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1 Historical remarks

Johannes Kepler (1571-1630) described the motion of the
solar system planets by his famous three laws. From 1594-
1600 he was in Graz and worked as a Landschaftsmathe-
matikerand became famous because he published a calen-
dar where by chance he made correct weather predictions.
From March 1600 to October 1601 he worked in Prague
with the famous Tycho Brahe and his task was to calculate
the orbit of planet Mars. He realized that the orbit of Mars
cannot be a perfect circle but rather an ellipse. Thus he es-
tablished his first law. ln this paper we will however mainly
concentrate on his third law which was discovered in 16.18
and published 1619 in Harmonice mundi(see Fig. 1).

The main idea of Kepler was to describe the planetary sys-
tem and, as he thought, the
whole universe as an har-
monic system. There should
be perfect harmony and he
expressed the orbits of the
planets by Platonic solids in
his Mysterium Cosmograph-
icum lhal appeared 1596
in Graz. Kepler proposed
that the distance relation-
ships between the six plan-
ets known at that time could
be understood in terms of
the five Platonic solids, en-
closed within a sphere that
represented the orbit of Sat-
urn (Fig. 1).

2 Kepler's third law

2.1 A simple derivation
Here we give a very simple
derivation for Kepler's third
law by just considering circu-
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lar orbits. We assume that the centrifugal force acting on a
planet because of its circular motion around the Sun is bal-
anced by the gravitational attraction. m"is the mass of the
Sun, m"the mass of the planet, rthe distance of the planet
from the Sun and ar the angular velocity:

mora, = oü# (t)

a = 2n/7, l- the orbital period. We obtain for orbit radius
r = a Kepler's third law:

4 : J-_. G. mu= 3.38 x 1O'' m'/s'T'- 4n'

using the gravitational constant G = 6.67 x 10-11 m3/(kg's'z).

Expressing a in AU (1 AU =.150 Mio km) and f in years
yields

4 = const e\I'
This holds for any planetary system. However, since the val-
ue of the constant depends on the mass of the central star, it

is different for every system. ln Table 1 we give as example
the values for the constant for some objects in the solar sys-
tem and in the recently discovered Trappist system, which

is an exoplanet system about 40 light years away from us.
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Table 1: Comparison of the constant in Kepler's third law for plan-.

ets in the solar system and in the Trappist system' The values of

T are given in years for solar system planets and in earth days for

the Trappist planets.

Fig. 1: Kepler used the Platonic
solids to determine the position
of the planets in his "Harmonice
mundi".
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Figure 2: Comparison of the Sun and the star Trappist 1. source: ESo.

The host star has only about 0.089 solar masses. A compar-
ison between the size of the Sun and Trappist 1 is shown
in Fig. 2.

The larger differences for the Trappist system result from
uncertainties of the measured parameters. They could also
be explained due to the stronger gravitational interactions
between the relatively close planets.

2.2 Kepler's third law to determine distances
One straightforward application of Kepler's third law is its
applicatiorr [u delenrrirre distances. Conslder two planets 1,
2 then:

a", - air- T3
(3)

lf the orbit radius in the major axis (which is approximately
the distance to the host star (Sun) for small eccentricity of
the orbit) of planet 1 is known as well as its orbital period I,
and the orbital period I, of planet 2, we obtain ar. Thus if
one distance of a planet to its host star in a planetary system
is known, all other distances follow immediately.

2.3 The exact formulation fo Kepler's third law
Consider two masses Mt, M2, where the semi major axis of
the elliptic orbit of mass M, is a and its orbital period I, then
in the center of gravity system:

a"_ /1

7" - #(M, + M,) (4)

Let us use this formula to determine the mass of the Sun.
The semi major axis of Earth's orbit is a = 1 AU, the orbital
period is 1 year - 3 x 107 s. Then by neglectin g Mr<< M, we
obtain the mass of the Sun: M" = 2 x 1030 kg.

3 Masses in the universe

3.1 Stellar masses

The stellar mass is the crucial parameter that determines
the lifetime of a star and its final evolution. The lifetime of a
star can be directly expressed in terms of its mass by:

r_rc*(ff)"v (5)

Thus for the Sun the lifetime is about t O,o y, for a star with 5
solar masses it is only 180 million years.

Masses can be determined only in the case a star has a
companion and the distance of the companion (could be an_
other star or a planet) to the star as well as its orbital period
are known. Then we can directly use the exact formulation
of Kepler's third law.

Stellar masses determine the ultimate evolution of a star.
Stars lose an important fraction of their mass in thoir lifctimc
due to stellar winds, or in the final phases, depending on
their mass, in explosions like the ones we see in superno-
vae. This leads to the following:

. Stellar remnants with masses M < 1 .44 M" finally evolve
into earth-sized compact white dwarfs. 1.44 solar mass-
es is the Chandrasekhar timit. Below this mass the de-
generate electrons can provide the pressure against
gravity in the final stellar evolution.

