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Abstract 
 
In his seminal paper Barrett (1994) argued that international environmental agreements (IEAs) 
are typical not successful, which he coined “the paradox of cooperation”. Either self-enforcing 
IEAs are small and, hence, cannot achieve much or, if they are large, then the gains from 
cooperation are small. This message has been reiterated by several subsequent papers by and 
large. However, the determination of stable agreements and their evaluation have been 
predominantly derived for specific payoff functions and many conclusions are based on 
simulations. In this paper, we provide analytically solutions for the size of stable agreements, 
the paradox of cooperation and the underlying forces. Many of our results are a generalization 
of papers by Diamantoudi and Sartzetakis (2006), Rubio and Ulph (2006) and the recent paper 
by McGinty (2020). 
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1. Introduction 

In his seminal paper Barrett (1994) argued that international environmental agreements (IEAs) 

are typical not successful, which he coined “the paradox of cooperation”. Either self-enforcing 

IEAs are small and, hence, cannot achieve much or, if they are large, then the gains from 

cooperation are small. This message has been reiterated by several subsequent papers by and 

large.1 However, the determination of stable agreements and their evaluation have been 

predominantly derived for specific payoff functions and many conclusions are based on 

simulations. In this paper, we provide analytically solutions for the size of stable agreements, 

the paradox of cooperation and the underlying forces. Many of our results are a generalization 

of later papers by Diamantoudi and Sartzetakis (2006), Rubio and Ulph (2006) and the recent 

paper by McGinty (2020).  

Including Barrett (1994), all of these papers assume symmetric payoff functions for all countries 

and employ the workhorse model of IEAs which is the two-stage cartel formation game. In the 

first stage, countries decide about their membership. A coalition is called stable if those 

countries which have joined the coalition, called signatories, do not want to leave the agreement 

(internal stability) and those countries which have decided not to join the agreement, called non-

signatories, do not want to join the agreement (external stability).2 In the second stage, 

signatories choose their economic strategies (abatement or emissions) by maximizing the 

aggregate welfare of their members whereas non-signatories maximize their own welfare. 

Under the Nash-Cournot assumption, all countries choose their strategies simultaneously; under 

                                                 
1  For a collection of some of the most influential papers and an overview article of those models, see 

Finus and Caparros (2015). Other overview articles include for instance Hovi et al. (2015) and 
Marrouch and Chauduri (2015). 

2  The concept has been borrowed from industrial economics (e.g., d’Aspremont et al. 1983). An 
alternative terminology of the cartel formation game is open membership single coalition game and 
internal and external stability is a Nash equilibrium in membership strategies (Yi 1997). 
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the Stackelberg assumption, signatories act as Stackelberg leaders and non-signatories as 

Stackelberg followers.  

For most specific payoff functions, stable coalitions are small (compared to the total number of 

countries) under the Nash-Cournot assumption.3 Hence, the pessimistic conclusion about the 

paradox of cooperation is obvious. However, the explanatory power of this model version is 

limited, as IEAs with large participation cannot be explained. In order to generate different 

results, some scholars have considered the Stackelberg assumption, which may lead to larger 

stable coalitions, including the grand coalition, depending on the benefit-cost structure of 

abatement.4 All papers cited above in the text, including our paper, pursue this route.  

Barrett (1994) central payoff function assumes quadratic benefits from global abatement and 

quadratic cost from individual abatement. Stable coalitions as well as the paradox of 

cooperation are illustrated with simulations. McGinty (2020) employs exactly the same payoff 

function. He introduces two effects, the externality and timing effect in order to provide a hint 

about the size of stable coalitions, which we denote by *p . McGinty argues that both effects 

offset each other at a coalition of size p . From his simulations he concludes that *p  is larger 

than  1p +  but strictly smaller than  2p +  and he confirms the paradox of cooperation.  

For a general payoff function, we are able to characterize the externality and timing effect with 

reference to p  and how this relates to *p . We also provide a good approximation of the paradox 

                                                 
3  An exception is Karp and Simon (2013), who develop a non-parametric model and consider non-

standard abatement cost functions, like for instance concave marginal abatement cost functions or 
piecewise defined cost functions.  

4  Another possibility to generate different results is to stick to the Nash-Cournot assumption but to 
modify other assumptions by considering for instance modest emission reduction targets (Finus 
and Maus 2008), asymmetric countries (Finus and McGinty 2019, Fuentes-Albero and Rubio 2010 
and Pavlova and de Zeeuw 2013) and additional strategies like R&D (e.g., Barrett 2006, El-Sayed 
and Rubio 2014, Hoel and de Zeeuw 2010 and Rubio 2017) or adaptation (e.g., Bayramoglu et al. 
2018 and Rubio 2018). 
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of cooperation. For his specific payoff function, we analytically determine *p  and measure the 

paradox of cooperation and relate it to the benefit and cost parameter of the model. 

Diamantoudi and Sartzetakis (2006) as well as Rubio and Ulph (2006) transform Barrett’s 

payoff function in abatement space to the dual problem in emission space. They show that 

complications arise if one imposes the constraint that emission have to be non-negative. 

Diamantoudi and Sartzetakis (2006) impose parameter constraints in order to ensure only 

interior solutions. This implies that the model no longer predicts * [2, ]p n∈ , with n  the total 

number of countries, but only * [2, 4]p ∈ .5 In contrast, Rubio and Ulph (2006) work with Kuhn-

Tucker conditions in order to ensure non-negative emissions. They confirm * [2, ]p n∈  and the 

paradox of cooperation via simulations; they are able to analytical characterize parameter ranges 

for some values of *p , though not for the entire parameter space. 

In contrast, we work with a model in abatement space for which non-negativity conditions cause 

less of a problem for analytical solutions. As pointed out above, we provide a full and exact 

analytical characterization of *p  as well as for the paradox of cooperation for the entire 

parameter space of the model. Even for a general payoff function, we are able to provide a good 

approximation of those features. Finally, we provide a general proof that *p  is at least as large 

under the Stackelberg than under the Nash-Cournot assumption, a conclusion, which, to the best 

of our knowledge, has only been derived from simulations until now. This relation also 

motivates why we mainly focus on the Stackelberg assumption in this paper. 

