
LETTERS
PUBLISHED ONLINE: 1 MAY 2011 | DOI: 10.1038/NPHYS1992

Twin-atom beams
Robert Bücker1, Julian Grond1,2,3†, Stephanie Manz1, Tarik Berrada1, Thomas Betz1, Christian Koller1,
Ulrich Hohenester2, Thorsten Schumm1,3, Aurélien Perrin1,3† and Jörg Schmiedmayer1*

In recent years, substantial progress has been made in
exploring and exploiting the analogy between classical
light and matter waves for fundamental investigations and
applications1. Extending this analogy to quantum matter-wave
optics is promoted by the nonlinearities intrinsic to interacting
particles and is a stepping stone towards non-classical
states2,3. In light optics, twin-photon beams4 are a key element
for generating the non-local correlations and entanglement
required for applications such as precision metrology and quan-
tum communication5. Similar sources for massive particles
have so far been limited by the multi-mode character of the
processes involved or a predominant background signal6–13.
Here we present highly efficient emission of twin-atom beams
into a single transversal mode of a waveguide potential. The
source is a one-dimensional degenerate Bose gas14 in the
first radially excited state. We directly measure a suppression
of fluctuations in the atom number difference between the
beams to 0.37(3) with respect to the classical expectation,
equivalent to 0.11(2) after correcting for detection noise. Our
results underline the potential of ultracold atomic gases as
sources for quantum matter-wave optics and should enable
the implementation of schemes previously unattainable with
massive particles5,15–19.

Binary collisions between atoms provide a natural means to
generate dual number states of intrinsically correlated atoms15.
Experimental schemes include spontaneous emission of atom pairs
by collisional de-excitation9 or four-wave mixing10–12. Stimulated
emission into twin-modes has been demonstrated in seeded four-
wave mixing2,6, and parametric amplification in optical lattices7,8
or spinor condensates13. Among these schemes, suppression of
relative number fluctuations could so far be demonstrated only
for multi-mode twin-atoms12. A different route to non-classical
states is provided by ensembles inmulti-well potentials that become
number-squeezed during their time evolution20,21.

Here, we demonstrate how collisional de-excitation of a one-
dimensional degenerate Bose gas can be used to efficiently create
matter-wave beams of twin-atoms. The restricted geometry of a
waveguide potential forces emission of the beams into a single
transversal mode, in analogy to an optical parametric amplifier4.
We prepare the initial population inversion to a radially excited
state by shaking the trap, employing an optimal control strategy.
Time-of-flight fluorescence imaging is used to directly observe the
suppressed relative number fluctuations in the emitted beams.

The starting point of our investigations is a dilute, quantum
degenerate gas of neutral rubidium-87 atoms magnetically trapped
in a tight waveguide potential with a shallow axial harmonic
confinement (νx = 16.3Hz) on an atom chip22. Our scheme
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relies on an effective two-level system in the radial vibrational
eigenstates of the waveguide. This is accomplished by creating
unequal level spacings in the radial yz-plane by radio frequency
dressing23, which introduces anharmonicity and anisotropy. The
resulting single-particle first and second excited state energies are
Ey,z

(1)
= h ·[1.83,2.58] kHz and Ey,z

(2)
= h ·[3.82,5.22] kHz. As the

level spacings increase at higher levels, the ground state |ny ,nz ;kx〉=
|0,0;0〉 (ny,z and kx denoting the radial quantum numbers and
the axial momentum, respectively) and the first excited state along
y , |1,0;0〉 have the lowest energy difference among all possible
combinations (Fig. 1a), establishing a closed two-level system.

Using standard techniques we generate a Bose gas of typically
700 atoms at a temperature T ∼< 40 nK≈ h/kB ·830Hz (obtained
independently from fits to a non-excited degenerate gas24 and
its residual thermal fraction25). The thermal occupation of state
|1,0;0〉 is negligible, and the chemical potential quantifying
the mean-field interaction is µ ∼ h · 500Hz � Ey

(1). Our Rb
sample is therefore a one-dimensional, weakly interacting quasi-
Bose–Einstein condensate (quasi-BEC, Lieb–Liniger γ ∼ 0.008;
ref. 14), which can be seen as a locally coherent matter wave26
with a coherence length approximately one order of magnitude
below the system size.

