
Quantum field theory
Lecture notes, 2015

Gernot Eichmann



2



Contents

1 Classical scalar fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Quantization of the scalar field . . . . . . . . . . . . . . . . . . . . . . . 13
3 Dirac field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 Quantization of the Dirac field . . . . . . . . . . . . . . . . . . . . . . . 39
5 Electromagnetic field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Interactions and the S-matrix . . . . . . . . . . . . . . . . . . . . . . . . 55
7 Perturbation theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8 Loops and renormalization . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9 Cross sections and decay rates . . . . . . . . . . . . . . . . . . . . . . . 92
10 QED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
11 Renormalization of QED . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
12 Path integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
13 Non-Abelian gauge theories . . . . . . . . . . . . . . . . . . . . . . . . . 118
14 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



4 CONTENTS

1 Classical scalar fields

Classical field theory. The action of a system described by classical mechanics is
given by

S =

t2∫
t1

dtL (qi(t), q̇i(t)) =

∫
dt

(
1

2

∑
i

q̇2i − V (q1 . . . qn)

)
. (1.1)

The transition to classical field theory proceeds via the replacements

qi(t)→ Φ(x, t)→ Φ(x) , q̇i(t)→
∂Φ(x, t)

∂t
→ ∂µΦ(x) , (1.2)

because in a relativistic theory the time derivative can only appear as a part of ∂µ.
The action then takes the form

S =

∫
dtL

(
Φ(x), ∂µΦ(x)

)
=

∫
V

d4xL
(
Φ(x), ∂µΦ(x)

)
, (1.3)

where L is called the Lagrangian density or simply the Lagrangian of the theory.
To obtain the equations of motion, we vary the action with respect to Φ and ∂µΦ

in a given volume V with the boundary condition {δΦ, δ(∂µΦ)}
∣∣
∂V

= 0. Hamilton’s
principle of stationary action δS = 0 then entails

0
!
= δS =

∫
d4x

[
∂L
∂Φ

δΦ+
∂L

∂(∂µΦ)
δ(∂µΦ)

]

=

∫
d4x

[(
∂L
∂Φ
− ∂µ

∂L
∂(∂µΦ)

)
δΦ+ ∂µ

(
∂L

∂(∂µΦ)
δΦ

)]
,

(1.4)

where we interchanged the variation with the derivative and performed a partial in-
tegration. The second bracket is a total derivative and can be converted to a surface
integral via Gauss’ law. It is zero because the field and its derivative vanish at the
boundary: ∫

V

d4x ∂µ F
µ =

∫
∂V

dσµ F
µ = 0 . (1.5)

The remaining integrand must also vanish because δΦ is an arbitrary variation. This
leads to the Euler-Lagrange equations of motion:

∂L
∂Φ
− ∂µ

∂L
∂(∂µΦ)

= 0 . (1.6)

If the Lagrangian contains several fields Φi(x), one simply has to sum over them in
Eq. (1.4) and the equations of motion hold for each component separately.

Finally, let’s generalize the Hamiltonian formalism to the field-theoretical descrip-
tion. For a discrete system, the canonical conjugate momentum and Hamilton function
are given by

pi(t) =
∂L

dq̇i(t)
, H =

∑
i

q̇i pi − L . (1.7)



1 Classical scalar fields 5

In the continuum limit, the conjugate momentum becomes the canonically conjugate
momentum density Π(x),

p(x, t) =
∂L

∂Φ̇(x, t)
→ Π(x) =

∂L
∂Φ̇(x)

, (1.8)

and the Hamilton function acquires the form

H =

∫
d3x

(
Π(x) Φ̇(x)− L

)
=:

∫
d3xH(x) , (1.9)

where H(x) is the Hamiltonian density.

Real scalar field and Klein-Gordon equation. We start with the simplest exam-
ple of a field theory. It contains only one type of field: a real scalar field Φ(x) = Φ∗(x).
What are the possible terms that can appear in the Lagrangian? L must be a Lorentz
scalar, so it can only depend on Φ and ∂µΦ ∂

µΦ (and higher powers of these expres-
sions). The combination ∂µ∂

µΦ = 2Φ is a total derivative, so it doesn’t change the
equations of motion. Based on these considerations we write

L =
1

2
∂µΦ ∂

µΦ− 1

2
m2Φ2 − V

(
Φn,Φn(∂Φ)m

)
. (1.10)

The first two terms define the Lagrangian for a free scalar field, whereas the potential
V contains higher possible interaction terms.1 The action is S =

∫
d4xL, and we can

check that the mass dimensions work out correctly:

[S] = 0, [d4x] = −4, [L] = 4, [Φ] = 1, [∂µ] = 1, (1.11)

and therefore the parameter m has indeed the dimension of a mass. Discarding the
interaction terms (which we will always do in this chapter, hence ‘free fields’), we can
easily work out the Euler-Lagrange equation:

∂L
∂Φ

= −m2Φ ,
∂L

∂(∂µΦ)
= ∂µΦ , ∂µ

∂L
∂(∂µΦ)

= ∂µ∂
µΦ = 2Φ , (1.12)

and thereby arrive at the Klein-Gordon equation:

(2+m2)Φ = 0 . (1.13)

To derive the Hamiltonian density, we have to find the conjugate momentum:

L =
1

2

(
Φ̇2 − (∇Φ)2 −m2Φ2

)
⇒ Π(x) =

∂L
∂Φ̇(x)

= Φ̇(x) , (1.14)

and therefore we obtain

H = ΠΦ̇− L = Π2 − L =
1

2

(
Π2 + (∇Φ)2 +m2Φ2

)
. (1.15)

1In the quantum field theory, renormalizability will limit their form to Φ3 and Φ4 interactions.
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The solutions of the Klein-Gordon equation are plane waves e±ipx with dispersion
relation p2 = m2 ⇒ p0 = ±

√
p2 +m2 = ±Ep, so we can write its general solutions as

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
a(p) e−ipx + a∗(p) eipx

) ∣∣∣
p0=Ep

. (1.16)

The overall normalization with (2π)−3/2 and the factor 2Ep in the integral measure
are just a matter of convention at this point, because we could equally absorb them
into the Fourier coefficients a(p) and a∗(p). Later we will find that d3p/(2Ep) defines
a Lorentz-invariant integral measure, so we keep it for convenience. Furthermore,
setting p0 = +Ep does not restrict us to positive-energy solutions because we would
get the same form with p0 = −Ep except for the interchange a(p) ↔ a∗(−p), which
we can always redefine (to see this, replace p → −p as integration variable). The
interpretation of the positive- and negative-frequency modes e∓ipx will become clear
only after quantizing the theory.

Complex scalar field. We can generalize the formalism to complex scalar fields:

Φ(x) =
1√
2
(Φ1(x) + iΦ2(x)) , Φ∗i (x) = Φi(x) , (1.17)

whose Lagrangian can be written as the superposition of the Lagrangians for its real
and imaginary parts:

L =

2∑
i=1

[
1

2
∂µΦi ∂

µΦi −
m2

2
Φ2
i

]
= ∂µΦ

∗ ∂µΦ−m2 |Φ|2 . (1.18)

If we view the fields Φ(x) and Φ∗(x) as the independent degrees of freedom, the conju-
gate momenta become

Π(x) =
∂L

∂Φ̇(x)
= Φ̇∗(x) , Π∗(x) =

∂L
∂Φ̇∗(x)

= Φ̇(x) (1.19)

and the Hamiltonian is

H =

∫
d3x

(
Π∗Φ̇∗ +ΠΦ̇− L

)
=

∫
d3x

(
|Π|2 + |∇Φ|2 +m2 |Φ|2

)
. (1.20)

Both fields satisfy Klein-Gordon equations: (2 +m2) Φ = (2 +m2) Φ∗ = 0, and the
Fourier expansion for their solutions has now the form

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
a(p) e−ipx + b(p)∗ eipx

) ∣∣∣
p0=Ep

, (1.21)

with two independent coefficients a(p) and b(p).

We can define a Lorentz-invariant scalar product for solutions of the Klein-Gordon equation:
(Ex)

⟨Φ,Ψ⟩ := i

∫
dσµ Φ

∗(x)
↔
∂µψ(x) = i

∫
d3xΦ∗(x)

↔
∂0 ψ(x) , (1.22)
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where f
↔
∂µ g = f(∂µg)−(∂µf)g and σ is a spacelike hypersurface (which we chose to be a fixed timeslice

in the second step). The scalar product is Lorentz-invariant and therefore it has the same value on
each spacelike hypersurface:[∫

σ2

−
∫
σ1

]
dσµ Φ

∗
↔
∂µΨ =

∫
d4x ∂µ (Φ

∗
↔
∂µΨ) =

∫
d4x (Φ∗

2Ψ− 2Φ∗ Ψ) = 0 . (1.23)

In the first step we used Gauss’ law under the assumption that the fields vanish sufficiently fast at
|x| → ∞, and to obtain the zero we inserted the Klein-Gordon equations for the fields Φ and Ψ. Hence,
although the fields are time-dependent, the second form in Eq. (1.22) is independent of time. Eq. (1.22)
is linear in the second argument and antilinear in the first, it satisfies ⟨Φ,Ψ⟩∗ = ⟨Ψ,Φ⟩, but it is not
positive definite: to see this, consider the plane waves

fp(x) =
1

(2π)3/2
e−ipx

∣∣∣
p0=Ep

⇒
⟨fp, fp′⟩ = 2Ep δ

3(p− p′) ,

⟨f∗
p , f

∗
p′⟩ = −2Ep δ

3(p− p′) ,

⟨fp, f∗
p′⟩ = 0 .

(1.24)

With their help we can write the free Klein-Gordon solutions (1.21) as (ap = a(p))

Φ(x) =

∫
d3p

2Ep

(
ap fp(x) + b∗p f

∗
p (x)

)
, (1.25)

and therefore

⟨Φ,Φ⟩ =
∫

d3p

2Ep

∫
d3p′

2Ep′
⟨apfp + b∗pf

∗
p , ap′fp′ + b∗p′f

∗
p′⟩ =

∫
d3p

2Ep

(
|ap|2 − |bp|2

)
. (1.26)

The norm is not positive definite because of the negative-energy contributions |bp|2, hence it does not
permit a probability interpretation. Later we will see that ⟨Φ|Φ⟩ coincides with the U(1) charge for a
complex scalar field. For a real scalar field it is zero because bp = ap. From Eqs. (1.24–1.25) we can
extract the Fourier coefficients via

ap = ⟨fp,Φ⟩, b∗p = −⟨f∗
p ,Φ⟩ . (1.27)

Noether theorem. Symmetries play a fundamental role in field theories. For ex-
ample, Poincaré invariance was the guiding principle for the construction of the La-
grangian (1.10), and eventually we will see that also the properties of ‘mass’ and ‘spin’
of a particle have their origin in the Poincaré group (they are related to the Casimir
operators of the group). There are also other types of symmetries such as internal
symmetries, and generally the invariance of the action under a symmetry leads to con-
served currents and charges. Symmetries also have dynamical implications: in fact,
the very nature of the Standard Model as a collection of gauge theories, where charged
particles interact via gauge bosons, is a consequence of gauge invariance.

