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Abstract 

We analyze the paradox of cooperation, as established by Barrett (1994), and later reiterated by 

many others, in a more general framework. That is, we show that stable coalitions are either small 

or if they are large, the potential gains from cooperation are small. First, we argue that the extension 

to a mitigation-adaptation game is a generalization of Barrett’s pure mitigation game. Second, we 

consider for this extension not only the Nash-Cournot scenario, as in Bayramoglu et al. (2018), but 

also the Stackelberg scenario. Third, we show generally that if mitigation levels in different countries 

are strategic substitutes, stable coalitions are larger in the Stackelberg than in the Nash-Cournot 

scenario. Fourth, this is reversed if mitigation levels are strategic complements, which is possible if 

the strategic interaction between mitigation and adaptation is sufficiently strong. Fifth, for all 

possible combination of assumptions, we demonstrate that the paradox of cooperation is robust, 

except if mitigation and adaptation were strategic complements, which we argue is an assumption 

not supported by empirical evidence. 
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1. Introduction 

Mitigation and adaptation are two strategies to combat climate change. Mitigation directly targets at 

solving the cause of the problem, reducing greenhouse gas emissions, causing global warming. In 

contrast, adaptation aims at ameliorating the negative consequence of global warming. Whereas 

mitigation is typically viewed as a pure public good, adaptation is seen as a private good (reducing 

only damages of the party conducting adaptation). Addressing global warming requires international 

cooperation: isolated actions will not make a big difference if other countries do not follow suit. 

However, the signature and ratification of effective international climate agreements have proved to 

be difficult in the past. There is a widespread consensus that the Kyoto Protocol has not been able to 

curb the increase of greenhouse gases in the past, and also most scholars have doubts about the 

effectiveness of the Paris Accord signed in 2015, as highlighted by the latest IPCC 1.5 degrees report 

(IPCC 2018). As the effects of global warming become more and more visible, adaptation becomes 

increasingly important as a policy option. This is not only evident by the increasing literature on the 

costs and effectiveness of adaptation as well as about the practical and technical obstacles of 

implementation, in particular, in developing countries (IEG 2013 and World Bank 2010), but 

adaptation is also an integral part of almost all recent climate change negotiations (UNFCCC 2014 

and 2016). The main obstacle of addressing the cause of global warming is the public good nature of 

mitigation. Reducing emissions comes at a cost that is borne by individual countries, but the benefits 

are enjoyed by all countries worldwide.  

International climate negotiation failures have been largely explained by game-theoretic models of 

international environmental agreements (IEAs).1 In the standard workhorse model with only 

                                                 
1  The first models go back to Barrett (1994), Carraro and Siniscalco (1993) and Hoel (1992). This literature 

on IEAs has grown substantially over recent years. A collection of the most influential articles has been 
collected in a volume in Finus and Caparros (2015). In this volume, various extensions of the standard 
model are included for which in some cases more positive results are obtained. The importance of this 
topic is also highlighted by some recent papers, e.g., Battaglini and Harstad (2016) and Harstad (2012). 
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mitigation and symmetric players, only small agreements are stable if signatories and non-signatories 

choose their mitigation levels simultaneously, which has been called the Nash-Cournot scenario.2 For 

Stackelberg leadership of signatories, more optimistic results have been obtained in terms of the size 

of stable agreements (Barrett 1994; Diamantoudi and Sartzetakis 2006; Rubio and Ulph 2006). 

However, as Barrett (1994) coined it, the paradox of cooperation persists: stable coalitions are either 

small or if they are large, the potential gains from cooperation are small. Recently, Bayramoglu et al. 

(2018) argued for the Nash-Cournot scenario that more optimistic results may be obtained if countries 

have a second strategy at their avail, namely adaptation, which they coined the mitigation-adaptation 

game. They show if the cross effect between mitigation and adaptation is sufficiently large, reaction 

functions in mitigation space may become upward sloping, associated with large stable agreements, 

including the grand coalition. This result does not depend on whether mitigation and adaptation are 

assumed to be substitutes (as commonly believed) or complements (as an unlikely possibility), but 

only that the rate of substitution or complementarity is large in absolute terms. However, Bayramoglu 

et al. (2018) neither measure the effectiveness of stable agreements nor do they consider Stackelberg 

leadership as an alternative assumption.  

We acknowledge in this paper that mitigation-adaptation game is a generalization of Barrett’s pure 

mitigation game for which we want to find out whether the paradox of cooperation is still a robust 

conclusion. We consider for this generalization not only the Nash-Cournot scenario, as in Bayramoglu 

et al. (2018), but also the Stackelberg scenario, as proposed by Eisenack and Kähler (2016) and 

Marrouch and Chaudhuri (2011). We show generally (neither resorting to specific payoff functions 

nor simulations) that if mitigation levels in different countries are strategic substitutes, stable 

coalitions are larger in the Stackelberg than in the Nash-Cournot scenario. This is reversed if 

mitigation levels are strategic complements, which is possible if the strategic interaction between 

mitigation and adaptation is sufficiently strong. For all possible combination of assumptions, we 

                                                 
2  An exception is Karp and Simon (2013) who consider non-standard mitigation cost functions. 
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demonstrate that the paradox of cooperation is robust, except if mitigation and adaptation were 

strategic complements, which we argue is an assumption that lacks empirical support. 

In what follows, we lay out the model in section 2, derive our general analytical results in section 3 

and those for a specific payoff function in section 4. Section 5 evaluates the efficacy of stable 

agreements via extensive simulations and section 6 concludes with some hints about future research. 

All proofs are contained in the Appendix with further details provided in an Online Appendix. 

2. The Model 
2.1 Payoff Function 

We consider n  symmetric countries 1, 2,...,i n= , with N  the set of all countries. Following 

Bayramoglu et al. (2018), the payoff function of every country i  is given by: 

 ( ) ( ) ( ) ( ), , ,i i i i i i i i iW M m a B M a C m D a= − − . (1) 

The individual payoff comprises benefits iB , which are a function of total mitigation, 
1

n

i
i

M m
=

=∑ , 

and individual adaptation, ia , minus the costs of mitigation iC , which are a function of individual 

mitigation im  and minus the costs of adaptation, iD , which are a function of individual adaptation 

ia . Benefits are a function of both strategies, total mitigation M  and individual adaptation ia . Both, 

mitigation, the pure public good, as well as adaptation, the pure private good, contribute to benefits.3 

                                                 
3  It is generally known that the public good provision game can be alternatively framed as an emission 

game; they are dual problems. In the context of mitigation and adaptation, this is evident by comparing 
Bayramoglu et al. (2018) and Rubio (2018). In the emission game, the equivalent to the benefit function 
in the public good game is the damage function with aggregate emissions and adaptation being the 
arguments in this function. The importance of a correct conversion of mitigation into emission games, 
including possible problems, is discussed in Diamantoudi and Sartzetakis (2006) and Rubio and Ulph 
(2006), though without adaptation. 
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The strategy space of country i  is given by 0,i im m ∈    and 0,i ia a ∈   . If we set 0ia =  and assume 

( ) ( ), , 0 ,i i i i iW M m a W M m= = , the pure mitigation game without adaptation can be retrieved. Thus, 

the mitigation-adaptation game can be viewed as a generalization of the mitigation game. 

We assume that all countries have the same payoff function, i.e., all countries are assumed to be ex-

ante symmetric. Hence, we can drop index i , whenever no misunderstanding is possible. However, 

as will become clear below, countries may nevertheless be ex-post asymmetric, as in our model 

countries endogenously choose whether they join an agreement and become signatories (S) or remain 

outside and become non-signatories (NS), and these groups choose different mitigation levels. If we 

want to stress this difference, we use subscript S  and NS , respectively. 

All welfare functions, as well as their first and second derivatives, are assumed to be continuous. 

Following Bayramoglu et al. (2018), we introduce the following assumptions where we denote for 

instance M
BB M
∂= ∂ , 2

2MM
BB M

∂=
∂

 and 
2

Ma aM i
BB B M a

∂= = ∂ ∂ . 

General Assumptions 

a) 0MB > , 0MMB < , 0mC > , 0mmC > . 

b) 
0 0

lim lim 0M mM m
B C

→ →
> > . 

c) 0aB > , 0aaB ≤ , 0aD > , 0aaD ≥ . 

If 0aaB = , then 0aaD >  and vice versa: if 0aaD = , then 0aaB < . 

d) 
0 0

lim lim 0.a aa a
B D

→ →
> >   

e) i) 0aM MaB B= <  or ii) 0aM MaB B= > .  

These assumptions and their implications are discussed in Bayramoglu et al. (2018) where 

assumptions b) and d) are necessary conditions for an interior solution to which we confine ourselves 

in this paper. Mitigation and adaptation are substitutes, as commonly assumed for assumption e) i), 
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and would be complements for assumption e) ii).4 (See subsection 2.5 for a discussion.) It will become 

apparent that for almost all results the sign of the cross derivative does not matter, though the absolute 

value of this derivative will turn out to be important. In order to reduce the complexity of some of the 

subsequent proofs, we assume that third derivatives are equal to zero, which implies linear reaction 

functions. In the Appendix, we mention this assumption whenever we use it, but it will no longer be 

mentioned in the text. 

2.2 The Coalition Formation Game 

We consider the workhorse model of international environmental agreements, which is a two-stage 

cartel formation game. In the first stage, countries decide on their membership. Those countries, 

which join coalition P , P N⊆ , are called signatories and those which remain outside are called non-

signatories. In the second stage, signatories act as a single player, choosing their economic strategies 

by maximizing the aggregate payoff over all signatories. Non-signatories act as single players, 

maximizing their own payoff. The solution of the second stage leads to an economic strategy vector 

for every coalition P  of size p , 1 p n≤ ≤ . If this strategy vector is unique, notation simplifies and 

we can write *( )iW p . As we will see below, as all signatories i P∈  choose the same strategy vector 

and the same applies to all non-signatories j P∉  (though signatories and non-signatories will choose 

different strategy vectors) we can also write *( )SW p  and * ( )NSW p , with the understanding that * ( )NSW p  

does not exist if p n=  and * *( ) ( )S NSW p W p=  if 1p = .5 In Appendix 1, we provide a sufficient 

condition, which guarantees the existence and uniqueness of interior second stage equilibria. 

For the second stage, we need to distinguish between the Nash-Cournot (NC) and the Stackelberg 

(ST) scenario. Under the NC-scenario, signatories and non-signatories choose their economic 

                                                 
4  In the following, we rule out the uninteresting and special case of 0MaB = . 
5  Strictly speaking, 0p =  and 1p =  imply the same coalition structure. For notational simplicity, we 

assume 1 p n≤ ≤ . * *( ) ( )S NSW p W p=  if 1p =  for the Stackelberg scenario is explained below. 
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strategies simultaneously, and under the ST-scenario they do so sequentially, with signatories being 

the Stackelberg leader and non-signatories the followers, in line with the assumptions in the literature 

on IEAs (e.g., Barrett 1994 and Rubio and Ulph 2006).  

Generally, if coalition P is empty ( 0p = ) or, which is equivalent, if it consists of only one player       

( 1p = ), the equilibrium economic strategy vector will be the same as in the Nash equilibrium in 

games without coalition formation. This also means that we assume signatories can only assume 

Stackelberg leadership if 1n p> >  (but not if 1p = ).6 Conversely, if coalition p n= , i.e., the grand 

coalition has formed, this corresponds to the social optimum. There are no leaders and followers; 

hence, the NC- and ST-scenario coincide. Hence, difference in equilibrium strategies between the 

two scenarios in the second stage arise when there is partial cooperation, i.e., 1 p n< < . 

In the first stage, making already use of the symmetry assumption and the simplified notation because 

of a unique economic strategy vector for every coalition of size p , 1 p n≤ ≤ , a coalition of size p  

is stable if it is internally and externally stable. 

 Internal stability: ( ) ( )* * 1S NSW p W p≥ −         

                        (2) 

 External stability: ( ) ( )* * 1NS SW p W p≥ +  . 

Internal stability requires that a signatory has no incentive to leave a coalition of size p . External 

stability requires that a non-signatory has no incentive to join a coalition of size p . A coalition which 

is internally and externally stable is called stable and the size of such a coalition is denoted by *p . It 

is important to note that despite second stage equilibria for 1p =  and p n=  are the same for the NC-

and ST-scenario, internal stability for p n=  and external stability for 1p =  will be different. 

                                                 
6  The alternative assumption of Stackelberg leadership also for 1p =  would only make a difference for 

stability at 2p =  which is anyway not very interesting for our subsequent analysis. 
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2.3 First Order Conditions and Slopes of the Reaction Functions in Mitigation Space and 

Mitigation-Adaptation Space 

Under the NC-scenario, we assume in line with Bayramoglu et al. (2018) that all countries choose 

their mitigation and adaptation levels simultaneously. As shown by Bayramoglu et al. (2018), this is 

equivalent to all countries choosing first their mitigation levels and then all countries choosing their 

adaptation levels.  

Under the ST-scenario, we assume that signatories simultaneously choose first their two economic 

strategies as leaders and then non-signatories do the same as followers. This is equivalent to any 

alternative sequence as long as signatories choose their mitigation levels first and each group does 

not choose adaptation before mitigation.7  

In Table 1, we list the first order conditions in an interior equilibrium in the two alternative scenarios. 

(Second order conditions are provided in Appendix 1.) Consider first the NC-scenario. Signatories 

internalize the externality among its p  members whereas non-signatories just maximize their own 

payoff. Hence, (3.a) and (3.b) imply 
( ) ( )

*
*m S

m NS

C m
C m

p
=  and therefore * *

S NSm m>  due to the strict 

convexity of the mitigation cost function, where an asterisk indicates equilibrium values. According 

to (4), signatories and non-signatories will choose the same adaptation level in equilibrium, i.e., 

* * *
i S NSa a a= = , as adaptation is a private good. Hence, * *( ) ( )S NSW p W p<  for any p , 1 p n< <  (as all 

players have the same benefits and adaptation costs, but signatories have higher mitigation costs than 

non-signatories). Moreover, note that equilibrium adaptation only depends on total mitigation, i.e., 

*( )ia M , which is evident from (4). 

