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(1) Introductory Remarks   



  





NANO – MATERIAL SCIENCE : 
SIZE RANGES OF NANOPARTICLES 

_______________________________________ 
 
(1) “LARGE” NANOPARTICLES: Solid  state particles 
 
MIE –THEORY : Geometric scaling down of the theoretical 
background of the bulk solid state (Maxwell electrodynamics) 
and of bulk optical material properties  
(complex dielectric function ε( ω ) ). 
Size limits : ∞ > 2 R > 101 nm      
 
(2) “MINUTE” NANOPARTICLES 
 
MIE – THEORY :  Lower validity limit at the transition 
region  from the solid state to the molecule.  
Molecule: quantum theoretical molecule background 
(“ Vlasta Koutecky :”every atom counts”) 
Optical properties : atomic polarizability p(ω, ….)    
Size  limits : 2 R > 1.5  nm      
 
(3)  INTERMEDIATE RANGE : Size dependences of geometric and 
electronic structures and  and of optical properties 
(size dependent complex dielectric function ε( ω, R, surrounding… ) ). 
Size  interval  : 101 nm < 2 R > 1.5  nm      
 
This is the most challenging region for “novel physics” in applications. 
Failures of the classical theory of Mie:  
Corrections, supplements and extensions required or available  to 
obtain quantitatively correct results. 
 
In the Intermediate range the role of the particle 
surface / interface is prevailing and with diminished size is finally 
dominating physical and chemical behavior. 



Beginnings of the Nanoplasmonics Technology 
 

First archeological hints of Coloration by  
Plasmon Polaritons in Metallic Nanoparticles : 

 
 

(1) OBJECT: Clay Slab with Cuneiform Letters : 
                           Receipt to produce opaque red  

                       Cu-Nanoparticle Glasses (“Hematinon”) 
                           (The British Museum) 
 
            EXCAVATION:  Nimrod (Assyria) 
 
            TIME :    Bronze Age  ( 13. Century a.C.) 
 
 
 
 
    (2)   OBJECT: Relief Head in opaque red Glass 
                           (The Brooklyn Museum) 
 
            EXCAVATION :  Egypt 
 
        TIME :  19. Dynasty  ( 12. century a.C.) 
 
 
 
 
       LIT: D. von Kerssenbrock-Krosigk  “Rubinglas …” 
              Verlag Philipp von Zabern, Mainz, 2001 





  



  



  



(2) Several Nanoparticle Samples   



Examples of Nanoparticles 
in 

Nature, Technology and Life-Sciences

Interstellar space dust
Geo-Colloids (minerals, hydrosols, aerosols, vulcanic dust, Diesel exhaust)
Nanocrystalline solid materials
Cerodur heat resistant glass
Emulsions (e.g. milk)
Liquid crystals
Island films (thin films)
Sol-Gel systems (Sinter-materials, Ormocers)
Nanoceramics ("Super-ceramics")
Fullerenes, Carbon nanotubes
Solar absorbers
Electronic devices (Cermets, Varistors, Nano-transistors, 
                              Single electron devices)
Digital data storage systems (Tapes, Magnetic, Optic systems, 
                                               Phase change, Read/write heads)
Pigment colors (minerals, glass, ceramics etc)
Inks for printing machines
Photonic crystals
Meta-materials
Analog, digital Photography
Quantum dots (e.g. quantum dot lasers)
Ferro-fluids (mechanical, medical applications etc.)
Heterogeneous catalysts
Nutrition fillers (e.g. TiO2)
Desinfection in households (Ag-nanos)
Cosmetics, sun-protecting creams, tooth cream, etc.
Sensors (Gas, molecule-specific, drugs etc.)
Medical drugs
Scientific markers (Bio-fluorescence, radioactive markers)
Organic and biologic systems (latex, proteins, viruses, magnetosomes,
                            organic/anorganic hybrid systems (DNA/Gold) etc.)