Consider a field theory with fields Φi(x) and action S. We perform a transformation
of the coordinates and fields, which are parametrized by infinitesimal parameters εa:

x′µ = xµ + δxµ ,

Φ′i(x
′) = Φi(x) + δΦi ,

δxµ =
∑

a εaX
µ
a (x) ,

δΦi =
∑

a εa Fia(Φ, ∂Φ) .
(1.28)

The Noether theorem states that for each transformation that leaves the action
invariant (then we call it a symmetry transformation) there is a conserved Noether
current jµa (x) with

∂µ j
µ
a (x) = 0 (1.29)
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Figure 1.1: Visualization of Eqs. (1.33–1.34).

along the classical trajectories, i.e., for solutions of the classical equations of motion.
We note that one can still write down a Noether current jµa (x) irrespective of whether
the transformation (1.28) is a symmetry or not (then it won’t be conserved), and in
general we do not require the fields Φi(x) to satisfy the classical equations of motion.

Here are some examples for symmetry transformations:

� Internal symmetries correspond to transformations of the fields only, but not
spacetime itself. They are usually realized in the form of Lie groups whose ele-
ments are obtained by exponentiating the group generators Ga:

Φ′i(x) = Dij Φj(x) , D = e
i
∑
a
εaGa ⇔

δxµ = 0 ,

δΦi = i
∑
a
εa (Ga)ij Φj .

(1.30)

� Spacetime translations depend on four parameters aµ and they are part of the
Poincaré group:

x′ = x+ a

Φ′i(x+ a) = Φi(x)
⇔ δxµ = aµ

δΦi = 0 .
(1.31)

� Lorentz transformations consist of rotations and boosts and contain the re-
maining six parameters of the Poincaré group. An infinitesimal Lorentz transfor-
mation Λ = 1 + ε is parametrized by the antisymmetric matrix εµν :

x′ = Λx

Φ′i(Λx) = Dij(Λ)Φj(x)
⇔ δxµ = εµνxν

δΦi = . . .
(1.32)

The matrices D(Λ) are the finite-dimensional irreducible representations of the
Lorentz group which depend on the nature of the fields (scalar, Dirac, vector field
etc.); we will discuss them later in the context of Dirac theory. For scalar fields,
D(Λ) = 1 and therefore they satisfy Φ′i(Λx) = Φi(x) and δΦi = 0 (which is why
the fields are scalars under Lorentz transformations).
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To proceed, we need to define two types of variations. The ‘total’ variation is what
we already introduced above:

δΦi = Φ′i(x
′)− Φi(x) . (1.33)

It vanishes for the example of a scalar field under Poincaré transformations. The second
type of variation is the change of the functional form of the field at the position x:

δ0Φi = Φ′i(x)− Φi(x)

= Φ′i(x
′ − δx)− Φi(x) = Φ′i(x

′)− ∂µΦi δxµ − Φi(x)

= δΦi − ∂µΦi δxµ .
(1.34)

Both types of variations are visualized in Fig. 1.1: a scalar field is invariant under
translations and therefore Φ′(x′) = Φ(x); however, the functional form Φ′(x) at the
position x has changed in the process. It follows that

δΦi = δ0Φi + ∂µΦi δx
µ , (1.35)

where the second term vanishes for internal symmetries (δxµ = 0).

Consider now a variation of the action of the form

δS =

∫
d4x′ L

(
Φ′(x′), ∂′µΦ

′(x′)
)
−
∫
d4xL

(
Φ(x), ∂µΦ(x)

)
=

∫
d4x δL+

∫
(δ d4x)L ,

(1.36)

with ∂′µ = ∂/∂x′µ, which does not vanish at the boundary and also permits a variation
of the volume itself. The variation of the integral measure follows from expanding the
Jacobian of the transformation:

d4x′ = |det J | d4x = (1 + ∂µδx
µ + . . . ) d4x ⇒ δ d4x = (∂µδx

µ) d4x . (1.37)

Inserting this together with Eq. (1.35) into the expression for δS, we get

δS =

∫
d4x [ δ0L+ ∂µL δxµ + L ∂µδxµ ]

=

∫
d4x

[
∂L
∂Φ

δ0Φ+
∂L

∂(∂µΦ)
δ0 ∂µΦ+ ∂µ(L δxµ)

]

=

∫
V

d4x

{[
∂L
∂Φ
− ∂µ

∂L
∂(∂µΦ)︸ ︷︷ ︸

eqs. of motion

]
δ0Φ+ ∂µ

[
L δxµ + ∂L

∂(∂µΦ)
δ0Φ︸ ︷︷ ︸

−δjµ = −
∑
a

εa j
µ
a

]}
.

(1.38)

In the second bracket we defined a current δjµ; it inherits the dependence on the
infinitesimal transformation parameters εa in Eq. (1.28), so there is one current jµa for
each parameter εa. Now, if these transformations define a symmetry of the action then
δS = 0, and because the spacetime volume is arbitrary also the integrand must be
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zero. The first bracket vanishes upon inserting the solutions of the classical equations
of motion, and so we arrive at a conserved Noether current for each εa:

∂µ j
µ
a (x) = 0 . (1.39)

We can rewrite the Noether current in a more useful form. With Eq. (1.35) we
eliminate δ0Φ in favor of the total variation δΦ:

−δjµ =
∂L

∂(∂µΦ)
δΦ−

[
∂L

∂(∂µΦ)
∂νΦ− gµνL︸ ︷︷ ︸

=: Tµν

]
δxν =

∂L
∂(∂µΦ)

δΦ− Tµνδxν . (1.40)

Tµν is the energy-momentum tensor whose meaning will become clear in a moment.
While we derived the Noether theorem and the current for a single-component field,
the derivation goes through for arbitrary types of fields in arbitrary representations of
the Lorentz group — one simply has to sum over all fields in the Lagrangian. Let’s
exemplify the case of a scalar field Φ(x) under . . .

� translations (δΦ = 0, δxν = aν): the first term in δjµ vanishes, and after remov-
ing the translation parameters aν we find that the conserved current according
to translation invariance is the energy-momentum tensor itself. The continuity
equation

∂µ T
µν = 0 (1.41)

holds for solutions of the Klein-Gordon equation and can be easily verified. The
energy-momentum tensor has the form Tµν = ∂µΦ ∂νΦ−gµν L, which corresponds
to one current for each component of aν .

� Lorentz transformations (δΦ = 0, δxα = εαβ x
β): here we can exploit the anti-

symmetry of εαβ and write

−δjµ = −Tµαεαβ xβ = −εαβ
2

(Tµαxβ − Tµβxα) =: −εαβ
2
mµ,αβ . (1.42)

Therefore, the conserved current is the angular momentum density

mµ,αβ = Tµαxβ − Tµβxα , ∂µm
µ,αβ = 0 . (1.43)

It carries the orbital angular momentum of the field; for fields with higher spin
there will be additional spin contributions coming from the δΦ term in Eq. (1.40).
We can make this more explicit by inserting the energy-momentum tensor:

mµ,αβ = −i ∂L
∂(∂µΦ)

[
−i (xα∂β − xβ∂α)

]
︸ ︷︷ ︸

=: Lαβ

Φ+ (xαgµβ − xβgµα)L . (1.44)

Lαβ is a ‘covariantized’ version of the orbital angular momentum, because in
analogy to Eq. (2.55) we can define a three-vector

Li := −1
2 εijk L

jk = iεijk x
j∂k ⇒ L = x× (−i∇) . (1.45)

For a scalar field the current has the explicit form

mµ,αβ = −i ∂µΦLαβΦ+ (xαgµβ − xβgµα)L . (1.46)
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� Internal symmetries (δxν = 0): in that case only the first term in Eq. (1.40)
contributes. An example is the U(1) current of a complex scalar field that we
will discuss in Eq. (2.44). The Lagrangian is invariant under the transformation
Φ′ = eiεΦ, Φ′∗ = e−iεΦ∗, with ε a real constant, and the corresponding current is

jµ = i(Φ∗ ∂µΦ− ∂µΦ∗Φ) = iΦ∗
↔
∂µΦ , ∂µ j

µ = 0 . (1.47)

Noether charges. There is another important consequence of current conservation.
After inserting the equations of motion into Eq. (1.38), we can exploit Gauss’ law to
convert the remaining volume integral into a surface integral:

0 =

∫
V

d4x ∂µ j
µ
a =

∫
∂V

dσµ j
µ
a . (1.48)

Specifically, if we squeeze the spacetime volume between two hypersurfaces at fixed
times, dσµ = (d3x,0), and assume that the fields vanish sufficiently fast for |x| → ∞,
we conclude that there is a conserved charge that has the same value for all times:∫

d3x j0a

∣∣∣
t2
−
∫
d3x j0a

∣∣∣
t1
= 0 ⇒ Qa :=

∫
d3x j0a(x) = const ∀ t . (1.49)

The relative sign comes from the fact that the normal vectors for the planes at fixed
times always point outwards of the volume. In fact, this relation holds for arbitrary
spacelike hypersurfaces, so the charge Qa has the same value for all spacelike surfaces.

As an example, let’s consider again a scalar field under translations. The conserved
current is Tµν , and therefore the conserved charges are the spatial integrals

∫
d3xT 0ν .

They coincide with the Hamiltonian H and the total momentum P of the system,
which are conserved:

H =

∫
d3xT 00 =

∫
d3x (Π Φ̇− L) =

∫
d3xH ,

P i =

∫
d3xT 0i =

∫
d3xΠ ∂iΦ = −

∫
d3xΠ∇iΦ .

(1.50)

Taken together with the Lorentz transformations, the conserved charges are the quan-
tities

Pα =

∫
d3xT 0α , Mαβ =

∫
d3xm0,αβ . (1.51)

For example, in the case of rotations the conserved charge is

J i = −1
2 εijkM

jk = −1
2 εijk

∫
d3xm0,jk (1.45)

= i
2 εijk

∫
d3xΠLjk Φ , (1.52)

which is the total angular momentum of the field:

J = −i
∫
d3xΠLΦ . (1.53)
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Another example is the conserved charge for the U(1) current in Eq. (1.47):

Q = i

∫
d3xΦ∗

↔
∂0Φ . (1.54)

This is just our earlier construction of the ‘norm’ for Klein-Gordon solutions; it is
indeed Lorentz-invariant because it has the same value on each spacelike hypersurface.