Table 1 about here 

                                                 
7  If adaptation was chosen before mitigation, the strategic role of adaptation would change and would 

lead to different outcomes (see Breton and Sbragia 2019, Eisenack & Kähler 2016 and Zehaie 2009) . 
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Let us now consider the ST-scenario. First, compared to the NC-scenario, it is evident from Table 1 

that only the first order conditions of signatories regarding mitigation have changed. Second, again, 

* * *
i S NSa a a= =  and *( )ia M . Third, we notice that the Stackelberg leaders choose their economic 

strategies such as to find the point on the followers’ reaction function associated with the highest 

possible welfare for the leaders. That is, signatories as leaders take into consideration how non-

signatories will react. Fourth, if we let ( )NS NS jm r M −=  be the best-response of a non-signatory j , 

given the mitigation level of all other players except player j , jM − , and using the symmetry 

assumption, which implies that all non-signatories de facto behave the same, we can define an 

aggregate best-response function of all non-signatories ( )NS NS SM R M=  with NSM  being the 

aggregate mitigation level of all non-signatories and SM  the aggregate mitigation level of all 

signatories. (Hence, S NSM M M= + .) Accordingly, ' ( )NS jr M −  and ' ( )NS SR M  are the respective slopes 

of these best-response or reaction functions. Similarly, we can derive the slopes of individual and 

aggregate best-response functions of signatories, ' ( )S ir M −  and ' ( )S NSR M , with iM −  the total 

mitigation of all players except signatory i . See Bayramoglu et al. (2018), Proposition 2. 

( ) ( )
'
S i P

mm S

pr M
C m p

Ψ
Ψ− ∈

⋅
=

− ⋅
,   ( ) ( )

2

2
'
S NS

mm S

pR M
C m p

Ψ
Ψ

⋅
=

− ⋅
,    (7) 

( ) ( )
'
NS j P

mm NS

r M
C m

Ψ
Ψ− ∉ =
−

   ( ) ( )
( ) ( )

'
NS S

mm NS

n p
R M

C m n p
Ψ

Ψ
− ⋅

=
− − ⋅

     (8) 

with ( )2
aM

MM
aa aa

B
B

D B
Ψ = +

−
. 

In the mitigation-adaptation space, a country’s reaction function is given by ( )ia h M= , with the 

associated slope given by  
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( )' i aM

aa aa

a Bh M
M D B
∂

= =
∂ −

.                  (9) 

In mitigation space, reaction functions are downward sloping if 0Ψ <  and are upward sloping if 

0Ψ >  (because the denominator of these slopes is positive if the second order conditions for a 

maximum hold, see Appendix 1). In mitigation-adaptation space, reaction functions are downward 

sloping if 0aMB <  and upward sloping if 0aMB > .8 

Hence, reaction functions in mitigation space do not have to be downward sloping (as this would be 

the case in a game without adaptation) but can be upward sloping if adaptation is available as an 

additional strategy to mitigation. Thus, the leakage effect in terms of mitigation, due to mitigation 

levels in different countries being strategic substitutes, may turn into an anti-leakage effect such that 

mitigation levels become strategic complements. The latter possibility arises if 0Ψ > . An extensive 

discussion of this possibility is provided in the next two subsections. Important at this stage is to note 

that all our subsequent results only depend on the sign of Ψ , i.e., whether reaction functions in 

mitigation space are downward ( 0Ψ < ) or upward ( 0Ψ > ) sloping, but do not depend on whether 

mitigation and adaptation are substitutes or complements (i.e., the sign of ' ( )h M  does not matter). 

With reference to Table 1, under the ST-scenario, comparing the first order conditions of signatories 

and non-signatories with respect to mitigation ((5.a) and (5.b)), we have 
( )

( ) ( )
*

*
'1

m S
m NS

NS

C m
C m

p R
=

⋅ +
. 

Hence, if ' 0NSR > , we conclude * *( ) ( )S NSm p m p> , given the convexity of the mitigation cost function 

and, because equilibrium adaptation levels of signatories and non-signatories are the same, 

* *( ) ( )S NSW p W p<  for any p , 1 p n< < , follows. In contrast, if ' 0NSR < , * *( ) ( )S NSm p m p<  and, hence, 

                                                 
8  We rule out the uninteresting and special case of 0Ψ =  and 0MaB = . 
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* *( ) ( )S NSW p W p>  is possible if p  is small and/or if reaction functions are steep. For larger p  and/or 

flat reaction functions, the reverse may hold: * *( ) ( )S NSm p m p>  and * *( ) ( )S NSW p W p< . 

2.4 Technical Aspects of the Slopes of the Reaction Functions in Mitigation Space and 

Mitigation-Adaptation Space 

If ( )2

0aM
MM

aa aa

B
B

D B
Ψ = + <

−
 reaction functions in mitigation space are downward sloping and if 

( )2

0aM
MM

aa aa

B
B

D B
Ψ = + >

−
 they are upward sloping. We call 0MMB <  the “direct effect” and 

( )2

0aM

aa aa

B
D B

>
−

 the “indirect effect”, where the latter effect could also be called the “cross effect”. The 

indirect effect is always positive because 0aa aaD B− >  from our general assumptions and the sign of 

aMB  does not matter because it is squared.9 In a game without adaptation, the indirect effect does not 

exist and because 0MMB <  from our General Assumptions, 0Ψ <  always holds. In a game with 

adaptation, 0Ψ >  is possible if ( )2
aM

MM
aa aa

B
B

D B
<

−
. That is, “direct effect” must be smaller than the 

“indirect effect”. In the terminology of Ebert and Welsch (2012, p.54), the indirect effect is the 

“adaptation capacity” of a country, with a high capacity favouring large values of Ψ . Apart from a 

strong interaction of mitigation and adaptation on the benefit side (i.e., large absolute values of       

                                                 

9  The indirect effect can be broken down such that 
( )2

0aM i
aM

aa aa

B aB
D B M

∂
= ⋅ >

− ∂
. The indirect effect is always 

positive because aMB  and ' ( ) iah M
M
∂

=
∂

 have always the same sign), namely either 0aMB <  and 0ia
M
∂

<
∂

 

if mitigation and adaptation are substitutes, as commonly believed, or 0aMB >  and 0ia
M
∂

>
∂

 if mitigation 

and adaptation are complements, which is normally seen as an unrealistic assumption (see subsection 
2.5). Therefore, for the sign of the slopes of the reaction functions in mitigation space, the sign of aMB  

and ia
M
∂
∂

 does not matter. Only the absolute value of the indirect effect matters and for 0Ψ > , this 

indirect must be sufficiently strong compared to the direct effect. See Appendix 1 for further explanations. 
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aMB ), a large adaptation capacity is favoured by small values of .aa aaD B−  Small values of aaD  imply 

a flat marginal adaptation cost function and small values of aaB  imply a “small extent by which the 

effectiveness of adaptation diminishes”.  

In order to understand the technical role of Ψ  better, we adopt the concept of “minimized total costs” 

of Rubio (2018) for our purposes, which we call “optimally adapted net benefits”, which are given 

by ( , ( )) ( ( ))i i i iB M a M D a M− . That is, we consider that equilibrium adaptation is a function of total 

mitigation in the benefit function, correcting for the cost of adaptation. Differentiating the optimally 

adapted net benefit function with respect to mitigation M  twice, gives Ψ . Hence, the optimally 

adapted net benefit function is concave if 0Ψ <  and convex if 0Ψ > . However, as we show in 

Appendix 1, even if 0Ψ > , the optimization problem of the entire payoff function is still concave if 

the second order condition for a maximum hold. For instance, for 1p = , the second order condition 

is given by ( ) 0mm iC mΨ − < . Thus, if 0Ψ > , we need ( )mm iC mΨ <  for this condition to be 

satisfied.10, 11 

In order to illustrate the relation between mitigation and adaptation, let all mitigation cost functions 

be multiplied by a cost parameter c  such that costs are given by ( )ic C m⋅ . Then from the first order 

conditions for mitigation, it is clear that 
*

0im
c

∂ <∂  for all players and, hence, 
*

0.M
c

∂ <∂  This drop 

in total mitigation will transmit into a change of equilibrium adaptation through ' ( ) iah M
M
∂

=
∂

, which 

implies that equilibrium adaptation will increase if mitigation and adaptation are substitutes and will 

decrease if they are complements. Thus, for upward sloping reaction functions in mitigation space, 

                                                 
10  Non-convexity of damages in the context of multiple externalities has already been treated for instance 

in Baumol and Bradford (1972) and Starrett (1972). 
11  Further technical aspects are discussed in Appendix 1. 
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we either need a large rate of substitution or a large rate of complementarity between mitigation and 

adaptation.  

Finally, let us ask the questions whether there could be any reason why mitigation and adaptation are 

complements, despite we adhere to the standard assumption of 0aMB < . Clearly, in our model, 

0aMB <  implies ' ( ) 0iah M
M
∂

= <
∂

. In Ingham et al. (2013) this is confirmed for most model versions 

which the authors consider. Nevertheless, they point to one exception, namely if adaptation costs 

depend on the level of mitigation in a particular form. Let ( , )D a M . Then it is straightforward to 

show that ( )' i aM aM

aa aa

a B Dh M
M D B
∂ −

= =
∂ −

. Now if 0aMB < , ( )' 0h M >  requires 0aMD <  and 

aM aMB D< . That is, mitigation reduces the marginal cost of adaptation and the cross effect on the 

cost function is larger than on the benefit function. The argument for 0aMD <  could be that by 

reducing emissions, the production capacity of adaptation is enhanced. Even if one buys into this 

argument, it is likely that this does not hold for all levels of emissions, but only for very high levels 

of emissions above some threshold. That is, in our context, 0aMD <  may hold for low levels of M  

but not for higher levels of M . Moreover, one may argue that if input markets are not perfectly 

competitive, then 0aMD >  (as well as 0maC > ) is a more reasonable assumption.  

2.5 Empirical Aspects of the Slopes of the Reaction Functions in Mitigation and Mitigation-

Adaptation Space  

Empirical evidence about the slope of reaction functions in mitigation space is difficult to obtain. One 

could be inclined to look for empirical estimates from climate models, Computable General 

Equilibrium models (CGE) or Integrated Assessment Models (IAM). However, these models 

typically do not capture the strategic interaction between regions in a game-theoretic sense and even 

if they do, to the best of our knowledge, we have not found estimates about the slopes of the reaction 
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functions. Moreover, the estimation of leakage effects as a proxy is also not very useful as simulations 

typically assume only a unilateral policy intervention.  

There are quite some papers which econometrically test for the strategic interaction between countries 

or regions for different environmental problems (e.g., Fredriksson and Millimet 2002a, b, Grubb et 

al. 2002, Murdoch et al. 1997 and Perkin and Neumayer 2008, 2009; see Brueckner 2003 for an 

overview) of which some find a positive correlation between environmental standards in different 

countries/regions. Of course, not all of those studies are related to climate change and, even more 

important, adaptation does not play a role. Positive correlations in those papers are mainly driven by 

political and technological spillovers as well as trade. Political spillovers put pressure on neighboring 

political institutions to follow suit; technological spillovers reduce abatement costs in other regions 

and, hence, encourage the implementation of higher environmental standards; imports of advanced 

technology improve environmental standards as a by-product, in particular, in developing countries.  

From an extensive screening of the literature about the relation between mitigation and adaptation, 

we have found only one instance, namely Yohe and Strzepek (2007), who claim to have found a 

complementary relationship for flood prevention measures along the Brahmaputra and Ganges rivers 

in India. The argument seems to be along the lines which we have presented in subsection 2.4: 

adaptation increases the productivity of mitigation and vice versa. However, we need to point out that 

the bulk of the empirical literature on adaptation only focuses on the benefits and costs of adaptation, 

point to the fact that mitigation will not be sufficient to address the climate change problem, but do 

not investigate the rate of substitution or complementarity between mitigation and adaptation. 

3. General Results 

In the following analysis, we focus on comparing the size and success of stable agreements under the 

NC- and ST-scenario. In this section, we derive some results based on the general payoff function 

(1). The derivation of equilibrium coalition sizes is dealt with in section 4, as this requires the 
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assumption of a specific payoff function. Only finally, when it comes to the evaluation of the efficacy 

of stable coalitions, do we need to resort to simulations on which we report in section 5. 

3.1 Definitions 

In order to explain differences between the NC- and ST-scenario, it will be helpful to consider some 

general properties of the coalition formation game.  

Definition 1: Positive Externality, Positive Internalisation, Superadditivity and Cohesiveness 

Let 2n p≥ ≥ . 

i) PEP: The expansion of coalition 1p −  to p  exhibits a positive (negative) externality to 

non-signatories if: 

( ) ( ) ( )* * 1NS NSW p W p> < − . 

If this holds for all p , 2n p≥ ≥ , the game is a positive (negative) externality game. 

ii) PIP: The expansion of coalition 1p −  to p  exhibits a positive (negative) internalisation 

to signatories if: 

( ) ( ) ( )* * 1S SW p W p> < − . 

If this holds for all p , 2n p≥ ≥ , the game is a positive (negative) internalisation game. 

iii) SAD: The expansion of coalition 1p −  to p  is superadditive if: 

( ) [ ] ( ) ( )* * *1 1 1S S NSp W p p W p W p⋅ > − ⋅ − + − . 

If this holds for all p , 2n p≥ ≥ , the game is superadditive. 

iv) WCOH: The expansion of coalition 1p −  to p  is welfare cohesive if: 

( ) [ ] ( ) [ ] ( ) [ ] ( )* * * *1 1 1 1S NS S NSp W p n p W p p W p n p W p⋅ + − ⋅ > − ⋅ − + − + ⋅ −  

If this holds for all p , 2n p≥ ≥ , the game is welfare cohesive. 

v) MCOH: The expansion of coalition 1p −  to p  is mitigation cohesive if: 

( ) [ ] ( ) [ ] ( ) [ ] ( )* * * *1 1 1 1S NS S NSp M p n p M p p M p n p M p⋅ + − ⋅ > − ⋅ − + − + ⋅ −  
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If this holds for all p , 2n p≥ ≥ , the game is mitigation cohesive. 