Having prepared the gas, we create a population inversion
by transferring the quasi-BEC almost entirely to state |1,0;0〉
(see Fig. 1a). The transition is driven by shaking the trap along
the radial y-direction on the scale of the ground state size
(∼100 nm). The trajectory (total duration 5ms, see Fig. 2a)
has been optimized by employing an iterative optimal control
algorithm (see Supplementary Information). In the experiment, the
displacement is achieved by driving a current in an auxiliary chip
wire parallel to the main trapping wire.

Wemonitor the radialmomentumdistribution of the quasi-BEC
by releasing the cloud from the trapping potential at different
times t , during and after the excitation pulse. Images are taken
after 46ms of ballistic expansion (Fig. 2b), using a single-atom-
sensitive fluorescence imaging system27. After the excitation, we
observe a small residual beating between the macroscopically
occupied |1,0;0〉 state and a remaining non-excited population
in |0,0;0〉. From a fit to the beating pattern (Fig. 2c) we estimate
an efficiency of the coherent transfer of ηe ≈ 97% and deduce
the energy difference ε = h ·1.78 kHz between |0,0;0〉 and |1,0;0〉
(see Methods). The slight deviation between Ey

(1) and ε is
explained by particle interactions. A calculation based on the
one-dimensional Gross–Pitaevskii equation (GPE) (Fig. 2d) shows
excellent agreement with the observed dynamics.

The population inversion to |1,0;0〉 represents a highly non-
equilibrium state of the system, analogous to a laser gain medium
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Figure 1 | Schematic of the excitation and emission process. a, The quasi-BEC is transferred from the ground state |0,0;0〉 into |1,0;0〉, the first excited
state of the trapping potential along the radial y-direction. This is accomplished by means of a fast non-adiabatic movement of the potential minimum
along an optimized trajectory (inset). The excited state decays by emission of twin-atoms into the radial ground state modes |0,0;±k0〉. b, After excitation
and pair emission, the cloud is released from the trapping potential and imaged after expansion. The central part of the system clearly shows the spatial
structure of the radially excited state (blue). Two clouds containing the twin-atoms (red) are emitted.
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Figure 2 |Dynamics of the excitation and emission process: comparison
between theory and experiment. a, Optimized control trajectory for the
trap movement along y. b, Measured momentum distribution. Fluorescence
images integrated along kx over a region encompassing the central cloud.
Average over five experimental runs. c, Fit of the time-dependent
momentum distribution, scaled to the experimental total density at each
time step. d, Calculated momentum distribution, using a one-dimensional
GPE model. As the model does not take into account the pair emission
process, agreement with the experiment is expected approximately up to
the end of the excitation pulse. e, Red line: Population of the emitted clouds
obtained from the same data set as b. Red crosses: population of the
emitted clouds obtained from a separate measurement with 100
experimental runs each (error bars represent the ensemble standard
deviation). Black line: theoretical estimation for spontaneous
processes only.

after a pump pulse. For the ensuing relaxation, the only allowed
channel is a two-particle collisional process, emitting atom pairs
with opposite momenta. In contrast to experiments with free-space
collisions10,12 or two-dimensional gases9, the constricted geometry
and non-degenerate level scheme of our source restricts the
outgoing matter waves to the radial ground state of the waveguide,
yielding twin-atom beams in a single transversal mode. Within
a binary collision, two atoms are scattered from |1,0;0〉 |1,0;0〉

to |0,0;+k0〉 |0,0;−k0〉, where energy conservation requires the
final momenta to be centred around ±k0 = ±

√
2mε/h̄. The

emission process can be understood as a matter-wave analogue
of a degenerate optical parametric amplifier, where the initially
empty twin-modes are seeded by vacuum fluctuations4 and have an
exponentially growing population if phase matching conditions are
fulfilled. Owing to the finite size, the axial multi-mode character
of the quasi-BEC source14, and the depletion of the initial state,
a comprehensive understanding of the process is challenging. The
emission dynamics, as well as the ensuing longitudinal coherence
properties of the beams (which should resemble those of the
source), will be the subject of future experimental and theoretical
studies. A comparison of the observed rates to a simple calculation
using Fermi’s golden rule (see Supplementary Information) is
shown in Fig. 2e and demonstrates the insufficiency of a purely
spontaneous model (in contrast to the findings of ref. 9 for a
transversal multi-mode system).