The Noether charges will play a prominent role in the quantum field theory. After
quantizing the fields by imposing commutator relations, the charges inherit the operator
structure of the fields and form a representation of the Lie algebra of the symmetry
group on the Fock space. That is, if the group elements of the symmetry transformation
in Eq. (1.28) can be written as

D = e
i
∑
a
εaGa

with [Ga, Gb] = ifabcGc , (1.55)

with some generic structure constants fabc, then the charges will satisfy the same Lie-
algebra relation as the generators:

[Qa, Qb] = ifabcQc , (1.56)

and thereby provide a representation of the symmetry group on the state space. This
is also true for the Poincaré group (which is also a Lie group): after quantization, the
operators Mµν and Pµ in Eq. (1.51) satisfy the commutator relations of the Poincaré
algebra and thereby form a unitary representation of the Poincaré group on the state
space.
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2 Quantization of the scalar field

Commutator relations. The strategy to quantize a classical field theory is to inter-
pret the fields Φ(x) and Π(x) = Φ̇(x) as operators which satisfy canonical commutation
relations. This is completely analogous to the transition from classical to quantum me-
chanics for discrete systems, where qi and pi are promoted to self-adjoint operators
that satisfy

[qi, pj ] = iδij , [qi, qj ] = [pi, pj ] = 0 . (2.1)

These relations hold in the Schrödinger picture where the time dependence is carried
by the states alone; in the Heisenberg picture the operators are time-dependent and
the commutation relations are imposed at equal times. In the following we will always
work in the Heisenberg picture, so we demand that for equal times[

Φ(x),Π(y)
]
x0=y0

= iδ(3)(x− y) ,[
Φ(x),Φ(y)

]
x0=y0

=
[
Π(x),Π(y)

]
x0=y0

= 0 .
(2.2)

Despite appearances, this does not destroy Lorentz covariance because x and y are
separated by a spacelike distance (x − y)2 < 0 which is preserved under a Lorentz
transformation. By virtue of the Dirac delta function, Φ(x) and Π(x) are now operator-
valued distributions; to arrive at well-defined expressions one should in principle ‘smear’
them with smooth test functions.

The wave functions in quantum mechanics are also fields Φ(x) that satisfy (relativistic or non-
relativistic) wave equations, but there they are interpreted as single-particle wave functions in some
Hilbert space by imposing an appropriate scalar product. (Unfortunately, already for relativistic Klein-
Gordon particles the scalar product is not positive definite, so we lost the probability interpretation).
In quantum field theory we impose instead an operator structure on Φ(x), which is why the procedure
is often called ‘second quantization’. Since we really only quantize the field Φ(x) once, the correct term
should be ‘field quantization’.

Fourier expansion. We write the Fourier expansion for solutions of the free Klein-
Gordon equation as

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
a(p) e−ipx + a†(p) eipx

) ∣∣∣
p0=Ep

, (2.3)

so the Fourier coefficients (from now on we abbreviate a(p) ≡ ap) will inherit the oper-
ator structure. In the following we will often encounter the Lorentz-invariant integral
measure

∫
d3p/(2Ep) that is obtained by restricting the four-momentum integration to

the positive-energy mass shell (which is a Lorentz-invariant condition):∫
d4pΘ(p0) δ(p2 −m2) =

∫
d4pΘ(p0)

δ(p0 − Ep) + δ(p0 + Ep)

2Ep
=

∫
d3p

2Ep
. (2.4)

Consequently, also the combination 2Ep δ
3(p−p′) is Lorentz-invariant. Upon inserting

the Fourier expansion into Eq. (2.2) we obtain the commutation relations for ap, a
†
p′ :

[ap, a
†
p′ ] = 2Ep δ

(3)(p− p′) , [ap, ap′ ] = [a†p, a
†
p′ ] = 0 . (2.5)
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This can be shown in several ways. For example, let’s write

Φ(x) =
1

(2π)3/2

∫
d3p

(
ap e

−iEpt + a†−pe
iEpt

2Ep

)
eip·x ,

Π(x) = ϕ̇(x) =
1

(2π)3/2

∫
d3p

(
ap e

−iEpt − a†−pe
iEpt

2i

)
eip·x ,

(2.6)

and abbreviate the two brackets (the three-dimensional Fourier transforms) by

Φ̃p(t) =
1

2Ep

(
ap(t) + a†−p(t)

)
, Π̃p(t) =

1

2i

(
ap(t)− a†−p(t)

)
. (2.7)

It follows that

Φ̃†
p(t) = Φ̃−p(t) ,

Π̃†
p(t) = Π̃−p(t) ,

ap(t) = Ep Φ̃p(t) + i Π̃p(t) ,

a†p(t) = Ep Φ̃
†
p(t)− i Π̃†

p(t) .
(2.8)

Now insert this into the commutator:[
Φ(x), π(y)

]
x0=y0

=

∫
d3p d3p′

(2π)3
ei(p·x−p′·y) [ Φ̃p(t), Π̃†

p′(t)
] !
= iδ(3)(x− y) . (2.9)

Here we have changed the integration variable from p → −p and used Π̃−p(t) = Π̃†
p(t). Hence, the

commutator for the Fourier transformed quantities must be also a δ−function (the time dependence
cancels), [

Φ̃p(t), Π̃
†
p′(t)

]
= iδ(3)(p− p′) , (2.10)

and we can extract the commutator relation for ap and a†p′ :

[ap, a
†
p′ ] = [ap(t), a

†
p′(t)] = −iEp

[
Φ̃p(t), Π̃

†
p′(t)

]
+ iEp

[
Φ̃′
p(t), Π̃

†
p′(t)

]†
= 2Ep δ

(3)(p− p′) . (2.11)

Another way to arrive at this result is to use Eq. (1.27) for the Fourier coefficients and calculate the
commutator directly:

ap = ⟨fp,Φ⟩ = i

∫
d3x f∗

p (x)
↔
∂0 Φ(x)

∣∣
x0=t

, a†p = −⟨f†
p ,Φ⟩ = −i

∫
d3x fp(x)

↔
∂0 Φ(x)

∣∣
x0=t

. (2.12)

For equal times x0 = y0 = t we can insert the commutator relations (2.2), so that

[ap, a
†
p′ ] =

∫
d3x

∫
d3y f∗

p (x) fp′(y)

↔
∂

∂x0

↔
∂

∂y0
[
Φ(x),Φ(y)

] ...
=

=

∫
d3x

∫
d3x

[
f∗
p (x) ḟp′(y)− ḟ∗

p (x) fp′(y)
]
iδ3(x− y)

= i

∫
d3x f∗

p (x)
↔
∂0 fp′(x) = ⟨fp, fp′⟩ = 2Ep δ

3(p− q) .

(2.13)

Hamilton and momentum operator. To proceed, we derive the Fourier decomposi-
tion for the Hamiltonian (1.15) of the free scalar field theory. The form of the Hamilto-
nian already resembles that of a collection of harmonic oscillators at each point x, but
the term (∇Φ)2 couples the degrees of freedom at x and x+ δx. We can diagonalize
it in momentum space by inserting the relations (2.6–2.7); in that way it becomes the
sum of decoupled harmonic oscillators with frequencies Ep:

H =

∫
d3x

1

2

[
Π2 + (∇Φ)2 +m2Φ2

]
=

∫
d3p

1

2

[
Π̃†p(t) Π̃p(t) + E2

p Φ̃
†
p(t) Φ̃p(t)

]
. (2.14)

To arrive at this result, use∫
d3x (∇Φ)2 =

∫
d3x

∫
d3p d3p′

(2π)3
Φ̃p(t) Φ̃p′(t) (−p · p′) ei(p+p′)·x

=

∫
d3p Φ̃p(t) Φ̃−p(t)p

2 =

∫
d3p Φ̃†

p(t) Φ̃p(t)p
2

(2.15)
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and similarly ∫
d3xΦ2 =

∫
d3p Φ̃†

p(t) Φ̃p(t) ,

∫
d3xΠ2 =

∫
d3p Π̃†

p(t) Π̃p(t) . (2.16)

Inserting the decomposition (2.7) finally yields the result

H =

∫
d3p

2Ep
Ep

a†p ap + ap a
†
p

2
. (2.17)

Unfortunately this expression is divergent because it contains the sum of the zero-point
energy of all oscillators:

a†p ap + ap a
†
p

2
= a†p ap +

1

2
[ap, a

†
p] = a†p ap + Ep δ

3(0) . (2.18)

The Dirac delta is proportional to the volume; had we studied the system in a finite
box, we would write (2π)3 δ3(0) → V . (This is an infrared divergence.) However,
for large p we have Ep ∼

√
p2 +m2 ≃ |p| and the integral still diverges. If we regulate

the divergence by integrating only up to a cutoff |p| ≤ Λ, the energy density of the
vacuum becomes

ρvac =
Evac

V
=

1

2

∫
d3p

(2π)3
Ep ∼

Λ∫
dp p3 ∼ Λ4 . (2.19)

This is a first example of an ultraviolet divergence which we will frequently encounter
later. Since (in a theory without gravity) we can only measure energy differences, we
can simply discard it so that the vacuum energy is zero. This is formally called normal
ordering or Wick ordering : we obtain the normal-ordered form :O : of some operator O
by moving all creation operators to the left of all destruction operators. Later when we
discuss renormalization we will see how UV divergences can be systematically removed
from the theory; for the time being we interpret all operators as being normal-ordered.
Hence, the Hamilton operator becomes

H =

∫
d3x

1

2
:
[
Π2 + (∇Φ)2 +m2Φ2

]
: =

∫
d3p

2Ep
Ep a

†
p ap . (2.20)

We can repeat the procedure to obtain the spatial momentum operator P . We
identify it with the classical charge P i =

∫
d3xT 0i in Eq. (1.50) that follows from the

invariance under spatial translations. The analogous calculation gives

P = −
∫
d3x :Π∇Φ:= i

∫
d3pp : Π̃p(t) Φ̃

†
p(t) : =

∫
d3p

2Ep
p a†p ap , (2.21)

so that we can combine Eqs. (2.20) and (2.21) into the covariant four-momentum
operator

Pµ =

∫
d3x :T 0µ : =

∫
d3p

2Ep
pµ a†p ap

∣∣∣
p0=Ep

. (2.22)
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Fock space. What is the Hilbert space on which the four-momentum operator acts?
Since Pµ is self-adjoint it has eigenstates with real eigenvalues. Let |k⟩ be such an
eigenstate with Pµ |k⟩ = kµ |k⟩, so that k is the momentum of the state and k0 = Ek
its energy. First we observe that the energy (and therefore H itself) is non-negative:

⟨λ|H|λ⟩ =
∫
d3p

2Ep
Ep ⟨λ| a†p ap |λ⟩ ≥ 0 , (2.23)

because the integrand is ||ap |λ⟩||2. On the other hand, we can calculate the commuta-
tors

[Pµ, a†q] = qµa†q , [Pµ, aq] = −qµaq (2.24)

and use them to show that if |k⟩ is an eigenstate of Pµ, then also a†q |k⟩ and aq |k⟩ are
eigenstates of Pµ with their eigenvalues shifted by the momentum ±qµ:

Pµ
(
a†q |k⟩

)
= a†q (P

µ + qµ) |k⟩ = (k + q)µ a†q |k⟩ ,

Pµ
(
aq |k⟩

)
= aq (P

µ − qµ) |k⟩ = (k − q)µ aq |k⟩ ,
(2.25)

which at the same time shifts the energy of the state. Hence we can interpret a†q, aq as
ladder operators. Since the total energy cannot be smaller than zero, there must be a
state with aq |0⟩ = 0 ∀ q, because otherwise the successive action of aq would lead to
negative eigenvalues of H.