  







  



  









 



  







  



  



  











  



  



    (3)  Example : The Nanoparticle Source  LUCAS



  





  



  





(4) Plasmons    



 Plasmons in Free-Electron Material (DRUDE Material) 
of Various Shapes in Quasistatic Approximation

(Unretarded Dipole Mode)

Definition:   Plasmons = Energy quantized resonance modes of 
collective, coherent  motions of a free electron plasma. This motion 
is connected with a (negative) charge wave.
Depending on the sample shape and size, many different modes can 
be excited. 
By electron relaxation processes their life-time is very short 
(≈ 10-14s).
Plasmons are not included in electronic band structures  (which 
describe single electron-hole excitations).

Localized versus propagating plasmons : 

1) If the electrons are confined in a volume with dimensions smaller 
than the mean free path (MFP) of the single electron motion, then 
the plasmon is localized; the modes are oscillatory modes.
Examples are observed in nanoparticles of various shapes.

2) If the sample is large compared to the MFP the plasmon 
propagates  as a plasma wave.
Examples are nanowires, thin films, bulk materials.

Surface versus bulk plasmons :

1) In surface plasmons, the el. excess charges are bound to the 
sample surface or sample/surrounding interface. Then, the wave is 
exponentially damped into the inner of the sample. The plasmon 
waves are commonly transverse. 

2) In the extended bulk without surface, longitudinal volume 
plasmons (charge density waves)  can be excited.



 
 
 

(5)   Free Surface Plasmons 
and 

Surface Plasmon Polaritons 
 
 

A Comparison of 
Electron Energy Loss Spectroscopy 

and 
Optical Spectroscopy 

 
 
 

                                        (U. Kreibig, 1970) 



Free plasmons versus plasmon polaritons

1) After some pulse-like excitation (e.g. by fast-electron collisions) 
the electron plasma can oscillate freely with its eigenfrequency.

2) If a plasmon is excited by  incident electromagnetic fields, the 
collective, coherent electron motions are induced via the electrical 
charges.
The samples  act as "nano-antenna" reemitting scattering fields 
which, again, interact with the field outside the sample. Hence, the 
total excitation state is a hybrid state of the light field and the 
mechanical motion of the material system of the electrons, coupled 
by the electronic charge. 
Only if the sizes of the nanostructures R are extremely small to the 
light wavelength,  R<<λ ,then the resonance frequencies equal the 
eigenfrequencies of the electron system. In larger samples, the 
external el.mag. field changes the resonance frequency dastically. 
The dispersion curves   ω(K)electron   of propagating plasmon waves 
must coincide with the light line  ω(K)light .

Example: The eigenfrequencies of nanoparticles with DRUDE 
electrons:

The internal field in the case of a spherical nano is (see above) :

                Einterior (ω) = EO (ω) [3 εmedium /(ε(ω) + 2 εmedium)]

The resonance of  Einterior   is obtained at the minimum of the 
denominator:

     [ε1 (ωresonance) + 2 εmedium]2 + [ε2 (ωresonance) ]2 = minimum.

Since ε2 (ω) > 0 always, ε1 (ωresonance) must be negative,  ε1 < 0.







  



  



  





















(6) The Nano as Optical Dipole 



  



  



  



      The average  Dielectric Function used in MIE’s Theory

Usually,  the  Dielectric  function  is  defined  macroscopically  via  the  dielectric 

displacement vector

Dielectric  displacement     D (ω)  =  ε0 ε(ω, E) E (ω) 

Linear response:                  ε (ω)  = ε 1(ω)  +  i ε 2( ω)
                                                     =  1  +  χlattice(ω)  +  χfree(ω)  +  χinter(ω) 

Here, the corresponding susceptibility contributions due to lattice-, conduction 
(free) electron-and interband transition excitations are written down 
separately, assuming (as usually done) that they are additive 

The alternative way of a microscopical definition  of  ε  can be used in view of 

application  in  Mie’s  theory,  since,  in  fact,  only  the  volume averaged complex 

nanoparticle polarization  P is required there. It is in the tradition of Maxwell’s 

theory to use, instead, the formally related dielectric function. 

The total cluster polarization  is

                             P = Σ pi = Σ αi Ei
loc  = α  Eaverage 

with  αi  =   local   polarizabilities  in  the  particle  volume and of the particle 

surface/interface region.