Once the trap potential is switched off and the atoms propagate
freely (Fig. 1b), the twin-beam modes can be detected essentially
background-free in fluorescence images (Fig. 3a,b) as they separate
from the source. In Fig. 3c, the radial momentum distribution of
the twin-beams is compared to an independent measurement of
the initial |0,0;0〉 cloud. The small deviation is attributed to a
slight overlap of the central cloud with the integration regions of
the emitted clouds (red boxes in Fig. 3b) and interactions with the
mean field of the quasi-BEC in the |1,0;0〉 state. Furthermore, an
excited cloud at t = 6ms is shown. From the axial position of the
side peaks (Fig. 3d) we can deduce an emitted atom momentum of
k0= 2π ·0.883(3) µm−1, equivalent to ε=h·1.78(1) kHz, in perfect
agreement with the value determined from the beating fit (Fig. 2c).
The width of the emitted clouds (Fig. 3d) is increased by a factor of
≈1.4 with respect to the source cloud. At momenta corresponding
to ε ′≈ h ·3.9 kHz, further, very weakly populated atom clouds (∼<1
atomper image) are observed on an averaged picture (Fig. 3b). They
imply a transient population of |2,0;0〉 during the control sequence
that directly decays into the radial ground state. In the following
analysis, they aremergedwith the atoms originating from |1,0;0〉.

The non-classical correlation in the emitted twin-atom beams
is revealed by a sub-binomial distribution of the number imbalance
n=N1−N2 between atoms detected at±k0. The variance of n can be
expressed as σn2=ξ 2N̄ , where N̄ denotes themean total atomnum-
ber in the emitted clouds. The noise reduction factor ξ 2 quantifies
the suppression of σn2 with respect to a binomial distribution and,
thus, the amount of correlation between the populationsN1 andN2.

In the fluorescence images, we count photons in regions
encompassing the emitted clouds that were released at t = 7ms.
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Figure 3 |Atom cloud image analysis. a, Typical experimental image of
∼700 atoms released from the trap 7 ms after starting the excitation
sequence. The cloud is allowed to expand for 46 ms, making the initial
momentum distribution accessible. The quasi-BEC in the excited state
|1,0;0〉 is clearly distinct from the emitted clouds at momenta±h̄k0. Units
are photons per pixel. The blue box indicates the integration range for the
data shown in Fig. 2b. b, Average over≈ 1,500 images similar to a. The
colour scale is logarithmic (dB referenced to peak density). The regions
used for correlation analysis are indicated as red boxes. c, Normalized,
radial momentum distributions of the central (blue) and emitted (red)
clouds. Average of 50 images of clouds released at t=6 ms. As
comparison, the distribution of a non-excited cloud is shown (black,
average over 100 images). d, Normalized profile of b along kx (red dots)
and three-peak fit (black line) based on stochastic simulations24.

For given atom numbers N1,2, the expectation values for the
photon numbers are S1,2= p̄N1,2+ b̄/2, where p̄= 12.3(9) denotes
the average number of photons per atom and b̄/2 accounts for
background events. Our main observable is the variance σs2 of
the signal imbalance s = S1 − S2. Its expectation value for a
binomial distribution of atoms and noise-free detection is given
by σbin2 = p̄S̃, where S̃= S̄1+ S̄2− b̄. From the experimental data
as shown in Fig. 4a we obtain an uncorrected reduction factor
σs

2/σbin
2
= 0.37(3). However, a significant contribution to σs

2

originates not from the atom number fluctuations, but from the
detection process itself. For fluorescence imaging as employed in
our experiment, this contribution can be directly calculated from
the photon shot noise and detection background (see Methods).
It is accounted for by subtracting a correction σd

2 from σs
2.