The first three properties may be viewed as positive properties in that they help to explain whether 

stable coalitions will be small or large. A positive externality makes it attractive to stay outside a 

coalition whereas for a negative externality just the opposite holds. Positive internalisation and 

superadditivity may be viewed as necessary conditions to make joining a coalition attractive. In a 

superadditive and negative externality game, the grand coalition is the unique stable agreement 

(Weikard 2009). Thus, cooperation does not pose a problem. In contrast, in positive externality 

games, stable coalitions are typically small. This is evident if the properties positive internalisation 

and superadditivity fail, but even if they hold, the positive externality effect to outsiders may be 

stronger than the positive externality effect to insiders via positive internalisation and superadditivity, 

such that only small coalitions are stable.12 

The fourth and the fifth property can be viewed as normative properties. Clearly, in the grand 

coalition, total welfare and total mitigation levels are strictly higher than in any other coalition, which 

is true in any externality game. However, it may not always be true that these levels increase with 

every enlargement of a coalition, irrespective of its size, as we will illustrate and explain in more 

detail below. Note that a sufficient condition for welfare cohesiveness is superadditivity and positive 

externalities. 

3.2 Propositions 

Our first result is summarized in Proposition 1 below.  

                                                 
12  Note that whenever we have ( ) ( )S NSm p m p>  (which is always the case in the NC-scenario and in the 

ST-scenario if 0Ψ > ; see subsection 2.3), positive internalisation and superadditivity when moving from 
1p −  to p  are necessary, though not sufficient, properties for internal stability of a coalition of size .p

See the proof in Bayramoglu et al. (2018), Appendix A.2. 
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Proposition 1: Comparison of the NC- and ST-Scenario, Mitigation, Payoffs and Stable 
Coalitions  

Consider a generic coalition of size p .  

a) Suppose 0Ψ < . Hence, reaction functions are downward sloping in mitigation space. Then the 

following relations hold: 

• ( ) ( )* *NC STM p M p> , ( ) ( )* *NC ST
S Sm p m p>  and ( ) ( )* *NC ST

NS NSm p m p<  ,1p p n∀ < < ; 

• ( ) ( )* *NC ST
S SW p W p<  and ( ) ( )* *NC ST

NS NSW p W p>  ,1p p n∀ < < ; 

• * *ST NCp p≥  ,1p p n∀ ≤ ≤ , with * 2STp ≥ . 

b) Suppose 0Ψ > . Hence, reaction functions are upward sloping in mitigation space. Then the 

following relations hold: 

• ( ) ( )* *NC STM p M p< , ( ) ( )* *NC ST
S Sm p m p<  and ( ) ( )* *NC ST

NS NSm p m p<  , 1p p n∀ < < ; 

• ( ) ( )* *NC ST
S SW p W p< , ( ) ( )* *NC ST

NS NSW p W p<  and ( ) ( )* *NC STW p W p<  , 1p p n∀ < < ; 

• ( ) ( ) ( ) ( )* * * *ST NC ST NC
S S NS NSm p m p m p m p− > − , implying 

( ) ( ) ( ) ( )* * * *ST NC ST NC
S S NS NSW p W p W p W p− < −  , 1p p n∀ < < ; 

• * 2NCp ≥  and * 2STp ≥ . 

Proof: See Appendix A.2. 

If 0Ψ <  (Proposition 1a), which would always be true in a pure mitigation game without adaptation, 

reaction functions in mitigation space are downward sloping. Consequently, signatories, having a 

strategic advantage (i.e., a first mover advantage) under the ST-scenario, will lower their mitigation 

levels compared to the NC-scenario, knowing that non-signatories will partly make up for this by 

mitigating more. Overall, total mitigation will be lower under the ST- than under the NC-scenario for 

any generic coalition of size p , 1n p> > . The Stackelberg leader will be better off and the reverse 

is true for the follower compared to the NC-scenario. It is for this reason that stable coalitions under 

the ST-scenario will be at least as large as under the NC-scenario. This result is known in the literature 

since Barrett (1994), though it has only been derived from simulations in the pure mitigation game. 

We provide a general proof, including the generalization to a mitigation-adaptation game. 
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It is evident from Proposition 1a why it is not possible to draw any general conclusion about total 

mitigation levels and global welfare for stable coalitions under the two scenarios. In terms of global 

welfare, we do not know whether ( ) ( )* *NC NC ST STW p W p>  or whether the reverse is true for a given 

p , as signatories are better off but non-signatories worse off under the ST- than under the NC-

scenario. Hence, we also do not know generally whether for stable coalitions 

( ) ( )* * * *NC NC ST STW p W p<  or whether the opposite is true in equilibrium. In terms of global 

mitigation, we know that ( ) ( )* *NC STM p M p>  but * *NC STp p≤  and, hence, generally, 

( ) ( )* * * *,NC NC ST STM p M p< > . 

If 0Ψ >  (Proposition 1b), reaction functions in mitigation space are upward sloping, which is only 

possible in a game which includes adaptation as a strategy to address climate change. Both, 

signatories and non-signatories, increase their mitigation levels under the ST- compared to the NC-

scenario in such a matching game. This also translates into a Pareto-improvement to all countries and 

therefore in higher total welfare. However, compared to the NC-scenario, non-signatories gain more 

than signatories, i.e., there is a second mover advantage.13 The reason is that signatories increase their 

mitigation levels more than non-signatories and therefore carry higher additional mitigation costs. 

Hence, one could be inclined to conclude that the size of stable coalitions is generally weakly smaller 

under the ST- than NC-scenario.14 However, we have not been able to prove this at a general level, 

even though this is confirmed for the specific payoff function which we consider in section 4. Finally, 

even if we had always * *NC STp p> , and know that ( ) ( )* *NC STM p M p<  as well as 

                                                 
13  This is in line with the literature on Stackelberg games with symmetric players (though usually confined 

to two players). There is a first (second) mover advantage in the presence of downward (upward) sloping 
reaction functions (Endres 1992 and Gal-Or 1985). 

14  We would like to thank an anonymous reviewer for pointing out this potential pitfall. The analysis in 
Appendix A.5 underlines why general conclusions are not straightforward. 
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( ) ( )* *NC STW p W p<  from Proposition 1b, nothing could be concluded about total mitigation and 

welfare for stable coalitions. This would only be possible for * *NC STp p<  for which, however, we do 

not find evidence. 

In order to understand the driving forces in the coalition game and to rationalize equilibrium coalition 

sizes as well as differences between the two scenarios, we consider some general properties in 

Proposition 2 below (see Definition 1 above). These will be particularly helpful in explaining our 

more specific results in section 4. 

Proposition 2: Properties under the NC- and ST-scenario  

Consider the general payoff function (1) and assume the General Assumptions to hold. Further 

assume the sufficient conditions for the existence of a unique interior equilibrium in the second stage 

to hold, as stated in Appendix 1. Then the following conclusion can be drawn: 

Properties 
0Ψ <  0Ψ >  

NC-scenario ST-scenario NC-scenario ST-scenario 

PEP ✓ fails when MCOH fails ✓ ✓ 

PIP may fail for small p 
may fail for small p; 

holds if 
* *( ) ( )S NSm p m p>  

✓ ✓ 

SAD may fail for small p ✓ ✓ ✓ 
WCOH may fail for small p may fail for small p ✓ ✓ 

* *( ) ( 1)NS NSm p m p− −  - - if MCOH holds; + 
possible if MCOH fails + + 

* *( ) ( 1)S Sm p m p− −  - possible for large 
p - possible for large p + + 

MCOH ✓ may fail for small p ✓ ✓ 
Properties as defined in Definition 1; ✓ = property holds for all expansion 1p −  to p , 2 p n≤ ≤ , except for 
PEP for which 2 1p n≤ ≤ − . 

Proof: See Appendix A.3. 

Under the NC-scenario, the game is a positive externality game. Total mitigation increases steadily 

with an expansion of the coalition from which also non-signatories benefit due to the non-
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exclusiveness of the public good.15 Non-signatories reduce their contribution to this public good if 

reaction functions are downward sloping (and therefore have not only higher benefits but also lower 

mitigation costs). However, even if 0Ψ > , non-signatories contribute less than proportionally to the 

total increase in total mitigation (see Proposition 1) and, hence, also enjoy a positive externality from 

the expansion of the coalition. Therefore, with positive externalities, there is an incentive to remain a 

non-signatory. 

Moreover, under the NC-scenario, if 0Ψ < , it is also evident that positive internalisation and 

superadditivity may fail due to the leakage effect, which is also an obstacle to form large stable 

coalitions. In particular if p  is small, there are many non-signatories countervailing the efforts of the 

few signatories. Together, this explains why only small coalitions are stable if reaction functions are 

downward sloping in mitigation space. This will be confirmed for our specific payoff function 

considered in section 4. In contrast, if reaction functions are upward sloping in mitigation space, 

positive internalisation and superadditivity always hold, as the game has turned into a matching game 

with anti-leakage. This allows to form larger stable coalitions, including the grand coalition if 0,Ψ >  

as confirmed for our specific payoff function in section 4. It is also evident that if the leakage effect 

is present (i.e., 0Ψ < ), welfare cohesiveness may fail (as a result of a failure of superadditivity).  

Under the ST-scenario, the negative conclusion about the size of stable coalitions if reaction functions 

are downward sloping (i.e., 0Ψ < ) is just reversed. Roughly speaking, and as our simulations will 

confirm in section 5, the steeper the reaction function, the larger is the strategic advantage of the 

                                                 
15  The reader may be puzzled how * / 0M p∂ ∂ >  can hold if * / 0NSm p∂ ∂ <  holds and * / 0Sm p∂ ∂ <  is 

possible, where we treat p  as a continuous variable without loss of generality. However, in Appendix 

A.3, we show 
* ( ) 0SM p

p
∂ >∂ , 

* ( ) 0NSM p
p

∂ <∂  but 
* *( ) ( )S NSM p M p

p p
∂ ∂>∂ ∂  if 0Ψ < . Intuitively, 

even if an “old” signatory at 1p −  may not increase its mitigation level at p , the “old” non-signatory at 
1p −  which is a “new” signatory at p  increases its mitigation level and, hence, signatories as an entire 

group increase their mitigation level and this increase is larger than the decrease of total mitigation of 
non-signatories.  
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leader over the follower and, hence, the larger will be stable coalitions. Moreover, superadditivity 

always holds, and, at least for not too large coalitions, the enlargement of coalitions may not be 

associated with positive but with negative externalities, making it attractive for non-signatories to 

join the coalition. The fact that larger coalitions may not necessarily lead to substantially better 

outcomes, as will be confirmed in section 5, is already apparent by the fact that welfare and mitigation 

cohesiveness does not generally hold if 0.Ψ < 16 In other words, larger stable coalitions under 

Stackelberg leadership come at a price. 

For 0Ψ > , under the ST-scenario all properties hold. In fact, at this level of generality, all properties 

are the same than under the NC-scenario, from which we may conjecture that stable coalitions are of 

similar size. Section 4 will confirm this for our specific payoff function.  

4. Stable Coalitions for a Specific Payoff Function 

4.1 Preliminaries 

It is well-known from the literature on IEAs that sharp predictions about first stage equilibria (i.e., 

the size of stable agreements) are only possible for specific payoff functions. Different from the main 

body of the literature, we are able to provide analytical results. In line with the literature on IEAs and 

following Bayramoglu et al. (2018), we consider a payoff function with quadratic benefit and cost 

functions: 

 ( )2 2 2

2 2 2i i i i
g c dw bM M a fM m aβ = − + − − − 

 
 such that 0aMB <   (10.a) 

and  

 ( )2 2 2

2 2 2i i i i
g c dw bM M a fM m aβ = − + + − − 

 
 such that 0aMB >  (10.b) 

                                                 
16  Welfare cohesiveness fails whenever the superadditivity effect is dominated by the negative externality 

effect. Mitigation cohesiveness may fail as the Stackelberg leaders use their strategic advantage to reduce 
their contribution to the public good, which may not be compensated by the followers’ additional 
mitigation effort. 
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assuming that all parameters b , g , c  β , f , and d  are strictly positive. If we were to set 0g = , we 

could retrieve the linear-quadratic payoff function, also frequently considered in the literature on 

IEAs. For expositional clarity, we ignore this case. It is also clear that by setting 0ia = , we could 

retrieve the pure mitigation game. Due to space limitations, we provide all details about equilibrium 

mitigation and adaptation levels under the NC- and ST-scenario and the conditions that we impose 

on the parameters, such that the sufficient conditions for existence and uniqueness of interior 

equilibria are satisfied, in Appendix A.4. 

Note that (10a) and (10b) only differ in one sign, which does not make any difference for the size of 

stable coalitions. In other words, for all results derived in this section, one can work with (10.a) and 

if the case of 0aMB >  shall be considered, then parameter f  is set to f− . As the discussion here 

and in Appendix A.4 will confirm, the sign of f  does not matter, as it always appears in the form 

xf , with 2, 4, 6, ....x = , i.e., even numbers, in all relevant equations. Hence, all results are the same, 

regardless whether we assume 0aMB <  or 0aMB > . 

