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Dynamics of parametric matter-wave amplification
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We develop a model for parametric amplification, based on a density matrix approach, which naturally accounts
for the peculiarities arising for matter waves: significant depletion and explicit time dependence of the source state
population, long interaction times, and spatial dynamics of the amplified modes. We apply our model to explain
the details in an experimental study on twin-atom beam emission from a one-dimensional degenerate Bose gas.
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I. INTRODUCTION

Parametric amplification of quantum mode populations is
a feature common to both light and matter waves. For light,
optical parametric amplification [1,2] is the key technique to
populate twin modes containing correlated photon pairs. For
atomic matter waves, numerous emission and amplification
schemes have been demonstrated both in spontaneous [3–5]
and Bose-enhanced [6–12] regimes. Ideally, the populations
of two modes, selected by fundamental conservation laws,
grow identically during the amplification process, analogous
to the signal and idler modes in parametric down conversion of
photons. Key features of such twin-atom beams, such as sup-
pressed relative and enhanced absolute number fluctuations [5,
9–12], nontrivial second-order correlations [4,8], and quadra-
ture squeezing [10–12] have been shown experimentally.

A crucial difference between matter and photon twin beams
arises from the microscopic process driving the stimulated
emission. As photons do not interact, the amplification process
has to be mediated by a medium which is being pumped
by a strong light field. Due to the relatively weak χ (2)

nonlinearity and the short, localized interaction in the medium,
the conversion efficiency is low, allowing one to neglect the
depletion of the pump beam and to reduce the description to the
signal and idler modes only (undepleted pump approximation).
For interacting matter waves, the pump field itself acts as the
nonlinear medium. Interaction times can be long, so that the
depletion of the source state considerably affects the dynamics.
Furthermore, the coupling between source and amplified
modes typically extends over the entire system size, and the
mode structure can be more complex. At finite temperatures,
thermal phase fluctuations reduce the coherence, effectively
depleting the source state [13]. Finally, the source population
may explicitly depend on time; for example, if the emission
process starts before pumping is completed, the source is being
replenished continuously, or other loss channels are present.

*ulrich.hohenester@uni-graz.at

In this article, we develop a simple and numerically
tractable model for the description of stimulated matter wave
emission into twin beams. Our approach is based on density
matrices [14] and extends previous theoretical studies which
have concentrated on the regime of rapid scattering into many
weakly occupied modes, where the Bogoliubov approxima-
tion (equivalent to negligible depletion) holds [15–17]. In
contrast to calculations based on the positive-P [18–21] or
truncated Wigner [22] methods, our approach does not rely
on stochastic sampling and remains valid for long interaction
times and arbitrary mode populations. We will be primarily
concerned with modeling of deexcitation experiments from
a vibrational state [9], where we record the population of
amplified twin beams over time, but our density matrix
calculation can be applied to a much larger class of twin-beam
experiments.

II. THEORY

We consider a trapped, degenerate Bose gas in one
dimension, such as the ground state |g,0〉 of a very elongated
harmonic trap with weak confinement ωx along its longitudinal
direction x and negligible occupation of transversally excited
states. Starting from t = 0, we pump the system into a source
state |e,0〉, carrying a per-particle excess energy ε � h̄ωx but
leaving the spatial wave function along x unchanged (Fig. 1).
This energy can be stored in internal degrees of freedom [15],
dimer molecules [18], or in a vibrational state orthogonal to x

[9,23] as in the experiment described below. Conservation laws
for parity and momentum dictate that the state |e,0〉 can only
decay via a two-body process into paired, propagating modes
|g,±p〉 with identical population and opposite momenta
centered around ±p ≈ ±√

2mε, where m denotes the particle
mass. A slight shift may arise from mean-field effects [24].
For a scheme populating twin-modes in a spinor gas [10–12],
the equivalent states would be the |m = 0〉 state as a source
and two states with opposite magnetizations |±m〉 instead of
|g,±p〉.
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FIG. 1. (Color online) Overview of twin-atom process. (a) Level
scheme of the involved states and transitions. (b) Qualitative popula-
tion dynamics of the states as shown in (a) once the pumping process
starts.

A. Two-mode model

If we consider a single pair of modes resonant with |e,0〉
and instantaneous excitation at t = 0, the relevant part of the
two-body interaction Hamiltonian can be written as

ĤTM = κ[â†
g,pâ

†
g,−p(âe,0)2 + (â†

e,0)2âg,pâg,−p], (1)

similar to parametric amplification in optics, where the
strength of the atom-atom interaction κ corresponds to the
nonlinear susceptibility.