. Stellar remnants with masses 1.44 M^ < M* < 2...3 M"
end up as neutron stars (where the pressure of the de-
generate neutrons resists gravity).

. Stcllar remnants with masses >2...3 M^ end up as black
holes where the star completely collapses.

3.2 The mass of the Galaxy
The solar system is just one out of several 100 billion stars
in the Milky Way, also called the Galaxy. The mass of the
Galaxy can be obtained by stellar statistics, e.g. counting
stars in selected fields. A more accurate determination of
the mass of the Galaxy results again from Kepler's third law.
Our galaxy is a spiral galaxy and the Sun is located at a
distance of about 8.5 kpc (about 30.000 light years) from
the center of the Galaxy. lt orbits around the qalactic center
in about 220 million years. Using Kepler's third law with the
values: ä = 8.5 kpc = 8.5 x 103 x 3.26 x 1016 m =2.77 x
1021 m and f = 220 x 106 x 3 x 107 s = 6.6 x 1Or5 s leads to
a mass of 1 .765 x 1011 M". Of course this is only an estimate
since we neglected all the mass of the Galaxy outside the
orbit of the Sun.
Galaxies always occur in clusters and by the dynamics of
the cluster members we again can estimate masses.

3.3 Supermassive black holes
The center of our galaxy cannot be observed in the visible
part of the electromagnetic spectrum because of interstel-
lar absorption. Observations with high resolution telescopes

Figure 3: Observations from the Keck telescope; the positions of
stars near the galactic center are shown and they indicate a rota-
tion about a central massive obj€ct. source: xecatLcte.
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Figure 4: A galaxy cluster (Abell 1689) that produces gravitational
Iensing of galaxieS behind it. source: Hubbte space Tetesnpe.

(like the two 10-m Keck telescopes that can be operated
as an interferometer in the lR) show individual stars only
several 1000 AU away from the center. Time series of ob-
servations covering about 20 years show the motion of such
stars about the center (see Fig. 3). Using Kepler's third law
we can calculate the central mass around which these stars
orbit: for example if a = 3000 AU and T = 40 years, then the
central mass would be 18.6 million solar masses. From the
fact that no radiation is received from the central star, it can
be concluded that it could be a supermassive black hole.
The formation of supermassive black holes, which are ob-
served also in other galaxies'centers, must have occurred
during the early evolution of the universe.

4 Dark matter

4.1 First hints for dark matter
Galaxies occur in clusters, for example our Galaxy belongs
to the so called local group (a prominent member is our
neighboring galaxy, the Andromeda Galaxy). ln the 1930s
the Swiss astronomer Fritz Zwicky examined galaxy clus-
ters. He realized that these clusters cannot be in dynami-
cal equilibrium, since they are unstable and should dissolve
over several hundred million years. Since galaxy clusters
are observed also at extremely large distances of several
billion light years they must be stable and Zwicky introduced
the missing mass concept to explain their stability. This ad-
ditional mass can, for some reason, not be observed.

4.2 Dark matter in galaxies

When we investigate the rotation curve of a galaxy we would
expect the lollowing behavior: the farther an object (e.9. a
star) is from the center of its host galaxy, the larger should
be its period of revolution because

a3

fr: const (6)

However, it was found that at larger distances from the
galactic center, the speed remains constant or in several
cases even increases. This can be only explained by the

Figure 5: Galaxy cluster (Abell 1689) that produces gravitational
Iensing of galaxies behind it. Here the distribution of dark mafter is
indicated by blue Colof. soure: Hubbte spare retescope.

presence of additional matter that does not radiate, called
Dark Matter.lt can be shown that the amount of dark matter
is about five times higher than ordinary visible matter. The
presence of dark matter around galaxy clusters can also be
inferred from gravitational lensing effects. lf, seen from us,
there is a galaxy behind a galaxy cluster, then because of
the presence of a large mass in the galaxy cluster, light from
the more distant galaxy will be bended because of space-
time curvature according to general relativity theory. lt also
became clear that the observable matter of a galaxy cluster
is not sufficient to explain the lensing effects.

ln Fig. 4 the galaxy cluster Abell 1689 is shown. This cluster
is at a distance of about 2.2 billion light years. One clearly
sees some lensing effects (curved images of fainter galax-
ies). The deflection of a light beam is deduced from general
relativity (the value here is twice the value from Newionian
physics where light is assumed to consist of massive parti-
cles):

6= 4GM 0\
rC

where M is the mass (in our case the mass of the galaxy
cluster), r the distance of the passing light beam from the
mass. ln Fig. 5 we show the calculated distribution of dark
matter (in blue) around the galaxy cluster. This was obtained
by modeling the gravitational lensing.

5 Conclusion
We have shown that Kepler's law can be applied to various
astrophysical topics, planets, stellar masses, galaxies and
these equations finally even lead us to the concept of dark
matter. We give also some simple numerical examples of
these applications.
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