We call |0⟩ the vacuum of the theory. It has four-momentum zero: Pµ |0⟩ = 0, and

we normalize it to ⟨0|0⟩ = 1. The state a†k |0⟩ then has four-momentum kµ = (Ek,k):

Pµa†k |0⟩ = kµa†k |0⟩ . (2.26)

Since Ek =
√
k2 +m2 is the relativistic dispersion relation for a single particle with

massm, we interpret |k⟩ = a†k |0⟩ as a one-particle state with energy Ek and momentum
k. Its normalization is

⟨k|k′⟩ = ⟨0| ak a†k′ |0⟩ = ⟨0| a
†
k′ ak + 2Ek δ

3(k − k′) |0⟩ = 2Ek δ
3(k − k′) (2.27)

which, in turn, leads to the Lorentz-invariant completeness relation on the one-particle
Hilbert space:

11-particle =

∫
d3k

2Ek
|k⟩⟨k| . (2.28)

Similarly, for a two-particle state we obtain

Pµa†q a
†
k |0⟩ = (qµ + kµ) a†q a

†
k |0⟩ (2.29)

and so on. A generic N−particle state has the form |k1 . . . kN ⟩ = a†k1 . . . a
†
kN
|0⟩, and

the eigenvalue of the momentum operator is the total momentum of the system:

Pµ |k1 . . . kN ⟩ = (kµ1 + · · ·+ kµN ) |k1 . . . kN ⟩ . (2.30)

The resulting Fock space is the direct sum of all N−particle Hilbert spaces (N ∈ N0).
From the fact that the creation operators commute between themselves we also see that
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these multiparticle states are symmetric under the exchange of any two particles, so
they obey Bose–Einstein statistics. This is an example of the spin-statistics theorem,
which states that particles with integer spin are bosons and particles with half-integer
spin are fermions.

Generally, a multiparticle state that contains K different momenta ki, i = 1 . . .K, with n(ki)
particles carrying momentum ki and

∑K
i=1 n(ki) particles in total, can be written as

|n(k1)n(k2) . . . n(kK)⟩ =
K∏
i=1

(
a†ki
)n(ki)√
n(ki)!

|0⟩ , (2.31)

where the denominator takes care of multiplicities in the same momentum. We can count the total
number of particles in such a state with the number operator

N =

∫
d3p

2Ep
a†p ap . (2.32)

The eigenvalues of the operators N and Pµ are the total number of particles and the total four-
momentum, respectively:

N →
K∑
i=1

n(ki) , Pµ →
K∑
i=1

n(ki) k
µ
i . (2.33)

This can be easily proven for K = 1, i.e., for a state |n(k)⟩ that consists of n(k) identical particles
with momentum k: simply commute ap in Eqs. (2.22) and (2.32) to the right until it annihilates on
the vacuum. The eigenvalue of N is n(k) and the total momentum is n(k) kµ, and therefore the total
energy n(k)Ek is the sum of the energies of all particles.

We can now also better understand the meaning of the field Φ(x). Written in Fourier
modes (2.3) and acting on the vacuum, it creates a particle at the position x:

Φ(x)|0⟩ = 1

(2π)3/2

∫
d3p

2Ep
eipx|p⟩

∣∣∣
p0=Ep

= |x⟩ , (2.34)

and with the normalization (2.27) we can write the one-particle ‘wave function’ as the
overlap

⟨x|p⟩ = ⟨0|Φ(x)|p⟩ = 1

(2π)3/2
e−ipx

∣∣∣
p0=Ep

. (2.35)

In that way the fundamental entities in quantum field theory are not the particles but
rather the field Φ(x) which penetrates spacetime. Although it is not measurable by
itself, we can interpret it as the ‘property of spacetime’ to create particles of momentum
p and energy Ep as its excitations.

Complex scalar field and antiparticles. Let’s generalize the formalism to complex
scalar fields Φ(x) and Φ†(x), because this will allow us to describe not only particles
but also their antiparticles. The Lagrangian has the form

L = ∂µΦ
† ∂µΦ−m2Φ†Φ , (2.36)

the conjugate momenta become

Π(x) =
∂L

∂Φ̇(x)
= Φ̇†(x) , Π†(x) =

∂L
∂Φ̇†(x)

= Φ̇(x) (2.37)
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and the Hamiltonian is

H =

∫
d3x

(
Π†Φ̇† +ΠΦ̇− L

)
=

∫
d3x

(
Π†Π+∇Φ†∇Φ+m2Φ†Φ

)
. (2.38)

The commutator relations are[
Φ(x),Π(y)

]
x0=y0

=
[
Φ†(x),Π†(y)

]
x0=y0

= iδ3(x− y) (2.39)

whereas all other commutators vanish. The Fourier expansion has now the form

Φ(x) =
1

(2π)3/2

∫
d3p

2Ep

(
ap e

−ipx + b†p e
ipx
) ∣∣∣

p0=Ep
,

Φ†(x) =
1

(2π)3/2

∫
d3p

2Ep

(
bp e
−ipx + a†p e

ipx
) ∣∣∣

p0=Ep

(2.40)

with independent operators ap and bp whose commutation relations become

[ap, a
†
p′ ] = [bp, b

†
p′ ] = 2Ep δ

3(p− p′), (2.41)

with all others zero. The mode expansion of the four-momentum operator is

Pµ =

∫
d3p

2Ep
pµ
(
a†p ap + b†p bp

)
(2.42)

and implies that there are now two types of particles, with two types of momentum
eigenstates a†p |0⟩ and b†p |0⟩ which have the same momentum p, energy Ep =

√
p2 +m2

and mass m. Since they are scalar particles they also have both spin zero. So what
distinguishes them?

There is a new property that is particular to the Lagrangian for a complex scalar
field: is invariant under the continuous global U(1) symmetry

Φ′(x) = eiεΦ(x) , Φ′
†
(x) = e−iεΦ†(x) , (2.43)

with ε ∈ R constant. According to Noether’s theorem there is now a conserved current

jµ = i : (Φ† ∂µΦ− ∂µΦ†Φ): (2.44)

whose corresponding charge is

Q =

∫
d3x j0 = i

∫
d3x : (Φ†Φ̇− Φ̇†Φ): =

∫
d3p

2Ep

(
a†p ap − b†p bp

)
. (2.45)

Comparing this with Eq. (2.32), we see that the U(1) charge describes the total number

of particles created by a†p minus that created by b†p, which is conserved. For example,
its eigenvalues for one-particle states are

Qa†p |0⟩ = a†p |0⟩ , Q b†p |0⟩ = −b†p |0⟩ . (2.46)

We will call them particles and antiparticles; for the real field the particle is its own
antiparticle. Now we can also interpret the negative-energy solutions of the Klein-
Gordon equation: via Eq. (2.40) the coefficient of the positive-energy solution e−ipx
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becomes the annihilation operator of a particle and that of eipx the creation operator
of its antiparticle. In the context of QED we will later find that the U(1) Noether charge
indeed corresponds to the electric charge, i.e., the coupling to the electromagnetic field.

Poincaré algebra. In our discussion of the Poincaré group we saw that Poincaré
transformations have the form

x′ = T (Λ, a)x = Λx+ a ⇔ δxµ = εµνxν + aµ . (2.47)

The group axioms are satisfied: the transformation is associative, (T T ′)T ′′ = T (T ′ T ′′), the unit
element is T (1, 0), two consecutive Poincaré transformations form another one: T (Λ′, a′)T (Λ, a) =
T (Λ′Λ, a′ +Λ′a), and from equating this with T (1, 0) we can read off the inverse element: T−1(Λ, a) =
T (Λ−1,−Λ−1a).

Consider now the representations U(Λ, a) of the Poincaré group on some vector
space. They inherit the group structure from the T (Λ, a), and we use the symbol U
although they are not necessarily unitary. The Poincaré group ISO(3, 1)↑ is a Lie group
and therefore its elements can be written as

U(Λ, a) = e
i
2
εµνMµν

eiaµP
µ
= 1 + i

2 εµνM
µν + iaµP

µ + . . . , (2.48)

with infinitesimal generators Mµν for Lorentz transformations and Pµ for translations.
Their explicit form depends on the representation, i.e., it is determined by the vector
space on which they act. Since εµν is totally antisymmetric, Mµν can also be chosen
antisymmetric. It contains the six generators of the Lorentz group, whereas the mo-
mentum operator Pµ is the generator of spacetime translations. Mµν and Pµ form a
Lie algebra (the Poincaré algebra) whose commutator relations are given by

i
[
Mµν ,Mρσ

]
= gµσMνρ + gνρMµσ − gµρMνσ − gνσMµρ , (2.49)

i
[
Pµ,Mρσ

]
= gµρP σ − gµσP ρ, (2.50)

[Pµ, P ν ] = 0 . (2.51)

These relations can be derived from
(Ex)

U(Λ, a)U(Λ′, a′)U−1(Λ, a) = U(ΛΛ′Λ−1, a+ Λa′ − ΛΛ′Λ−1a) , (2.52)

which follows from the composition rules for the T (Λ, a): insert infinitesimal transformations (2.48) for
each U(Λ = 1 + ε, a), with U−1(Λ, a) = U(1 − ε,−a), keep only linear terms in all group parameters
ε, ε′, a and a′, and compare coefficients of the terms ∼ εε′, aε′, εa′ and aa′. A shortcut to arrive at
the Lorentz algebra relation (2.49) is to calculate the generator Mµν directly in the four-dimensional
representation, where U(Λ, 0) = Λ is the Lorentz transformation itself:

U(Λ, 0)αβ = δαβ + i
2
εµν (M

µν)αβ + · · · = Λαβ = δαβ + εαβ + . . . (2.53)

This is solved by the tensor
(Mµν)αβ = −i (gµα δνβ − gνα δµβ) (2.54)

which satisfies the commutator relation (2.49).