A full numerical solution of the Schrödinger equation
with the two-mode Hamiltonian (1) can be accomplished by
expanding the many-body wave function in terms of bosonic
Fock states, where m atom pairs are promoted from |e,0〉 to
|g,±p〉:

ψ =
n/2∑
m=0

Cm(â†
g,pâ

†
g,−p)m(â†

e,0)n−2m|0〉. (2)

Here Cm are the wave function amplitudes in Fock space and
|0〉 is the vacuum state; n denotes the total number of atoms.
The Schrödinger equation with the Hamiltonian ĤTM is solved
with the Crank-Nicolson method according to the prescription
given in Ref. [25].

Solid lines in Fig. 2 show results for a simulation of n = 700
atoms, which initially all reside in the |e,0〉 source state. The
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FIG. 2. (Color online) Population transients ρg,p + ρg,−p,ρe,0 for
two-mode model of Eq. (1). In the simulations we use 700 atoms.
Thick and thin lines report the normalized population of |g,±p〉 and
|e,0〉, respectively. Solid and dashed lines correspond to simulations
performed for the full Schrödinger equation and the density matrix
approximation of Eqs. (3) and (4). The dotted line indicates the growth
of the emitted population for an undepleted pump.

nonlinear interaction of Eq. (1) promotes atoms pairwise to
the twin-atom states |g,±p〉. Initially, the process is slow and
governed by spontaneous scatterings. Only when a sufficient
population has built up in |g, ± p〉, say at times around
2/(κn), the scattered atoms act as a seed for the ensuing rapid
stimulated emission which continues until the |e,0〉 reservoir
is emptied. Finally, owing to the second term in parentheses
of Eq. (1), atoms scatter back from the twin-atom states to
|e,0〉.

Unfortunately, for many near-resonant modes, the ex-
ponentially increasing size of the Hilbert space prohibits
a generalization of this direct approach. To overcome this
problem, we introduce a density-matrix description for the
two-level problem, which we will extend to many modes in
the next section. The lowest moments are the densities ρe,0 =
〈â†

e,0âe,0〉 and ρg,p = 〈â†
g,pâg,p〉. Their dynamic equations can

be obtained from the Heisenberg equations of motion,

ρ̇g,±p = − 1
2 ρ̇e,0 = 2κIm(�), � = 〈â†

g,pâ
†
g,−p(âe,0)2〉. (3)

Here, the densities are driven by the two-particle coherence
�, whose time evolution is in turn governed by three-particle
couplings. To truncate this hierarchy of equations of motion,
we introduce a correlation expansion in the spirit of Ref. [14]
and factorize all three-particle density matrices into densities
of lower order (e.g., through 〈â†

g,pâ
†
g,−pâ

†
e,0âg,pâg,−pâe,0〉 ≈

ρg,pρg,−pρe,0). This finally yields

�̇ ≈ iκ
[
ρe,0(ρe,0 − 1)(2ρg,p + 1) − 2ρ2

g,p(2ρe,0 + 1)
]
. (4)

Initially, ρg,p = 0 and ρe,0 = n � 1, and Eq. (4) reduces
to �̇ ≈ iκn2. Consequently, the emitted population grows
quadratically as ρg,±p ≈ (κnt)2, which for short times t is
consistent with the result for an undepleted pump [16,17]:
ρ

(up)
g,±p = sinh2(κnt). In Eq. (4), the second term in brackets

accounts for the backscattering of population into the source
state. A comparison of the results of the density matrix
equations (3) and (4) (see dashed lines in Fig. 2) with the
exact solution shows good agreement.

B. Multimode model

In a realistic matter-wave amplifier, several twin-modes
become populated simultaneously, as the amplification band-
width is broadened by the mean field of the source. In
contrast to a full wave function approach, it is numerically
straightforward to extend the density matrix framework of
Eqs. (3) and (4) to a multimode Hamiltonian

ĤMM = 1

2

∑
ij

[κij â
†
g,i â

†
g,j (âe,0)2 + H.c.], (5)

where κij is the interaction matrix element between the source
and the different spatial modes |g,i〉. Momentum and parity
conservation are fulfilled due to the symmetries of the matrix
elements κij . The number of necessary modes M can be
estimated from the per-particle mean-field energy μ of the
source [16]: M ∼ μ/(h̄ω), where h̄ω is the typical energy
level spacing of adjacent modes. The multimode description
inherently includes spatial dynamics, such as the propagation
of twin-beam wave packets.
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As for the two-mode case outlined in the previous section,
we employ a factorization scheme for many-particle density
matrices to obtain the density-matrix equations for the many-
mode Hamiltonian (5). Let ρg,ij be the single-particle reduced
density matrix for the twin-atom states, generalizing ρg,±p

of the two-mode case. The dynamic equations for ρ directly
follow from the Heisenberg equations of motion

