown� that allow, in contrast to the linear � varia-
tion, perfect transport.

B. Double well

We next turn to the more complicated situation of wave-
function splitting. As a preliminary case study we consider
the confinement potential

V�x,�� = �
1

2
��x� −

�d

2
�2

for �x� �
�d

4
,

1

2
� ��d�2

8
− x2� otherwise, � �9�

which changes from a single-well potential for �=0 to a
double-well potential with interwell distance d for �=1. Po-
tential �9� is constructed such that it is continuous and
smooth. Figures 3�b� and 3�c� show results for a wave-
function splitting for T=9 and for a linear ��t� dependence.
The wave function becomes split in the first stage of the time
evolution, and is transported into the respective minima in
the second stage of the transport process. Contrary to the
single-well transport, in this second stage also excited vibra-
tional states of the harmonic oscillator that were populated
during the initial splitting process are involved, as apparent
from the varying shape of ���x , t�� in the density plot of Fig.
3�c�. Even more striking, the wave function shown in Fig.
3�d� for the fast transfer process with T=6 is split only in-
completely, and part of the population remains localized be-
tween the two wells. Correspondingly, the overlap with the
desired ground state �d of the V�x ,�=1� potential is rather
poor and the cost function shown in Fig. 3�a� �solid line� is
high for small values of T. With increasing T the cost func-
tion again exhibits an oscillatory behavior with decreasing
amplitude, indicating the onset of adiabatic transport. How-
ever, in contrast to the single-well case J keeps a finite value
at its minima, which is due to the population of excited vi-
bronic states during splitting and the resulting lack of com-
plete overlap with �d.

The symbols in Fig. 3�a� report the cost function for the
optimized process of wave-function splitting. At short trans-
fer times, say below T=5, the optimized control strategies
perform significantly better than the linear ones, but the over-
lap with the desired state is not perfect. We emphasize that
these results do not exclude the possibility of more efficient
transfer in regions of the control space that were not explored
by our minimization scheme. For transfer times beyond T
=6 the cost function drops below a value of 10−3 indicating
the onset of efficient wave-function splitting. Figures 3�b��
and 3�c�� show the wave-function evolution for T=9, which
is not drastically altered in comparison to the evolution for
the linear scheme. A slight modification of the control func-
tion ��t� suffices to channel the system to the desired state at
time T. Figure 4 shows the Wigner functions w�x , p ;T� at the
end of the transfer processes. For the optimized control
shown in Fig. 4�a�� it consists of two coherent-state features
at the positions of the two minima of the double-well poten-
tial �see cross symbols�, indicating that ��T� matches the
corresponding single-well ground states, and an interference
pattern at position zero due to the superposition nature of the
wave function ��T� �41�. In contrast, the Wigner function for
the linear time evolution shown in Fig. 4�a� exhibits an
asymmetric shape at the positions of the potential minima,
that can be traced back to the superposition of ground and
excited vibronic states within the respective minima. For the
short transfer time of T=6 the optimized ��t� shown in the
inset of Fig. 3�a� substantially differs from a linear behavior.

6It is worth noting that our cost function �2� is only governed by
the final wavefunction ��T�, and consequently no guidance of the
intermediate wave-function trajectory is present. Thus, if the linear
control fields already work successfully, such as for T=6 in Fig.
1�d�, the optimized ��t� and the corresponding transfer process are
practically not altered, whereas somewhat stronger deviations can
be observed for T=9 in Fig. 1�c�. We also emphasize again that the
parabolic confinement potential �7� is special in the sense that it can
change only the position but not the shape of the initial wave
packet, and there thus exist a huge variety of different successful
control strategies.
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As apparent from the corresponding wave-function evolution
shown in Fig. 3�d��, at early times the potential is quickly
transformed from a single to a double well, and the system is
thereby brought into a highly excited state. Similar to the fast
single-well transport described above, such states can be ma-
nipulated and transported on shorter time scales. Indeed, the
final stage of the transfer process is reminiscent of the final
stage of wave-function transport shown in Fig. 1�e��.