From the corrected variances, we infer a reduction factor of
ξ 2 = (σs2− σd2)/σbin2 = 0.11(2), which is the main result of this
paper. It is equivalent to an intensity squeezing in the sense of
ref. 4. In strong contrast to the suppressed relative fluctuations,
applying an analogous calculation on the variance σS2 of the
summed signal in the emitted clouds S = S1 + S2 (binned into
groups with similar total atom number) yields super-Poissonian
fluctuations (σS2 − σd2)/p̄S̃ ∼ 7, highlighting the presence of
bosonic amplification.

To study the correlation data in more detail, we bin the
experimental shots according to the emitted atom signal S and
calculate the variances σs2 and mean signals S̃ for each bin
(consisting of typically 100 runs) separately, as shown in Fig. 4b.
The differences between the data points and the detection noise
σd

2 represent the corrected variances, as introduced above. They
seem to be independent of S̃, which is supported by χ 2-test
results on various plausible models. As any uncorrelated emissions
should scale with S̃, this suggests that the non-zero value of ξ 2
can be explained by a slight additional background signal, for
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Figure 4 | Correlation analysis. a, Histogram of observed signal imbalances
s between the emitted clouds, in units of the binomial standard deviation
σbin= (p̄S̃)1/2. The curves indicate normal distributions corresponding to
the experimental result of ξ2

=0.11(2) (black, solid); the limits of perfect
correlation, where only detection noise remains (red, solid); of uncorrelated
signals, defining the reference point for ξ2 (blue, solid); and a binomial
distribution for p̄S̃ trials (black, dashed). b, Observed signal imbalance
variances for data bins corresponding to different total signal in the emitted
clouds S̃. Error bars are the standard error. The lines correspond to those
in a. The corrected variances are given by the vertical distances between
the data points and the detection noise.

example as a result of the residual overlap of the excited quasi-BEC
and the emitted clouds.

The availability of single-mode twin-atom beams adds an
essential building block for quantum matter-wave optics. As our
scheme does not rely on the internal structure of the atoms,
it can be applied to any sufficiently controllable system of
interacting bosons. Possible applications include interferometry
with dual-Fock states15, Hong–Ou–Mandel-type experiments17 or
continuous-variable entanglement5,19. Inclusion of internal (for
example, hyperfine states with appropriate scattering properties)
or few-mode external (for example, two-mode double well
states) degrees of freedom seems a viable strategy to generate
non-local entangled states of massive particles for Bell-type
measurements16,18,19,28,29.

Methods
Trap potential preparation. We trap our atoms in an adiabatic dressed state
potential23, created on an atom chip22. The radial potential can be approximated
by quartic polynomials, where the x4-term typically contributes ≈5% at relevant
length scales (see Supplementary Information for details).

Radial excitation. We use optimal control of the one-dimensional (along y) GPE
(ref. 30) to derive the shape of the excitation pulse. The anharmonicity of the
radial potential enables transfer to the population-inverted state, as opposed to a
harmonic potential in which only coherent states can be excited by displacement.
To obtain the excitation efficiency ηe = 0.97 and ε= h ·1.78 kHz from the beating
between |0,0;0〉 and |1,0;0〉 we fit a superposition of the ψ1(ky )= 〈ky |1,0;0〉
and ψ0(ky )= 〈ky |0,0;0〉 wavefunctions with a time-dependent relative phase
ε/h̄ ·t to the momentum density of the central cloud (Fig. 2b,c). Starting from
about t ≈ 5ms, the contrast of the beating pattern starts to fade (Fig. 2b), which
is attributed to dephasing collisions between emitted atoms and the main cloud.
This is taken into account by (incoherently) adding a contribution |ψ0(ky )|2
to the density fit, with a linearly growing population reaching ≈28% at the
latest time measured. Note, however, that this does not affect the efficiency
of the excitation itself.
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Imaging characterization. The fluorescence imaging system27 is calibrated by
comparing a large number of fluorescence and calibrated absorption images of
identically prepared clouds. As absorption images yield an absolute atom number,
we can determine the number of photons per atom to p̄= 12.3(9). This value
is compatible with independent measurements of the physical properties of
three-dimensional clouds25. The detection noise σd2, which is used to correct the
observed number fluctuations, can be split into a constant and a signal-dependent
part (see red line in Fig. 4b). The constant part is given by background events
and readout noise σb2 ≈ 2b̄, which can be obtained from empty regions in the
images next to the atoms. The signal-dependent contribution is defined by the
variance of the photon number per atom σp