ρ̇e,0 = −2Im

( ∑
ij

κij�ij

)
, (6a)

ρ̇g,ij =
∑

k

(κik�kj − �∗
ikκkj ). (6b)

Here, �ij = 〈â†
i â

†
j (â0)2〉 is the two-particle coherence between

source and emitted modes, whose time evolution can be
evaluated to

i�̇ij = −κijρe,0(ρe,0 − 1) + (2ρe,0 + 1)
∑
kl

κklρg,ikρg,j l

− ρe,0(ρe,0 − 1)
∑

k

(κikρg,kj + κjkρg,ki). (7)

With this result, the dynamics of the twin-mode populations
can be derived, similarly to the two-mode case.

III. EXPERIMENT

As a representative example of twin-beam creation, in
this paper we consider a collisional deexcitation scheme
based on a one-dimensional, quantum degenerate Bose gas
of Rubidium-87 atoms trapped on a chip [27,28], as described
in more detail in Ref. [9]. Within 5ms, atoms are pumped
into the source state |e,0〉, which is a vibrationally excited
transversal state of the confining waveguide potential. This
pumping is accomplished via a mechanical optimal control
protocol, populating |e,0〉 with almost unit efficiency by
nonadiabatic translation of a strongly anharmonic trapping
potential along the transversal direction y (see Appendix A).
In Fig. 3 we show the population of the twin-beam modes,
relative to the total atom number n ≈ 800, as a function
of time after starting the excitation sequence. Experimental
points are obtained by counting photons in appropriately
defined regions within fluorescence images taken after 46ms
of free expansion (see Appendix B for details). One observes
that, for the optimal ramp (black markers, series IV), the
twin-atom population increases over approximately 10ms and
finally reaches a plateau value. About 40% of the atoms are
emitted into twin beams. We repeated the measurement several
times, scaling the amplitude of the optimal trap motion used
for pumping by different factors [29]. For these nonoptimal
excitation protocols (series I–III and V) the final twin-atom
populations are reduced.

To model these experiments, we need to describe the time-
dependent excitation (pumping) of atoms into the source state
with energy ε [see Fig. 1(b)], taking place on a time scale on
the order of ∼10h/ε ≈ 5 ms with h being the Planck constant,
which is similar to that of the emission. Additionally, we have
to account for the thermal depletion of the source mode and the
spatial dynamics of the twin beams. As will be demonstrated
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FIG. 3. (Color online) Population of twin-atom modes, normal-
ized to total atom number. The data points with error bars report
the experimental results for optimal (IV) and scaled excitation
(other lines) with scaling factors of approximately 0.3 (I), 0.5 (II),
0.8 (III), and 1.2 (V). Solid lines show the corresponding theory
results

∑
k ρg,kk . Dashed lines show the theory for optimal excitation,

where additional spontaneous emission processes are neglected.
Dash-dotted line show the upper bound imposed by the population
of the Onsager-Penrose mode. Inset shows the variance of emitted
fraction, relative to shot noise (sn), for optimal excitation (solid,
black) and scaling 0.3 (dotted, blue). Each point is an average over
seven adjacent times and corrected for imaging noise [26] and total
atom number fluctuations.

next, all of this can be conveniently accomplished within the
density matrix approach.

A. Pumping

Figure 4(a) shows the time-dependent position of the trap
minimum (solid line) together with the time-dependent density
distribution along y, which is obtained from the solution of
the one-dimensional Gross-Pitaevskii equation (GPE) along y.
We can approximate the excitation dynamics by a two-mode
description comprising the states |g,0〉 and |e,0〉, which are
chosen as displaced eigenstates [30] of the harmonic part of
the waveguide potential with a common, periodic displacement
[see Fig. 4(b)]. This displacement is reflecting the collective
oscillation [Fig. 4(a), dashed line], which is necessary to drive
the system into the strongly anharmonic part of the potential
where the state transfer occurs, but is otherwise irrelevant for
the dynamics between the states. Projecting the GPE results
onto the displaced-state basis yields the population of |g,0〉
and |e,0〉, as depicted in Fig. 4(c). A near-resonant Rabi
coupling with an initial time delay [dashed line in Fig. 4(c)]
can be fit to the population dynamics to provide a suitable
model for the following calculation steps. The optimal control
sequence (leading to series IV in Fig. 3) then corresponds to
a π pulse which completely inverts the system from |g,0〉 to
|e,0〉. See Appendix C for a more comprehensive discussion
of the transversal dynamics.
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FIG. 4. (Color online) Numerical twin-beam dynamics results,
from the simulations for our experiment. (a) Density distribution
along the transversal direction y. The solid line indicates the
driven motion of the trap minimum. The dashed line shows the
collective oscillation frame used to define the vibrational states.
(b) Wave functions of the vibrational states along y, corresponding to
|g,0〉, |g,±p〉, and |e,0〉, respectively, at zero collective displacement.
(c) Populations of |g,0〉 and |e,0〉, derived by projecting the numer-
ical results shown in (a) and neglecting the twin-beam emission.
The dashed (green) line shows a constant Rabi coupling model.
(d) Illustration of one particular twin-beam mode φi0 with energy
ε within the effective longitudinal potential, which is defined by the
trap confinement and the mean field of the source cloud. (e) Spatial
evolution of the twin-beam modes along the longitudinal axis, which
are created in the center of the condensate region and then propagate
out. The shaded area corresponds to the density distribution of the
initial state, the dashed lines indicate its radius.