C. Magnetic confinement of Hänsel et al.

In Hänsel et al. �13� the authors studied wave-function
splitting for a realistic magnetic microtrap. They devised a
control scheme that favors adiabatic transport by minimiz-
ing, throughout the whole transfer process, excitations to ex-
cited states, and demonstrated that this approach can perform
significantly better in comparison to more simplified control
strategies. In this section we reexamine their scheme within
the framework of optimal control theory. We use the same
model parameters for the magnetic microtrap7 where con-
finement along x is provided by three parallel wires oriented
along the y direction, with an interwire distance of 20 �m.
The current Iext through the central wire is opposite to the
currents Ic through the outer wires. Introducing a current
modulation by means of the control parameter � via

Iext = 140 + �  2.91 mA,

Ic = 0.25 + �  4.4 mA �10�

produces a magnetic confinement along x that changes from
a single well at �=0 to a double well at �=1, as shown in
Fig. 5�b�. For the linear variation of ��t� wave-function split-
ting is shown in Figs. 5�c� and 5�d� for transfer times of 15
and 8 ms, respectively. In both cases the splitting is too fast
to allow the system to become localized in the two minima
of the double well, and a significant portion of the population
remains between the two wells. This is also apparent from

the cost function shown in Fig. 5�a� �solid line� that reports
large J values over a wide range of transfer times, thus indi-
cating an only incomplete splitting. The relation of our cost
function to the excitation probability p used in Ref. �13� is
simply given by J�� ,��� 1

2 p, assuming as usual only minor
contributions from the second term in Eq. �2�.

The symbols in Fig. 5�a� show that optimal control theory
again allows to strongly improve the cost function. In the
inset we report that for transfer times beyond, say, 6 ms the
cost function J becomes significantly lower than the control
penalization �=10−3 �dotted line�, and the final wave func-
tion ��t� matches almost perfectly the desired ground-state
wave function of the final double-well potential. A compari-
son of the optimal control ��t� depicted in the second inset of
Fig. 5�a� with the optimized control of Hänsel et al. �see
inset of Fig. 6 of Ref. �13�� shows that both control strategies
are of equal simplicity. We note that the optimal control
fields of our approach perform better for very short transfer
times, whereas for longer transfer times further analysis
would be needed to pinpoint the advantages and disadvan-
tages of the respective schemes.

7The strength of the field component B0,y should be 30 G, rather
than the 20 G given in Eq. �2� of Ref. �13�, in order to match the
distance of 35 �m between trap and surface.
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D. Magnetic confinement of Lesanovsky et al.

In our fourth case study we consider the radio-frequency
double-well confinement proposed by Lesanovsky et al. �21�
which is produced by a surface-mounted dc four-wire struc-
ture on an atom chip. Such traps provide tight confinement
even at large surface distances, allow for smooth potential
transitions by variation of external parameters, such as rf
field strengths, and are relatively robust against experimental
fluctuations. In our calculations we use the same parameters
as given in Ref. �21� �see also Eq. �10� therein�, and vary the
rf field strength by means of the control parameter � accord-
ing to

Brf = 0.5 + �  0.3 G. �11�

Figure 6�a� shows the confinement along x for three different
rf field strengths corresponding to �=0 �solid line�, 1

2
�dashed line�, and 1 �dash-dotted line�. Contrary to the
double-well potential discussed in the previous section, the
magnetic confinement of Lesanovsky and co-workers exhib-
its a substantial extension in the y direction, which calls for a
solution of the two-dimensional Schrödinger equation. In our
work this is accomplished by using the split operator tech-
nique, as discussed in more detail in Appendix B. Figures
6�b�–6�e� show results of our optimal quantum control cal-
culations for a quite short transfer time of T=2 ms. In Fig.
6�b� we report the optimized ��t� functions as obtained from
the solutions of the one-dimensional �solid line� and two-
dimensional �dotted line� Schrödinger equation. Both ��t�
are almost identical. Indeed, from Fig. 6�e�, which shows the
wave function and confinement potential along y, it is appar-
ent that there is an only minor influence of Brf on the con-
finement along y, and consequently the wave function fac-
torizes. The lower parts of Figs. 6�c�–6�e� report the final