2. Photon shot noise and amplification
noise of the Electron Multiplying Charge Coupled Device (EMCCD) camera used
yields σp2 = 2p̄ (see Supplementary Information and ref. 27). In total, we arrive at
σd

2
= σp

2N̄ +σb2= 2S̃+σb2.
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FIG. 1. Schematic of the atom chip layout. The waveguide
potential is formed by the current Itrap through the main
trapping wire (black) and a static magnetic field By. On a
separate chip layer, currents Iax in broad wires (green) pro-
vide axial confinement. An external field Bx completes the
Ioffe-Pritchard configuration. The radio frequency dressing
currents Irf are applied to wires (red) in parallel to the trap-
ping wire. Finally, the modulation of the trap position is
accomplished by a current Imod in an auxiliary wire (blue).

Preparation of the trapping potential

Both the optimized excitation scheme needed for trans-
ferring the quasi-BEC into |1, 0; 0 (see next section),
and restricting the emission to a single transverse mode
|0, 0;±k0 require a sufficiently anharmonic trapping po-
tential along y with increasing level spacings. Hence, the
initially radially symmetric Ioffe-Pritchard field configu-
ration created by our chip wire configuration (see [1] and
figure 1) is being modified by radio frequency dressing
[2, 3]. Typically used for creating double well poten-
tials, this technique also allows for the introduction of
anharmonicity and anisotropy to a single trap when the
dressing strength is kept slightly below the point where
actual splitting of the potential occurs. We apply an ac
current of Irf = 23mA peak-to-peak amplitude at a de-
tuning of δ = −54 kHz with respect to the atomic Larmor
frequency near the trap minimum (ν0 = 824 kHz) to two
wires running on each side of the main trapping wire at
a distance of 55µm.
The resulting potential can be calculated numerically

by means of a Floquet analysis [4]. In the two radial
directions it can be approximated by quartic polynomials
of the form E = p4r

4 + p2r
2: In the y-direction, along

which the excitation is performed the coefficients are p4 =
h · 13.1Hz/r40 and p2 = h · 343Hz/r20. In the z-direction

perpendicular to the excitation motion the coefficients
are p4 = h · 10.4Hz/r40 and p2 = h · 793Hz/r20. Here,
r0 = 172 nm is the mean radial ground state radius as
calculated by the Gross-Pitaevskii equation.

Along the axial x-axis, the trap frequency given in the
text is determined by observation of a deliberately ex-
cited sloshing mode of the quasi-BEC.

Optimized excitation of the condensate

To transfer the cloud into the radially excited state
|1, 0; 0 we displace the radial trap minimum along an
optimized trajectory.

This movement is achieved by applying a current of
typically less than 10mA to a wire parallel to the trap-
ping wire at 140µm distance (see figure 1). The resulting
magnetic field is mostly oriented along the z-direction at
the cloud position, moving the potential predominantly
along y [5]. The calculated offset is 26 nm/mA along y
and 9 nm/mA along z, where the contribution along z
does not significantly distort the excitation process (see
below).

The most efficient way of moving the trap for excited
state preparation is obtained from numerical calculations
which employ optimal control [6] of the Gross-Pitaevskii
equation. Optimal control theory is a powerful tool which
allows to minimize a given cost functional with the con-
straint that the system is governed by the corresponding
equations of motion. In our case, we iteratively solved an
optimal control system determined from a Lagrangian
framework [6, 7]. For desired state trapping one maxi-
mizes the overlap of the wave function at the final time
with a given desired state. This has been used before in
theoretical works about transferring or splitting a BEC
by continuously transforming a trap potential from an
initial to a final shape, without exciting the BEC [8, 9].
In the present work, we employ the same techniques, but
choose the first excited state of the Gross-Pitaevskii equa-
tion at the final trap position as desired state.