B. Thermal source depletion

We now turn to the emission dynamics along the lon-
gitudinal direction x. Especially for an elongated system,
as studied here, thermal longitudinal phase fluctuations are
expected to have a strong influence on the experimental
results by effectively depleting the source mode [13]. We
assume that the atoms are initially in the Thomas-Fermi
ground state of a harmonic trap along x and account for
phase fluctuations through a density matrix ρ(x,x ′) obtained
from quasicondensate theory [31], where the Bogoliubov
excitations are populated thermally. Next, we split ρ into a
condensate (Onsager-Penrose mode) and a thermally excited
part ρth(x,x ′),

ρ(x,x ′) = n0φ
∗
0 (x)φ0(x ′) + ρth(x,x ′), (8)

where n0 is the largest eigenvalue of the density matrix and
φ0(x) the corresponding eigenfunction. For our calculation we
assume T = 25 nK, which is compatible with experimental
observations [32] and leads to n0 ≈ 0.44n with n ≈ 800 (see
dash-dotted line in Fig. 3). As the twin-atom production is
driven by a fixed phase relation between the source and twin-
atom states Eq. (3), the noncondensed part is expected to have
only little influence on the emission dynamics and will be
neglected in the following.

C. Twin-beam states

To apply the multimode description of Eq. (5) to our finite-
size system, we compute a set of ≈30 highly excited (real)
single-particle states φi(x) at energies around ε = h̄2k2

0/(2m),
for an effective potential including the mean field of the source
state. One typical state is depicted in Fig. 4(d). The coupling
matrix elements of ĤMM can now be expressed as

κij = g

∫
|ψg(z)|4dz

∫
ψ∗

g (y)2ψe(y)2dy

×
∫

φ∗
i (x)φ∗

j (x)φ0(x)2dx, (9)

with ψe,g(y) and ψg(z) denoting the wave functions of the
transversal states defined above, and g = 4πh̄2as/m, where
as and m are the scattering length and mass of the atoms. The
full dynamics of the twin-atom production is now governed by
the Hamiltonian

Ĥ = Ĥ0 + Ĥpump + ĤMM, (10)

where Ĥ0 accounts for the free evolution of |e,0〉, |g,0〉, and
|g,i〉, and Ĥpump describes the pumping process through the
Rabi-type excitation described above.

D. Results: optimal excitation

For the Hamiltonian in Eq. (10), we numerically solve the
equations of motion of the density matrices. Figure 4(e) shows
the computed real-space density of twin-atoms as a function
of time. One observes that the twin atoms are emitted in the
condensate region initially and then propagate as packets with
group velocities ±h̄k0/m, reaching the edges of the Thomas-
Fermi distribution a few ms after the end of the excitation
pulse. All parameters of our model are obtained for realistic
trap potentials (source excess energy ε ≈ h × 1.8 kHz) and
experimental parameters taken from Ref. [9]. For the optimal
excitation protocol, the slope and final value of the emission
dynamics [dashed line in Fig. 3(a)] is in good agreement with
the experimental observation (black points), with the exception
of a time delay of ≈2 ms. This indicates that we underestimate
the emission rate at early times, where even a very small twin-
beam population suffices to trigger Bose-enhanced emission.
Such scattering may be caused by the noncondensate source
modes, or a nonthermal population of high-momentum modes
due to technical noise causing premature excitation. To account
for this, we add a weak channel for scattering atoms into
longitudinal modes with momenta around ±k0 which act as
an additional seed in excess of vacuum fluctuations. Good
agreement can be reached for a scattering rate of � ≈ 0.4 s−1 ·
n2

e , which is equivalent to typically ∼3 × 10−2κiin
2
e per mode,

with ne = 〈â†
e,0âe,0〉. Indeed, with this addition the simulation

(series IV, solid line) accurately reproduces the experimental
result.