�solid line� and desired �dash-dotted line� wave functions.
They differ in case of a linear variation of ��t� �see Fig. 6�c��
and coincide for the optimized control �see Figs. 6�d� and
6�e��. Thus, optimal quantum control allows us to drastically
outperform more simple control schemes. We have presented
the results of Fig. 6 primarily to demonstrate our ability to
also cope with two-dimensional problems. We believe that
this will be important for the future analysis of more com-
plicated potentials, such as ring-shaped interferometers �21�.
In our concluding remarks we will further elaborate on this
point.

E. Solution of nonlinear Gross-Pitaevskii equation

Let us finally address the influence of the nonlinear term
in the Gross-Pitaevskii equation �1� on our optimal quantum
control results. In doing so we shall reexamine the results of
Sec. III B for the simple double-dot potential �9�, though
similar results are also found for the more realistic potentials
studied in Secs. III C and III D. Consider the one-
dimensional Gross-Pitaevskii equation

i�̇�x,t� = �−
1

2

�2

�x2 + V„x,��t�… + ����x,t��2���x,t� ,

�12�

where all details of the condensate density and the transver-
sal confinement potential have been lumped into the single
nonlinearity parameter �. Figure 7�a� shows the ground-state
wave functions �0�x� �see Appendix B 2 for computational
details� and the effective potentials Veff�x ,��=V�x ,��
+���0�x��2 for a few selected � values and for �=0. Due to
the repulsion of atoms in the condensate the wave function
broadens and penetrates into the barrier.

We first consider condensate splitting through linear
variation of �. Figure 7�b� shows a density plot of the corre-
sponding cost function J�� ,�� for different transfer times T
and nonlinearity parameters �. Note that for �=0 the cost
function J corresponds to the solid line shown in Fig. 3�a�.
From the figure we observe that, for small transfer times, say
below T=5, the condensate becomes split only very ineffi-
ciently and there is no substantial overlap of the final wave
function with the desired one. With increasing T the transfer
process works more efficiently. Generally speaking, for com-
parable values of J larger nonlinearities � translate to longer
transfer times. This is also apparent from Fig. 7�c�, which
reports J as a function of � for a fixed transfer time T=8. The
symbols in the figure show results of our optimal control
calculations, based on the solutions of Eqs. �4a�–�4c�, which
demonstrate perfect condensate splitting within the whole �
regime under consideration. The corresponding time evolu-
tions of the control parameters ��t� �not shown� are similar
to those shown for �=0 in the inset of Fig. 3�a�. Thus, opti-
mal control theory allows one to devise efficient control
strategies even in the presence of moderate condensate non-
linearities. Although the nonlinearity parameter influences
the detailed time evolution of ��t�, it has no drastic impact
on the essentials and qualitative features of our findings.
Similar conclusions apply to the results for other magnetic
confinement potentials.
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In this paper we have considered only the mean-field
Gross-Pitaevskii dynamics and have neglected Bogoliubov-
type quasiparticle excitations out of the condensate. This ap-
proximation is justified when the depletion of the initial
Gross-Pitaevskii ground state due to quasiparticle excitations
is sufficiently small �25�. For given trap parameters, conden-
sate density, and temperature, this can in principle be deter-
mined from the noncondensate normal and anomalous den-
sity matrices ñ and m̃, respectively, to be computed from the
generalized Gross-Pitaeveskii equations �25,42–44�. If ñ and
m̃ are initially negligible, they will remain negligible
throughout the transfer process. Otherwise the dynamics of
the Bogoliubov quasiparticles should be explicitly accounted
for �43,44�, which, within the framework of optimal control
theory, could be done by introducing additional Lagrange
parameters for ñ and m̃. Although such analysis is beyond
the scope of the present paper, we expect from related studies
�32,37� that for this extended system OCT will allow control

of not only the condensate wave function but also its quasi-
particle excitations.

