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Mach-Zehnder interferometry with interacting trapped Bose-Einstein condensates
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We theoretically analyze a Mach-Zehnder interferometer with trapped condensates and find that it is
surprisingly stable against the nonlinearity induced by interparticle interactions. The phase sensitivity, which
we study for number-squeezed input states, can overcome the shot noise limit and be increased up to the
Heisenberg limit provided that a Bayesian or maximum-likelihood phase estimation strategy is used. We finally
demonstrate the robustness of the Mach-Zehnder interferometer in the presence of interactions against condensate
oscillations and a realistic atom-counting error.
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Atom interferometry [1] with trapped Bose-Einstein con-
densates (BECs) is a very promising tool for the most precise
measurements. The nonlinearity of BECs makes it possible to
create highly squeezed states, which should allow the classical
shot noise limit for the phase sensitivity �θ = 1/

√
N to be

surpassed by a factor of
√

N up to the Heisenberg limit (HL)
�θ = 1/N [2,3], where N is the number of atoms in the
condensates.

Both atom chips [4] and dipole traps [5] allow for
versatile control of trapped BECs, and coherent splitting and
interference [6,7] have been demonstrated. The preparation
of moderately number-squeezed states through splitting of a
condensate by transforming a harmonic potential well into a
double well [8] has been recently achieved experimentally
[9,10], and it has been suggested to use optimal control
strategies to create highly squeezed states at short time scales
[11], exploiting the atom-atom interactions.

However, according to the current literature it is generally
believed that interactions are detrimental for interferometry
as they induce phase diffusion [12], thereby decreasing the
phase coherence [9,10,13–16]. The proposed standard solution
is to make the interactions small by employing Feshbach
resonances [17,18] or by using state-selective potentials for
internal degrees of freedom [15,16]. This is not always
possible, and in many cases it is not desirable, because
Feshbach tuning requires field-sensitive states which are,
however, not ideal for precision interferometry. Moreover,
residual interactions might still decrease the sensitivity.

In this paper, we analyze the Mach-Zehnder (MZ) interfer-
ometer for BECs trapped in a double-well potential in the pres-
ence of atom-atom interactions. We show that the sensitivity is
not substantially degraded by the interactions, and Heisenberg
scaling can be achieved with the resources of number-squeezed
input states and atom-number measurements as the readout.
Our scheme is robust against mechanical excitations of the
BEC and finite atom-number detection efficiency.

The initial state of the interferometer sequence consists of
two uncoupled, stationary BECs with number fluctuations �Jz

[19]. We resort here to a generic description characterized by
two parameters, tunnel coupling � and interaction energy U0

[8], and discuss a realistic model at the end of the paper. We first
introduce the ideal (i.e., noninteracting) MZ interferometer
as discussed in [20–22]. It consists of two cold-atom beam
splitters (BSs) with Hamiltonian Ht = −�Ĵx , and in between
a phase accumulation due to an energy difference �E between
the two wells (with Hamiltonian He = −�EĴz). We visualize
a typical interferometer sequence on the Bloch sphere [13]
in Fig. 1(a). A BS corresponds to a π/2 rotation around
the x axis during a time Tt . The first BS transforms the
number-squeezed input state into a phase-squeezed one. The
second BS transforms an accumulated phase θ = �ETe (a z

rotation caused by an external potential during a time Te) into
a relative atom-number difference. The whole interferometer
transformation can be written as |ψ (θ)

OUT〉 = e−iθ Ĵy |ψIN〉. A
number-squeezed input state [with squeezing factor ξN :=
�Jz/(

√
N/2) < 1] reduces the measurement uncertainty in

the atom number of the final state [20,23].
Atom-atom interactions are described by the Hamiltonian

Hi = U0Ĵ
2
z [24], and the whole interferometer transformation

reads now
∣∣ψ (θ)

OUT

〉 = e−i(Ht+Hi )Tt e−i(He+Hi )Tee−i(Ht+Hi )Tt |ψIN〉 . (1)

Even for very small interactions (U0N = 0.1), the state gets
distorted [Fig. 1(b)]. For larger interactions [Fig. 1(c)], the
state covers almost the whole sphere. If we employ the usual
parameter estimation based on the mean value of all the
measurement results [2,20,23], the phase sensitivity is worse
than shot noise.