                                                 
5  Diamantoudi and Sartzetakis (2006) already determine p , how this relates to the payoff of 

signatories and non-signatories and that  1p +  is internally stable for their specific payoff function 
provided non-negative emissions are ignored, something which seems to have been unnoticed by 
McGinty (2020). We are able to establish all these features for a general payoff function. 
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2. The Model 

There are n  symmetric countries 1 2i , ,...,n= , with N  being the set of all countries. In the first 

stage of the game, countries decide whether to join coalition P N⊆  and become signatories 

(S) or to remain outside as non-signatories (NS). The size of coalition P  is denoted by p . In 

the second stage of the game, countries select their mitigation levels. Players in the coalition 

will maximize their aggregate welfare, while players outside of the coalition will maximize 

their individual welfare. The individual welfare function is given by 

 ( ) ( ) ( )i i i i iW M ,m B M C m .= −  (1) 

Benefits iB  arise from total mitigation 
1

n

i
i

M m
=

=∑ , while costs iC  depend on individual 

mitigation im . (We use the terms mitigation and abatement as synonyms.)  

All components of the welfare function are assumed to be continuous, including its first and 

second derivatives. The benefit function is assumed to be increasing in total mitigation at a 

decreasing rate ( 0MB >  and )0MMB < , while costs are assumed to be a strictly convex function 

of individual mitigation ( 0mC >  and )0mmC >  where subscripts refer to derivatives, e.g., 

i
M

BB M
∂= ∂  and 

2

2
i

MM
BB M

∂=
∂

. Subsequently, we will sometimes drop the arguments in 

some functions for notational simplicity. In order to guarantee interior solutions, one may 

impose for instance the condition 
0 0

0M mM m
lim B lim C
→ →

> > . Moreover, in order to avoid signing 

third derivatives and to simplify the mathematics, we assume that second derivatives are 

constant. The game is solved by backward induction. 

In the second stage, there are two possible versions of the game, depending on the sequence of 

decisions. In the Nash-Cournot (NC-) scenario, signatories and non-signatories choose their 
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mitigation strategies simultaneously. In the Stackelberg (ST-) scenario, mitigation levels are 

first set by signatories (taking into account the best-response of non-signatories) and then are 

chosen by non-signatories. In case no coalition has formed in the first stage of the game, i.e., 

1p = , it is assumed that a randomly selected country will behave as a leader while all other 

1n −  countries will be the followers.6 For the two scenarios the first order conditions in an 

interior solution are displayed in Table 1. We note that in both scenarios the second order 

conditions automatically hold due to the assumption about the properties of the benefit and cost 

functions and a unique second stage equilibrium exists (see Appendix A.1). Thus, instead of 

writing ( )* *( ), ( ) ,i iW M p m p  we can simply write ( )*
SW p  and ( )*

NSW p  where the asterisks 

indicate equilibrium values for a given coalition size p , 1 p n≤ ≤ .  

Table 1: First Order Conditions in the NC- and ST-scenario 

 NC-scenario ST-scenario 

Signatories     ( ) ( )NC* NC*
M m Sp B M C m⋅ =    (2) ( ) ( ) ( )1 ' ST* ST*

NS M m Sp R B M C m ⋅ + =    (4) 

Non-

signatories 
     ( ) ( )NC* NC*

M m NSB M C m=      (3)                       ( ) ( )ST* ST*
M m NSB M C m=    (5) 

 

The first order conditions implicitly define individual best-response functions of signatories, 

( )i P S im r M∈ −= , and non-signatories, ( )j P NS jm r M∉ −= , with iM −  and jM −  being the aggregate 

mitigation level of all countries except country i P∈  and j P∉ , respectively. As countries are 

symmetric, we can define the aggregate best-response function of signatories ( )S S NSM R M=  

and non-signatories ( )NS NS SM R M= , with NSM  being the aggregate mitigation level of all non-

                                                 
6  We make this assumption to be in line with McGinty (2020), even though the alternative 

assumption, namely that only above 2p ≥  signatories assume Stackelberg leadership and for 1p =  
the ST- and NC-scenario are identical, would almost always lead to exactly the same results.  
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signatories and SM  the aggregate mitigation level of all signatories. Accordingly, the slopes of 

those reaction functions are given by  

( ) ( )
' MM
S i P

mm S MM

p Br M
C m p B− ∈

⋅
=

− ⋅
,  (6)       ( ) ( )

2

2
' MM
S NS

mm S MM

p BR M
C m p B

⋅
=

− ⋅
,     (7) 

( ) ( )
' MM
NS j P

mm NS MM

Br M
C m B− ∉ =

−
   (8)  and     ( ) ( )

( ) ( )
MM'

NS S
mm NS MM

n p B
R M

C m n p B
− ⋅

=
− − ⋅

 .   (9) 

We note that all denominators are positive due to the second order conditions (see Appendix 

A.1). Because 0MMB < , all reaction functions are negatively sloped. That is, mitigation levels 

are strategic substitutes and the slope can be interpreted as a measure of the leakage effect where 

all slopes lie in the interval [ 1,0]− . The absolute values of these slopes increase in the absolute 

value of MMB  and decrease in the value mmC , with the slopes approaching -1 if MM

mm

B
C  goes 

to infinity and 0 if MM

mm

B
C  goes to zero. 

In the first stage of the game, a coalition of size p  is stable, denoted by *p , if it is 

simultaneously internally 

 ( ) ( )1* * * *
S NSW p W p≥ −  (10) 

and externally stable 

   ( ) ( )1* * * *
NS SW p W p≥ + .        (11) 

Alternatively, we can define the stability function ( ) ( )* *( ) : 1S NSp W p W pΩ = − − . Then, a 

coalition of size *p  is stable if *( ) 0pΩ ≥ and *( 1) 0pΩ + ≤  hold simultaneously. We can 

also conclude that if a coalition of size p  is strictly internally stable (i.e., ( ) 0pΩ > ), then the 

coalition of size 1p −  is externally unstable (i.e., ( 1) 0pΩ − > ). 
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3. General Results 

For the following analysis, it is useful to note that from the first order conditions in the NC-

scenario (see eqs. (2) and (3) in Table 1), and those in the ST-scenario (see eqs. (4) and (5) in 

Table 1), we have: 

( ) ( )NC* NC*
m S m NSC m p C m= ⋅  and ( ) ( ) ( )1ST* ' ST*

m S NS m NSC m p R C m= ⋅ + ⋅   (12) 

where we may recall that '
NSR  denotes the slope of the aggregate reaction function of non-

signatories (see eq. (9)). Given that mitigation costs are strictly convex, * *( ) ( )NC NC
S NSm p m p>  

follows in the NC-scenario immediately for every p , 1 p n< < , as stated in Proposition 1 

below. This is different in the ST-scenario. We first note that ( )'1 NSp R⋅ +  is a short-hand 

notation for ( )'1 ( )NSp R p⋅ + , i.e., the slope of the reaction function is also a function of p . 