For such excited state preparation, it is crucial to use an
anharmonic trap, as for a weakly interacting system in a
harmonic trap, displacements generate displaced ground
states, i.e., coherent states. The present optimal con-
trol calculations have been performed in 1D (along y) for
simplicity, using an effective 1D interaction parameter
[10]. This works well, since the dynamics in the axial x-
direction is orders of magnitudes slower than in the radial
ones. Moreover, the potential is sufficiently anisotropic
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in the radial plane, such that the z direction is not signif-
icantly affected by the movement, even though it is not
strictly performed along y (see above). We performed 2D
simulations of the Gross-Pitaevskii equation and found
only small deviations as compared to the 1D case.
To estimate the excitation efficiency from experimental

data we fit a model of the time-dependent momentum
density along y in the main cloud (i.e. not including the
emitted atoms) after the excitation pulse (see figure 2b,c
in the main text), according to

n(ky, t) = (1− ηd(t))|

1− ηeψ0(ky) +

√
ηee

i/·tψ1(ky)|2

+ ηd(t)|ψ0(ky)|2,

where the total density of the experimental data is nor-
malized for each time step. The first line corresponds
to the coherent two-level dynamics between the radi-
ally excited state ψ1(ky) = ky|1, 0; 0 and the ground
state ψ0(ky) = ky|0, 0; 0 at a beating frequency given
by the single-particle energy difference  ≈ E

(1)
y . The

efficiency of excitation is denoted as ηe. In the sec-
ond line, an incoherent admixture of the ground state
is added with a time-dependent population ηd(t), which
corresponds to dephased atoms having undergone emis-
sion into the |0, 0;±k0 modes and subsequent collisions
with the excited main cloud. The momentum-space wave
functions ψ1 and ψ0 correspond to eigenstates of the one-
dimensional Gross-Pitaevskii equation at a typical atom
number. From the fit we deduce an efficiency of the co-
herent excitation of ηe = 0.97 and a dephased fraction
linearly rising from ηd(5.2ms) = 0.08 to ηd(8ms) = 0.28.
For the energy difference we obtain  = h · 1.78 kHz.

Emission dynamics model

We compare the fraction of emitted high-momentum
atoms to a simple model, taking into account spon-
taneous emission only, and assuming an atom num-
ber corresponding to the average of the shown dataset
(N̄tot ≈ 700). To obtain the theory curve, we solve
rate equations between the states |0, 0; 0, |1, 0; 0 and
|0, 0;±k0. The excitation rate from |0, 0; 0 to |1, 0; 0
cannot be directly obtained from GPE calculations, as
both the populations of the radial states as well as
their wave functions are time-dependent. It is thus
approximated by a constant rate during the excitation
pulse. On the other hand, to treat the emission from
|1, 0; 0 to |0, 0;±k0, we assume an axial density distri-
bution according to [11] and employ Fermi’s golden rule
for indistinguishable bosons to obtain a weakly atom-
number-dependent two-body decay constant of the or-
der of Γem[Nexc] ∼ 0.05s−1. This allows to estimate the
emission rate as Ṅ = 2Γem[Nexc(t)]Nexc(t)

2, where Nexc

denotes the number of atoms in |1, 0; 0, calculated as
described before. While during the initial phase, where

Nexc, N  Ntot the model works well, it fails at later
times where Nexc, N  Ntot, indicating that stimulated
processes have to be taken into account, analogous to
parametric amplification in quantum optics.

Fluorescence detection and noise corrections

To detect the atoms after release from the trapping po-
tentials we employ a fluorescence detector introduced in
[12]. The expanding cloud falls through a thin horizon-
tal light sheet (vertical waist radius w0 = 20 µm) after
46ms of expansion time. Light scattered by the atoms is
collected by an objective outside the vacuum vessel and
imaged on an EMCCD camera. The extraordinarily low
background of the system enables single-atom sensitivity
while maintaining the dynamic range needed for imag-
ing of dense Bose-Einstein condensates. For the excita-
tion power employed (which is of the order of the atomic
saturation intensity at the centre of the light sheet),
p̄ = 12.3 ± 0.9 photons per atom are detected on av-
erage. This number is deduced from cross-calibration by
comparison of a sufficient number of calibrated absorp-
tion imaging and fluorescence shots of clouds prepared
under identical conditions. It is compatible with inde-
pendent estimates obtained from physical properties of
clouds released from a nearly isotropic trap [13]. Slight
dependencies of p̄ on the spatial position within the image
due to CCD etaloning and inhomogeneity of the illumi-
nation can be corrected by using a reference image.
For exact analysis of the pair correlation as described

below, also the variance of the distribution of photons
per atom σ2

p has to be estimated. The first contribu-
tion to this variance is the photon shot noise σ2