Contrary to the expectations of this estimation, we now
show that interactions do not substantially limit interferometry.
In a completely general fashion we use the quantum Fisher
information FQ(|ψIN〉) = 4(�R)2, where R̂ is the generator
of the interferometer transformation [22,25], to compute the
Cramér-Rao lower bound (CRLB), which determines the
best possible phase sensitivity independent of the choice
of the measured observable [26]. For the interferometer
transformation Eq. (1), we find

�θCRLB � 1√
mFQ(|ψIN〉) = 1√

m2�Jz(t = Tt )
, (2)
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FIG. 1. (Color online) Mach-Zehnder interferometer sequence
for a finite phase θ (a) in the absence and (b), (c) in the presence
of interactions, visualized on the Bloch sphere (Tt = Te = 1). (a) A
number-squeezed initial state (small width along the z axis, number-
squeezing factor ξN = 0.2) is transformed into a phase-squeezed one
(small width along the equator) by a BS (rotation around the x axis).
Next a phase is accumulated due to an external potential (rotation
around the z axis). A second BS transforms the state such that the
phase is mapped onto a number difference. (b) Even for very small
interactions (U0N = 0.1), the number squeezing in the final state
is lost. (c) For larger interactions (U0N = 1), the initial state (here a
Fock state) gets strongly distorted and winds around the Bloch sphere.

i.e., it is given by the number fluctuations after the first
nonlinear BS [27]; m denotes the number of independent
measurements.

We start by analyzing a Fock input state |ψIN〉 ∝
(â†

R)N/2(â†
L)N/2|0〉. From the scaling of H = Ht + Hi with

N we find �Jz(t = Tt ) ≈ αN (with constant α). Thus, we
expect Heisenberg scaling ∝1/N whenever U0N is constant
for increasing N [28].

Now we have to clarify whether one can indeed achieve a
sensitivity close to the Heisenberg limit if one is restricted to a
number measurement as in experiments. The classical Fisher
information (CFI) [25]

F (θ,|ψIN〉) =
∫

dn
1

P (n|θ )

(
∂P (n|θ )

∂θ

)2

(3)

allows one to estimate a lower bound of �θ = 1/
√

mF (θ )
for this specific type of measurement (we consider θ � 1).
Hereby, P (n|θ ) = |〈n|ψ (θ)

OUT〉|2 is the conditional probability
that an atom-number difference n is measured for phase θ .
Below we choose a constant U0N = 1 and vary the BS and
accumulation times Tt and Te (with �Tt = π/2 fixed). The
influence of larger interactions can then be extracted through
simple rescaling.

Heisenberg scaling �θ = β/N persists in the presence of
interactions also for a number measurement; see Fig. 2(a).
The sensitivity is degraded only by an almost N -independent
prefactor β, which varies with Tt as is shown in Fig. 2(b)
(dark solid line). Fast BSs [Tt ∼ 1/(U0N )] give rise to a
prefactor of ∼1, but also for slower BSs we can exploit
quantum correlations for MZ interferometry, which is relevant
for relatively large interactions (U0N = 10) [13].

The number readout works because interactions transform
the conditional probability distributions P (n|θ ), which have
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FIG. 2. (Color online) (a) Scaling of
√

m�θ with N for Tt =
2 (circles), Tt = 20 (stars), and finite detection error ±2 (crosses,
for Tt = 19) and ±5 (diamonds, Tt = 21) (U0N = 1 and Te fixed),
compared to shot noise (dashed line) and the U0 = 0 HL

√
m�θ =

1.4
√

m/N (dash-dotted line). (b) The prefactor β (obtained from
fitting) is shown for optimized Te < 40 (dark solid line), compared
to

√
m�θCRLBN (dash-dotted line) and

√
m�θN for nonoptimized

values of Te < 40 (shaded solid line). Also results for a finite detection
error of ±2 are shown (dashed line).

for the ideal MZ and θ = 0 a single peak with width 1,
into a complicated pattern with substructures of the same
width [see Figs. 3(c), 3(f), 3(i), and 3(l)]. These serve as the
measurement stick and determine the smallest phase which
can be resolved [22]. The patterns vary with Te, such that
some of them show more distinct 1/N-sized peaks [blue line
in Fig. 3(c)], maximizing the CFI of Eq. (3) better than others
(bright red line).