Moreover, we note that ( )'1 1NSp R⋅ + <  for 1p =  and that ( )'1 NSp R⋅ +  increases in p , as we 

show in Appendix A.2. Therefore, there exists a p̂  for which  ( )'1 1NSp R⋅ + =  holds, with 

1 p n< < . Hence, * *( ) ( )ST ST
S NSm p m p<  if p p< , and if p n< , then * *( ) ( )ST ST

S NSm p m p≥  if p p≥

. Since all countries have the same benefits, which only depend on total mitigation, differences 

in welfare levels between signatories and non-signatories stem from different mitigation levels 

and, hence, show up in different mitigation costs. This covers part i) and ii) of Proposition 1. 
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Proposition 1 

Consider a generic coalition of size p . The following relations hold: 

i) Nash-Cournot Scenario 

NC* NC*
S NSm ( p ) m ( p )>  and NC* NC*

S NSW ( p ) W ( p )<  for any p , 1 p n< < . 

ii) Stackelberg Scenario 

ST* ST*
S NSm ( p ) ( )m ( p )< ≥  and ST* ST*

S NSW ( p ) ( )W> ≤  if p ( )p< ≥ , for any p , 1 p n≤ < . 

iii) Comparison across Scenarios 

( ) ( )NC* ST*
S Sm p m p> , ( ) ( )NC* ST*

NS NSm p m p<  and ( ) ( )NC* ST*M p M p> ; 

( ) ( )NC* ST
S SW p W p≤  and ( ) ( )NC* ST*

NS NSW p W p>  for any p , 1 p n≤ < . 

Proof: i) and ii) follow from the discussion above; iii) is proved in Appendix A.3. Q.E.D. 

From part i) in Proposition 1 it is evident that a signatory’s mitigation level is always larger 

than a non-signatory’s mitigation level for any non-trivial coalition in the NC-scenario. 

Consequently, a signatory’s welfare level will always be smaller than a non-signatory’s welfare 

level, which already hints at why stable coalitions tend to be small. From part ii) in Proposition 

1 it emerges that these relations only hold for larger coalitions above p  in the ST-scenario, but 

this is reversed for smaller coalitions below p , providing already some intuition why stable 

coalitions tend to be larger in the ST- than NC-scenario. This is further substantiated in part iii) 

in Proposition 1. The Stackelberg leaders use their strategic advantage: they reduce their 

mitigation levels compared to the NC-scenario, knowing that followers will compensate for this 

to some extent. As compensation is incomplete, due to the fact that the slopes of the reaction 

functions are strictly larger than 1− , total mitigation levels will be smaller in the ST- than in 



9 
 

the NC-scenario. This strategic shift also shows up in the relation of welfare levels between 

both scenarios. The immediate and central implication is summarized in Corollary 1. 

Corollary 1 

- Stable coalitions in the ST-scenario are weakly larger than in the NC-scenario: That is, 

ST* NC*p p≥ . 

Proof: From Proposition 1, part iii), we have ( ) ( )NC* ST
S SW p W p≤  and ( ) ( )NC* ST*

NS NSW p W p>  

for any p , 1 p n≤ < . Thus, also ( ) ( )1 1NC* ST*
NS NSW p W p− > −  and, consequently, 

( ) ( )ST NCp pΩ Ω≥ . Let p p=


 be the largest coalition which is internally and externally stable 

in the NC-scenario. Either p p=


 is also externally stable in the ST-scenario or if not, then there 

will be a large coalition which is internally and externally stable, knowing that the grand 

coalition is externally stable for sure. Q.E.D. 

In order to provide an intuition for Corollary 1, McGinty (2020) suggests to consider two 

effects. He calls the first effect the externality effect which he defines as follows: 

( ) ( )1M NC* NC*
S NSEE m p m p= − − . This effect measures to which extent signatories mitigate more 

than non-signatories in the NC-scenario and which causes free-riding. He calls the second effect 

the timing effect, which reduces the incentive to free-ride in the ST- compared to the NC-

scenario. He captures the timing effect in two dimensions: ( )1 1M NE* ST*
STE m m= −  and 

( )2 1M ST* NE*
NSTE m m= −  with the superscript NE referring to mitigation level in the Nash 

equilibrium, which, in the NC-scenario, is equal to mitigation levels for 1p = , i.e., 

* * *(1) (1) .NC NC NE
S NSm m m= =  Hence, 1

MTE  measures the extent by which the single Stackelberg 

leader reduces its mitigation level compared to the Nash equilibrium and 2
MTE  measures the 

extent by which each of the 1n −  followers increase their mitigation levels compared to the 
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Nash equilibrium; in both cases 1p =  is considered. McGinty (2020) argues that the two effects 

offset each other at p  in the ST-scenario. 

We agree with McGinty (2020) that these two effects are useful in explaining the location of 

p̂, but we disagree with the definitions of those effects. First, measuring the externality effect 

at different values of p  for signatories and non-signatories appears somehow inconsistent. 

Second, measuring the timing effect only for 1p =  does not appear convincing to explain the 

location of p  for which typically  1p >  holds. Third, arguing that the two effects set off each 

other at p  suggests that aggregating the two effects in one way or the other should give us 

exactly p . Fourth, the effects should not only be measured in mitigation space but also in 

welfare terms. Therefore, we suggest the following definitions, which we use henceforth. 

Externality Effect:  ( ) ( )M NC* NC*
S NSEE m p m p= −  and ( ) ( )W NC* NC*

S NSEE W p W p= − . 

Timing Effect:  ( ) ( ) ( ) ( )M NC* ST* ST* NC*
S S NS NSTE m p m p m p m p= − + −  and 

( ) ( ) ( ) ( )W NC* ST* ST* NC*
S S NS NSTE W p W p W p W p= − + −  

Total Effect:   M M M ST* ST*
S NSToE EE TE m ( p ) m ( p )= − = −  and 

W W W ST* ST*
S NSToE EE TE W ( p ) W ( p )= − = −  

From the externality effect, responsible for free-riding, implying small stable coalitions in the 

NC-scenario, the timing effect, reducing the free-rider incentive, is deducted in order to obtain 

the total effect. Hence, we can state the following. 
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Corollary 2 

Consider any coalition of size p , 1 p n≤ < . Let p p=  be such that ( )1 1'
NSˆ ˆp R ( p )⋅ + = , 

( )1 1'
NSp R ( p )⋅ + <  if p p<  and ( )1 1'

NSp R ( p )⋅ + >  if p p> , with 1 p n< ≤ . 

a. The externality effect in mitigation space is positive, i.e., 0MEE >  and negative in 

welfare space, i.e., 0WEE < . 

b. The timing effect in mitigation space is positive, i.e., 0MTE >  and negative in welfare 

space, i.e., 0WTE < . 

c. The total effect in mitigation space is negative (positive) if p p≤  ( p p )> , i.e., 

0MToE ( )≥ <  if p p≤  ( p p )>  and positive (negative) in welfare space if p p≤  

( p p ),>  i.e., 0WToE ( )≥ <  if p p≤  ( p p )> . That is, the two effects offset each other 

at p . 