E. Results: modified excitation

We next address the results for scaling the amplitude of
the trap motion by different factors (series I–III, V), which
again can be well described by Rabi pulses of different
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area. The couplings used in the calculations for the twin-
beam population growth are derived from observation of the
transversal momentum distribution during the excitation (see
Appendix C). For series I, IV, and V in Fig. 3, this procedure
yields good agreement without any further free parameters.
Only for intermediate excitation scalings (series II, III), a
slight adjustment of the excitation coupling was necessary,
which we attribute to the approximations made in the pumping
model (see above). Note that, for the lowest scaling, Bose
enhancement is weak, which provides a stringent means for
determining �. The complete set of experimental results can
be nicely modeled by our theory (solid lines in Fig. 3).

To illustrate the amplified character of the twin-beam
creation, we investigate the fluctuations of the twin beams
population N at different times. In Fig. 3 (inset) we show
the measured relative variances ξ 2 ∝ σ 2

N/N̄ of the relative
population of emitted pairs over many experimental realiza-
tions. They are corrected for imaging noise and total atom
number fluctuations and are normalized to an approximation
to the shot noise expected for random spontaneous emission,
neglecting pump depletion and temperature fluctuations. See
Appendix D for details on the variance calculation. For optimal
excitation (black dots, solid line), a pronounced peak near
the maximum slope of the population growth indicates the
exponential amplification of initial fluctuations. Such behavior
is absent in the experiment with the weakest excitation (blue
dots, dashed line). In contrast, the relative number fluctuations
of the twin-atom clouds are strongly suppressed, as discussed
in detail in Ref. [9].

IV. CONCLUSION

In conclusion, we have derived a density matrix approach
to quantitatively analyze emission of matter waves in the
strongly Bose-enhanced regime, which has recently been
reached in various experiments. Neither the Bogoliubov
approximation nor stochastic methods are employed, making
our approach eligible for strong depletion of the source
and long interaction times. We have presented experimental
results for twin-beam population growth in a one-dimensional
degenerate Bose gas, which are governed by source depletion,
spatial dynamics, and explicit time-dependence of the source
population. The good agreement between experimental results
and theory predictions suggest that the physics underlying
amplified emission of twin-atoms in a real experiment is
captured by our model. Next steps will comprise further
experimental and theoretical studies on properties of strongly
populated twin-atom beams beyond single-particle densities,
with particular regard to second-order correlations, reveal-
ing number squeezing [5,9–12] or violation of classical
inequalities [33].
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APPENDIX A: TRAP PREPARATION

The ultracold Rubidium-87 gas acting as matter-wave
source is prepared using laser cooling and then loaded into an
atom chip wire trap [27,28], where forced evaporative cooling
to quantum degeneracy occurs. The initially transversally
symmetric Ioffe-Pritchard field configuration created by the
chip wires is modified by radiofrequency dressing [34,35].
Typically used for creating double-well potentials, this tech-
nique also allows for the introduction of anharmonicity and
anisotropy to a single trap when the dressing strength is kept
below the point where actual splitting of the potential occurs.
Using chip wires running parallel to the main trapping wire, we
apply an ac magnetic field of ∼0.75 G peak-to-peak amplitude
at a frequency red-detuned by −54 kHz with respect to the
atomic Larmor frequency near the trap minimum (824 kHz).

The resulting potential can be calculated numerically by
means of a Floquet analysis [36]. In the two transversal
directions it can be approximated by quartic polynomials of
the form V/h̄ = 1

2ω(r/r0)2 + λ(r/r0)4, where r0 = √
h̄/(mω)

(Duffing oscillator) with the atomic mass m. For the y

direction, along which the excitation is performed, the
parameters are ωy/(2π ) = 1.64 kHz, r0,y = 0.266 μm and
λy/(2π ) = 74.9 Hz. For the z direction perpendicular to the ex-
citation motion the parameters are ωz/2π = 2.50 kHz, r0,z =
0.216 μm and λz/2π = 25.9 Hz. By solving the Schrödinger
equation for these potentials we can determine the first
trap levels along y and z as [Ey,1,Ey,2,Ez,1,Ez,2]/(2πh̄) =
[1.82,3.78,2.56,5.18] kHz, if the respective zero-point en-
ergies are subtracted. Along the longitudinal x axis, the
harmonic trap frequency ωx/(2π ) = 16.3 Hz is determined
by observation of a deliberately excited sloshing mode of the
atom cloud.