The resulting (total) polarizability α can formally be related to ε   by

                             α (ω ...)  =  ε0  ( ε(ω ...)  -  1 ) 

APPROXIMATION :  It is this, in general complex-valued,  ε (ω)  that enters 

the theory of MIE.





Quasistatic Response of a Metallic Nanosphere
to an Electromagnetic Field

Planar electromagnetic wave :  E(r,t) = E0 exp (-i(ω t + k r)                         (1)

                                                H(r,t) = H0 exp (-i(ω t + k r)                        (2)

Nanoparticle radius: R;     Def: quasistatic: k ―> 0  (R << λ, oscillating electric 
field, zero magnetic field)

Dielectric function of the particle material : ε(ω) = ε1(ω) + ε2(ω)                 (3)
                Dielectric function of an embedding/surrounding material : εm

Metallic :  positive charges locally fixed, electrons mobile

sign [ +/- i ωt] :   > dielectric function ε(ω) = ε1(ω)  -/+  ε2(ω)

Internal field :  Ei = Eo 3εm / (ε + 2 εm)                                                          (4)

Quasistatic Polarizability :          α (ω) = 4 π ε0 R3            (Classic ε(0) = -∞ )    (5)

Resonance behaviour of Eq. (4) :

Max { Ei } :       | ε(ω) + 2 εm | = Minimum   or
                       { ε1(ω) + 2εm(ω) }2 + { ε2(ω) }2  = Minimum                                 (6)

>  Resonance frequency of the interior field in the nanoparticle for 
                                               ε1(ωres) = - 2εm                                                (7)
if  ε2(ω) small or δε2(ω)/ δ ω  small  

By introducing (approximate) DRUDE dielectric function :
                                                       
                              ε(ω) = ε1(ω) + ε2(ω)  ≈  1 - ωp

2/ω2 + i ωp
2Γ/ω3                                   (9)

with ωp = √(ne2 /ε0 m)  the “volume plasma frequency”  and Γ relaxation frequency

we obtain                                ωres =  ωp /√3                                                   (10) 



DRUDE being a collective, many-electron theory, the resonance follows from 
(▪)        the collective displacement of the mobile Drude electrons
(▪▪)      electronic surface charging with frequency ω
(▪▪▪)    restoring linear Coulomb force against fixed positive charges
(▪▪▪▪) finite eigenfrequency  ωres  of the oscillating spherical system

Plasma resonances for DRUDE metal samples of various sample geometries :

Table 2.4 Book 25

wire ergänzen

                                                                           





(7) The Theory of Gustav Mie  



 Plasmons in Free-Electron Material (DRUDE Material) 
of Various Shapes in Quasistatic Approximation

(Unretarded Dipole Mode)

Definition:   Plasmons = Energy quantized resonance modes of 
collective, coherent  motions of a free electron plasma. This motion 
is connected with a (negative) charge wave.
Depending on the sample shape and size, many different modes can 
be excited. 
By electron relaxation processes their life-time is very short 
(≈ 10-14s).
Plasmons are not included in electronic band structures  (which 
describe single electron-hole excitations).

Localized versus propagating plasmons : 

1) If the electrons are confined in a volume with dimensions smaller 
than the mean free path (MFP) of the single electron motion, then 
the plasmon is localized; the modes are oscillatory modes.
Examples are observed in nanoparticles of various shapes.

2) If the sample is large compared to the MFP the plasmon 
propagates  as a plasma wave.
Examples are nanowires, thin films, bulk materials.

Surface versus bulk plasmons :

1) In surface plasmons, the el. excess charges are bound to the 
sample surface or sample/surrounding interface. Then, the wave is 
exponentially damped into the inner of the sample. The plasmon 
waves are commonly transverse. 

2) In the extended bulk without surface, longitudinal volume 
plasmons (charge density waves)  can be excited.



Free plasmons versus plasmon polaritons

1) After some pulse-like excitation (e.g. by fast-electron collisions) 
the electron plasma can oscillate freely with its eigenfrequency.