Proof: Part a. and b. follow directly from Proposition 1; part c. follows immediately from the 

first order conditions (4) and (5) in Table 1 and the properties of ( )'1 ( )NSp R p⋅ +  as discussed 

above and established in Appendix A.2. Q.E.D. 

In a next step, we have closer look how the coalition size p  and in particular the benchmark 

value p p=  relate to mitigation and welfare levels in the ST-scenario. We focus on this 

scenario, given that we have established ST* NC*p p≥  in Corollary 1.  

Proposition 2 

Consider any coalition of size p , 1 p n< < , recall the definition of p . Let NE denote Nash 

equilibrium mitigation and welfare levels.  
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a. ( ) ( )ST* ST* NE*
S NSm p m p m= =  and ( )ST* NE*M p M= . For ( ) p p< > , ( ) ( )ST* NE*

Sm p m ,< >  

( ) ( )ST* NE*
NSm p m> <  and ( ) ( )ST* NE*M p M< > . 

b. ( ) ( )ST* ST* NE*
S NS iW p W p W= =  and ( )ST* NE*W p W= . For ( ) p p< > , ( )ST*

NSW p

( ) NE*
iW< >  and ( ) ( )ST* NE*W p W< > . Finally, ( )ST* NE*

S iW p W≥  for every [ ]1p ,n∈ . 

c. For 1 ˆp p≤ < , ST*
NSm ( p )  decreases, ST*M ( p )  increases and ST*

Sm ( p )  increases in p  

in some segment of this range. For p p n≤ < , ST*
NSm ( p )  continuously decreases and 

ST*M ( p )  continuously increases in p . ST*
Sm ( p )  increases in p  in some segment of 

this range. 

d. For 1 p p≤ < , ST*
NSW ( p ) and ST*W ( p ) increase and ST*

SW ( p ) decreases in p  in some 

segment of this range. For p p n≤ < , ST*
NSW ( p ), ST*

SW ( p ) and ST*W ( p ) continuously 

increase in p . 

Proof: See Appendix A.4. Q.E.D. 

Proposition 3 is illustrated in Figure 1 with two representative cases. Plots 1.a to 1.d imply a 

relatively low p  and plots 1.e to 1.h imply a relatively high p .  

In terms of individual mitigation and welfare levels (plots 1.a, 1.c, 1.e and 1.g), it is clear that 

the position of p  determines the magnitude of the strategic advantage of signatories over non-

signatories in the ST-scenario. From 1p =  up to shortly before p p= , the timing effect 

dominates the externality effect; signatories will mitigate less than non-signatories and less than 

in the Nash equilibrium. Moreover, they receive a higher payoff compared to non-signatories. 

Non-signatories mitigate more than in the Nash equilibrium but receive a lower payoff than in 

the Nash equilibrium. For p p> , signatories and non-signatories receive a higher welfare level 
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than in the Nash equilibrium and both groups’ welfare increases in the coalition size p . 

However, now the externality effect dominates the timing effect, implying that signatories have 

higher mitigation but lower welfare than non-signatories. 

Given that signatories’ welfare is larger and non-signatories’ welfare lower than in the Nash 

equilibrium for any p p< , welfare (and mitigation) levels are equal to Nash equilibrium levels 

for p p=  and signatories’ payoffs increase in p  for any p p> , we know for sure that all 

coalitions up to  1p p= +  are internally stable (because in this range 

( ) ( 1) ( 1)S S NSW p W p W p≥ − ≥ − ). Acknowledging the fact that the size of stable coalitions can 

take on only integer values, we define { }max z pp z∈=   ≤ . 

Corollary 3 

Consider the ST-scenario. Let  1p n+ < . Every coalition of size 2 1p , p  ∈ +  
 is internally 

stable. Hence, every coalition of size  1p p < +   is externally unstable. Therefore 

 1*p p . ≥ +   If  1p n+ ≥ , then, *p n= . 

At this level of generality, nothing can be concluded whether coalitions for which  2p p ≥ +   

holds will be stable if  1p n+ < . For the specific welfare function (13), which we consider in 

section 4, it turns out that coalitions for which  2p p > +   holds are not stable. Nevertheless, 

Proposition 2 and Corollary 2 already provide a very good intuition about the paradox of 

cooperation.  

First note that because  ( )'1 ( ) 1NSp R p⋅ + = , p  increases in the absolute value of the slope of the 

reaction function '
NSR . That is, the steeper the negatively sloped reaction function is, the larger 



14 
 

will be p . Hence, because  1*p p ≥ +  , it appears that the steeper reaction functions are, the 

larger will be stable agreements. If '
NSR  is sufficiently steep, the grand coalition will be stable. 

However, global welfare and mitigation are below those in the Nash equilibrium for p p< , and 

are only large (and increase in p ) above the Nash equilibrium for p p> . Consequently, a large 

p  close to n  does not allow that a stable coalition equal or larger than  1p +  improves much 

over the Nash equilibrium. Indeed, if p  is close to n , not much room is left for additional 

countries to join the coalition in order to improve over the Nash equilibrium.  

This is also evident from Figure 1, when comparing plots 1.b and 1.f in terms of global 

mitigation and plots 1.d and 1.h in terms of global welfare. In the top panels, p  is relatively 

small but the potential gains from cooperation would be large; in the lower panels, this is just 

reversed. 

4. The Paradox of Cooperation 

4.1 Preliminaries 

In order to obtain some more concrete results regarding the paradox of cooperation, we consider 

the welfare function in Barrett (1994), which has also been considered by McGinty (2020) and 

many others. 

 
2

2

2 2i i
b M cw a M m
n
 

= ⋅ − − ⋅ 
 

 (13) 

a , b  and c  are strictly positive parameters, n  denotes the total number of countries, M  stands 

for global mitigation and im  for individual mitigation. All detailed calculations are provided in 

in Online Appendix 1. In order for the benefit function to be in line with our general assumptions 
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in section 2, we need to require M a<  for 0MB > . It turns out that this upper bound never 

becomes binding for equilibrium values for every p , 1 p n≤ ≤ .  

For the slopes of the reaction functions, as derived in section 2 for the general welfare function 

(1) (see eqs. (6) to (9)), using c
b

γ =  as in Barrett (1994), we find for payoff function (13): 

( )'
S i P

pr M
n pγ− ∈ = −
⋅ +

,   ( )
2

2
'
S NS

pR M
n pγ

= −
⋅ +

, 

( ) 1
1

'
NS j Pr M

nγ− ∉ = −
⋅ +

  and   ( ) ( )
( )

'
NS S

n p
R M

n n pγ
−

= −
⋅ + −

. 