We can cast the Poincaré algebra relations in a less compact but more useful form.
The antisymmetric matrix εµν contains the six group parameters and the antisymmetric
matrix Mµν the six generators. If we define the generator of SO(3) rotations J (the
angular momentum) and the generator of boosts K via

M ij = −εijk Jk ⇔ J i = −1
2 εijkM

jk , M0i = Ki , (2.55)
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then the commutator relations take the form

[J i, J j ] = iεijk J
k,

[J i,Kj ] = iεijkK
k,

[Ki,Kj ] = −iεijk Jk,

[J i, P j ] = iεijk P
k,

[Ki, P j ] = iδij P0,

[Ki, P0] = iP i,

[P i, P j ] = 0,

[J i, P0] = 0,

[P i, P0] = 0 .

(2.56)

Here we see that boosts and rotations generally do not commute unless the boost and
rotation axes coincide. Moreover, P0 (which is the Hamilton operator in the quantum
field theory) commutes with rotations and spatial translations but not with boosts
and therefore the eigenvalues of K cannot be used for labeling physical states. If we
similarly define εij = −εijk ϕk and ε0i = si, we obtain

i
2 εµνM

µν = iϕ · J + is ·K . (2.57)

J is hermitian but K is antihermitian for all finite-dimensional representations, which
prevents them from being unitary: there are no finite-dimensional unitary represen-
tations of the Lorentz and Poincaré groups. This is a consequence of the fact that
the Lorentz group is not compact: it contains the boosts whose parameter space is
isomorphic to R3. Later will discuss explicit examples for K when considering spinor
representations.

Representation on the Fock space. How is the Poincaré group represented on the
Fock space? It is not an accident that we chose the same symbol Pµ for the generator
of translations and for the classical Noether charge in Eq. (1.51), which meanwhile has
also become the momentum operator in the quantum field theory. It turns out that,
after quantizing the theory, the classical constants of motion Pµ and Mµν become
self-adjoint operators on the Fock space which define a unitary representation of the
Poincaré group.2 This means they satisfy the same Poincaré algebra relations as in
Eqs. (2.49–2.51), which happens to be a consequence of the commutation relations for
the fields, and the corresponding operator U(Λ, a) is unitary.

In Eqs. (1.31–1.32) we have seen how classical fields behave under Poincaré trans-
formations. The general transformation behavior of a collection of field operators Φi(x)
under Poincaré transformations is imposed as an axiom of quantum field theory:

U(Λ, a) Φi(x)U(Λ, a)−1 = D(Λ)−1ij Φj(Λx+ a) . (2.58)

It ensures that matrix elements of field operators transform as

⟨λ′1|Φi(x′) |λ′2⟩ = ⟨λ1|U(Λ, a)−1Φi(x
′)U(Λ, a) |λ2⟩ !

= D(Λ)ij ⟨λ1|Φj(x) |λ2⟩ . (2.59)

This can be generalized to products of field operators at different spacetime points,
which gives the transformation behavior of correlation functions. We will discuss the
consequences of Eq. (2.58) in more detail later in the context of the Dirac field. For
the moment we restrict ourselves to a single scalar field where the equation reduces to

U(Λ, a) Φ(x)U(Λ, a)−1 = Φ(Λx+ a) . (2.60)

2Unitarity of U(Λ, a) has now become possible because the Fock space is infinite-dimensional.



2 Quantization of the scalar field 21

In particular, for translations U(1, a) = eiaµP
µ
it takes the form

eiaµP
µ
Φ(x) e−iaµP

µ
= Φ(x+ a) . (2.61)

Expanding both sides of the equation to O(a) we obtain

Φ(x) + iaµ [P
µ,Φ(x)] + · · · = Φ(x) + aµ∂

µΦ(x) + . . . (2.62)

from where we obtain the Heisenberg equations of motion:

∂µΦ(x) = i[Pµ,Φ(x)] . (2.63)

Since they follow from translation invariance they are quite general: they do not only
hold for scalar fields but also for polynomials in Φ, and more generally also for the
individual components of fields with higher spin because each component behaves like
a scalar field under translations. In particular, we can read off the Heisenberg equation
for the time evolution which is known from quantum mechanics:

∂Φ(x)

∂t
= i[H,Φ(x)] . (2.64)

From the Heisenberg equations for Φ(x) and Π(x) one can further recover the Klein-
Gordon equation for the field Φ(x).

The analogue of Eq. (2.61) derived from Lorentz invariance has the form

e
i
2 εµνM

µν

Φ(x) e−
i
2 εµνM

µν

= Φ(Λx) , (2.65)

with Λ = 1 + ε+ . . . . Expanding both sides to O(ε) and exploiting the antisymmetry
of εµν yields the equation

i(xµ∂ν − xν∂µ) Φ(x) = [Mµν ,Φ(x)] . (2.66)

Causality. The basic postulate of quantum field theory is that two measurements at
spacelike distances should not affect each other. This is guaranteed if any two local
observables O1(x) and O2(y) at spacelike separation commute, i.e.,

[O1(x),O2(y)]
!
= 0 if (x− y)2 < 0 . (2.67)

To this end, consider the commutator of two fields at arbitrary times:

∆(x− y) := [Φ(x),Φ(y)] . (2.68)

This quantity is known by various names: Pauli-Jordan function, Schwinger’s ∆ func-
tion, or simply causal propagator. If we insert the Fourier decomposition (2.3) for free
fields, use the commutator relation (2.5) and set z = x− y, we immediately get

∆(z) =
1

(2π)3

∫
d3p

2Ep
(e−ipz − eipz)

∣∣∣
p0=Ep

. (2.69)
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Now observe this: for z0 = 0, ∆(z) vanishes because in that case we can change the
integration variable from p→ −p and the difference cancels. On the other hand, ∆(z)
is Lorentz-invariant because both e±ipz and the integral measure d3p/(2Ep) are Lorentz-
invariant. A Lorentz-invariant quantity that vanishes for z0 = 0 must vanish for all
spacelike z with z2 < 0, because they can all be reached by a Lorentz transformation.
Hence, ∆(z) has only support inside the light cone (z2 ≥ 0).

In an interacting quantum field theory we cannot use a free mode expansion anymore
to calculate ∆(z). In that case we also have to postulate microcausality as an axiom:

[Φ(x),Φ(y)] = 0 if (x− y)2 < 0 . (2.70)

This also generalizes our earlier commutation relations (2.2) because they can be de-
rived from it: ∂0∆(z)

∣∣
z0=0

= −iδ3(z). Of course Φ(x) is not a measurable quantity but
actual observables like currents, charges etc. are functions of the fields and therefore
inherit its causal properties.

Propagators. Consider now the quantity

D(x− y) := ⟨0|Φ(x) Φ(y) |0⟩ . (2.71)

Since Φ(x) |0⟩ = |x⟩, this is the amplitude ⟨x|y⟩ for a particle that is emitted at y and
propagates to x. Its analogue in nonrelativistic quantum mechanics is the amplitude
⟨x| e−iHt |y⟩, which is nonzero even if x−y is spacelike (hence the problem with causality
in quantum mechanics).3 If we insert the Fourier decomposition (2.3) into D(x − y)
then, because we act on the vacuum on both sides, the only term that survives is
⟨0| ap a†p′ |0⟩ = ⟨p|p′⟩ = 2Ep δ

3(p− p′) and we arrive at

D(z) =
1

(2π)3

∫
d3p

2Ep
e−ipz

∣∣∣
p0=Ep

. (2.72)

This expression is again Lorentz-invariant but nonzero for z0 = 0, so it is generally also
nonzero for spacelike distances z2 < 0. How is this compatible with causality? The
crucial observation is that the commutator

[Φ(x),Φ(y)] = D(x− y)−D(y − x) (2.73)

describes two physical processes (propagation from y → x and x→ y) whose amplitudes
cancel each other for (x − y)2 < 0. This makes indeed sense because both processes
can occur: if x− y is spacelike, there is no Lorentz-invariant notion of whether x0− y0
is larger or smaller than zero.

We can understand this better if we consider a complex scalar field where the Fourier
decomposition of the field Φ(x) contains ap, b

†
p and Φ†(x) ∼ bp, a

†
p. In that case we

have to modify the axiom (2.70) so that it becomes

∆(x− y) = [Φ(x),Φ†(y)] = 0 if (x− y)2 < 0 , (2.74)

3We do not need to insert the time-evolution operator in D(x − y) because |x⟩ already contains
information about the time variable x0.
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whereas [Φ(x),Φ(y)] = 0 ∀x, y. The result for ∆(z) in Eq. (2.69) remains the same,
but now we have

[Φ(x),Φ†(y)] = ⟨0|Φ(x)Φ†(y) |0⟩ − ⟨0|Φ†(y)Φ(x) |0⟩ . (2.75)

The first term corresponds to a particle that travels from y → x and the second term
to an antiparticle travelling from x → y, and both processes cancel each other in the
commutator. Therefore, it is really the multiparticle nature of quantum field theory
that saves causality: the particle and antiparticle propagation cancel each other. (For
a real scalar field Φ(x) = Φ†(x) the particle is its own antiparticle.)

Feynman propagator. Taking this idea further, we define the Feynman propagator

DF (x− y) := ⟨0|TΦ(x)Φ†(y) |0⟩ =
{
⟨0|Φ(x)Φ†(y) |0⟩ if x0 ≥ y0 ,
⟨0|Φ†(y)Φ(x) |0⟩ if y0 ≥ x0 ,

(2.76)

where the time-ordering T of some product of field operators implies that they should
be ordered with increasing times from right to left. The Feynman propagator will
become extremely important later because it is the fundamental quantity that appears
in the Feynman rules for S−matrix elements. It describes the propagation of a particle
forward in time, but simultaneously also the propagation of an antiparticle ‘backward
in time’; hence, these two processes are physically the same.