For payoff function (10.a) and (10.b), 
2f g d

d
Ψ − ⋅

= , which is negative if 2 0f g d− ⋅ <  and positive 

if 2 0f g d− ⋅ > , but the sign of parameter f  does not matter. Accordingly, the slopes of the 

aggregate reaction function of non-signatories, 
( )

( )
2

'
2

( )

( )NS

n p f g d
R

c d n p f g d

− − ⋅
=

⋅ − − − ⋅
 and signatories, 

( )
( )

2 2
'

2 2S

p f g d
R

c d p f g d

− ⋅
=

⋅ − − ⋅
, are negative if 0Ψ <  and positive if 0Ψ > , as the denominators of these 

slopes are always positive due the sufficient condition for a unique interior equilibrium, which for 

payoff functions (10a) and (10b) is also a necessary condition and is given by 

( )2 2 0.c d n f g d⋅ − − ⋅ >  Further details are provided in Appendix A.4.  
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Proposition 3: Stable Coalitions for Specific Welfare Functions 

Consider payoff function (10.a) and (10.b) and assume the conditions imposed on the parameters in 

Appendix A.4 to hold. 

The size of stable coalitions *p  under the NC- and ST-scenario are as follows: 

Let 0Ψ < . 

Under the NC-scenario, [ ]* 1, 2NCp ∈  and under the ST-scenario [ ]* 2,STp n∈ . Thus, 
* *NC STp p≤ . 

Let 0Ψ >  and 7n ≥ . 

a) Under the NC- and ST-scenario, * 3p =  is always a stable equilibrium. 

b) If Ψ Ψ≥ , then *p n=  is a second equilibrium where NC STΨ Ψ< . That is, upward sloping 
reaction functions in mitigation space must be sufficiently steep such that the grand 
coalition is stable. 

c) There are no other equilibria than * 3p =  and *p n= . If *p n=  exists, it Pareto-dominates 
* 3p = . 

d) Thus, * *NC STp p≥ . 

Proof: See Appendix A.5. 

It is evident that for downward sloping reaction functions in mitigation space, under the ST-scenario, 

even the grand coalition could form. In contrast, under the NC-scenario, only small coalitions are 

stable. As we will see in the next subsection, the steeper reaction functions in mitigation space are, 

the larger will be stable coalitions in the ST-scenario. The steeper the reaction function, the larger is 

the strategic advantage of signatories, and the larger the strategic loss of non-signatories compared to 

the NC-scenario.  

For upward sloping reaction functions in mitigation space, things are more complicated. First note 

that the upper bound of Ψ  ( 2
c

nΨ = ) follows for payoff function (10a) and (10b) from the 

conditions for the existence of a unique interior equilibrium, which are identical to the second order 

conditions in the grand coalition (see Appendix A.1 and A.4). Since the slopes of the reaction 
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functions in mitigation space increase in Ψ , this imposes an upper bound on the maximum value of 

those slopes. Second, in the entire permissible range of Ψ  a coalition of size 3p =  is stable. Third, 

if Ψ  is larger than some threshold (Ψ Ψ≥ ), which implies that the slopes of the reaction functions 

in mitigation are sufficiently large, also the grand coalition is stable. Fourth, this lower bound is larger 

under the ST- than under the NC-scenario. Consequently, there is a range of Ψ , [ , )NC STΨ Ψ Ψ∈ , 

such that * *NC STp n p= > , which specifically means * * 3NC STp n p= > =  if 7n ≥ . Fifth, if the grand 

coalition is stable, it Pareto-dominates * 3.p = 17  

The intuition why the grand coalition can be stable if reaction functions in mitigation space are 

upward sloping ( 0Ψ > ) and sufficiently steep (large values of Ψ ), can be related to two 

characteristics. First, according to Proposition 2, we know that for 0Ψ >  the properties 

superadditivity and positive internalization hold for any expansion of coalitions under both scenarios. 

As we explained above, both properties provide an incentive for countries to join a coalition. Second, 

normally, stable coalitions are small because if they are sufficiently large, leaving the coalition is 

attractive: leaving decreases (concave) benefits only marginally but implies a substantial drop in 

(convex) mitigation costs. We know from section 2.4 that for 0Ψ >  the optimally adapted net benefit 

function is convex. Particular for larger values of Ψ  and/or large membership, this function is very 

steep. Hence, leaving a coalition at p n=  implies a large drop of convex optimally adapted net 

benefits, which may exceed the large drop of mitigation costs. Thus, leaving does not pay.  

5. The Paradox of Cooperation 

In this section, we want to analyse the “paradox of cooperation”. For this, we need to evaluate stable 

coalitions in welfare terms. We consider two indices in our simulations. We recall that no-cooperation 

                                                 
17  Bayramoglu et al. (2018) show that for welfare function (10.a) and (10.b) in the NC-scenario and 0Ψ >  

[ ]* 3,NCp n∈ . We find that if 7n ≥  (as also assumed in our simulations), this leads to { }* 3, .NCp n=  See 
Appendix A.5. 
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with 1p =  corresponds to the classical Nash equilibrium without coalition formation and full 

cooperation with p n=  corresponds to the social optimum. We denote total welfare by W , 

1

n

i
i

W w
=

=∑ , and use superscripts to refer to the social optimum, SO, Nash equilibrium, NE, and stable 

coalitions in the NC- and ST-scenario, respectively. 

Definition 2: Importance of Cooperation and Improvement upon No Cooperation 

- The Importance of Cooperation Index (ICI) measures the percentage global welfare 

improvement from moving from no-cooperation (NE) to the social optimum (SO): 

100
SO NE

NE

W WICI
W
−

= ⋅  

- The Improvement upon the No Cooperation Index (INI) measures the percentage global 

welfare improvement obtained in a stable equilibrium under the NC- and ST-scenario, 

respectively: 

( )* *

100
NC NC NE

NC
NE

W p W
INI

W
−

= ⋅ , 

( )* *

100
ST ST NE

ST
NE

W p W
INI

W
−

= ⋅ . 

All indices are relative measures, as absolute values are meaningless without any benchmark. Index 

ICI measures the potential gains from cooperation or what Barrett (1994) called the “need for 

cooperation”. Index INI measures the performance of stable coalitions. The paradox of cooperation 

comes in two versions. First, the ICI is small, and, hence, also the INI must be small, even though 

stable coalitions may be large. Second, the ICI may be large, but the INI is small because only small 

coalitions are stable. Hence, the “anti-paradox” would relate to large ICI and INI. That is, the potential 

gains from cooperation are large and these gains are reaped because large coalitions are stable. 



25 
 

Generally, and as our simulations will confirm, focusing only on the size of stable coalitions *p  may 

be misleading; also, the efficacy of cooperation needs to be evaluated. 

We have conducted extensive simulations. The underlying simulation strategy is described in 

Appendix A.6. Those simulations are grouped into 0Ψ <  and 0Ψ >  of which Tables 2 and 3 show 

representative examples in that they capture all interesting features relevant for our discussion. 

Appendix A.6 explains further sensitivity analyses and refers to an Online Appendix where these 

additional results are available. Without any exception, all qualitative features displayed in Tables 2 

and 3 are confirmed by our sensitivity analyses. In the tables, the most important columns are the one 

displaying the slope of the individual reaction function of non-signatories, '
NSr , the size of stable 

coalitions, *p , and the indexes ICI and INI, indicating the potential and actual gains from cooperation 

respectively. The other columns report about properties which have been discussed in previous 

sections.  

Table 2, with 0Ψ < , confirms that for the ST-scenario, the steeper reaction functions in mitigation 

space are, the larger are stable coalitions. We recall that the sign of aMB  does not matter for this result. 

For the ST-scenario, large coalitions (including the grand coalition) may be stable, but the ICI and, 

hence, also the INI are small. Conversely, if the ICI is large, only small coalitions are stable and, 

hence, the INI is small. Importantly, this paradox of cooperation also holds for the NC-scenario 

because stable coalitions are always small, even if 0aMB >  (instead of 0aMB < ) would be assumed. 

It is also evident that the ST-scenario only improves upon the NC-scenario by a margin if at all. 

Table 3, with 0Ψ > , also confirms the paradox of cooperation for 0aMB < . If the ICI is large, we 

have only * 3p =  and if the ICI is small, we have * 3p =  or *p n= , with 100n = , but, of course, 
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then also the INI is small, even for *p n= .18 Table 3 also confirms * *NC STp p≥ , as stated in 

Proposition 3. The only case in which the paradox is not confirmed is if *p n=  and 0aMB > . We 

interpret this as underlining the robustness of our conclusions because, as discussed in subsection 2.5, 

0aMB >  is not very likely. 

Taken together, the paradox of cooperation also holds true if adaptation is added to mitigation as a 

strategy to address climate change in a coalition formation game, regardless whether Stackelberg 

leadership of signatories is assumed. Even in those cases where large coalitions, including the grand 

coalition, are stable, stable coalitions improve only marginally upon no cooperation. This evaluation 

is missing in Bayramoglu et al. (2018). In other words, adaptation is not solving the paradox of 

cooperation. 

6. Summary and Conclusion 

In this paper, we considered the standard two-stage coalition formation game with symmetric players. 

We explored a mitigation-adaptation game under a Nash-Cournot scenario (NC-scenario) and a 

Stackelberg scenario (ST-scenario). In the first stage of the game, players choose whether to sign an 

agreement and be part of a climate coalition or to remain outside as a singleton. In the second stage, 

signatories choose their economic strategies (mitigation and adaptation) by maximizing their 

aggregate welfare, while non-signatories maximize their individual welfare. The sequence of these 

decisions differed between the NC- and the ST-scenario. 

Our analysis combined features of two contributions. The first contribution by Barrett (1994), 

Diamantoudi and Sartzetakis (2006) and Rubio and Ulph (2006) who studied the effect of ST-scenario 

on the size of stable agreements in a pure mitigation (or emission) game; though in the absence of 

                                                 
18  Whenever * * 3NC STp p= = , we should have NC STINI INI<  according to Proposition 1b, but the 

differences are so small in our simulations that they hardly show up in Table 3, with values rounded to 2 
digits. For * * 3NC STp n p= > = , the NCINI  is also only marginally larger than the STINI  because the value 
of ICI  is generally small. 
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adaptation. The second contribution by Bayramoglu et al. (2018) who studied the effect of adding 

adaptation to a mitigation coalition game under the NC-scenario.  

We complemented these studies by considering Stackelberg leadership in a mitigation-adaptation 

game, which we viewed as a generalization of the pure mitigation game. This allowed us to address 

two research questions. 1) Does the ST-scenario improve over the NC-scenario? 2) Does the paradox 

of cooperation as established by Barrett (1994) and later reiterated by many others also hold if 

adaptation is included in the analysis? 

We found that the ST-scenario leads to larger stable coalitions if reaction functions in mitigation 

space are downward sloping, i.e., mitigation levels in different countries are strategic substitutes. This 

happens because signatories reduce their mitigation efforts, forcing followers to mitigate more 

compared to the NC-scenario. Therefore, participation is more attractive in the ST- than in the NC-

scenario. However, we found that whenever the difference in stable coalition sizes is large between 

the two scenarios, the potential gains from cooperation are small. Hence, the ST-scenario only 

marginally improves upon the NC-scenario. In contrast, if reaction functions in mitigation space are 

upward sloping, stable coalitions may be smaller in the ST- than in the NC-scenario, but in terms of 

global welfare the difference is again marginal. If large coalitions are stable, the gains from 

cooperation are small. 

The results for the ST-scenario confirmed Barrett’s paradox of cooperation: either coalitions are small 

or, if they are large, the potential gains from cooperation are small. Hence, the paradox extends to a 

game which includes adaptation. This is also true for the NC-scenario. Even though we confirm 

Bayramoglu et al. (2018) in that large coalitions can be stable in a mitigation-adaptation game, we 

qualify their positive conclusion because large stable coalitions only emerge if the gains from 

cooperation are small. Hence, the paradox of cooperation extends to a richer coalition game, which 

includes adaptation as an additional strategy to mitigation for the widespread assumption that 

mitigation and adaptation are substitutes. 
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For future research, two obvious extensions come to mind. Firstly, we assumed that adaptation is 

either chosen simultaneously with mitigation or after mitigation. In other words, we considered 

“reactive adaptation”. However, in a dynamic game in which negotiations take place over some time 

and in which contracts are renegotiated, like for instance in Battaglini and Harstad (2016) and Harstad 

(2012), one can easily perceive that adaptation becomes “active” as considered for instance by Buob 

and Stephan (2011), Breton and Sbragia (2019) and Heuson et al. (2015). Secondly, we assumed 

symmetric players. In order to capture the current interesting discussion whether industrialized 

countries should support developing countries by providing adaptation because of their high 

vulnerability to climate change and their lack of adaptation capacity, the model would need to be 

extended to allow for asymmetry in terms of benefit and cost functions like this is considered for 

instance in Eyckmans et al. (2016), Lazkano et al. (2016) and Li and Rus (2018). However, as an 

anonymous reviewer pointed, the additional complexity would make it difficult to obtain analytical 

results. 
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Appendix 

A.1 Technical Details around the Slopes of Reaction Functions in Mitigation Space 

A.1.1 Second Order Conditions and Optimally Adapted Net Benefits 

From the first order conditions as stated in Table 1, we derive the second order conditions in the NC-

scenario: 

Non-signatories: 0MM mmB C− <  and signatories: 2 0MM mmp B C⋅ − <   

with respect to mitigation and  

Both: 0aa aaB D− <  

with respect to adaptation. These conditions always hold due to the General Assumptions, as stated 

in section 2. Moreover, noting the interaction between mitigation and adaptation, substituting 

( )i i ia m M −+  into the payoff function, differentiating twice with respect to mitigation, noticing that 

a aB D=  from the first order conditions with respect to adaptation, we derive:19 

Non-signatories: 0mmCΨ − <  and signatories: 2 0mmp CΨ⋅ − < .  

We note that these second order conditions are not automatically fulfilled if 0Ψ >  but can generally 

be satisfied. We have omitted the arguments in these functions for convenience, but notice that 

( )2
aM

MM
aa aa

B
B

D B
Ψ = +

−
 has the same value in both second order conditions because *M  and *

ia  will be 

the same for non-signatories and signatories. Moreover, if third derivatives are assumed to be zero, 

then Ψ  and mmC  are constants, with * *( ) ( )mm NS mm SC m C m= . Consequently, in this case, 

2 0mmn CΨ⋅ − <  is the most restrictive condition, which is the second order condition in the social 

optimum. 