2) If a plasmon is excited by  incident electromagnetic fields, the 
collective, coherent electron motions are induced via the electrical 
charges.
The samples  act as "nano-antenna" reemitting scattering fields 
which, again, interact with the field outside the sample. Hence, the 
total excitation state is a hybrid state of the light field and the 
mechanical motion of the material system of the electrons, coupled 
by the electronic charge. 
Only if the sizes of the nanostructures R are extremely small to the 
light wavelength,  R<<λ ,then the resonance frequencies equal the 
eigenfrequencies of the electron system. In larger samples, the 
external el.mag. field changes the resonance frequency dastically. 
The dispersion curves   ω(K)electron   of propagating plasmon waves 
must coincide with the light line  ω(K)light .

Example: The eigenfrequencies of nanoparticles with DRUDE 
electrons:

The internal field in the case of a spherical nano is (see above) :

                Einterior (ω) = EO (ω) [3 εmedium /(ε(ω) + 2 εmedium)]

The resonance of  Einterior   is obtained at the minimum of the 
denominator:

     [ε1 (ωresonance) + 2 εmedium]2 + [ε2 (ωresonance) ]2 = minimum.

Since ε2 (ω) > 0 always, ε1 (ωresonance) must be negative,  ε1 < 0.



If ε2 (ωresonance) is small or  δε / δω is small, the plasma resonance 
condition reads:                       
                                   ε1 (ωresonance) = - 2 εmedium

Inserting simplified DRUDE equations 

ε1 (ω) ≈ 1 - ωp
2 / ω2 ,     ε2 (ω)≈ ωp

3Γ /ω2     and setting  εmedium = 1,

then the resonance frequency is

                       ωresonance = ωp
DRUDE  =  √(n e2 / ε0 melectron )

This is the classical resonance frequency; it equals the plasmon 
frequency after quantization. 
This relation holds only for a spherical nano; similar conditions are 
derived for other particle symmetries.  



  



 
 
 

Literatur zu Gustav Fedor Mie: 
 

Hundert Jahre Mie-Theorie 
Uwe Kreibig 

 
in Physik in unserer Zeit 

39,Jg 2008 Nr.6, S 281 ff 
 

und 
 

Supplement : Hundert Jahre Mie Theorie 
Uwe Kreibig 

 
Adobe Acrobat Professional 

[Hundert Jahre Supplement. pdf] 
 

 





  



  



 THE THEORY OF  GUSTAV MIE
 
1. Introduction of spherical coordinates r, Θ, Φ  Particle radius R.
 Plane, monochromatic, harmonic incident electromagnetic wave. 
Circular frequency ω,  wavelength λ.

2. Solution of Maxwells equations with proper boundary conditions for 
one arbitrary spherical particle of complex dielectric function 
ε(ω) =  ε1  + i ε2,  embedded in a dielectric medium with (real) dielectric 
constant εm .  
· Electric fields: Е (divergency free) + E (curl free),
· Magnetic fields: H (divergency free).
Separation of the transverse electromagnetic fields according to their 
radial field components:
"electric partial waves"  with Er  = 0 
"magnetic partial waves" with Hr = 0.
Both are electromagnetic fields including Θ- and Φ-components, too. 
Close to the particle they form complex near fields, and only at distances 
r >> λ they transform into the common far field.

· Introduction of three scalar potentials, to separate the variables:

Π Π ΓE M, ,

(indices  E,M:  electric  and  magnetic  partial  waves;  Γ  stands  for  the 
longitudinal field)
They are solutions of the Helmholtz-equations:

                 ∆Π ΠE M transverse E M transverse transK K c, , , / ,+ ⋅ = =2 2 2 20 ε ω  

                                  

                        
∆Γ Γ+ ⋅ = =K K clongitudinal longitudinal long

2 2 2 20, / .ε ω  
 

 K : wave number.

3.  Boundary conditions at r = R  ("sharp" boundary conditions)   
 



EΘ
incident = EΘ

interior ;    EΦ
incident = EΦ

interior  ; 
    
εoutside · Er

incident = εinside · Er
interior 

Analog for H.
  
Longitudinal fields :Current density:  jtotal

normal  continuous  at r = R 
(Sauter-Forstmann condition).