The various propagators that we encountered are also called Green’s functions
because they are the Green functions of the Klein-Gordon equation:

(2+m2) iD(z) = δ4(z) . (2.77)

We can find the general solution to this equation by taking the Fourier transform of
both sides:

D(z) =
1

(2π)4

∫
d4p D̃(p) e−ipz , δ4(z) =

1

(2π)4

∫
d4p e−ipz , (2.78)

so that the propagator in momentum space becomes

D̃(p) =
i

p2 −m2
. (2.79)

It has a pole on the real axis of p2 = m2 or, equivalently, two poles at positive and
negative energies p0 = ±Ep = ±

√
p2 +m2. The strategy in order to return the

propagator to real space is to carry out the p0 integration first:

D(z) = i

∫
d3p

(2π)4
eip·z

∫
dp0

e−ip0z0

p20 − E2
p

. (2.80)

The integral can be calculated by extending the real-axis integration to a closed contour
in the complex p0 plane, which is allowed as long as the integrand vanishes at complex
infinity. For z0 > 0 this holds as long as we close the contour in the lower half plane,
whereas for z0 < 0 the integrand at infinity only vanishes if we close it in the upper
half plane. Any consistent prescription to avoid divergences in performing this contour
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Figure 2.1: Various integration contours in the complex p0 plane (top row) and support of
the resulting propagators in the Minkowski diagram (z0, |z|) (bottom row).

integral (there are 2 × 2 different ways of doing so) leads to a solution of the original
equation (2.77). By the residue theorem∮

dz f(z) = 2πi
∑
n

R(zn) , R(z0) = lim
z→z0

(z − z0)f(z) (2.81)

the result is (2πi) times the sum of the residues at p0 = ±Ep, which are given by

R+ =
e−iEpz0

2Ep
, R− = −e

iEpz0

2Ep
. (2.82)

To arrive at the Feynman propagator, we must integrate slightly below and above
the p0 axis for Re p0 < 0 and Re p0 > 0, respectively (see Fig. 2.1). For z0 > 0, we
close the contour in the lower half plane (because the integral at infinity vanishes only
below) and pick up the positive energy pole. For z0 < 0, we close the contour in the
upper half plane and pick up the negative energy pole, so the p0 integral becomes∫

dp0
e−ip0z0

p20 − E2
p

= 2πi [−Θ(z0)R+ +Θ(−z0)R−] , (2.83)

where the positive residue comes with a minus because of the opposite integration
direction. In total, the Feynman propagator ‘propagates positive energies forward in
time and negative energies backwards’:

DF (z) =

∫
d3p

(2π)4
eip·z i (2πi) [−Θ(z0)R+ +Θ(−z0)R−]

=

∫
d3p

2Ep

Θ(z0) e
−ipz +Θ(−z0) eipz

(2π)3

∣∣∣
p0=Ep

(2.72)
= Θ(z0)D(z) + Θ(−z0)D(−z) ,

(2.84)
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and we see that this is indeed the definition of the Feynman propagator in Eq. (2.76).
Note that instead of deforming the integration path in p0 we could have equally shifted
the poles by ±Ep → ±E′p = ±(Ep − iϵ/(2Ep)), as indicated in Fig. 2.1:

1

p20 − E2
p

→ 1

p20 − E′p2
=

1

p20 − E2
p + iϵ

=
1

p2 −m2 + iϵ
, (2.85)

so we can equivalently write the Feynman propagator as

DF (z) =

∫
d4p

(2π)4
e−ipz

i

p2 −m2 + iϵ
. (2.86)

Later we will see that this ‘iϵ prescription’ follows from the imaginary-time boundary
conditions when projecting Green functions onto the interacting vacuum, which is why
it is really the Feynman propagator that appears in the interacting quantum field
theory (and not any of the other options in performing the contour integral).

Retarded and advanced propagators. For completeness we discuss two other
physically relevant integration paths. One is to integrate slightly above both poles and
the other is to integrate slightly below them (see Fig. 2.1). In the first case, for z0 > 0
we must close the contour in the lower half plane (which gives the sum of the residues)
and for z0 < 0 in the upper half plane (which gives zero); the situation is reversed in
the second case. The resulting propagators are the retarded and advanced propagators:

DR,A(z) = ∓
∫

d3p

(2π)4
eip·z i (2πi)Θ(±z0) (R+ +R−)

= ±Θ(±z0)
∫

d3p

2Ep

e−ipz − eipz
(2π)3

∣∣∣
p0=Ep

= ±Θ(±z0) (D(z)−D(−z)) = ±Θ(±z0)∆(z) .

(2.87)

The retarded propagator has only support in the forward light cone and the advanced
propagator in the backward light cone. They also appear in classical field theory in the
context of constructing solutions to the inhomogeneous Klein-Gordon equation, where
they propagate the inhomogeneity forward (DR) and backward (DA) in time. The
classical version of causality states that DR and DA vanish if (x−y)2 < 0, which we also
proved here. By contrast, the Feynman propagator DF has no classical counterpart.
It does not vanish for spacelike distances but rather falls off exponentially outside the
light cone.
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3 Dirac field

Earlier in Eqs. (1.31–1.32) we claimed that, under Poincaré transformations x′ = Λx+a,
a generic set of classical fields Φi(x) transforms as

Φ′i(x
′) = D(Λ)ij Φj(x) , (3.1)

and the quantum version of this relation for field operators was given in Eq. (2.58):

U(Λ, a) Φi(x)U(Λ, a)−1 = D(Λ)−1ij Φj(Λx+ a) . (3.2)

We have already worked out the structure of U(Λ, a) (at least a little bit): it contains
the generators Pµ of translations and Mµν of Lorentz transformations, which are now
understood as operators on the Fock space. For example, we established the momentum
operator for a free scalar theory in Eq. (2.22), and it is easy to show that it satisfies
indeed the Lie algebra relation [Pµ, P ν ] = 0.

Irreducible representations of the Lorentz group. The missing link in both cases
is the matrix D(Λ). Because it refers to the indices i and j in the equations above, it
classifies which types of fields can actually appear in a Lagrangian: scalar, Dirac, vector
fields etc. We will see that D(Λ) also provides the spin contribution to observables.
For scalar fields D(Λ) = 1 and so we could simply ignore it. In general, D(Λ) is a
finite-dimensional irreducible representation matrix of the Lorentz group, so it must
share the same structure with U(Λ, 0):

D(Λ) = e
i
2
εµνMµν

= eiϕ·J+is·K , M ij = −εijk Jk , M0i = Ki . (3.3)

That is, in an n-dimensional representation D(Λ), Mµν , J and K are n× n matrices.
Of course Mµν is not the same as the Fock-space operator that was just mentioned
before, but let’s keep the generic notation for the moment to avoid clutter. What do
these matrices look like? Can they have any dimensionality?

Let’s build a Lorentz tensor of rank n. It is defined by the transformation law

(T ′)µν...τ = Λµα Λ
ν
β . . .Λ

τ
λ︸ ︷︷ ︸

n times

Tαβ...λ , (3.4)

so we can always construct the representation matrices Λµα Λνβ · · · of the Lorentz
transformation as the outer product 4 ⊗ 4 ⊗ · · · of the 4-dimensional defining repre-
sentation Λ. However, these representations are not irreducible. Take for example the
4 × 4 tensor Tµν , which has in principle 16 components. Its trace, its antisymmetric
component, and its symmetric and traceless part,

S = Tαα, Aµν = 1
2 (T

µν − T νµ), Sµν = 1
2 (T

µν + T νµ)− 1
4 g

µν S, (3.5)

do not mix under Lorentz transformations: an (anti-) symmetric tensor is still (anti-)
symmetric after the transformation, and the trace S is Lorentz-invariant. The trace
is one-dimensional, the antisymmetric part defines a 6-dimensional subspace, and the
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Figure 3.1: Multiplets of the Lorentz group: tensor (shaded) vs. spinor representations.
The number of states in a multiplet gives the dimension of the representation.

symmetric and traceless part a 9-dimensional subspace. Therefore, we have the decom-
position 4 ⊗ 4 = 1 ⊕ 6 ⊕ 9, which means there must be at least representations with
dimensions 1, 4, 6 and 9. How many more are there?

There is a simple way to classify the irreducible representations of the Lorentz group.
If we define

A = 1
2 (J − iK), B = 1

2 (J + iK) (3.6)

and calculate their commutator relations using Eq. (2.56), we obtain two copies of an
SU(2) algebra with hermitian generators Ai and Bi:

[Ai, Aj ] = iεijk Ak , [Bi, Bj ] = iεijk Bk , [Ai, Bj ] = 0 . (3.7)

We are familiar with SU(2): the two Casimir operators A2 and B2 have eigenvalues
a (a+1) and b (b+1), hence there are two quantum numbers a, b = 0, 1

2 , 1, . . . to label
the multiplets. We denote the irreducible representations by Dab; their dimension must
be (2a+1)(2b+1). The generator of rotations is J = A+B, so we can use the SU(2)
angular momentum addition rules to construct the states within each multiplet: the
states come with all possible spins j = |a− b| . . . a+ b, where j3 goes from −j to j. The
multiplets are visualized in Fig. 3.1.

The ‘tensor representations’, where a+b is integer (the shaded multiplets in Fig. 3.1),
are the actual irreducible representations of the Lorentz group that can be constructed
via Eq. (3.4):

� Lorentz scalars transform under the trivial representation D00, where the gen-
erator is Mµν = 0 and the representation matrix is D(Λ) = 1.
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� A Lorentz vector transforms under the four-dimensional vector representation
D

1
2

1
2 . It plays a special role because the transformation matrix is D(Λ) = Λ

itself, and it can be used to construct all further (reducible) tensor representations
according to Eq. (3.4). The generator Mµν has the form of Eq. (2.54).

� A symmetric and traceless tensor Sµν transforms under the 9-dimensional
‘tensor’ representation D11.

� An antisymmetric tensor Aµν transforms under the six-dimensional antisym-
metric representation. If Aµν is real it is also irreducible; if it is complex (which
it is in Euclidean space) it can be further decomposed into a self-dual (D10) and
an anti-self-dual representation (D01), depending on the sign of the condition
Aµν = ± i

2 ε
µνρσAρσ.

These are the representations 1, 4, 6 and 9 that we anticipated above. However,
what is more interesting in view of Dirac fields are the spinor representations where
a + b is half-integer. They are not representations of the Lorentz group but rather
of the group SL(2, C), which is the set of complex 2 × 2 matrices with unit determi-
nant. Like the Lorentz group, it also depends on six real parameters and it has the
same Lie algebra. From the point of view of the Lorentz group, the spinor represen-
tations are merely projective representations, where instead of D(Λ′)D(Λ) = D(Λ′Λ)
one has D(Λ′)D(Λ) = ±D(Λ′Λ), so they are double-valued. However, both of them
are physically equivalent and therefore the representations in Fig. 3.1 are all relevant.

The origin of this behavior is the rotational subgroup SO(3) of the Lorentz group which is not
simply connected. The projective representations of a group correspond to the representations of its
universal covering group: it has the same Lie algebra, which reflects the property of the group close
to the identity, but it is simply connected. In the same way as SU(2) is the double cover of SO(3),
the double cover of SO(3, 1)↑ is the group SL(2,C). A double-valued projective representation of
SO(3, 1)↑ corresponds to a single-valued representation of SL(2,C). Similarly, the double cover of
the Euclidean Lorentz group SO(4) is SU(2) × SU(2); these are the representations that we actually
derived in Fig. 3.1.