                                                 
19  We could also derive the Hessian matrix with the same result. 
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Accordingly, differentiating the optimally adapted net benefit function ( , ( )) ( ( ))i i i iB M a M D a M−  

twice, gives .Ψ  Hence, the optimal adapted net benefit function is concave if 0Ψ <  and convex if 

0Ψ > . Clearly, even if the optimally adapted net benefit function is convex, the second order 

conditions can be satisfied. 

Finally, under the ST-scenario, everything is the same, except the second order condition of 

signatories with respect to mitigation, ( )2 '1 0NS MM mmp R B C⋅ + ⋅ − < , and those if ( )i i ia m M −+  is 

considered, ( )2 '1 0NS mmp R CΨ⋅ + ⋅ − < , where for simplicity we have made use of the assumption that 

third derivatives are zero. Now it is clear that the first inequality is automatically satisfied due the 

General Assumptions. Moreover, one can show that if 2 0mmn CΨ⋅ − <  holds, then also 

( )2 '1 0NS mmp R CΨ⋅ + ⋅ − <  holds. If ' 0NSR < , this is obvious. Hence, we assume ' 0NSR > , insert '
NSR  

from (8) in the text into ( )2 '1 NSp R⋅ + , and show that this term is an increasing and convex function 

of p , using the condition 2 0mmn CΨ⋅ − < . Thus, we insert the largest possible value for p  which is 

1p n= −  (recall if p n= , then there is no Stackelberg leadership) in ( )2 '1 NSp R⋅ +  and show that this 

is smaller than 2n . Hence, if the second order condition in the social optimum is satisfied, then also 

the second order condition of the Stackelberg leader is satisfied. 

A.1.2 Existence and Uniqueness Condition for an Interior Equilibrium in the Second Stage 

The procedure to derive sufficient conditions for the existence and uniqueness of mitigation and 

adaptation equilibria for every coalition of size p  follows Bayramoglu et al. (2018). The procedure 

is based on the concept of replacement functions. Let ( )S Sm g M=  be the individual replacement 

function of a signatory and ( )NS NSm g M=  be the replacement function of a non-signatory. The 

aggregate replacement function ( )G M  is derived by summing over all replacement functions, which 

for symmetry is 
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1 1
( ) ( ) ( ) ( ) ( ) ( )

n n

i S NS i S NS
i i

m p m n p m M G M g M p g M n p g M
= =

= ⋅ + − ⋅ = = = = ⋅ + − ⋅∑ ∑ .  

If every replacement function is downward sloping over the entire mitigation space, the aggregate 

replacement function will be downward sloping as well (which is the vertical aggregation of 

individual replacement functions) and, hence, will intersect with the 45-degree line once. In other 

words, the level of M , which satisfies the equality above is the equilibrium *M , which upon 

substitution into individual replacement functions gives *
Sm  and *

NSm . As we will see below, 

replacement functions are downward sloping (like reaction functions) if 0Ψ < . In the case of upward 

sloping replacement functions ( 0Ψ > ), a sufficient condition for uniqueness is that the aggregate 

replacement function has a slope of less than 1 over the entire domain of M  such that it intersects 

with the 45-degree line and this happens only once. Note that if replacement functions are linear, 

which is the case if all third derivatives are zero, this sufficient condition is also a necessary condition. 

Finally, as reaction functions of adaptation as a function of total mitigation are continuous and single 

valued, also equilibrium adaptation levels will be unique. Below, we derive the sufficient conditions 

in the case of the ST-scenario, which are those in the NC-scenario as derived by Bayramoglu et al. 

(2018) if we set ' 0.NSR =   

The first order conditions of signatories with respect to mitigation and substituting ( )ia M , read: 

( )( ) ( ) ( )( )', 1M i NS m Sp B M a M R C m M ⋅ ⋅ + =   

using Table 1. Total differentiation with respect to M , and ignoring third derivatives for simplicity, 

gives the slope of the individual replacement function of signatories: 

( )
( )
( )

'
'

1 NS
S

mm S

p R
g M

C m

 ⋅ Ψ ⋅ + = . 

For non-signatories, we find, using the first order conditions in Table 1: 

( )( ) ( )( ),M i m NSB M a M C m M=  
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and, hence, we derive the slope of the individual replacement of non-signatories: 

( ) ( )
'
NS

mm NS

g M
C m

Ψ
= . 

Accordingly, the slope of the aggregate replacement function is given by: 

( )
( )
( )

( )
( )

2 '
'

1 NS

mm S mm NS

p R n p
G M

C m C m
Ψ

  ⋅ + −  = ⋅ +
 
 

 

which is negative if 0Ψ < , but is positive if 0Ψ > . Hence, a sufficient condition for a unique interior 

equilibrium is ' ( ) 1G M <  over the entire domain of M . In the NC-scenario, ' 0NSR = . If third 

derivative are zero, the largest value of ' ( )G M  is if p n=  in which case the condition collapses to 

the second order condition in the social optimum, i.e., 2 0mmn C⋅Ψ − < . Since the second order 

conditions as well as the condition for a unique interior equilibrium need to be satisfied for all values 

of p , 1 p n≤ ≤ , 2 0mmn C⋅Ψ − <  is the relevant condition, which we will use subsequently. For 

completeness let us point out that for any value p n≠ , the sufficient conditions for a unique interior 

equilibrium are more restrictive than the second order conditions. Finally, it is easily checked that if 

2 0mmn CΨ⋅ − <  holds, also ' ( ) 1G M <  under the ST-scenario, following the proof at the end of 

Appendix A.1.1. 

A.1.3 Upper and Lower Bounds of the Slopes of Reaction Functions 

Consider the slope of the reaction function in mitigation space of a single non-signatory, which is 

given by ( ) ( )
'

NS j
mm NS

r M
C m

Ψ
Ψ− =
−

. ( ) 0mm NSC m Ψ− >  by the condition 2 0mmn CΨ⋅ − < . If 

0,Ψ <  then ( )'
NS jr M −  approaches 1−  if mmC  approaches zero and approaches 0  if mmC  becomes 

very large. If 0Ψ > , then ( )'
NS jr M −  increases in Ψ , with the lower bound of ( )'

NS jr M −  being 0  if 

Ψ  approaches 0 . However, the largest possible value of Ψ  follows from 2 0mmn CΨ⋅ − < , which 
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implies 2
mmC

n
Ψ < . If we substitute 2

mmC
n

Ψ =  into ( )'
NS jr M − , we have: ( )' 1

( 1)( 1)NS jr M
n n− =
− +

 and 

this upper bound decreases with the number of players n . In our simulations, with 100n = , 

41 1 10
( 1)( 1) 9999n n

−= ≈
− +

. 

A.2 Proof of Proposition 1 

In a first step, we differentiate the left-hand side of signatories’ first order conditions in mitigation 

space (5.a) under the ST-scenario with respect to M : 

( )( ) ( )( ) ( )
'

'
, 1

1
M i NS i

MM Ma NS

p B M a M R ap B B R
M M

 ∂ ⋅ ⋅ +  ∂    = ⋅ + ⋅ ⋅ +  ∂ ∂  
. 

assuming second derivatives to be constant. Knowing that i aM

aa aa

a B
M D B
∂

=
∂ −

 and rearranging terms, 

we obtain: 

( )( ) ( )( ) ( )
'

'
, 1

1
M i NS

NS

p B M a M R
p R

M
Ψ

 ∂ ⋅ ⋅ +   = ⋅ ⋅ + ∂
. 

We notice that we would get the same for the NC-scenario (using (3.a) by setting ' 0NSR =  above. 

Then, differentiating the benefit side of non-signatories’ first order conditions (5.b), which is the same 

as (3.b), we obtain: 

( )( )( ),M i i
MM Ma

B M a M aB B
M M

Ψ
 ∂ ∂   = + ⋅ = ∂ ∂ 

. 

The signs of these derivatives depend on the sign of Ψ  (as '1 0NSR+ >  is always true). Therefore, for 

both, signatories and non-signatories, the left-hand side of marginal benefits in their respective first 

order conditions will decrease (increase) in the level of total mitigation M  if ( )0Ψ < >  under both 

scenarios. 
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1) Let us assume 0Ψ < . Hence, ' 0NSR < . We want to show ( ) ( )* *NC STM p M p>  but assume the 

opposite: ( ) ( )* *NC STM p M p≤ . 

From signatories’ first order conditions under the NC-scenario (3.a) and under the ST-scenario (5.a), 

keeping in mind that for 0Ψ < , i.e., marginal benefits in the first order conditions decrease in total 

mitigation M , the following holds: 

( ) ( )( ) ( ) ( )( ) ( )* * * * ' * * * ', 1 , 1ST ST ST ST NC NC NC
m S M i NS M i NSC m p B M a M R p B M a M R   = ⋅ ⋅ + ≤ ⋅ ⋅ + <     

       ( )( ) ( )* * * *,NC NC NC NC
M i m Sp B M a M C m ⋅ =   

For non-signatories, using (3.b) or (5.b), which are identical, accordingly, we have: 

( ) ( )( ) ( )( ) ( )* * * * * * * *, ,ST ST ST ST NC NC NC NC
m NS M i M i m NSC m B M a M B M a M C m= ≤ = . 

It follows that ( ) ( )* *ST NC
m S m SC m C m<  and ( ) ( )* *ST NC

m NS m NSC m C m≤  hold and, therefore, given the 

convexity of cost functions, * *ST NC
S NSm m<  and * *ST NC

NS NSm m≤  must hold. These inequalities contradict 

the assumption ( ) ( )* *NC STM p M p≤ . Hence, ( ) ( )* *NC STM p M p>  must be true. Consequently, 

( ) ( )* *NC ST
NS NSm p m p<  must hold from the first order conditions of non-signatories and, hence, for 

( ) ( )* *NC STM p M p> , we must have ( ) ( )* *NC ST
S Sm p m p>  for signatories. 

Stackelberg leaders will be better off (or equal well off) than in the simultaneous game by axiomatic 

reasoning. For non-signatories, the variables that affect their welfare by going from the Nash-Cournot 

to the Stackelberg scenario are total mitigation (that also affects equilibrium adaptation levels) and 

individual mitigation. We know that mitigation costs will increase due to higher NSm . In order to 

evaluate the overall effect, we totally differentiate a non-signatory’s welfare function: 

( ) ( ) ( ) ( ), ,NC NC NC NC NC NC
i i NS ii i

NS NS
i NS

B M a B M a C m D aa aW M M m M
M a M m M M

∆
∂ ∂ ∂ ∂∂ ∂

= ⋅∆ + ⋅ ⋅∆ − ⋅∆ − ⋅ ⋅∆
∂ ∂ ∂ ∂ ∂ ∂
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and, using the first order conditions in terms of adaptation, a aB D= , and dropping the arguments in 

the function above for convenience, we get: 

( )NS M m NS NSW B M C m m∆ = ⋅∆ − ⋅∆ . 

As we know from above that 0M∆ <  and 0NSm∆ > , it follows that a non-signatory’s welfare will 

drop when moving from the NC- to the ST-scenario. Therefore, pulling results together for 0Ψ < , 

( ) ( )* *NC ST
S SW p W p<  and ( ) ( )* *NC ST

NS NSW p W p>  hold, though nothing can be said about aggregate 

welfare ( )*W p  at a general level. Noting that ( ) ( )* *NC ST
NS NSW p W p>  holds for every p , 1 p n< < , 

we also have ( ) ( )* *1 1NC ST
NS NSW p W p− > − . Considering internal stability, ( ) ( )* * 1S NSW p W p≥ − , we 

notice that the left-hand side term is larger and the right-hand side term smaller under the ST-scenario 

than under the NC-scenario. Hence, * *ST NCp p≥  follows. This conclusion is still true if we consider 

the boundary values of p , namely p n= , in which case ( )*
SW p  is the same under both scenarios but 

( )* 1NSW p −  is lower under the ST- than NC-scenario, and 2p = , in which case ( )* 1NSW p −  is the 

same under both scenarios according to our assumption, but ( )*
SW p  is larger under the ST- than NC-

scenario. Finally, under the ST-scenario, strict superadditivity always holds (see Proposition 2). For 

the move from 1 1p − =  to 2p = , this implies * *2 (2) 2 (1)S NSW W⋅ > ⋅  or * *(2) (1)S NSW W>  and the 

condition for internal stability requires * *(2) (1)S NSW W≥ . Thus, * 2STp ≥ . 

2) We now consider 0Ψ > . We want to show ( ) ( )* *NC STM p M p< . 

From the first order conditions of signatories (3.a) and (5.a), it is clear that ( ) ( )* *NC STM p M p=  is 

not possible. Due to upward-sloping mitigation reaction functions, we need to consider two 

possibilities:  
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( ) ( )* *NC STM p M p< , which would be compatible only with ( ) ( )* *NC ST
S Sm p m p<  and 

( ) ( )* *NC ST
NS NSm p m p< ; 

( ) ( )* *NC STM p M p> , which would be compatible only with ( ) ( )* *NC ST
S Sm p m p>  and 

( ) ( )* *NC ST
NS NSm p m p> . 

We note that, axiomatically, the Stackelberg leader will receive a higher (or equal) payoff compared 

to the NC-scenario. To see how signatories’ welfare will change when moving from the NC- to the 

ST-scenario, we total differentiate welfare function (1). The result would be the same for non-

signatories, except for individual mitigation levels (as done below). We have: 

( ) ( ) ( ) ( ), ,NC NC NC NC NC NC
i i S ii i

S S
i S

B M a B M a C m D aa aW M M m M
M a M m M M

∆
∂ ∂ ∂ ∂∂ ∂

= ⋅∆ + ⋅ ⋅∆ − ⋅∆ − ⋅ ⋅∆
∂ ∂ ∂ ∂ ∂ ∂

 

and, using the information a aB D=  from the first order conditions with respect to adaptation, we get: 

( )S M m S SW B M C m m∆ = ⋅∆ − ⋅∆ . 