4.   The linear response function of the particle material  is  εµ ,  where 
ε ω ε ε( )= +i1 2 is  averaged  over  the  cluster  volume,  including  the 
surface/interface region. The magnetic permeability μ is set 1 for the 
investigated high frequency regions. (This means, that genuine magnetic 
response of the material which may be effective at lower frequencies, is 
excluded throughout the following. However, the magnetic part of the 
electromagnetic  wave  contributes  to  the  electronic  excitations  by 
creating additional eddy current modes which, unlike the electric ones, do 
not exhibit sharp resonances.) 

6.   Separation  of  the  variables  by  a  product-ansatz  to  solve  the 
Helmholtz-equation. E.g. for   ΠE   holds

                                              Π ΘE F r F F= 1 2 3( ) ( ) ( )φ

Solution-functions are given in the following table:

Variable Differential equation Solution functions
r Bessel Cylinder-functions (Bessel, Neumann); Index L 
Θ Spherical harmonics Legendre polynomials; Indices L,m.
Φ Harmonic oscillation cos/sin-functions; Index m.

                                                         
7.  Back-transformation of the potentials into the fields.
The  fields  are  divided  into  3  x  3  groups,  i.e.  each  of  the  three 
electromagnetic waves, 
>  the incident wave, 
>  the wave in the interior of the particle and 
>  the scattering wave 
consists of three different contributions, the "electric" partial waves, 



the "magnetic" partial waves and, if present, longitudinal waves.

8.  Multipole expansion : Power-series expansion of the solution functions.
First term : Dipolar symmetry, 
Second term: Quadrupolar symmetry
Third term : octupolar symmetry, etc.

9.  Calculations of the "Mie-coefficients" :

The Mie-coefficients  aL  and  bL , following from the boundary conditions, are

                                       
a

m mx x mx x
m mx x mx xL

L L L L
L L L L

=
′ − ′
′ − ′

ψ ψ ψ ψ
ψ η ψ η
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

 
   

                                    

                                 b
mx x m mx x
mx x m mx xL

L L L L
L L L L

= ′ − ′
′ − ′

ψ ψ ψ ψ
ψ η ψ η
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

  

  
m n nm=  /

where  n   denotes the complex index of refraction,    n  = ;√ε  of the 
particle  material,  and  nm the  real  index of  refraction  of  surrounding 
medium. k  is the wavevector and x k R=  the size parameter. 

ψ ηL Lz z( ) ( )and  are  Riccati-Bessel  cylindrical  functions  (see,  e.g.  Born 
"Optik").  The  prime  indicates  differentiation  with  respect  to  the 
argument in parentheses. 
 

10.  Computation of the cross - sections of ONE particle  for extinction, 
absorption  and  elastic  (frequency  conserving)  scattering  by  applying 
Poynting law. The intensities  I are given by the absolute value of the 
Poynting vector (the sumations are taken over all multipoles from L = 1 to 
L = ∞ .
● Extinction (sum of absorption and scattering losses) :

                              σabs= ( 2π /K2 ) ∑ (2L + 1) Re {aL + bL}
                     



●  Elastic scattering losses :
                   
                           σscatt = (2π / K2 )  ∑ (2L + 1) {| a L |2 + | b L |2} 
 
(In Mie's original notation, the equation contains the imaginary instead of 
the real part due to differing definitions of a bL Land .)
 
● Absorption losses :  
  
                         σabs = σext  -  σscatt 

Separate calculations are possible  of 
>   near and far field contributions, 
>  different polarization contributions and 
>  angular dependences of scattered intensities .

11.   The  cross-  sections  hold  for  ONE  particle.  Usually,  nanoparticle 
samples  for  experiments  contain  very  many  particles  (e.g.  colloidal 
systems with Z = 1015 per cm3), so, the 
>  the extinction constant Eext(λ),
>  the scattering constant  Sscatt(λ) and 
>  the absorption constant Aabs (λ)
can be calculated with Lambert-Beer's law :

                      ∆I I Z d dj j= − − ⋅ ⋅ =0 1( exp( )) ,σ sample thickness 

provided,  the  sample  system consists  of  n identical  particles,  packed 
loosely together in a macroscopic volume with low volume concentrations 
f ‹ 10-4  to  exclude  electromagnetic  particle-particle  coupling  and 
multiscattering  events  (The  sample  volume  may  be  filled  with  some 
matrix material).