It is straightforward to see that all reaction functions become steeper (flatter) as γ  decreases 

(increases). For γ  going to infinity, the slopes go to 0 . For γ  going to 0, the slopes approach 

the value of 1− . 

The critical coalition size p , as defined in section 3, at which the timing and externality effects 

offset each other, is given by: 



( )1
1

n
p .

n
γ

γ
⋅ +

=
⋅ +

             (14) 

The value of p  is the same as McGinty (2020). We note that p  decreases in γ . Hence, p

moves with the absolute value of the slope of the reaction functions. 

In order to analyze the paradox of cooperation, we propose relative measures to evaluate the 

potential gains from cooperation in ecological and welfare terms. We believe that relative 

measures are more sensible than absolute measures, which is in particular true for welfare. We 

call our indexes Importance of Cooperation Indexes (ICI), abbreviated M-ICI in terms of 

Mitigation and W-ICI in terms of Welfare. They measure the difference between the social 

optimum (SO) and the non-cooperative Nash equilibrium (NE) in relation to the levels in the 
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Nash equilibrium. (Note that the social optimum is identical for both scenarios if a coalition of 

size p n=  forms, the grand coalition. 

SO* NE*

NE*

W WW ICI
W
−

− =   
SO* NE*

NE*

M MM ICI
M
−

− =  

For the welfare function (13), we obtain:  

( )
( ) ( )

2 21
2

n c
W ICI

n b c n b n c c
− ⋅

− =
⋅ + ⋅ ⋅ + ⋅ −

     (15) and ( )1n c
M ICI

n b c
− ⋅

− =
⋅ +

.    (16) 

It is straightforward to confirm that both indexes increase in parameter c  and decreases in the 

parameter b , just the opposite than what has been observed for the absolute slope of the reaction 

functions. 

4.2 Results 

For payoff function (13), we obtain the following result. 

Proposition 3 

In the ST-scenario, the unique equilibrium coalition size *p  is given by [ ]2*p ,n∈ . Let 

 1p n+ < , i.e., 
[ ]

1
2n n

γ >
−

. If p , as given in (14), is not an integer value, the unique stable 

coalition size is one of two integer values,  { }1 2*p p , p   ∈ + +    , whereas if p  is an integer 

value, then the unique stable coalition size is  1*p p= + . If  1p n+ ≥ , i.e., 
[ ]

1
2n n

γ ≤
−

,then 

*p n= .7 

                                                 
7  In the NC-scenario, we would have [ ]1 2*p ,∈ , which can be proved along the lines as for instance 

developed in Appendix A.3.3 in Bayramoglu et al. (2018), who consider almost the same welfare 
function as in (13). 
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Proof: For the ST-scenario, see Appendix A.4 for details where we show (treating p  as a 

continuous variable) that  2p p= + , and any larger coalition, is not internally stable (though 

any coalition from 2p =  up to  1p p= +  is internally stable as we know from Corollary 2 

already) and the range of γ  follows directly from (14) and the conditions  1p n+ <  and 

 1p n+ ≥ , respectively. Finally, results are obtained by acknowledging the fact that *p  must be 

an integer value. Q.E.D. 

It does not come as a surprise that we can derive a sharper characterization of stable coalitions 

for the specific welfare function (13) than for the general welfare function (1) in Corollary 2. It 

is interesting that our previous intuition for the general welfare function (1) about the relation 

between the size of stable coalitions and the paradox of cooperation is confirmed for the specific 

payoff function (13). 

Corollary 4 

The unique equilibrium coalition size *p  increases in the absolute values of the slopes of the 

reaction functions which in turn increase in the benefit parameter b and decreases in the cost 

parameter c  whereas the importance of cooperation in welfare and mitigation terms (see eqs. 

(15) and (16)) decrease in the benefit parameter b and increases in the cost parameter c . 

Proof: Follows from the discussion above and Proposition 3. Q.E.D. 

Thus, p  and, hence, *p , increases in the absolute value of the slopes of the reaction functions 

(which increase in parameter b  and decrease in parameter c ). In terms of the gains from 

cooperation, measured by our indexes of the importance of cooperation, just the reverse is true. 

This constitutes the paradox of cooperation. 
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5 Conclusion 

The paradox of cooperation is a well-established result from the literature on international 

environmental agreements games: either self-enforcing environmental agreements comprise 

only few countries or, if large participation is achieved, cooperation is not able to substantially 

improve environmental conditions and welfare. This conclusion, since its first formulation by 

Barrett (1994), has been reiterated in the literature by many scholars. However, results have 

been based on specific payoff functions, and to a large extent on simulations (e.g., Diamantoudi 

and Sartzetakis 2006, McGinty 2020 and Rubio and Ulph 2006). We derive many results for 

general payoff functions, and some further analytical results for a specific payoff function, 

frequently employed in this literature. 

In this paper, we first proved generally that stable coalitions are larger under the Stackelberg 

leadership than under the Nash-Cournot assumption. Given that stable coalitions under the 

Nash-Cournot assumption always tend to be small, we focused on the Stackelberg assumption 

in the subsequent analysis. We characterized the range of stable coalitions and provided a 

rationale for the paradox of cooperation. The steeper reaction functions are, the larger is the 

strategic advantage of signatories over non-signatories and, consequently, the larger are stable 

coalitions, but the smaller are the gains from cooperation. We argued that this simple relation 

summarizes the paradox of cooperation in a nutshell. We generalized the timing and externality 

effect, as suggested by McGinty (2020), in order to locate stable coalitions. The final analysis 

of the specific payoff function allowed us to relate all previous results to the ratio of the benefit 

and cost parameter in this public good coalition formation model. 

For further research, we suggest that more efforts are undertaken to generalize previous results, 

in order to draw more robust conclusions. 
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Appendix 

A.1 Second order conditions and the existence of a unique second stage equilibrium 

Differentiating the first order conditions in Table 1 with respect to individual mitigation, we 

obtain the following SOCs in the NC-scenario: ( ) ( )2 0NC* NC*
MM mm Sp B M C m⋅ − <  for 

signatories and ( ) ( ) 0NC* NC*
MM mm NSB M C m− <  for non-signatories. In the ST-scenario, SOCs for 

non-signatories are the same as in the NC-scenario (replacing superscripts NC by ST). For 

signatories, we obtain: ( ) ( ) ( )2 1 0' ST* ST*
NS M mm Sp R B M C m⋅ + ⋅ − <  where for simplicity we 

assume constant second derivatives. 