From the first order conditions of signatories under the NC-scenario (3.a) in Table 1, we know that 

( )M m Sp B C m⋅ = . Hence, ( )S M M S M SW B M B p m B M p m∆ = ⋅∆ − ⋅∆ = ∆ − ⋅∆ . In the case of 

( ) ( )* *NC STM p M p< , 0M∆ > , 0Sm∆ >  and 0NSm∆ >  with sM p m∆ > ⋅∆  and, hence, 0SW∆ >  

follows. In the case of ( ) ( )* *NC STM p M p> , 0M∆ < , 0Sm∆ <  and 0NSm∆ <  with sM p m∆ > ⋅∆  

and, hence, 0SW∆ < , which must be wrong by the axiomatic reasoning above. 

Therefore, for 0Ψ > , we will have: ( ) ( )* *NC STM p M p< , ( ) ( )* *NC ST
S Sm p m p<  and 

( ) ( )* *NC ST
NS NSm p m p< . 

For non-signatories, we have: 

( )NS M m NS NSW B M C m m∆ = ⋅∆ − ⋅∆ . 
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From the first order conditions of non-signatories under the NC-scenario (3.b) in Table 1, we know 

that M mB C= . We also know that because of upward sloping mitigation reaction functions 

NSM m∆ > ∆  holds and, hence, ( )M m NS NSB M C m m⋅∆ > ⋅∆ . Hence, taken together, 

( ) ( )* *NC ST
S SW p W p<  and ( ) ( )* *NC ST

NS NSW p W p< . Hence, ( ) ( )* *NC STW p W p<  if 0Ψ > . 

Now, we need to show ( ) ( ) ( ) ( )* * * *ST NC ST NC
S S NS NSm p m p m p m p− > − , which implies 

( ) ( )* *ST NC
S SW p W p− ( ) ( )* *ST NC

NS NSW p W p< − . Looking at signatories’ and non-signatories’ welfare 

functions, we can rewrite those as follows: ( ) ( )( )* * * *NC NC NC NC
NS S S NSW W C m C m= + −  and 

( ) ( )( )* * * *ST ST ST ST
NS S S NSW W C m C m= + − . Using this, ( ) ( )* *ST NC

S SW p W p− ( ) ( )* *ST NC
NS NSW p W p< −  

translates into ( ) ( ) ( ) ( )* * * *ST NC ST NC
S S NS NSC m C m C m C m− > − . This will be true provided 

( ) ( )* *ST NC
S Sm p m p− > ( ) ( )* *ST NC

NS NSm p m p−  holds, which we need to prove.  

We know from above that for 0Ψ > , * *ST NCM M>  and ( ) ( )* * * *, ,ST ST NC NC
M i M iB M a B M a> . Hence, 

from the FOCs of signatories and non-signatories, we have: 

( ) ( ) ( ) ( ) ( )* * * * * * * * ', , ,ST NC ST ST NC NC ST ST
m S m S M i M i M i NSC m C m p B M a B M a B M a R = + ⋅ − + ⋅   and 

( ) ( ) ( ) ( )* * * * * *, ,ST NC ST ST NC NC
m NS m NS M i M iC m C m B M a B M a= + − . 

Moving the cost terms to the left-hand side, we have:  

( ) ( ) ( ) ( ) ( )* * * * * * * * ', , ,ST NC ST ST NC NC ST ST
m S m S M i M i M i NSC m C m p B M a B M a B M a R − = ⋅ − + ⋅           (A.1) 

( ) ( ) ( ) ( )* * * * * *, ,ST NC ST ST NC NC
m NS m NS M i M iC m C m B M a B M a− = − .              (A.2) 

We know that ( ) ( )* * 0ST NC
m S m SC m C m− >  as * *ST NC

S Sm m>  and ( ) ( )* * 0ST NC
m NS m NSC m C m− >  as 

* *ST NC
NS NSm m>  if 0Ψ > . 

Substituting (A.2) into (A.1), we have: 
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( ) ( ) ( ) ( ) ( )* * * * * * ',ST NC ST NC ST ST
m S m S m NS m NS M i NSC m C m p C m C m B M a R − = ⋅ − + ⋅   .           (A.3) 

Assuming second derivatives to be constant, the differences in marginal costs can be rewritten as: 

( ) ( )* * * *ST NC ST NC
m S m S mm S SC m C m C m m − = ⋅ −   and 

( ) ( )* * * *ST NC ST NC
m NS m NS mm NS NSC m C m C m m − = ⋅ −  . 

Substituting into (A.3), we obtain: 

( )* * * * * * ',ST NC ST NC ST ST
mm S S mm NS NS M i NSC m m p C m m B M a R    ⋅ − = ⋅ ⋅ − + ⋅     . 

Finally, dividing through by mmC , we have: 

( )* * '
* * * *

,ST ST
M i NSST NC ST NC

S S NS NS
mm

B M a R
m m p m m

C

 ⋅
 − = ⋅ − +
  

 

From this inequality, we can conclude ( ) ( ) ( ) ( )* * * *ST NC ST NC
S S NS NSm p m p m p m p− > −  as ' 0NSR >  if 0Ψ >  

and, hence, ( ) ( ) ( ) ( )* * * *ST NC ST NC
S S NS NSW p W p W p W p− < − . 

Finally, * 2NCp ≥  and * 2STp ≥  follows from the fact that for 0Ψ >  the game is a superadditive 

coalition game for both scenarios according to Proposition 2. Then, we apply the same proof as 

outlined above.  

Remark: Note that for * *( ) : ( ) ( 1)ST ST ST
S NSp W p W pΩ = − −  and * *( ) : ( ) ( 1)NC NC NC

S NSp W p W pΩ = − − , 

( ) ( )ST NCn nΩ Ω<  because * *( ) ( )ST NC
S SW n W n=  and * *( 1) ( 1)ST NC

NS NSW n W n− > − , and 

(2) (2)ST NCΩ Ω>  because * *(2) (2)ST NC
S SW W>  and * *(1) (1)ST NC

NS NSW W= . Thus, stability functions 

( )pΩ  under the two scenarios cross each other at least once for 0Ψ > , which makes general 

predictions difficult. As will be apparent from Appendix A.5 for the specific payoff function (10a) 

and (10b), the curvature of the stability functions ( )ST pΩ  and ( )NC pΩ  under the two scenarios may 
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be quite complex, with fluctuating upward and downward sloping as well as convex and concave 

segments in different intervals of p . 

A.3 Proof of Proposition 2 

Mitigation Cohesiveness (MCOH) and the Change of Signatories’ and Non-signatories 

Equilibrium Mitigation Levels with Membership 

The difference * *( ) ( 1)M p M p− −  can also be investigated by considering 
*M

p
∂
∂

, treating p  as a 

continuous variable. Bayramoglu et al. (2018) have derived 
*M

p
∂
∂

 in the NC-scenario. Following 

their approach, only minor modifications for the ST-scenario are necessary. By setting ' 0NSR = , we 

retrieve the conditions in the NC-scenario. Total differentiation of the first order conditions of 

signatories and non-signatories, as provided in Table 1, assuming second derivatives to be constant, 

delivers: 

( )
( )

( )
( )

*
'

'*

* *

1 1NS
M NSS

mm S mm S

Mp R B Rm p
p C m C m

Ψ ∂
⋅ ⋅ ⋅ + ⋅ +∂ ∂= +

∂
 

( )

*

*

*
NS

mm NS

M
m p

p C m

Ψ ∂
⋅

∂ ∂=
∂

 

where 
( )
( )

'

*

1
0M NS

mm S

B R

C m

⋅ +
> . We have: ( )

* **
* *S NS
S NS

m mM m p m n p
p p p

∂ ∂∂
= + ⋅ − + − ⋅

∂ ∂ ∂
. Substituting 

*
Sm

p
∂
∂

 

and 
*
NSm
p

∂
∂

 from above and rearranging terms, we obtain: 

( )
( )

( )
( )

( )
( )

'
* *

**

2 '

* *

1

1
1

M NS
S NS

mm S

NS

mm S mm NS

p B R
m m

C mM
p p R n p

C m C m
Ψ

⋅ ⋅ +
− +

∂
=

∂  ⋅ + −
− ⋅ + 
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The term 
( )
( )

'

*

1M NS

mm S

p B R

C m

⋅ ⋅ +
 is always positive and the denominator is always positive by the sufficient 

conditions for the existence of a unique interior equilibrium, as derived in Appendix A.1. Hence, if 

* * 0S NSm m− > , we can conclude 
*

0M
p

∂
>

∂
. We know that * * 0S NSm m− >  if 0Ψ >  in both scenarios, 

in which case we can also conclude 
*

0Sm
p

∂
>

∂
 and 

*

0NSm
p

∂
>

∂
 from above. If 0Ψ < , in the NC-

scenario, we also have * * 0S NSm m− > . Hence, 
*

0M
p

∂
>

∂
 and 

*

0NSm
p

∂
<

∂
 can be concluded, but nothing 

can be concluded about 
*
Sm

p
∂
∂

, as the first term is negative and the second positive in the derivative 

above. If 0Ψ < , in the ST-scenario, * * 0S NSm m− <  (which typically happens for small values of p ) 

and * * 0S NSm m− >  (which typically happens for sufficiently large values of p ) are possible. Hence, 

nothing can be generally concluded about the signs of 
*M

p
∂
∂

, 
*
NSm
p

∂
∂

 and 
*
Sm

p
∂
∂

. 

Positive Externality Property (PEP) and Positive Internalisation Property (PIP) 

Let us first consider PEP, again, treating p  as a continuous variable. In the context of the NC-

scenario, see Bayramoglu et al. (2018). In the ST-scenario, we derive exactly the same condition for 

non-signatories: 

( )
* *

*
1

ST ST
NS

M ST
mm NS

W MB
p p C m

Ψ  ∂ ∂  = ⋅ ⋅ −
 ∂ ∂   

 

noting that 0MB >  from the General Assumptions and ( )*
1 0

ST
mm NSC m
Ψ 

 − >
 
 

 from the sufficient 

condition of the existence of a uniqueness interior equilibrium, as stated in Appendix A.1. Therefore, 

*ST
NSW
p

∂
∂

 depends on the sign of 
*STM

p
∂
∂

. Whereas 
*

0
NCM
p

∂
>

∂
 always holds in the NC-scenario, and 



 

xiii 
 

*

0
STM

p
∂

>
∂

 in the ST-scenario if 0Ψ > , as we know from above, we also know that in the ST-

scenario 
*

0
STM

p
∂

<
∂

 is possible if 0Ψ <  in which case non-signatories do not enjoy a positive but 

suffer from a negative externality if the coalition is expanded. 

Let us now consider PIP, again, treating p  as a continuous variable. In the NC-scenario, we have 

** *

.
NCNC NC

S S
M

W mMB p
p p p

 ∂ ∂∂
= ⋅ − ⋅ ∂ ∂ ∂ 

 Using ( )
* **

* *
NC NCNC

NC NCS NS
S NS

m mM m p m n p
p p p

∂ ∂∂
= + ⋅ − + − ⋅

∂ ∂ ∂
, we 

get: 

( )
* *

* *
NC NC

NC NCS NS
M S NS

W mB m m n p
p p

 ∂ ∂
= ⋅ − + − ⋅ ∂ ∂ 

. 

In the NC-scenario, we always have: * * 0NC NC
S NSm m− > , while 

*

( )0
NC
NSm
p

∂
> <

∂
 if ( )0Ψ > < . Hence, 

*

0
NC

SW
p

∂
>

∂
 if 0Ψ > . If 0Ψ < , we have * * 0NC NC

S NSm m− >  and 
*

0
NC
NSm
p

∂
<

∂
. In this case, PIP may fail 

for small p  because * *NC NC
S NSm m−  is small and because 

*

( )
NC
NSmn p
p

∂
−

∂
 is large in absolute terms. 

In the ST-scenario, we have: 
** *

'1
STST ST

S S
M NS

W mMB p R
p p p

 ∂ ∂∂  = ⋅ − ⋅ + ⋅  ∂ ∂ ∂ 
 or 

( )
* * *

* * '
ST ST ST

ST STS NS S
M S NS NS

W m mB m m n p p R
p p p

 ∂ ∂ ∂
= ⋅ − + − ⋅ − ⋅ ⋅ ∂ ∂ ∂ 

. 

The sign of PIP depends on the sign of the term in brackets. Substituting 
*ST

NSm
p

∂
∂

 and 
*ST

Sm
p

∂
∂

 from 

above and using ( )
( ) ( )

'
NS ST

mm NS

n p
R

C m n p
Ψ

Ψ
− ⋅

=
− − ⋅

, we have: 
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( ) ( )
( ) ( )

* * **

*

ST ST STST
S NS mm SS

M ST
mm NS

m m C mW B
p C m n p Ψ

 − ⋅∂
 =

∂ − − ⋅  
 with ( )2

aM
MM

aa aa

B
B

D B
Ψ = +

−
 

The denominator is positive for the existence-uniqueness condition (see Appendix A.1.2). In the 

nominator, ( ) 0aa aa mmB D C− ⋅ <  from the General Assumptions. Hence, 
*

0
ST

SW
p

∂
>

∂
 if 

* * 0ST ST
NS Sm m− <  (which is always true if 0Ψ > ) and the reverse is true, i.e., 

*

0,
ST

SW
p

∂
<

∂
 if 

* * 0ST ST
NS Sm m− >  (which could happen if 0Ψ < ).  