The fundamental spinor representations are D
1
2
0 and D0 1

2 because all other ones can
be built from them. They have both dimension two and carry spin j = 1/2. Because one

of the Casimir eigenvalues a or b is zero, we say that they have definite chirality : D
1
2
0

is the left-handed and D0 1
2 the right-handed representation. We can immediately write

down 2× 2 matrices that satisfy the SU(2) Lie algebra, namely the Pauli matrices:[
σi

2
,
σj

2

]
= iεijk

σk

2
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
. (3.8)

Therefore the generators and transformation matrices are

D
1
2
0 :

D0 1
2 :

A = σ
2 , B = 0

A = 0 B = σ
2

⇒
J = σ

2 , K = iσ2

J = σ
2 , K = −iσ2

⇒
DL(Λ) = eiϕ·

σ
2
−s·σ

2 ,

DR(Λ) = eiϕ·
σ
2
+s·σ

2 .
(3.9)

The representation matrices DL,R(Λ) ∈ SL(2,C) are complex 2× 2 matrices, and the
corresponding spinors are left- and right-handed Weyl spinors ψL, ψR that transform
as

ψ′L(x
′) = DL(Λ)ψL(x) , ψ′R(x

′) = DR(Λ)ψR(x) . (3.10)
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We can check that these are only projective representations. Consider, for example, a
rotation by ϕ = 2π around the z−axis: the Lorentz transformation is Λ = 1, but the
representation matrices become DL,R(1) = eiπσ3 = cosπ + iσ3 sinπ = −1, and only a
rotation by 4π will bring them back to 1.

In principle, the Weyl representation would be sufficient to describe spin-12 fields.
However, the problem is that under a parity transformation the rotation generators
are invariant whereas the boost generators change their sign: J → J , K → −K.
Therefore, parity exchanges A↔ B in Eq. (3.6) and transforms the two fundamental
representations into each other. A theory that is invariant under parity (such as QED
and QCD, but not the weak interaction) must necessarily include both doublets, be-
cause we cannot write down a parity-invariant Lagrangian with ψL or ψR alone. In such
a combined Lagrangian the dynamics will couple ψL and ψR together. This is a conse-
quence of Eq. (3.9) because DL(Λ)

† = DR(Λ)
−1, and a Lorentz-invariant Lagrangian

will contain terms ∼ ψ†L ψR, ψ
†
R ψL that are separately Lorentz-invariant.

Instead of carrying around the left- and right-handed Weyl spinors, it is more con-
venient to combine them into Dirac spinors ψα with α = 1 . . . 4. They can be con-
structed as the direct sums of ψL and ψR, hence we denote the (reducible) Dirac

representation by D
1
2
0 ⊕D0 1

2 :

J =

(
σ/2 0
0 σ/2

)
=:

Σ

2
, K =

(
iσ/2 0
0 −iσ/2

)
, ψ =

(
ψL
ψR

)
. (3.11)

The resulting generator Mµν constructed via Eq. (3.3) is consequently a 4× 4 matrix
that satisfies again the Lorentz algebra relation (2.49). It leads to a four-dimensional
transformation matrix

D(Λ) = e
i
2
εµνMµν

= eiϕ·J+is·K (3.12)

which transforms the spinors as ψ′α(x
′) = D(Λ)αβ ψβ(x).

Clifford algebra. It is still desirable to have a manifestly covariant notation. This is
where the Clifford algebra comes in: it is the algebra spanned by the n × n matrices
γµ, with µ = 0 . . . 3, so that the anticommutator is

{γµ, γν} := γµγν + γνγµ = 2gµν 1n×n . (3.13)

This implies (γ0)2 = 1, (γi)2 = −1 and γµγν = −γνγµ for µ ̸= ν. The Clifford algebra
is quite useful because every representation of it induces a representation of the Lorentz
algebra via the definition

Mµν := − i
4
[γµ, γν ] . (3.14)

That is, by using the anticommutator relation (3.13) one can show that Mµν satisfies
(Ex)the Lorentz algebra relation (2.49). Consequently, for n = 4 there must be an explicit

form for the γ−matrices where Mµν reproduces Eq. (3.11); it is called the chiral or
Dirac representation:

γµ =

(
0 σµ

σµ 0

)
⇔ γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, (3.15)
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where we abbreviated σµ = (1, σi) and σµ = (1,−σi). We also define

γ5 = γ5 :=
i

4!
εµνρσ γ

µγνγργσ = iγ0γ1γ2γ3
chiral rep.

=

(
−1 0
0 1

)
, (3.16)

with the properties (γ5)
† = γ5, (γ5)

2 = 1 and {γµ, γ5} = 0. The totally antisymmetric
tensor εµνρσ is defined as

εµνρσ =


+1 if µνρσ is an even permutation of 0123

−1 if µνρσ is an odd permutation of 0123

0 otherwise.

 (3.17)

It switches sign if spatial indices are raised or lowered, which entails εµνρσ = −εµνρσ.
The matrix γ5 is useful for constructing the chiral projectors (1± γ5)/2 onto the Weyl
spinors:

1− γ5
2

ψ =

(
ψL
0

)
,

1 + γ5
2

ψ =

(
0
ψR

)
. (3.18)

The chiral representation is where the group structure is most transparent because the
generators J and K are the direct sums of the two-dimensional matrices. Expressed
in terms of gamma matrices they are given by Σ = γ5γ

0γ and K = − i
2γ

0γ, which
follows from Eqs. (3.3), (3.14) and (3.16). It is also practical for calculations in the
ultrarelativistic limit where masses can be neglected.

It follows from Eq. (3.13) that with every invertible matrix U also UγµU−1 is a
representation of the Clifford algebra, and Uψ is the spinor in the new representation.
For example, the standard representation

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1

1 0

)
(3.19)

is frequently used because it is convenient for calculations in the non-relativistic limit.
It emerges from the chiral representation through the matrix

U =
1√
2

(
1 1

−1 1

)
⇒ ψ =

1√
2

(
ψR + ψL
ψR − ψL

)
=:

(
ϕ
χ

)
. (3.20)

By multiplying the γ−matrices with each other one can form a complete system of
4× 4 matrices, which consists of 16 matrices Γ1 . . .Γ16:

1, γµ, σµν =
i

2
[γµ, γν ], γµγ5, γ5 . (3.21)

They are orthonormal with respect to the scalar product 1
4 Tr (Γ

†
i Γj) = δij and (except

for Γ1) traceless: Tr Γi = δi1. Therefore we can express any 4× 4 matrix by

A =

16∑
i=1

ci Γi , ci =
1

4
Tr (Γ†i A) . (3.22)
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Lorentz bilinears. How can we construct Lorentz invariants from a spinor ψ(x)? We
already know that under Lorentz transformations we have ψ′(x′) = D(Λ)ψ(x). Let’s
try the combination

ψ†(x)ψ(x) → ψ′
†
(x′)ψ′(x′) = ψ†(x)D(Λ)†D(Λ)ψ(x) (3.23)

For D(Λ)† = D(Λ)−1 this would be a Lorentz scalar. However, D(Λ) cannot be unitary
because it contains the boosts: J is hermitian butK is antihermitian, and consequently
Mµν cannot be hermitian:

M †µν =

(
− i
4
[γµ, γν ]

)†
= − i

4
[γµ†, γν†] ̸= − i

4
[γµ, γν ] . (3.24)

From the point of view of the Clifford algebra, it is impossible to make all γ−matrices
hermitian: since (γ0)2 = 1, γ0 has real eigenvalues, but (γi)2 = −1 and therefore the
eigenvalues of γi are imaginary. What we can write instead is

(γ0)† = γ0, (γi)† = −γi ⇒ (γµ)† = γ0γµγ0 (3.25)

and therefore also γ0M †µνγ0 = Mµν and γ0D(Λ)†γ0 = D(Λ)−1. This is why we define
the conjugate spinor

ψ := ψ†γ0 ⇒ ψ′(x′) = ψ†(x)D(Λ)†γ0 = ψ†(x) γ0D(Λ)−1 = ψ(x)D(Λ)−1 , (3.26)

because it makes the quantity ψψ invariant:

ψ′(x′)ψ′(x′) = ψ(x)D(Λ)−1D(Λ)ψ(x) = ψ(x)ψ(x) . (3.27)

Similarly, one can use the identity D(Λ)−1 γµD(Λ) = Λµνγν to show that ψγµψ trans-
(Ex)forms like a Lorentz vector:

ψ′(x′) γµψ′(x′) = ψ(x)D(Λ)−1γµD(Λ)ψ(x) = Λµν ψ(x) γ
νψ(x) . (3.28)

Moreover, when we contract a Lorentz vector with another one, we get a Lorentz scalar:

ψ′(x′) γµ ∂′µ ψ
′(x′) = ψ(x)D(Λ)−1γµ(Λ−1)νµ ∂ν D(Λ)ψ(x)

= (Λ−1)νµ Λ
µ
ρ ψ(x) γ

ρ ∂ν ψ(x)

= ψ(x) γν∂ν ψ(x) .

(3.29)

From now on we will use the Feynman slash notation /A = γµAµ for a generic four-
vector Aµ, so the last expression simply becomes ψ /∂ ψ. The definition also entails

/A
2
= A2. Note that only the combinations ψ /Aψ are Lorentz-invariant but not /A

itself. (Also, be careful with derivatives because /A = γµAµ = γ0A0 − γ ·A whereas
/∂ = γµ∂µ = γ0∂0 + γ ·∇.) Finally, one can show that the bilinears

ψ iγ5ψ, ψγµγ5ψ, ψσµνψ (3.30)

transform like a pseudoscalar, axialvector and tensor, respectively. We will discuss this
later in the context of discrete symmetries.
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Dirac Lagrangian. The simplest Lorentz scalars that we can build from ψ(x) and
ψ(x) and include non-trivial dynamics are ψ ψ and ψ /∂ ψ. Unlike in the scalar case,
we can construct a Lorentz-invariant action already with those two terms alone (which
contain only one derivative):

S =

∫
d4xL =

∫
d4xψ(x) (i/∂ −m)ψ(x) . (3.31)

The factor i is necessary to make L real, the dimension of the field is [ψ] = 3/2, and
m is a mass. Since ψ(x) is a complex field we treat ψ and ψ† (or equivalently ψ) as
independent when deriving the Euler-Lagrange equations of motion:

∂L
∂ψ

= (i/∂ −m)ψ ,
∂L

∂(∂µψ)
= 0 ⇒ (i/∂ −m)ψ = 0 . (3.32)

∂L
∂ψ

= −mψ , ∂L
∂(∂µψ)

= iψγµ ⇒ ψ (i
←
/∂ +m) = 0 , (3.33)

where
←
∂µ means that the derivative acts to the left instead of the right. When we take

the resulting Dirac equation (i/∂ −m)ψ = 0 and apply (i/∂ +m) from the left, we
obtain Klein-Gordon equations for each component of the Dirac field:

(i/∂ +m) (i/∂ −m)ψ = −(2+m2)ψ = 0 . (3.34)

However, since the Dirac equation is a first-order equation it provides a stronger con-
straint on ψ(x) than the KG equation, which is of second order.