The existence of a unique vector of mitigation levels for every coalition of size p  is proved by 

using the concept of replacement functions (see Cornes and Hartley 2007). Let ( )S Sm g M=  be 

the individual replacement function of a signatory and ( )NS NSm g M=  be the replacement 

function of a non-signatory. The aggregate replacement function ( )G M  is the summation of all 

replacement functions: 

1 1

n n

i S NS i S NS
i i

m p m ( n p ) m M G( M ) g ( M ) p g ( M ) ( n p ) g ( M )
= =

= ⋅ + − ⋅ = = = = ⋅ + − ⋅∑ ∑ .  

For the ST-scenario, totally differentiating the first order conditions of signatories and of non-

signatories (eqs. (4) and (5), respectively), we derive the slope of an individual signatory’s and 

non-signatory’s replacement function: 

( ) ( )
( )

1 '
MM NS' ST

S ST
mm S

p B R
g M

C m

 ⋅ ⋅ + =   and   ( ) ( )
' ST MM
NS ST

mm NS

Bg M
C m

= . 

The slope of the aggregate replacement function is obtained by summing over all individual 

slopes: 

( ) ( )
( )

( )
( )

2 1 '
NS' ST

MM ST ST
mm S mm NS

p R n p
G M B

C m C m

  ⋅ + −  = ⋅ +
 
 

. 

Both individual and aggregate replacement functions have a negative slope over the entire 

domain of the mitigation space as 0MMB < . Hence, the aggregate replacement function will 
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intersect with the 45-degree line only once. For the NC-scenario, the same result is obtained by 

setting 0'
NSR =  and replacing the superscript ST by NC. 

A.2 The Nature of p̂  

Consider ( )( )1 '
NSp R p⋅ + . Since ( ) 0'

NSR p < , ( )( )1 1'
NSp R p⋅ + <  for 1p =  and hence  1p >  

with  ( )( )1 1'
NSp R p⋅ + = . ( )( )1 '

NSp R p⋅ +  increases in p . To see this, we differentiate '
NSR  with 

respect to p  in order to obtain: 

( ) ( ) ( )( ) ( )

( ) ( )( )
( )

( ) ( )( )
2

2 2 0
ST ST'

MM mm NS MM MM MM mm NSNS

ST ST
mm NS MM mm NS MM

B C m n p B n p B B C mR p
.

p C m n p B C m n p B

− ⋅ − − ⋅ − − ⋅ − ⋅∂
= = >

∂ − − ⋅ − − ⋅
 

A.3 Proof of Proposition 1 

We want to prove ( ) ( )NC* ST*M p M p>  for every p , 1 p n≤ < . Let us assume the opposite, 

namely: ( ) ( )NC* ST*M p M p< . We have 0MMB < . Therefore, 0'
NSR < . Using the first order 

conditions in Table 1 and the general assumptions of the model, we have: 

( ) ( ) ( ) ( ) ( )1 1ST* ST* ' NC* '
m S M NS M NSC m p B M R p B M R   = ⋅ ⋅ + < ⋅ ⋅ + <     

( ) ( )NC* NC*
M m Sp B M C m ⋅ =   

for signatories and  

( ) ( ) ( ) ( )ST* ST* NC* NC*
m NS M M m NSC m B M B M C m= < =  

for non-signatories. Hence, ( ) ( )ST* NC*
m S m SC m C m< , ( ) ( )ST* NC*

m NS m NSC m C m .<  Therefore, given 

the convexity of cost functions, ST* NC*
S NSm m<  and ST* NC*

NS NSm m<  must hold. Hence, 

( ) ( )NC* ST*M p M p> , which contradicts our initial assumption ( ) ( )NC* ST*M p M p< . Thus, 

we have: ( ) ( )NC* ST*M p M p> . Consequently, ( ) ( )NC* ST*
NS NSm p m p<  must hold from the first 

order conditions of non-signatories and, consequently, ( ) ( )NC* ST*
S Sm p m p>  must be true for 

( ) ( )NC* ST*M p M p> . 
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A.4 Proof of Proposition 2 

a. Comparison with Nash equilibrium mitigation levels 

Recall that for p p=  we have  ( )'1 ( ) 1NSp R p⋅ + = . Moreover, the first order conditions of 

signatories (4) and those of non-signatories (5) in Table 1 are identical and equal to those in a 

Nash equilibrium, i.e., ( ) ( )NE* NE*
M mB M C m= . Hence, ( ) ( )ST* ST* NE*

S NSm p m p m= =  and 

( )ST* NE*M p M= . 

Suppose p p< . We want to show ( )* *ST NEM p M< . By contradiction, we assume 

( )* *ST NEM p M> . From the first order conditions and knowing that * *( ) ( )ST ST
S NSm p m p<  if 

p p< , we have: 

( ) ( ) ( ) ( ) ( )ST* ST* ST* NE* NE*
m S m NS M M mC m C m B M B M C m< = < =  

Therefore, given the convexity of cost functions, ST* NE*
Sm m<  and ST* NE*

NSm m<  must hold. 

Hence, ( )ST* NE*M p M< , which contradicts our initial assumption ( )ST* NE*M p M> . Thus 

( )ST* NE*M p M<  must hold. Consequently, ( )ST* NE*
NSm p m>  follows from the first order 

conditions of non-signatories and for ( )ST* NE*M p M<  to hold, we must have ( )ST* NE*
Sm p m .<  

Hence, for p p< , we have established: ( )ST* NE*
Sm p m< , ( )ST* NE*

NSm p m>  and 

( )ST* NE*M p M< . For p p> , the same kind of reasoning can be applied to establish: 

( )ST* NE*
Sm p m> , ( )ST* NE*

NSm p m<  and ( )ST* NE*M p M> . 

b. Comparison with Nash equilibrium welfare levels 

For p p= , it is obvious to conclude ( ) ( )ST* ST* NE*
S NS iW p W p W= = , ( )ST NE*W p W= . For non-

signatories, we have ( )ST* NE*
NS iW p W<  if p p<  and ( )ST NE*

NS iW p W>  if p p> . This follows 

from the previous conclusions regarding total and individual mitigation levels. (Non-signatories 

have lower benefits and higher mitigation cost compared to the Nash equilibrium.) 



iv 
 

For signatories, ( )ST* NE*
S iW p W≥  follows from three pieces of information. 1) For 1p = , 

1ST* NE*
S iW ( ) W>  follows axiomatically. 2) Below, we show that 

*( ) , , 0
ST

SW p
p

∂
< = >

∂
 if 

0ST* ST*
S NSm m , ,− < = > . 3) For 1 ˆp p≤ < , 0ST* ST*

S NSm m− < , for ˆp p= , 0ST* ST*
S NSm m− =  (and 

ST* NE
S iˆW ( p ) W= ) and for ˆp p> , 0ST* ST*

S NSm m− > .  