SN = p̄.
Furthermore, the excess noise due to the stochastic am-
plification in the EMCCD detector has to be taken into
account and increases the detection noise by a factor of
two [14]: σ2

amp = 2p̄, in accordance to independent char-
acterization measurements using Poissonian light sources
and the value for the detection background (see below).
Finally, a further broadening of the distribution of p is
caused by the diffusion of atoms within the light sheet
[12]. However, this contribution is hard to obtain from
experimental results (as we cannot prepare single atoms
deterministically as e.g. in [15]) and can only be esti-
mated from simulations. To avoid overestimation of de-
tection noise, which would spuriously reduce ξ2, we as-
sume σ2

p = σ2
amp and set σ

2
p/p̄ = 2 in our analysis.

Apart from the distribution of p, another detection con-
tribution to σ2

s originates from the residual background
signal b. We extract b̄ and σ2

b from regions directly adja-
cent to the main analysis regions, which contain the emit-
ted clouds and scale the obtained values accordingly. We
obtain σ2

b/b̄ = 2.14, which can be understood as com-
bined effect of shot and amplification noise and resid-
ual readout noise. Again, to avoid over-correction, we
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make sure that the background treatment does not lead
to spurious reduction of ξ2 when the analysis regions are
enlarged artificially.

Correlation analysis

As a first step to determine the amount of popula-
tion correlation between the emitted clouds, we count
the photon numbers S1, S2 (indicating atom numbers
N1, N2) within regions encompassing them (see figure
3b in the main article). Choosing the integration range
along the axial x-direction is a sensitive task, as a too
small region will not capture all emitted atoms, deterio-
rating the result. On the other hand, one has to take into
consideration residual overlap of the emitted clouds with
the quasi-BEC. As expected, we find that setting the
limit to the position of the density minimum between
main and emitted clouds minimizes the obtained value
of ξ2. Still the residual overlap appears to be one of the
limiting factors to the measurable correlation. The outer
limits are chosen in a way that the weak clouds emitted
from |2, 0; 0 (on average less then one atom per image)
are still contained within the analysis regions. Those
overlap significantly with the main emitted clouds, thus
limiting the ability to assess the correlations between
them separately.
To calculate ξ2 from the accessible quantities σ2

s and
S̃, as defined in the text, we have to estimate the total
contribution of detection noise σ2

d from the quantities
σ2
b and σ2

p as defined in the previous section. We can
decompose σ2

s into a population fluctuation term and a
detection term using the law of total variance:

Var(s) =Var(E(s|n)) + E(Var(s|n))
=Var(E(p)n) + E(Var(p)N +Var(b)),

where b and p are the background signal and the num-
ber of photons per atom as discussed above, s = S1−S2,
n = N1 − N2, N = N1 + N2. E(X) and Var(X) denote
expectation value and variance of the random variableX.
For our analysis, assuming Var(X) = σ2

X and E(X) = X,
this reads

σ2
s =p̄

2ξ2N̄ + σ2
pN̄ + σ2

b

=p̄ξ2S̃ + vS̃ + σ2
b

=ξ2σ2
bin + σ2

d,

and thus σ2
d = vS̃+σ2

b . Solving for ξ
2 leads to the formula

used for the analysis.

To estimate the uncertainty of ξ2 we propagate the
standard error of the shot-to-shot mean of b, σ2

b , S and p,
the latter obtained from an independent measurement as
described earlier. The error of σ2

s = (k−1)−1
k

m=1(sm−
s̄)2, where k denotes the number of experimental runs, is
calculated as σ2

s · (2/(k − 1))1/2.
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