Superadditivity (SAD) 

We need to show: ( ) ( )[ ] ( ) ( )* * *1 1 1S S NSp W p p W p W p⋅ ≥ > − ⋅ − + −  for all p , 2 p n≤ ≤ . For the NC-

scenario Bayramoglu et al. (2018) established that a sufficient condition for SAD to hold are (weakly) 

upward sloping reaction functions, i.e., 0Ψ ≥ . For the ST-scenario, we notice that SAD must hold 

by axiomatic reasoning. Step 1: Any move from 1p −  to p  implies one more signatory. Keeping 

total mitigation of the p  signatories at the same level than at 1p −  ( ( )Sp m p⋅ =

[ ] )* *1 ( 1) ( 1)S NSp m p m p− − + − , total mitigation cost will have decreased among the p  signatories as 

the first order conditions of mitigation imply cost-effectiveness among signatories. The n p−  non-

signatories will not have changed their strategies in Step 1. Step 2: The p  Stackelberg leaders choose 

their equilibrium strategies by maximizing their aggregate payoff, taking the best-response of non-

signatories into account. If they choose different strategies in step 2 compared to step 1 

*( ( ) ( ))S Sm p m p≠  , the aggregate welfare of the p  signatories must have further increased. For the 

final move from 1 1p n− = −  to p n= , when there are no outsiders left after the move, the SAD-

condition is equal to welfare cohesiveness (WCOH) and WCOH for this last move does generally 

hold because total welfare in the grand coalition is strictly larger than in any other coalition in an 

externality game by axiomatic reasoning.  
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Welfare Cohesiveness (WCOH) 

If a game is superadditive and exhibits a positive externality throughout, this is sufficient that WCOH 

holds. Both conditions hold in both scenarios for 0Ψ > . In order to prove that WCOH may fail for 

0Ψ < , we note that under the NC-scenario SAD may fail and under the ST-scenario PEP may fail, 

and refer to Table 2 for examples. 

A.4 Equilibrium Mitigation and Adaptation for Payoff Function (7.a) and (7.b) 

Due to space limitations, we only provide the central equations here, all details are provided in an 

Online Appendix 1 (NC-scenario) and an Online Appendix 2 (ST-scenario). Considering payoff 

function (10.a) for which 0aMB < , we have: M iB b g M f a= − ⋅ − ⋅ , 0,MMB g= − <  0MaB f= − < , 

aB f Mβ= − ⋅ , 0aaB = , m iC c m= ⋅ , ,mmC c= a iD d a= ⋅ , aaD d=  and 

( )2 2

.
f f g dg
d d

Ψ
− − ⋅

= − + =  The sign of Ψ  depends on the sign of 2f g d− ⋅ . From the sufficient 

condition for the existence of a unique interior equilibrium under the NC-scenario 

( )
( )

( )
2

1
mm S mm NS

n pp
C m C m

Ψ
 −
⋅ + < 
 

 (see Appendix A.1), noticing that ( ) ( )mm S mm NSC m C m c= =  as well 

as Ψ  are constants, the left-hand side of this inequality increases in p . Hence, using p n= , we 

derive for payoff function (10a) ( )2 2 0c d n f g d⋅ − ⋅ − ⋅ >  for this condition. We notice that this 

condition is not binding if 2 0f g d− ⋅ < , i.e., 0Ψ < , as expected. Moreover, due to linear 

replacement functions, if this condition is binding (i.e., 0Ψ > ), it is also a necessary condition. From 

Appendix A.1 we may recall that this condition is also sufficient to guarantee a unique interior 

equilibrium under the ST-scenario. 

For the slopes of the reaction functions, we derive: 
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( ) ( )
( )
2

'
2S i

p f d g
r M

c d p f d g−

⋅ − ⋅
=

⋅ − ⋅ − ⋅
, ( ) ( )

( )
2 2

'
2 2S NS

p f d g
R M

c d p f d g

⋅ − ⋅
=

⋅ − ⋅ − ⋅
, ( ) ( )

2
'

2
,NS j

f d gr M
c d f d g−

− ⋅
=

⋅ − − ⋅
 

( )
( ) ( )

( ) ( )
2

'
2NS S

n p f d g
R M

c d n p f d g

− ⋅ − ⋅
=

⋅ − − ⋅ − ⋅
 and ( )' fh M

d
−

= . 

where 'r  denotes the slopes of individual and 'R  the slopes of the aggregate reaction functions. For 

the NC-scenario, we have: 

( )
( ) ( )

*
2 2

( )NC
S

p b d f
m p

c d p n p f d g
β⋅ ⋅ − ⋅

=
⋅ − + − ⋅ − ⋅

, 
*

* ( )( )
NC

NC S
NS

m pm p
p

=  and 

( ) ( )
( ) ( )

2
*

2 2
( )NC

i

c n p p b f g
a p

c d n p p f d g

β β⋅ − − + ⋅ ⋅ − ⋅
=

− + ⋅ −⋅ − ⋅
. 

In the ST-scenario, we find: 

* ( )( )ST
S

c p d b d fm p
Z

β⋅ ⋅ ⋅ − ⋅
=

⋅ , 
( )( )*

2( ( ))
( )ST

NS

b d f
m

d
p

Z

c d n p f g β⋅⋅ − − − ⋅ − ⋅
=

⋅ ⋅
 and  

( )2 2 2
* ( ) ( ) ( ) ( )
( )ST

i

b f g f d g n p c c d n p f X
a p

Z
β β⋅ − ⋅ ⋅ − ⋅ ⋅ − + ⋅ ⋅ ⋅ + − −

=   

with ( )2 2 2 2 2 2 2( ) ( 2 2 ) ( ) ( ): f c d p n pZ d g f d g n p c d= − ⋅ ⋅⋅ − ⋅ ⋅ + − + − − ⋅⋅ +  and 

2 2( ) (2( ) ):X b f c d n p p g c d n p pβ⋅ ⋅ ⋅ ⋅ − + + ⋅ ⋅ ⋅ − += ⋅ .  

We impose the following five conditions on parameters: 

1 1 : 0ST NCC C b g M f a= − ⋅ − ⋅ > , 

2 2 : 0ST NCC C f Mβ= − ⋅ > , 

( )2 23 3 : 0ST NCC C c d n f g d= ⋅ − ⋅ − ⋅ > , 

4 4 : 0ST NCC C b d fβ= ⋅ − ⋅ > , 
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( )25 : 0NCC c n b f gβ β⋅ − ⋅ ⋅ − ⋅ > , 

2 2 2 2 2

2

5 : ( ) ( ) ( ) ( ) ( )
( 2 2 ) 0 .

STC b f g f d g n p c f p f n c d b f c d p n p
g c d p n p

β β

β

⋅ − ⋅ ⋅ − ⋅ ⋅ − + ⋅ ⋅ − + ⋅ − ⋅ ⋅ ⋅ ⋅ + − +

⋅ ⋅ ⋅ + −

⋅

>

⋅

⋅
 

Conditions 1C  and 2C  are required for the General Assumptions to hold (i.e., 0MB >  and 0aB > ; 

see Section 2); 3C  is the condition for the existence of a unique interior equilibrium as discussed 

already above; 4C  and 5C  are the respective additional conditions that ensure that equilibrium 

mitigation and adaptation levels are positive. 4C  ensures that the numerators of equilibrium 

mitigation levels are positive. (The remaining term in the numerator of *( )ST
NSm p  is positive due to the 

condition for the existence of a unique interior equilibrium, i.e., 3 3ST NCC C= .) 5C  ensures that the 

numerators of equilibrium adaptation levels are positive. Finally, we note that the term Z , the 

denominator of equilibrium mitigation and adaptation levels, is always positive. The second term in 

Z , 2 2 2( ) ( )f d g n p⋅− ⋅ − , is always positive. Hence, we have to sign 2 2c d⋅

( )2 2( 2 2 ) ( )c d p n p f d g⋅− ⋅ −⋅ ⋅+ − . Dividing by c d⋅ , we obtain c d⋅ 2 2( 2 2 ) ( )p n p d gf− −+ ⋅− ⋅ , 

which takes on its lowest value for p n= . Replacing p n= , we obtain 3 3ST NCC C= .  

Substituting the highest possible equilibrium mitigation and adaptation levels in 1C  and 2C , it turns 

out that these two conditions are captured by the non-negativity conditions 4C  and 5C . Therefore, 

for both scenarios, only condition 3C  to 5C  are relevant, with 3C  being only relevant if 

2 0,f g d− ⋅ >  i.e., if 0Ψ > . 

Moving now to the case of 0aMB >  i.e., considering payoff function (10.b), it turns out that some of 

the conditions above can be dropped (e.g., 4C  because f  is now f− and 0b d fβ⋅ + ⋅ >  is always 

true) and no additional conditions need to be imposed.  
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A.5 Proof of Proposition 3 

Due to space limitations, we only provide the central idea of the proof; all details are provided in an 

Online Appendix 3 (NC-scenario) and an Online Appendix 4 (ST-scenario).  

The result for 0Ψ <  and the NC-scenario is proved in Bayramoglu et al. (2018). For the ST-scenario, 

* 2p ≥  follows from the fact that 2p =  is internally stable by the property superadditivity. Thus, if 

2p =  is not externally stable, some larger coalition will be stable. The fact that any coalition between 

2p =  and p n=  follows from our simulations on which we report in the paper. 

Consider now 0Ψ > .  

Bayramoglu et al. (2018) derive the sign of * *( ) : ( ) ( 1)NC NC NC
S NSp W p W pΩ = − −  for the NC-scenario: 

( )2 2
1 2( , ) ( , ) ( , ) 3NCsign p n p n c p n p cΩ Φ Ψ Φ Ψ   = − ⋅ − ⋅ ⋅ + − ⋅       

with: 

5 4 3 3 2 2 2 2
1( , ) 5 2 7 4 3 2p n p p np p np n p p np nΦ = − + + − + − − + , 

3 2
2 ( , ) 2 2 8 2 6 4p n p np p n pΦ = + − − + −  and 

2f gd
d

Ψ −
= , with Ψ  derived in Appendix A.4. If ( , ) 0NCsign p nΩ  ≥  , internal stability holds. We 

assume generally, 7n ≥ . We note that 1p =  and 2p =  are internally stable, but not externally stable. 

Hence, we focus on 3p ≥ . 

It can be shown that 1( , ) 0p nΦ >  for any p and 2 ( , ) 0p nΦ >  for 3p ≥ . 

For 3p = , 2
1 2(3, ) (3, ) (3, )NCsign n n c nΩ Φ Ψ Φ Ψ   = − ⋅ − ⋅ ⋅     with 2

1(3, ) 4 12n n nΦ = +  and 

2 (3, ) 4 4n nΦ = − . Solving (3, ) 0NCsign nΩ  ≥   gives 2
2

1

4 4
4 12

c nc
n n

ΦΨ
Φ
⋅ −

≤ =
+

. By the sufficient 
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conditions for the existence of a unique equilibrium, 2

c
n

Ψ < , this condition always holds because 

2 2

4 4 1
4 12

n
n n n

−
≥

+
 for 3n ≥ . Thus, (3, ) 0NCsign nΩ  >  .  

For 3p > , 2
1 2 0( , ) ( , ) ( , )NCsign p n p n c p nΩ Φ Ψ Φ Ψ   = − ⋅ − ⋅    ≥⋅  for ][ ;NC NCΨ Ψ Ψ∈  with 

2
2 1 2 1

1

( )
2

4 12NC p cΦ Φ Φ Φ
Ψ

Φ
⋅− ⋅

−
− +

=
+ +

 and 
2

2 1 2 1

1

4 1( )2
2

NC p cΦ Φ Φ Φ
Ψ

Φ
+ ⋅+ −

= −
⋅ +

. 

For p n= , it can be shown that 0 NCΨ<  and 2
NC c

n
Ψ = . Thus, there exists a range of Ψ  such that 

the grand coalition is stable. Furthermore, if the grand coalition is stable, it Pareto-dominates * 3.p =  

For 3 p n< < , it can be shown that 2
NC NCc

n
Ψ Ψ< < .20 (See Online Appendix 3.) That is, the 

sufficient condition for the existence of a unique equilibrium, 2

c
n

Ψ < , is violated for 

0( , )NCsign p nΩ   ≥ . Thus, there exists no other stable coalition than * 3p =  and *p n=  in the NC-

scenario for 7n ≥ . 

We derive the sign of * *( ) : ( ) ( 1)ST ST ST
S NSp W p W pΩ = − −  for the ST-scenario: 

4 3 2 2 3
1

4 2
3 42( , ) ( , ) ( , ) ( 4 3)STs cign p n p n c p n c c p pΩ Φ Ψ ΨΦ Ψ Φ Ψ Φ   = − ⋅ − ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ ⋅ − + +    

with: 

2 2
1( , ) ( 1) ( )p n n p n pΦ = − − + ⋅ − , 

2 3 2 2
2 ( , ) ( 2 4 3 1) ( 1)p n np p n np p n p n pΦ = − + − + − + − ⋅ − + , 

4 3 2 2 2 2
3 ( , ) ( 2 4) ( 8 9) ( 4 12 12) 2 8 5p n p n p n n p n n p n nΦ = + − − ⋅ + + + ⋅ + − − − ⋅ + + + , 

                                                 
20  The reader will appreciate, by consulting the Online Appendices 3 and 4, that a graphical analysis can be 

justified in some exceptional cases due to the complexity of some terms. See Eichner and Pethig (2015, 
2017) for a similar procedure. 
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3
4 ( , ) (6 ) ( 2 8 15 18) 6 8p n p p p np n p nΦ = ⋅ − + ⋅ − + − + − −  and 

2f gd
d

Ψ −
= . If ( , ) 0STsign p nΩ  ≥  , internal stability holds. We assume, again, 7n ≥ . Again, we 

focus on 3p ≥  because smaller coalitions are internally stable but not externally stable. 

It can be shown that 1( , ) 0p nΦ <  for any p n<  and 1( , ) 0p nΦ =  for p n= , 2 ( , ) 0p nΦ >  for any ,p  

3 ( , ) 0p nΦ ≤  for any p  if 
3 2 4 2

2

4 6 4 3 4 6
4 2

p p p p p p
n

p p
− + − + −

−
≤

− +
+

 and 3( , ) 0p nΦ >  otherwise 

and 4 ( , ) 0p nΦ <  for any p . 