12.   To-day,  programs for Mie's theory are available in the Internet.



  



 
 
 
 
 
 

LONGITUDINAL PLASMONS 
IN 

NANOPARTICLES 
 
 
 

Additional boundary condition 
of 

Sauter & Forstmann : 
Normal component of the current 

continuous at the surface 
 
 





  



  







  



  









  



  The optical extinction of well separated Niobium clusters 
(2R = 10 nm) as calculated from Mie’s theory with dielectric 
material function of the bulk material.
The parameter is the dielectric constant of the embedding 
material varying in steps of 1 from 1 to 10. The differences 
of the spectra represent the dielectric effect.



  



  



  



INVERSE MIE THEORY

Among the great many applications of Mie's Theory, the numerical 
simulation of measured electromagnetic spectra of nanoparticles from 
given DF is of great importance. More important, however, at least for 
comprehensive basic research on NANO-EFFECTS, is the use of "Inverse 
Mie Theory".
This means, to turn the functional dependences around and to start with 
given experimental electromagnetic spectra with the aim of evaluating 
the spectra of the realistic dielectric function of the nanoparticle 
material and explain them by proper solid state theoretical models.
This procedure is comparable with the two ways to use Fresnels 
equations in the case of planar samples. (In fact, Mie's Theory together 
with Gans-Happel's theory (see below)) is formally the analog of Fresnels 
equations for spherical symmetry.)
Of course, this DF is underlying Mie's approximative assumption of being 
uniform in the whole nano, including its surface.

The most straightforward  way would be to vary fictitious input values of 
the DF by trial and error, calculate spectra and search the optimum 
numerical fit with the experimental spectra. Ambiguity and extreme 
time-consumption disqualify this route. 

Two other methods are available which we will treat in the following.
To make the story easier, we will restrict to very small nanos, where 
scattering does not play an essential role,  i.e. to the "Quasi-Static 
Approximation".
Usually this realistic DF differs drastically from the DF of bulk material 
by  NANO-EFFECTS (size-effects, surface-/interface-effects etc.), 
which, thus, can be studied in detail.
The complex DF of metals consists of the two complex conjugated parts, 
RE{ε} = ε1 and  IM{ε} = ε2 .. So, beside Mie's absorption constant K a 
second experimental quantitiy is required to separate them. This is the 
"Relative Refraction   Index Difference" between the many-particle



ROUTE 1 : One can measure K and L spectra directly.
As discussed before, macroscopic many-particle samples obeys Mie only 
for very low concentrations C of isolated particles, and this makes the 
direct measurement of L(λ) pretty laborious. At C ≈ 10-6  L is also of the 
order of 10-6 , and highly sensitive interferometry  (e.g. Mach-Zehnder) is 
required. Apparently, only one successful attempt has been made by 
Schoenes & v.Fragstein.

ROUTE 2:  Since K and L are complex conjugated quantities, a KRAMERS-
KRONIG RELATION (KKR) holds between them and can be applied to 
obtain L from the spectrum of K, avoiding the interferometric 
experiment.

For this purpose we define a Kramers-Kronig Function:

                 ZDipole(λ)  =  (2/(3 C)) L(λ) + i ( λ /(6 π nO C)) K( λ)

Then, the function  

                     F  =  ( ΖDipole (ω) - ZDipole(∞) )/ (ω - ωO) 

is integrated around a closed contour in the plane of complex 
frequencies,  ω =  ω1 + i ω2 .
By some manipulations we obtain 

              L(ωO)  =  L(∞) + c / ( π nO )  P ∫ K(ω) / (ω2 - ωO
2) , 

where the integral is over the real  ω -axis from 0 to ∞ and P is the 
principal value of the integral. The DK is obtained from L(ωO) and the 
experimental value of K(ωO) by using Mie.
The fact that experimental data of K(ωO)  are only available in limited 
spectral ranges makes severe but not unsolvable problems. 









Dynamics of the Surface Plasmon Polariton Decay 
 
Relaxation Processes



  



  



  



(8) Linear Optical Material Functions (DF)  

 



  



  



  





  