The fast transversal motion of the potential is accomplished
by applying a modulated current to an auxiliary wire running
parallel to the main trapping wire, moving the trap minimum by
26nm/mA along y and 9nm/mA along z. Due to the anisotropy
of the transversal potential, the motion along z is off resonant
and has no significant influence.

The geometry of all involved chip wires and homogeneous
offset fields is shown in Fig. 5.

x
y

500 µm

FIG. 5. (Color online) Schematic of atom chip layout. The
waveguide potential is formed by the current Itrap through the main
trapping wire and a static magnetic field By . On a separate chip
layer, currents Iax in broad wires provide axial confinement. An
external field Bx completes the Ioffe-Pritchard configuration. The
radiofrequency dressing currents Irf are applied to wires in parallel
to the trapping wire. Finally, the modulation of the trap position is
accomplished by a current Imod in an auxiliary wire.
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APPENDIX B: DETECTION AND IMAGE ANALYSIS

After starting the excitation sequence, we run the excitation
and emission process for a given time t . At this time, we
suddenly switch off the trapping potential, implying that for
t < 5 ms the excitation process is still incomplete. The fast
transversal expansion of the cloud due to the tight waveguide
confinement causes atom interactions to vanish rapidly, and
the ensuing expansion can be considered ballistic. After
ttof = 46 ms of expansion, we take a fluorescence image [26],
fully integrating over the z direction (see inset of Fig. 6). Along
y (i.e., integrating over x), the resulting image represents
the initial momentum distribution, as the transversal cloud
size before expansion is negligible (far field). If we express
momenta as wave numbers ky , a distance δy in the image hence
corresponds to δky = αδy with α = m/(h̄ttof) ≈ 0.03 μm−2.
Along the longitudinal direction x, the far field condition
is not fully reached due to the initial condensate radius of
L ≈ 20 μm and the typical momenta in the quasicondensate
as given by the thermal phase coherence length lφ [31]:
kφ = l−1

φ ∼ 0.1 μm−1 ≈ αL. Using an appropriate model for
the initial density and momentum distributions (classical fields
method [37]), we can fit a longitudinal thermal distribution
to the expanding cloud (Fig. 6), yielding an estimate to its
temperature. Within our current analysis, this relies on the
assumption that the excitation and emission process does not
lead to a strong modification of the momentum spectrum at
short times t . A more detailed study of the interplay between
thermal effects and the emission dynamics is under way.

On the other hand, the center momentum of the emitted
atoms is k0 ≈ 5.5 μm−1 � (αL,kφ), hence the longitudinal
overlap of the source cloud and the emitted beams is negligible.
The fraction of emitted atoms at time t (as shown in Fig. 3) can
thus be determined by simple counting of fluorescence photons
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FIG. 6. (Color online) Experimental image analysis. (Inset) Typ-
ical experimental image data for optimal excitation and t � 5.5 ms,
averaged over 12 shots. As the image is taken after 46 ms of expansion
time, it predominantly reflects the initial momentum distribution. The
scale bar corresponds to a spatial distance of 187 μm, equivalent to
the typical momentum of 5.5 μm−1 ≈ k0. The dashed line indicates
the transversal center-of-mass position of the emitted clouds. (Main
plot) Longitudinal momentum distribution obtained from integration
over the image. The shaded area indicates a fitted thermal distribution
with temperature T ≈ 25 nK. Dashed lines: range (source region)
outside of which atoms are counted as emitted population.

in appropriately defined ranges of the longitudinal distribution
(outside of dashed lines in Fig. 6). For each combination of t

and excitation amplitude we repeated the experiment typically
12 times to obtain reliable estimates for the mean and variance
of the emitted fraction.

APPENDIX C: TRANSVERSAL DYNAMICS

The vibrationally excited state |e,0〉 of the anharmonic
transversal potential is being populated by oscillatory dis-
placement of its origin V (y − y0(t)), following an optimal
control ramp. To determine the function y0(t), we propagate
the wave function with the one-dimensional Gross-Pitaevskii
equation (GPE), starting from its ground state, and maximize
the overlap with the first excited state at t = 5 ms. At t > 5 ms,
excitation stops and y0 is held constant. As outlined above, our
experimental time-of-flight images, integrated over x within
the bounds shown as dashed lines in Fig. 6, directly reflect
the momentum density distribution along y, allowing direct
comparison to the results numerically obtained from the GPE
[Figs. 7(a) and 7(b)]. Excellent agreement can be reached if
an independently measured linear response function of the
electronics employed for the experiments is taken into account,
which slightly modifies the y0(t) trajectory in the experiment.
Once the fraction of emitted twin beams becomes significant
(t � 5 ms), the agreement gradually gets worse, as damping
due to the emission is not accounted for in the excitation model.
For the scaled control ramps, we left the amplitude scaling as
a free parameter in the GPE simulation and directly optimized
agreement with the experimentally observed dynamics.