For 3p = , (3, )STsign nΩ    is a polynomial of degree four, with one zero point at 0Ψ = . We solve 

for the remaining zero points by reducing the function to a polynomial of degree three by dividing by 

Ψ  and using the Cardano formula. (See Online Appendix 4.) For 7n ≥ , there exists only one 

remaining zero point, which is negative. It can be shown that (3, ) 0STsign nΩ  ≥   for 2

c
n

Ψ < , 

proving that any coalition of size 3p =  is internally stable. 

For p n= , ( , )STsign n nΩ    is a polynomial of degree three, as 1( , ) 0n nΦ = . We solve for the zero 

points of ( , )STsign n nΩ    by using the trigonometric approach for solving cubic equations and obtain 

three zero points, 0Ψ , 1Ψ  and 2Ψ . (See Online Appendix 4.) It can be shown that 

2 0 120 c
n

Ψ Ψ Ψ< < < <  and 0( , )STsign n nΩ   ≥  for ; ][ ST STΨ Ψ Ψ∈  with 0
STΨ Ψ=  and 2

ST c
n

Ψ = , 

given that we investigate 0Ψ > . Thus, there exists a range of Ψ  such that the grand coalition is 

stable. Moreover, 0( , )STsign n nΩ   <  for NCΨ , confirming that NC STΨ Ψ< . Hence, the range of 

Ψ  for which the grand coalition is stable is smaller in the ST- than NC-scenario. Furthermore, if the 

grand coalition is stable, it also Pareto-dominates * 3p =  in the ST-scenario. 
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For 3 p n< < , ( , )STsign p nΩ    is a polynomial of degree four. We solve for the potential zero points 

by building the cubic resolvent of the polynomial. This yields eight potential solutions for 

( , )STsign p nΩ   . It can be graphically shown that these eight solutions iΨ , [1;8]i∈ , are either not 

an element of 2[0; ]c
n

Ψ ∈  or not a zero point of ( , )STsign p nΩ   . (See Online Appendix 4.) Thus, 

( , )STsign p nΩ    does not change for 2

c
n

Ψ < . It can be shown that ( , ) 0STsign p nΩ  <   for 

2 .c
n

Ψ ≤  Thus, there exists no stable coalition other than * 3p =  and *p n=  in the ST-scenario for 

7n ≥ . 

A.6 Simulation Strategy 

We run a comprehensive number of simulations based on payoff function (10). For each simulation 

run, we consider payoff functions (10.a) and (10.b) for the same parameter values. (Setting f  in 

(10.a) to f− gives (10.b)). Thus, we cover the case of mitigation and adaptation being substitutes and 

complements. All parameter values have to satisfy conditions C3 to C5 as explained in Appendix 

A.4. We start from an initial parameter configuration, and then systematically vary each parameter in 

order to cover all possible cases. 

Downward sloping reaction functions ( )0Ψ <  

Table 2 in the text considers 17 simulations with different values for the mitigation cost parameter c  

in order to cover the full range of possible slopes of reaction functions in mitigation space where we 

display the slope of a single non-signatory’s reaction in all tables. That is, we assume the same value 

for all parameters except for parameter c , and vary c  to cover the range ' ( 1,0)NSr ∈ − . 
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In the Online Appendix 5, three additional tables report results from extensive sensitivity analyses. 

In Table O.1, we vary the benefit parameter g  to cover ' ( 1,0)NSr ∈ −  keeping other parameters fixed. 

We consider 15 different values of parameter g . 

Table O.2 and Table O.3 in Online Appendix 5 selects those parameter constellations from Table 2 

in the text and Table O.1 in the Online Appendix for which * 80STp ≥  (given 100n = ) as starting 

values and varies other parameters. In Table O.2, we vary the benefit parameters b  and β  by 

considering 48 different parameter combinations, and in Table O.3 we vary parameters f  and d  

considering 38 different parameter combinations where d  is the adaptation cost parameter and f  

measures the marginal decrease (increase) of the marginal benefit from adaptation due to an increase 

in total mitigation. Changes of parameters b  and β  do not affect the slope of the reaction function 

in mitigations space and, hence, also not *STp , whereas changes of parameters f  and d  affect the 

slope and, hence also *STp . Table O.2 and O.3 serve to test the robustness of the conclusion regarding 

the paradox of cooperation by considering large stable coalitions. 

Upward sloping reaction functions ( )0Ψ >  

In case of upward sloping reaction functions in mitigation, we face a constraint on the upper bound 

of the slope of reaction functions. See Appendix A.1. Only flat reaction functions do not violate the 

condition for the existence of a unique interior equilibrium. 

In Table 3 in the text, various combinations of parameters g , f  and d  (that determine the value of 

Ψ ) and of parameter c  are considered in order to cover all possible outcomes in terms of stable 

coalition sizes, as stated in Proposition 3. (All four parameters affect the slope of the reaction function 

in mitigation space.) 15 simulations are reported. Additional sensitivity analyses are conducted in 

Table O.4 and O.5 in Online Appendix 5. 
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Table O.4 focuses on those cases of Table 3 in the text for which the grand coalition is stable in both 

scenarios, the NC- and ST scenario. For each case, we vary parameters g , f  and d  in order to show 

that *p n= , for any given level of the cost parameter c , can be achieved. According to Proposition 

3, Ψ Ψ≤  is required to have *p n= . Eight cases in which the grand coalition is stable in both 

scenarios are reported in Table O.4. 

Finally, Table O.5 focuses on the simulations for which *p n=  in Table 3, either in NC- or in both 

scenarios, and performs a sensitivity analysis with respect to the benefit parameters b  and β  in order 

to test the robustness of our conclusions regarding the paradox of cooperation. Thirty different 

combinations are reported. 
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Table 1: First Order Conditions under the NC- and ST-Scenario* 

 NC-scenario ST-scenario 
Signatories      ( ) ( ),M i m Sp B M a C m⋅ =       (3.a) ( )( ) ( )', 1M i NS m Sp B M a R C m ⋅ + =     (5.a) 

Non-Signatories           ( ) ( ),M i m NSB M a C m=     (3.b)                        ( ) ( ),M i m NSB M a C m=  (5.b) 
Both            ( ) ( ),a i a iB M a D a=          (4)                         ( ) ( ),a i a iB M a D a=       (6) 

* Let ( )NS NS SM R M= . Then, ' NS
NS

S

MR M
∂= ∂  with S SM p m= ⋅  and ( )NS NSM n p m= − ⋅ . For 

further details on '
NSR  see the discussion below, in particular equation (8). 



Simulations for 0Ψ < , implying downward sloping reaction functions in mitigation space 

Table 2: Different slopes of reaction functions through a variation of parameter c*, # 

* For the other parameters we assume throughout: b=10, β=10, g=1, f=1, d=5. 

Remark: Lowering parameter c increases the absolute value of the slope of the reaction function in mitigation space. 
# ✓ means this property holds for all values of p , p x>  means this property holds for all values of p  larger than x . Headings and abbreviations as explained in the text. 

If SAD holds for a given p, it means that the move from p-1 to p is superadditive. 

The values of Ψ , ICI and INI are rounded to 2 digits and the values of '
NSr  are rounded to 4 digits. 

  

SAD PEP PIP MCOH WCOH p* SAD PEP PIP MCOH WCOH p* h'(M) ICI INI NC INI ST h'(M) ICI INI NC INI ST
-0.0016 -0.80 ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ 3 -0.20 135.57 0.79 1.89 0.20 186.92 1.09 2.60
-0.0027 -0.80 ✓ ✓ ✓ ✓ ✓ 2 ✓ ✓ ✓ ✓ ✓ 3 -0.20 94.19 0.82 1.69 0.20 121.10 1.06 2.17
-0.0053 -0.80 p>10 ✓ ✓ ✓ ✓ 1 ✓ ✓ ✓ ✓ ✓ 3 -0.20 49.76 0 1.02 0.20 59.87 0 1.23
-0.0157 -0.80 p>15 ✓ p>6 ✓ ✓ 1 ✓ ✓ p>2 ✓ ✓ 3 -0.20 13.10 0 0.09 0.20 14.99 0 0.09
-0.0385 -0.80 p>15 ✓ p>8 ✓ ✓ 1 ✓ p>2 p>4 p>2 p>2 5 -0.20 3.24 0 0.01 0.20 3.66 0 0.01
-0.0741 -0.80 p>16 ✓ p>9 ✓ ✓ 1 ✓ p>4 p>8 p>4 p>4 9 -0.20 0.98 0 0.01 0.20 1.10 0 0.02
-0.1379 -0.80 p>17 ✓ p>9 ✓ ✓ 1 ✓ p>7 p>14 p>7 p>7 15 -0.20 0.27 0 0 0.20 0.31 0 0
-0.2105 -0.80 p>17 ✓ p>9 ✓ p>12 1 ✓ p>11 p>21 p>11 p>11 22 -0.20 0.10 0 0 0.20 0.12 0 0
-0.3478 -0.80 p>17 ✓ p>9 ✓ p>14 1 ✓ p>19 p>35 p>19 p>18 36 -0.20 0.03 0 0 0.20 0.03 0 0
-0.4444 -0.80 p>17 ✓ p>9 ✓ p>15 1 ✓ p>25 p>44 p>25 p>24 46 -0.20 0.01 0 0 0.20 0.01 0 0
-0.5333 -0.80 p>17 ✓ p>9 ✓ p>15 1 ✓ p>31 p>53 p>31 p>29 54 -0.20 0.01 0 0 0.20 0.01 0 0
-0.6154 -0.80 p>17 ✓ p>9 ✓ p>15 1 ✓ p>38 p>61 p>38 p>34 62 -0.20 0 0 0 0.20 0 0 0
-0.7273 -0.80 p>17 ✓ p>9 ✓ p>15 1 ✓ p>47 p>72 p>47 p>42 74 -0.20 0 0 0 0.20 0 0 0
-0.8000 -0.80 p>17 ✓ p>9 ✓ p>16 1 ✓ p>55 p>79 p>55 p>49 81 -0.20 0 0 0 0.20 0 0 0
-0.8889 -0.80 p>17 ✓ p>9 ✓ p>16 1 ✓ p>66 p>89 p>66 p>59 90 -0.20 0 0 0 0.20 0 0 0
-0.9412 -0.80 p>17 ✓ p>9 ✓ p>16 1 ✓ p>75 p>94 p>75 p>67 95 -0.20 0 0 0 0.20 0 0 0
-0.9938 -0.80 p>17 ✓ p>9 ✓ p>16 1 ✓ p>92 p>99 p>92 p>87 100 -0.20 0 0 0 0.20 0 0 0

Substitutability

c=500

c=0.7

c=3

c=0.005

c=50

c=300

c=0.1

c=150

c=0.5

c=0.2

c=5

c=1.5

c=20

c=0.05

c=10

c=0.3

NASH-COURNOT STACKELBERG Complementarity

c=1

SIMULATIONS r' NS Ψ



Simulations for 0Ψ > , implying upward sloping reaction functions in mitigation space 

Table 3: Variation of parameters f, g and d that affect the value of Ψ  and the cost parameter c to cover different sizes of stable coalitions*, # 

* For the base simulation, we assume: b=10, β=10, g=2, f=6.5, c=50000, d=5. 

** For the six different cases for which p*=n in the NC and ST scenario, we assume: 
CASE 1: b=10, β=10, g=2, f=6.9989, c=50000, d=7; 
CASE 2: b=10, β=10, g=2, f=6.9999, c=50000, d=7; 
CASE 3: b=1, β=5, g=0.3, f=1.9999, c=1000, d=10; 
CASE 4: b=10, β=10, g=21, f=21.9999, c=10000, d=22; 
CASE 5: b=10, β=10, g=0.0001, f=1.9999, c=20000, d=2; 
CASE 6: b=10, β=10, g=5, f=14.9979, c=100000, d=15. 

Remark: Note that CASE 1 and CASE 2 are obtained from the base simulation, changing both parameters f and d. 
# See Table 2. 

SAD PEP PIP MCOH WCOH p* SAD PEP PIP MCOH WCOH p* h'(M) ICI INI NC INI ST h'(M) ICI INI NC INI ST
0 0.11 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.33 176.42 0.21 0.21 0.33 618.04 0.73 0.73

0 0.60 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.33 196.45 0.21 0.21 0.33 688.13 0.73 0.73

0 0 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.33 172.47 0.21 0.21 0.33 604.19 0.72 0.72

0 0 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.32 176.71 0.21 0.21 0.32 597.52 0.72 0.72

0 0.44 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.35 176.39 0.19 0.19 0.35 685.29 0.75 0.75

0 0.11 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.33 195.76 0.23 0.23 0.33 679.23 0.79 0.80

0 0.11 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.33 88.74 0.11 0.11 0.33 325.39 0.39 0.39

0.0001 4.49 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.99 0 0 0 0.99 4604.72 0.57 0.58

0 0 ✓ ✓ ✓ ✓ ✓ 3 ✓ ✓ ✓ ✓ ✓ 3 -0.31 190.46 0.23 0.23 0.31 619.07 0.74 0.74

0.0001 4.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 3 -0.99 0.01 0.01 0 0.99 1.23x106 1.23x106 0.62

0.0001 4.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 -0.99 0 0 0 0.99 1.26x109 1.26x109 1.26x109

0.0001 0.09 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 -0.19 0 0 0 0.19 3.02x106 3.02x106 3.02x106

0.0001 0.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 -0.99 0 0 0 0.99 1.58x107 1.58x107 1.58x107

0.0001 1.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 100 -0.99 0 0 0 0.99 2.46x106 2.46x106 2.46x106

0.0001 9.99 ✓ ✓ ✓ ✓ ✓ 100 ✓ ✓ ✓ ✓ ✓ 3 -0.99 0.01 0.01 0 0.99 1.31x106 1.31x106 0.66

Substitutability

g=2.11

f=6.33

f=6.99

c=45001

c=100000

CASE 5**

d=6.51

d=21.1

CASE 2**

CASE 3**

CASE 1**

CASE 6**

NASH-COURNOT STACKELBERG Complementarity

Base simulation

SIMULATIONS r' NS Ψ

g=1.51

CASE 4**
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