FIG. 3. (Color online) Probabilities P (n|θ ) = |〈n|ψ (θ)
OUT〉|2 for (a),

(d), (g), and (j) binomial, (b), (e), (h), and (k) moderately number
squeezed (ξN = 0.2), and (c), (f), (i), and (l) Fock states for N = 100,
U0N = 1, and Tt = 1; (d)–(f) the ideal case (no interactions), (g)–(i)
the interacting case for Te = 1, and (j)–(l) the interacting case for
Te = 10. The states are also shown on the Bloch sphere. (a)–(c)
P (n|θ = 0).
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FIG. 4. (Color online) (a) Phase sensitivity
√

m�θ for different
interaction strengths vs the initial number fluctuations ξN (t = 0) for
U0N = 1 (N = 100). The symbols show results for a simulated
Bayesian phase estimation (circles, Te = 1; diamonds, Te = 10).
(b) Number fluctuations after the first BS, ξN (t = Tt ), which
determine the CRLB, Eq. (2).

Thus, the number measurement is not the “optimal” mea-
surement for all values of Te [26]. We compare the maximal
and minimal prefactors, which can be obtained by varying
Te [shaded and dark solid lines, respectively, in Fig. 2(b)].
The latter lies close to the CRLB (dash-dotted line). Most
importantly, there is no upper limit to Te, which allows, in
principle, signals to be accumulated for a very long time.

In many experimental situations only input states with finite
number squeezing ξN < 1 are available. For the ideal MZ
the sensitivity increases monotonously with number squeezing
[black line in Fig. 4(a)], up to the HL

√
m�θ = 1.4

√
m/N .

We start with analyzing the case of long BS times Tt (bright
red lines). We find a transition of the phase sensitivity as a
function of ξN : Starting from ξN = 1 (binomial state), the
sensitivity first decreases up to a point, say around ξN = 0.2–
0.3. Then it becomes better again and finally approaches the
HL for very small values of ξN . Also the CRLB, Eq. (2), which
is a strict lower bound to �θ , shows a transition. The reason is
an absence of number fluctuations after the first BS whenever
the input state is only moderately number squeezed [red line
in Fig. 4(b)].

For short BS times Tt (blue lines), we find a transition
only for short phase accumulation time Te (blue dashed line).
In contrast, a longer Te gives a monotonous behavior (blue
dotted line) similar to the CRLB [blue line in Fig. 4(b)].

We can get insight into this behavior from the conditional
probabilities P (n|θ ) for different input states in Fig. 3. For
binomial and moderately number-squeezed states [Figs. 3(d)
and 3(e)], they are close to Gaussian shape [black lines in
Figs. 3(a) and 3(b)]. Interactions wash out the structure of
the squeezed state [Fig. 3(h)] and increase the variance in
the final atom-number distribution. Thereby the coherent spin
squeezing of the initial state is decreased to values even worse
as compared to the more robust binomial initial state [14].
For longer Te, interactions induce substructures [Fig. 3(k)].
In contrast, for a Fock input state a complex pattern emerges
even for very small Te [Fig. 3(i)], whereas a binomial input
state does not build up any substructure at all [Figs. 3(g)

and 3(j)]. Visualized on the Bloch sphere, P (n|θ ) shows an
interference pattern whenever a state winds around for a long
enough time such that it becomes a superposition of different
phase components [Figs. 3(k), 3(i), and 3(l)].