As described in the main text, to properly define the orbitals
of the states |g,0〉 and |e,0〉 we transfer into a coordinate system
that is co-oscillating with the (quasiclassical) sloshing of the
cloud within the harmonic part of the potential V (y). This
collective oscillation is inherent to our excitation technique,
because it is necessary to access the anharmonic part of the
potential. Within the co-oscillating frame, the anharmonicity
acts as an oscillating force in excess of the restoring force,
enabling the transfer into an excited eigenstate [38,39].
Consequently, we approximate the wave functions of |g,0〉
and |e,0〉 with the displaced first and second eigenfunctions of
a harmonic oscillator [30]:

|g,0〉 = D̂[α(t)] |0〉, |e,0〉 = D̂[α(t)] |1〉,
D̂[α(t)] = exp[α(t)â† − α(t)∗â], (C1)

where |n〉 designates the nth number state of a harmonic
oscillator with frequency ωy as defined above and â,â† are the
corresponding ladder operators. The complex displacement
α(t) corresponds to the origin ỹ(t),k̃y(t) of the co-oscillating
frame in phase space, with

ỹ =
√

2r0,yRe[α(t)], k̃y =
√

2r−1
0,yIm[α(t)].

The question remains of how to appropriately define the
co-oscillating frame ỹ(t),k̃y(t) in our analysis. A stringent
means to obtain its origin is readily provided by observing the
average transversal momentum of the emitted atoms, which are
in state |g, ± p〉 that by construction has the same transversal
center of mass as |g,0〉 (see Fig. 6, inset), hence fully
defining the collective oscillation. However, during the first
phase of excitation (especially for weak excitation scalings)
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FIG. 7. (Color online) Transversal momentum dynamics. Left side shows optimal excitation, right side shows excitation amplitude scaled
by ≈50%. (a) Transversal momentum distribution of the excited cloud, obtained from fluorescence images by integrating over x within the
source region (dashed lines in Fig. 6). (b) Numerical result obtained from one-dimensional GPE. For the scaled ramp, the scaling amplitude
is fit, whereas there are no free parameters for the optimal ramp. Solid line: numerically optimized co-oscillating reference frame position
k̃y(t) as described in the text. (c) Momentum distribution obtained from the two-state approximation within the co-oscillating frame. This
result corresponds to the effective populations used for the emission calculation [Fig. 8(a)]. (d) Dots: transversal center-of-mass momentum of
emitted atoms, as extracted from images [dashed line in Fig. 6 (inset)]. Solid line is same as in panel (b).

when the emitted atom number is low, the uncertainty of the
experimentally determined center of mass is large. Moreover,
at later times the emission increasingly perturbs the transversal
dynamics, making a direct extraction of the oscillating frame
from experimental data inconsistent with our model, which
omits emission.

Instead, we proceed by numerically optimizing the phase
space trajectory α(t) of the co-oscillating frame origin, at each
time t maximizing the overlap χ [α(t)] of the GPE result |ψ(t)〉
with a superposition of the basis states:

χ [α(t)] = |〈ψ(t)| D̂[α(t)]{
√

1 − η(t) |0〉 +
√

η(t) |1〉}|2,
with the excited state population η(t) as free parameter. For
optimal excitation, this procedure yields χ � 0.95 overlap at
all times t . In Fig. 7(d), a comparison of the numerically
optimized k̃y and the center-of-mass position of the emitted
atoms is shown. The excellent agreement at times t �
5 ms strongly corroborates the displaced oscillator eigenstate
model. In Fig. 7(c), the momentum distribution of the two-state
superposition is shown, reflecting the smooth transition from
ground to excited state, with strong beating between the states
at intermediate excited fractions. Figure 8(a) (gray lines)
shows the population of the excited state η(t), for the five
excitation strengths inferred from comparison of the GPE
result to the experimental data (Fig. 7). The smooth transitions
observed in the co-oscillating frame are in stark contrast to the
strong transient population of higher states (as e.g., shown in
Refs. [38,39]) which would be obtained by simple projection
of the GPE result on the oscillator eigenfunctions.