For global welfare, we show first that ( )ST* NE*W p W<  for p p< . For p p< , we know that 

( )ST* NE*M p M<  and ( ) ( )ST* ST*
S NSm p m p< . Let us a consider a hypothetical situation where we 

allocate total mitigation ( )ST*M p  cost effectively such that ( )ST*

i

M p
m

n
=  due to the 

symmetry of strictly convex cost functions. We notice that NE*
i im m< , as we know 

( )ST* NE*M p M .<  Moreover, we know that in a (symmetric) Nash equilibrium, NE*M  is 

provided cost-effectively. Let ( ) ( ) ( )CE i i i i iW m n B n m C m= ⋅ ⋅ −    be the cost-effective total 

welfare for a symmetric allocation of mitigation levels. Differentiating ( )CE iW m  twice, gives: 

2 0MM mmn n B C ⋅ − <  , with the maximum at the socially optimal mitigation level SO*
im , with 

NE* SO*
i im m< . Since ( )CE iW m  is strictly concave, it follows that ( )ST* NE* SO*W p W W W< < < . 

For p p> , ( )ST* NE*W p W>  follows immediately, as ( )ST* NE*
S iW p W≥  and ( )ST NE*

NS iW p W>  as 

shown above. 

c. Properties of mitigation levels 

We investigate the sign of 
ST*M
p

∂
∂

, 
ST*
Sm
p

∂
∂

 and 
*
NSm
p

∂
∂

 treating p  as a continuous variable. 

Totally differentiating the first order conditions (4) and (5) in Table 1, rearranging terms and 

assuming third derivatives to be zero, we find: 

( )
( )

( )
( )

1 1
ST*

'
'MM NSST*

M NSS
ST* ST*

mm S mm S

Mp B R B Rm p
p C m C m

∂
⋅ ⋅ ⋅ + ⋅ +∂ ∂= +

∂
          (A.1) 

( )

ST*

MMST*
NS

ST*
mm NS

MB
m p

p C m

∂
⋅

∂ ∂=
∂

.                (A.2) 
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and, using, ( )
ST* ST*ST*

ST* ST*S NS
S NS

m mM m p m n p
p p p

∂ ∂∂
= + ⋅ − + − ⋅

∂ ∂ ∂
 and substituting 

ST*
Sm
p

∂
∂

 and 

ST*
NSm
p

∂
∂

 from above, we obtain: 

( )
( )

( )
( )

( )
( )

2

1

1
1

'
M NSST* ST*

S NS ST*ST*
mm S

'
NS

MM ST* ST*
mm S mm NS

p B R
m m

C mM
p p R n p

B
C m C m

⋅ ⋅ +
− +

∂
=

∂  ⋅ + −
− ⋅ + 

  

         (A.3) 

We note that the term 
( )
( )
1 '

M NS

ST
mm S

B R

C m

⋅ +
 in (A.1), 

( )
( )
1 '

M NS

ST
mm S

p B R

C m

⋅ ⋅ +
 as well as the denominator 

(which can be written as '1 ( )STG M− ; see Appendix A.1) in (A.3) are positive. Further we know 

that ST ST
S NSm m , ,− < = >  for p , , p> = < . Hence, we can immediately follow that in the range 

p̂ p n≤ < , 0
ST*
NSm ( p )

p
∂

<
∂

and 0
ST*M ( p )

p
∂

>
∂

. ST*
Sm ( p ) must increase in p  in some segment 

of this range, simply because * * * *ˆ( ) ( )NE ST ST SO
i S S im m p m n m= < = . In the range 1 ˆp p≤ < , 

1ST* NE*
NS im ( ) m ,> 1ST* NE*

S im ( ) m<  and 1ST* NE*M ( ) M<  is readily proved and 

ST* NE*
NS im ( p ) m= , 



ST* NE*
S im ( p ) m=  and 

ST* NE*M ( p ) M= , as we know from above. Hence, we must have: 

ST*
NSm ( p )  decreases, ST*M ( p )  increases and ST*

Sm ( p )  increases in p  in some segment of this 

range.  

d. Properties of welfare functions 

Differentiating a non-signatory’s welfare function with respect to p , we obtain: 

( )
1

ST* ST*
NS MM

M ST*
mm NS

W M BB
p p C m

  ∂ ∂  = ⋅ ⋅ −
 ∂ ∂   

 

noting that 0MB >  by assumption and ( )
1 0MM

*
mm NS

B
C m

 
 − >
 
 

 as 0MMB < . Thus, the sign depends 

on the sign of 
ST*M
p

∂
∂

.  



vi 
 

Differentiating signatories’ welfare function with respect to p , we obtain: 

1
ST*ST* ST*

'S S
M NS

W mMB p R
p p p

 ∂ ∂∂  = ⋅ − ⋅ + ⋅  ∂ ∂ ∂ 
 or 

( )
ST* ST* ST*

ST* ST* 'S NS S
M S NS NS

W m mB m m n p p R
p p p

 ∂ ∂ ∂
= ⋅ − + − ⋅ − ⋅ ⋅ ∂ ∂ ∂ 

. 

Plugging in 
ST*
NSm
p

∂
∂

, 
ST*
Sm
p

∂
∂

 and 
ST*M
p

∂
∂

 from above, as well as ( )
( ) ( )

MM'
NS ST

mm NS MM

n p B
R ,

C m n p B
− ⋅

=
− − ⋅

 

we obtain: 

( ) ( )
( ) ( )

ST* ST* STST*
S NS mm NSS

M ST
mm NS MM

m m C mW B
p C m n p B

 − ⋅∂
 =

∂ − − ⋅  
 

The denominator is positive as 0MMB < . Thus, the sign of 
ST*

SW
p

∂
∂

 depends on the sign of 

ST ST
S NSm m−  which in turn depends whether p , , p> = < . 

Finally, for total welfare, we use two pieces of information. First, we know 0
ST*

NSW
p

∂
>

∂
 if 

0
ST*M
p

∂
>

∂
 for which a sufficient condition is p p≥ . (This property is referred to as positive 

externality property.) Second, we establish a property called superadditivity for every p , 

2 p n≤ ≤ , which is defined as follows: ( ) [ ] ( ) ( )1 1 1ST* ST* ST*
S S NSp W p p W p W p⋅ > − ⋅ − + − . 

Hence, a sufficient condition for 0
ST*W
p

∂
>

∂
 is p p≥ . (This property has been called full 

cohesiveness.) That is, the joint properties positive externality and superadditivity are sufficient 

properties conditions for full cohesiveness. 

In order establish superadditivity, consider the following thought experiment in two steps. First 

consider any coalition enlargement from size 1p −  to p . This implies one more signatory. 