In real experiments, �θ as calculated from the CFI can
be obtained by using a Bayesian (or alternatively maximum-
likelihood) phase estimation protocol [29]. Thereby a series
of m measurements is performed, and the atom-number differ-
ence of each measurement is used for the phase estimation. We
find that such a protocol gives sensitivity in accordance with
the more general lower bounds as reported by the symbols in
Fig. 4(a) (for m = 20).

The MZ interferometer is robust against shot-to-shot
fluctuations in the atom number or nonlinearity [30]. A
finite atom-counting error has the effect of broadening the
substructures in the probability distributions as P̃ (n|θ ) ∝∑

k P error(n|k)P (k|θ ), where P error(n|k) is the error probability
for measuring k atoms instead of n. In Fig. 2 we show that a
binomial error probability with width σ = 2 gives rise to just
another prefactor, because a constant detection error is less
important for larger N . Even for a detection error σ = 5 [9,31],
subshot noise can be found for N > 2000.

Implementing the interferometer with trapped condensates,
one achieves the BS by lowering the barrier between two
split condensates, thereby introducing tunneling. The full
two-mode physics including the spatial dynamics can be
accounted for by the multiconfigurational time-dependent
Hartree for bosons (MCTDHB) method [32], which represents
a framework using time-dependent mode functions. For a
typical trapping geometry on atom chips with ω⊥ = 2π × 2
kHz transverse frequency, we find that for tunnel pulses on the
order of several milliseconds, rapid oscillations are induced in
the condensates, which lead to unwanted excitations [33]. In
our earlier work [11,13] we have developed and demonstrated
optimal control [34,35] within the MCTDHB method. This
allows us to design controls for fast BS operations without
exciting the condensates, which is achieved by trapping the
condensates in stationary states after each of the two BSs,
while at the same time achieving appropriate tunnel pulses.

0 50 100 150 200

0.01

0.1

0.2

N

Δθ

Standard Quantum Limit

Heisenberg Limit

Coherent
Number Squeezed

P
os

iti
on

−2

0

2

0 2 4 6 8
0

0.5

1 λ control

C
ou

pl
in

gs
,λ

 (
G

)

Time

Ω
0.22π 0.25π

FIG. 5. (Color online) �θ for realistic control sequences calcu-
lated with MCTDHB method for U0N = 0.1 and a binomial state
with Tt = 8, and U0N = 1 and a highly number-squeezed state with
ξN (t = 0) = 0.05 and Tt = 4. The insets show the density (top), and
the optimal control and tunnel coupling (bottom) for the squeezed
state and N = 100.
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An approximately π/4 tunnel pulse [36] is achieved for Tt = 4
and highly number-squeezed input states. In Fig. 5 we show
results for binomial and number-squeezed input states with a
phase sensitivity close to the HL.

To summarize, we analyzed the phase sensitivity of a
trapped BEC Mach-Zehnder interferometer in the presence
of interactions. Heisenberg scaling can be achieved for an
atom-number measurement, and there is no upper limit to the
phase accumulation time. For finitely number-squeezed input
states the phase sensitivity is characterized by a transition. We
demonstrated robustness against condensate oscillations and

finite detection error, and thus our results can be compared to
current experiments.
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[9] J. Estève, C. Gross, A. Weller, S. Giovanazzi, and M. K.

Oberthaler, Nature 455, 1216 (2008).
[10] K. Maussang, G. E. Marti, T. Schneider, P. Treutlein, Y. Li,

A. Sinatra, R. Long, J. Esteve, and J. Reichel, Phys. Rev. Lett.
105, 080403 (2010).

[11] J. Grond, J. Schmiedmayer, and U. Hohenester, Phys. Rev. A
79, 021603(R) (2009).

[12] J. Javanainen and M. Wilkens, Phys. Rev. Lett. 78, 4675 (1997).
[13] J. Grond, U. Hohenester, I. Mazets, and J. Schmiedmayer, New

J. Phys. 12, 065036 (2010).
[14] I. Tikhonenkov, M. G. Moore, and A. Vardi, Phys. Rev. A 82,

043624 (2010).
[15] C. Gross, T. Zibold, E. Nicklas, J. Estève, and M. K. Oberthaler,
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â
†
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