IV. SUMMARY AND DISCUSSION

In conclusion, we have studied within the framework of
optimal control theory and the Gross-Pitaevskii equation
quantum control of Bose-Einstein condensates in magnetic
microtraps, which can be controlled by external parameters
such as wire currents or radio-frequency fields. For a variety
of magnetic confinement potentials transport and wave-
function splitting of the condensate has been analyzed, and
we have demonstrated that OCT can drastically outperform
more simple control strategies.

In contrast to adiabatic transfer schemes, where the con-
trol fields in the time-dependent Hamiltonian H�t� must be
changed sufficiently smoothly, such that transitions to ex-
cited states are suppressed throughout,8 OCT allows to ac-
cess excited states during the control. This opens the possi-
bility to explore a larger portion of the control space, and
enables high-fidelity quantum control even at short time
scales. Furthermore, neither the wave functions nor energies
of ground and excited states are needed in OCT calculations,
which appears to be particularly advantageous for microtraps
controlled by several external parameters, where the solution
of the time-independent Schrödinger or Gross-Pitaevskii
equation for every configuration of the magnetic confinement
potential would be a computationally heavy task. OCT cal-
culations for Bose-Einstein condensates in magnetic mi-
crotraps are expected to be a useful and versatile tool for
high-fidelity quantum control in a variety of applications.
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APPENDIX A: GLOBAL PHASE

Let

V�r,�� = V0��� + Ṽ�r,�� , �A1�

where V0��� is the minimum value of the potential V�r ,��
and Ṽ�r ,�� a potential with minimum zero. Then,

��t� = exp�− i��t���̃�t� �A2�

is a modified wave function with the global phase ��t� de-
fined through

��t� = �
0

t

V0„��s�…ds . �A3�

Inserting wave function �A2� into the Gross-Pitaevskii equa-
tion �1� gives for the time derivative

8More specifically, the inequality �	f �dH�t� /dt�0
�� �Ef −E0�2 must
be satisfied throughout the transfer process, with 0 and f denoting
ground and excited states, respectively.
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i�̇ = e−i��t��i�̃˙ + �̇�t��̃� = ie−i��t��̃
˙

+ V0„��t�…� . �A4�

Here, the last term on the right-hand side is canceled by a
corresponding term on the right-hand side of Eq. �1�, and we
obtain the modified Gross-Pitaevskii equation

i�̃
˙ �r,t� = �−

1

2
�2 + Ṽ„r,��t�… + g��̃�r,t��2��̃�r,t� . �A5�

It is identical to Eq. �1� with the only exception that the
constant contribution of the confinement potential V�t� is

substracted. The solution �̃�t� equals ��t� up to the global
phase ��t�.

APPENDIX B: DETAILS OF OUR NUMERICAL SCHEME

1. Schrödinger equation

In this appendix we present details of our numerical solu-
tion schemes for ��t� and p�t�. Let us first neglect the non-
linear terms in Eqs. �4a� and �4b�, by setting g=0, and con-
sider one spatial dimension. We discretize the time and space
domain into a finite number Nt and Nx of subintervals of
sizes �t and �x, respectively. A discrete state variable at time
tm and position xi is denoted by �i

m. The second spatial de-
rivative �� is approximated by the finite-difference expres-
sion ��i+1−2�i+�i−1� / ��x�2 together with periodic boundary
conditions. For the time integration of ��t� and p�t� we use
the Crank-Nicholson scheme

�m+1 = �1 + i
�t

2
Hm+1�−1�1 − i

�t

2
Hm��m. �B1�

The inversion of the matrix on the right-hand side is compu-
tationally simple owing to its tridiagonal shape, which results
from the above finite-difference scheme. The Crank-
Nicholson scheme has the advantage that the time evolution
is unitary and the norm of the wave function is thus con-
served. In our calculations we typically use values of Nt
=500 and Nx=500.