Keeping total mitigation of the p  signatories at the same level than at 1p −  

( [ ] )* * *( ) 1 ( 1) ( 1)ST ST ST
S S NSp m p p m p m p⋅ = − − + − , total mitigation cost will have decreased among 

the p  signatories, as their aggregate mitigation is now shared with one more country. For the 

n p−  non-signatories nothing has changed. Second, the p  Stackelberg leaders choose their 



vii 
 

equilibrium strategies by maximizing their aggregate welfare, controlling the best-response of 

non-signatories. If they choose to change their strategies, their aggregate welfare must further 

increase. For the final move from 1 1p n− = −  to p n= , aggregate welfare also strictly 

increases as global welfare reaches its maximum at the social optimum p n= . Hence, under 

the ST-scenario, superadditivity holds for every p , 2 p n≤ ≤ .  

Hence, from above, it is immediately clear that in the range p̂ p n≤ ≤ , 0
ST*

NSW ( p )
p

∂
>

∂
, 

0
ST*

SW ( p )
p

∂
≥

∂
 and 0

ST*W ( p )
p

∂
>

∂
. In the range 1 ˆp p≤ < , 1ST* NE*

NS iW ( ) W< , 1ST* NE*
S iW ( ) W>

and 1ST* NE*W ( ) W<  is readily proved, and from above we have: ST* NE*
NS iˆW ( p ) W= , 

ST* NE*
S iˆW ( p ) W= and ST* NE*ˆW ( p ) W= . Hence, we must have: ST*

NSW ( p )  and ST*W ( p )  increase 

and ST*
SW ( p )  decreases in p  in some segment of this range.  

A.5 Proof of Proposition 3 

We only provide a sketch of the proof and refer the interested reader to Online Appendix 2. 

1) We know that any coalition of size [ ]1 1ˆp , p∈ +  is internally stable from Corollary 3 for 

our general welfare function (1). Hence, this also holds for welfare function (13). 

2) We also know from Corollary 3 that if  1p n+ ≥ , then *p n= . 

3) Hence, we need to consider  1p n+ < , which implies 
[ ]

1
2n n

γ >
−

 as established in (14) 

in the text. 

4) For payoff function (13), it turns out that ( )
2 2

2

1
2

a b c Sp
T U

Ω ⋅ ⋅ ⋅
= − ⋅

⋅
 with 

( ) ( )2 2 2 2 22 2 0T n p b p n p n b c n c= − ⋅ + + − ⋅ ⋅ ⋅ + ⋅ > , 

( )( ) ( )2 2 2 2 22 2 1 2 4 3U n p n p b p n p n b c n c= − + − + ⋅ + + − + ⋅ ⋅ ⋅ + ⋅  and 

( )4 3 2 2 2 3 3 4 4 2
1 2 3 4 4 3S b n c b n c b n c b n c p pΦ Φ Φ Φ= ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ + ⋅ ⋅ − +  where 

( ) ( ) ( )4 3 2
1 n p n p n pΦ  = − − + − + −  , 
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( ) ( ) ( )4 3 2 2 2 3 2
2 2 4 8 2 6 2 2 2 2 1p n p n n p n n p n n nΦ = − + + ⋅ − + + ⋅ + + − ⋅ − − + + , 

( ) ( ) ( )4 3 2 2 2 2
3 2 4 8 9 4 12 12 2 8 5p n p n n p n n p n nΦ = − + ⋅ + + + ⋅ − + + ⋅ + + +  and 

( ) ( )4 3 2
4 6 2 15 8 18 6 8p p n p n p nΦ = − + + ⋅ − + ⋅ + + . 

If ( ) 0pΩ ≥ , then the coalition of size p  is internally stable. The sign of ( ) 0pΩ ≥  only 

depends on the sign of term S . Hence, we require 0S ≤  for internal stability. 

5) It can be shown that ( )2S p +  is a strictly convex function in c / bγ = . One can write

( ) 42S X( )p γ γ⋅= −+  with 3 2 )X ( bb( n ) )) aa( n ) dd nc (c( nγ γ γ γ⋅ ++⋅+= ⋅ . It can be 

shown that aa( n ) , bb( n )  and cc( n )  are strictly positive. Thus, it is obvious that ( )2S p +  

is strictly increasing and strictly convex in γ . Hence, we insert the lowest possible γ , 

which is 
[ ]

1
2n n

γ =
−

, in ( ) 42S X( )p γ γ⋅= −+ . We find 

[ ]
12 0

2
S p ,

n n
γ

 
+ = >  − 

. 

5) In principle, we cannot rule out that for  2p p x+ < +  with 2 1x n< ≤ −  (we use the lower 

bound of p̂ , which is 1p̂ = , as a conservative estimate and hence need to test for the 

highest possible value x  at p x n+ ≤ ), we may have internal stability, i.e., ( ) 0S p x+ ≤ . 

We restrict the analysis to  1 np p x+ < + ≤  due to  1p n+ ≥  inducing *p n= . p nx+ ≤  

implies 
1

x
n( n x )

γ ≥
− −

.  

6) It can be shown that ( )S p x+  is a strictly convex function in γ . We can rewrite ( )S p x+  

as follows ( ) 2 21Z( )S p x ( x )xγ γ+ −−= ⋅  with 4 3Z( ) ,a nx( xx,n )) bx(γ γ γ= ⋅ ⋅+

2cx( x,n ) dx( )(x,n ) ex x,nγ γ+ ⋅ ⋅ ++ . It can be shown that ax( x,n ) , bx( x,n ),  cx( x,n )  

and dx( x,n )  are positive. Thus, it is obvious that Z( )γ  is a strictly increasing and strictly 

convex function in γ . By inserting the lowest possible value for γ  in ( )S p x+ , which is 

1
x

n( n x )
γ =

− −
, we find 

5

5

1
1 1

x x( n ) f ( x,n )S p x,
n( n x ) ( n x )

γ
  − ⋅

+ = = − − − − 
. Thus, 
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 [ ]
1

sign S p x, sign f ( x,n )x
n( n x )

γ
  

+ =  
 

=
− −

. For 2 x n≤ < , it can be shown that 

0f ( x,n ) > . Hence,  0
1

xS p x,
n( n x )

γ
 

+ = > − − 
.  
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Figure 1: Mitigation and welfare levels as a function of coalition size p # 
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#  Plots are based on payoff function (13) introduced in section 4. We consider 100n =  countries. For the first set of plots (plots 1.a to 1.d) 1a = , 15b =  and 

1c =  are assumed. For the second set of plots (plots 1.e to 1.h), 1a = , 500b =  and 1c =  are assumed. 
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