To facilitate the inclusion of continuous pumping into the
emission dynamics calculation, we approximate the excitation
process by a constant near-resonant Rabi coupling with

coupling strength �, detuning δ, and initial time delay t0 and
obtain

Ĥpump(t) =
{

h̄�̃
2 |e,0〉 〈g,0| + H.c., t0 � t � 5 ms

0 otherwise,

�̃ = � exp[−i(Ey,1/h̄ + δ)(t − t0)] (C2)

for the pumping Hamiltonian in Eq. (10). This corresponds to
an approximation η̃(t) to the numerically obtained two-state
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FIG. 8. (Color online) (a) Gray lines: populations of the excited
state η extracted from the GPE result within the two-state superpo-
sition model. Solid lines: fits of a constant Rabi coupling model to
the numerical result. Dashed lines: populations for Rabi coupling
parameters that were used as input to the emission calculations for
intermediate excitation strength (green, red). (b) Resulting emission
dynamics curves, corresponding to the excitation curves shown
in panel (a), respectively. Experimental data for the intermediate
scalings (II and III) are shown as dots.
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populations:

η̃(t) =
{(

�
�′

)2
sin2[�′(t − t0)], t0 � t � 5 ms

0 otherwise,
(C3)

where �′ = √
�2 + δ2. Figure 8(a) (solid lines) shows that

Eq. (C3) is an appropriate approximation to the numerically
obtained η(t) if �, δ, and t0 are left as fit parameters.

For the optimal, weakest, and strongest excitations (lines IV,
I, and V in Fig. 8, respectively), using the fit parameters as
input to the dynamics calculation directly yields excellent
agreement of the emitted atom number to the experiment
as shown in Fig. 3. Only for the two intermediate strengths
(lines II and III) do emission curves derived in this way show
unsatisfactory agreement [solid lines II and III in Fig. 8(b)].
We attribute this to failure of the two-level approximation to
yield estimates for the η(t) that are sufficiently precise for
prediction of the Bose-enhanced emission dynamics, which
is highly sensitive to changes in the initial source population.
To be able to verify the validity of our emission dynamics
theory for intermediate excitations, only for those two settings
do we slightly modify the parameters used as input to the
emission calculation. The resulting source populations η̃(t) are
shown as dashed lines in Fig. 8(a). Even the slight deviation
from the numerically obtained η(t) is sufficient to considerably
change emission dynamics results and reach agreement to the
experiment [dashed lines in Fig. 8(b)].

A more detailed description of the transversal dynamics
would additionally require the explicit treatment of the
orbital dynamics (e.g., within the multiconfigurational Hartree
method for bosons [40,41]), which is beyond the scope of our
present paper.

APPENDIX D: CALCULATION OF RELATIVE VARIANCES

In Fig. 3 (inset), we show the fluctuations of the relative
population of the twin-beam states in terms of the relative
variance ξ 2. It can be shown that the fluctuations of the emitted
number of atoms N can be written with respect to the variance
of a Poissonian distribution as

Var(N − pn) ≈ 2ξ 2N̄ .

In this and the following equations, X̄ denotes the average
of a random variable X. We eliminated the contribution of
fluctuations of the total atom number n by subtracting the
conditional expected value of N for a given total atom number
E(N |n) = pn, where p denotes the emission probability. The
latter can be estimated from the mean emitted fraction of atoms
p ≈ N̄/n̄. The factor of 2 arises due to the atoms always being
emitted pairwise. Note, that the assumption of a Poissonian
distribution for the shot noise of uncorrelated, spontaneous
emission is generally only valid within the approximation
of negligible source depletion (N � n0, n0 denoting the
population of the source state); that is, at early times during
the emission. Also, we have to neglect fluctuations of the
relative source population n0/n. Those would result from
fluctuations in temperature and excitation efficiency, which
are inaccessible to independent characterization. Hence, an
interpretation of the relative variance ξ 2 as being normalized
to the shot noise of randomly emitted atoms for an ensemble
of identical initial conditions is rather crude. Still, it gives
the correct order of magnitude and allows for comparison be-
tween different times during emission and different excitation
strengths.

In the next step, the contribution of photon shot noise in the
fluorescence imaging [26] has to be accounted for. This can be
done in a similar manner to the calculation shown in Ref. [9]
(see supplementary information) and leads to

Var(S − ps) ≈ 2ξ 2mS̄ + 2S̄ + σ 2
b .

In this equation, s and S denote, respectively, the total number
of photons scattered from atoms and the number of photons
outside the source region, as defined above. The average
number of detected photos emitted by each atom is denoted as
m, typically m ≈ 12. This means that S̄ = mN̄, s̄ = mn̄, and
thus S̄/s̄ = N̄/n̄ ≈ p. However, Var(S − ps) > Var(mN −
pmn). The second term represents the photon shot noise of
light scattered by the atoms, where the factor of 2 arises due
to the EMCCD camera used for imaging [26]. Background
light is taken into account by σ 2

b , denoting the variance of the
number of background photons originating from stray light
and detector noise within the twin-beam regions.
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