For two space dimensions we again discretize the domain
into equidistant subintervals and approximate the spatial de-
rivatives by a corresponding five-point formula for the La-
placian. However, the resulting Hamiltonian matrix H is no
longer tridiagonal and the inversion in �B1� becomes com-
putationally more costly. We thus employ the split-operator
scheme �45�. Let H=T+V, where T is the kinetic term re-
sulting from the discretization of the Laplacian and V the
magnetic confinement potential. The wave function at later
time is then computed according to

�m+1 = e−i��t/2�Vm+1
e−i�tTe−i��t/2�Vm

�m, �B2�

which again is a norm-conserving scheme. Here, the action
of the matrix e−i�tT on the wave function can be easily com-
puted by means of fast Fourier transform and its inverse.
Space discretizations of typical dimension 512128 can be
easily handled within such approach.

Finally, the second time derivative of �̈ needed in Eq. �6�
is approximated by the finite-difference expression ��m+1

−2�m+�m−1� / ��t�2. In our calculations we set �=10−3.

2. Gross-Pitaevskii equation

The split-operator technique can be also applied to the
nonlinear Gross-Pitaevskii equation �1�. We first replace in
Eq. �B2� the potentials V by the effective potentials Veff=V
+g ���2. An apparent difficulty of the nonlinear term is the
fact that the first exponential on the right-hand side of Eq.
�B2� invokes the wave function �m+1, through the effective
potential Veff

m+1, which is not at hand at this stage of compu-

tation. One can, however, easily check that the e−i��t/2�Veff
m+1

term only adds a phase to the different components �i
m+1.

Thus, the wave-function modulus can be computed from

��m+1� = �e−i�tTe−i��t/2�Veff
m

�m� . �B3�

Once ��m+1� is known we can determine the effective poten-
tial Veff

m+1, and finally compute the wave function at later time
through

�m+1 = e−i��t/2�Veff
m+1

�e−i�tTe−i��t/2�Veff
m

�m� . �B4�

This scheme again conserves the norm. As for the adjoint
equation �4b�, we use a slight variant of the split-operator
technique for the linear Schrödinger equation, where the real
and imaginary parts of the equation are separated to cope
with the g�2p* term.

Finally, for imaginary time steps −i�t we are able to com-
pute the ground-state wave function of the Gross-Pitaevskii
equation. Here, we start from the ground state of the linear
Schrödinger equation and evolve the system through Eqs.
�B3� and �B4� in imaginary time, thus projecting out the
ground-state wave function. After each iteration the wave
function is normalized and the computation terminates when
the wave function no longer changes significantly.

APPENDIX C: OPTIMIZATION OF SPATIAL
GEOMETRIES

In this appendix we briefly discuss how a slight variant of
the OCT scheme presented in Sec. II would allow for an
optimization of spatial geometries, such as waveguides or
two-arm interferometers. The situation we have in mind is a
scattering-type experiment, where the condensate, initially in
state �0, enters through a waveguide into the scattering re-
gion where it becomes split. Let us consider for simplicity a
two-dimensional geometry and a condensate propagation
along x. The objective of our optimization thus becomes the
choice of the confinement potential V�x ,y� in the scattering
region through which one can propagate the condensate
without creating excitations.

Let �d denote the desired outgoing state of the scattering
and V(y ,��x�) the confinement potential parametrized
through the space-dependent control parameter ��x�, with x
� �0,L�. Instead of Eq. �2� we introduce the cost function
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J��,�� =
1

2
�1 − �	�d���T�
�2� +

�

2
�

0

L � ���x�
�x

�2

dx , �C1�

where the last term favors a smooth spatial variation of the
confinement potential V. Performing functional derivatives
of the Lagrange function we obtain again Eqs. �4a� and �4b�,
whereas Eq. �4c� has to be replaced by the space-dependent
version

�
�2��x�

�x2 = − Re�,� �V�

���x�
�p� , �C2�

with boundary conditions ��0�=0 and ��L�=1. Here the ex-
pression on the right-hand side involves an integration over
the transversal coordinate y and time. The solution of the
resulting optimality system can be performed along the same
lines as for its time-dependent counterpart.
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