Symmetries and currents. We can adapt the discussion of the Noether theorem to
spinor fields without any modifications. The Noether current of Eq. (1.40) takes the
form

−δjµ =
∂L

∂(∂µψα)
δψα +

∂L
∂(∂µψα)

δψα − Tµνδxν = iψ γµδψ − Tµνδxν , (3.35)

with the energy-momentum tensor of the Dirac field given by

Tµν =
∂L

∂(∂µψα)
∂νψα +

∂L
∂(∂µψα)

∂νψα − gµνL = iψ γµ∂νψ − gµνL . (3.36)

� Let’s start with translation invariance: each component of the Dirac field
behaves like a scalar under translations, ψ′α(x + a) = ψα(x) ⇔ δψα = 0 and
δxµ = aµ, and therefore the conserved current is the energy-momentum tensor
itself: ∂µT

µν = 0. This can be easily checked: L = 0 for solutions of the Dirac
equation, so the last term in Eq. (3.36) vanishes, and the derivative of the first
term also becomes zero when the Dirac equations are inserted. The conserved
charges are the Hamiltonian of the Dirac field and its total momentum:

H =

∫
d3xT 00 =

∫
d3xψ (iγ0∂0 − i/∂ +m)ψ =

∫
d3xψ (−iγ ·∇+m)ψ ,

P k =

∫
d3xT 0k =

∫
d3xψ† i∂k ψ =

∫
d3xψ†(−i∇k)ψ .

(3.37)
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� The implications of Lorentz invariance can be worked out in a similar fashion.
Lorentz transformations have the form

x′ = Λx

ψ′(Λx) = D(Λ)ψ(x)
⇔ δxµ = εµνxν

δψ = iεµνM
µνψ

(3.38)

and the infinitesimal current becomes

−δjµ = −1
2 εαβ ψ γ

µMαβψ − Tµαεαβxβ

= −1
2 εαβ

(
ψ γµMαβψ + Tµαxβ − Tµβxα

)︸ ︷︷ ︸
=: mµ,αβ

. (3.39)

The angular momentum density mµ,αβ is the analogue of Eq. (1.44) from the
scalar case and it is conserved: ∂µm

µ,αβ = 0. However, now it contains an
additional spin contribution. Using the definition of Lαβ in Eq. (1.44), we write

Tµαxβ − Tµβxα = ψ γµLαβψ + (xαgµβ − xβgµα)L , (3.40)

which allows us to combine the spin part Mµν = − i
4 [γ

µ, γν ] with the orbital part
Lµν into a total angular momentum tensor Jµν = Lµν +Mµν :

mµ,αβ = ψ γµJαβψ + (xαgµβ − xβgµα)L . (3.41)

Consider for example the invariance under rotations: the corresponding generator
for Mµν is Σ/2, and its analogue for Lµν is the three-vector L = x × (−i∇).
Hence, the quantity that is conserved under rotations is the total angular mo-
mentum J̃ of the field:∫

d3xm0,ij =

∫
d3xψ†J ijψ =: −εijk J̃k , J̃ =

∫
d3xψ†

(
L+

Σ

2

)
ψ .

(3.42)

� An example for internal symmetries is the U(1) transformation

ψ′ = eiε ψ , ψ′ = e−iε ψ ⇒ δψ = iε ψ , δψ = −iε ψ , (3.43)

with ε ∈ R constant, which leaves the Dirac Lagrangian invariant. It leads to the
conserved vector current and charge

jµV = ψ γµψ , QV =

∫
d3xψ† ψ . (3.44)

� Another less obvious symmetry is the axial U(1)A symmetry

ψ′ = eiε γ5 ψ , ψ′ = ψ′
†
γ0 = ψ† e−iε γ5 γ0 = ψ†γ0 e+iε γ5 = ψ eiε γ5 , (3.45)

which is only realized in the massless limit (m = 0) because the Lagrangian
transforms as

ψ (i/∂ −m)ψ → ψ eiε γ5(i/∂ −m) eiε γ5 ψ = ψ (i/∂ −me2iε γ5)ψ . (3.46)
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In these rearrangements the relation eiε γ5 = cos ε + iγ5 sin ε is helpful, which
holds because (γ5)

2 = 1, and we also used γ5 = γ†5 and γ5 γ
µ = −γµγ5. The

corresponding axialvector current is

jµA = ψ γµγ5 ψ (3.47)

and we can check explicitly that it is only conserved for m = 0:

∂µ j
µ
A = ψ

←
/∂ γ5 ψ − ψ γ5 /∂ ψ = 2imψ γ5 ψ . (3.48)

This identity goes by the name PCAC relation (partially conserved axialvector
current). Its underlying origin is that the left- and right-handed fields ψL, ψR
decouple form = 0, which leads to an enlarged chiral symmetry of the Lagrangian
(see discussion below). Chiral symmetry has a rather prominent status in QCD:
in a theory with N fermion flavors, the massless Lagrangian is invariant under
U(1)V × SU(N)V × SU(N)A × U(1)A. The latter two are explicitly broken by
the quark masses, but SU(N)A is also spontaneously broken (which entails that
the pions are Goldstone bosons), whereas U(1)A is anomalously broken at the
quantum level.

Massless fields. Let’s rewrite the Dirac Lagrangian (3.31) in terms of Weyl spinors.
From Eq. (3.15) we have

ψ =

(
ψL
ψR

)
, ψ = ψ†γ0 = (ψ†R, ψ

†
L) , /∂ =

(
0 σ · ∂

σ · ∂ 0

)
(3.49)

and the Dirac Lagrangian becomes

L = iψ†R σ · ∂ ψR + iψ†L σ · ∂ ψL −m (ψ†R ψL + ψ†L ψR) . (3.50)

If m = 0, the left- and right-handed spinors decouple and describe independent degrees
of freedom, which is why the limitm = 0 is also called chiral limit. The corresponding
Euler-Lagrange equations are the Weyl equations: iσ · ∂ ψR = 0, iσ · ∂ ψL = 0. With
the ansatz ψR,L(x) = uR,L(p) e

−ipx they become

(p · σ)uR = 0

(p · σ)uL = 0
⇒ huR,L = ±1

2
uR,L with h =

σ

2
· p

|p| , (3.51)

where h is the helicity (the projection of the spin in the momentum direction). Hence,
in the limitm = 0 the right- and left-handed Weyl spinors are eigenstates of the helicity
with eigenvalues ±1

2 . If m ̸= 0, they no longer decouple and it is impossible to define a
Lorentz-invariant notion of helicity: in that case particles travel with velocity v < c and
it is always possible to find a Lorentz frame where the particle moves in the opposite
direction, which causes a change in the helicity.

In the chiral limit m = 0 the helicity is Lorentz-invariant (and actually even
Poincaré-invariant). That is, in principle we could interpret the two helicity states
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ψL and ψR (whose dynamics also decouple) as two different species of particles. How-
ever, parity still transforms them into each other and hence we need both to have a
parity-invariant Lagrangian. For this reason we do not identify them as independent
degrees of freedom but rather as two polarization states of the same particle. The ex-
ception are theories that break parity invariance, because in that case it is not necessary
to have both chiralities. For example, the right-handed neutrinos do not participate in
the weak interaction, and neutrinos in the Standard Model are therefore described by
massless left-handed Weyl fields with Lagrangian iψ†L σ · ∂ ψL.

A special case are Majorana spinors where ψL and ψR are not independent but
ψR = iσ2ψ∗L. The corresponding four-spinor ψ = (ψL, ψR) is invariant under charge
conjugation. This is the spinor analogue of the real scalar field (the condition ψ = ψ∗

alone is not Lorentz-invariant because D(Λ) is not real), so the corresponding particle
would be its own antiparticle. Since in that case we lose the U(1) symmetry, Majorana
fields cannot describe fermions that carry a U(1) charge (electric charge, lepton number,
etc.). Possible candidates are, again, the neutrinos whose masses are very small but
most likely nonzero. If they were Majorana particles, lepton number symmetry would
be violated, and experiments on neutrino-less double beta decay aim at detecting such
violations.

In general it is quite useful to study massless Dirac particles because scattering
matrices often simplify greatly if the particles can be approximated as massless. This is
usually realized in QED processes because the electron mass is much smaller compared
to other relevant scales. It is also useful in QCD where the light up and down quarks
can be treated as nearly massless particles. An interesting feature in the chiral limit
is that both fields ψL, ψR transform now independently under U(1) transformations,
which leave the Lagrangian separately invariant:

ψ′L = eiεLψL , ψ′R = eiεRψR . (3.52)

The corresponding U(1)L×U(1)R symmetry is called chiral symmetry. It is equiva-
lent to the U(1)V ×U(1)A symmetry that we encountered above because the conserved

(Ex)left- and right-handed currents are linear combinations of the vector and axialvector
currents jµV and jµA.

Classical solutions of the Dirac equation. Like in the scalar case, the general
solutions of the free Dirac equations can be expressed by plane waves with positive-
and negative frequency modes:

ψ+(x) = u(p) e−ipx

ψ−(x) = v(p) eipx
⇒ (/p−m)u(p) = 0 ,

(/p+m) v(p) = 0 .
(3.53)

We recover p2 = m2 by multiplying the equations with /p ± m, so these are indeed

solutions of the Dirac equation. We have again chosen p0 = +Ep = +
√

p2 +m2 to be
positive and put the sign instead in the exponential; we could have also started with
e−ipx alone and distinguish the two solutions by p0 = ±Ep (with a change p → −p).
The Dirac equation can be written in the form

(p0γ0 − p · γ −m)u(p) = 0

(p0γ0 − p · γ +m) v(p) = 0
⇒ γ0(p · γ +m)u(p) = Ep u(p) ,

γ0(p · γ +m) v(−p) = −Ep v(−p) .
(3.54)
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so that u(p) and v(−p) are eigenstates of the Dirac Hamiltonian with eigenvalues ±Ep.
In the chiral representation we can write u = (uL, uR), and with the explicit form

of the γ−matrices in Eq. (3.15) the Dirac equation becomes(
−m p · σ
p · σ −m

)(
uL
uR

)
= 0 ⇒ (p · σ)uR = muL ,

(p · σ)uL = muR .
(3.55)

These two equations are consistent because (p · σ)(p · σ) = p2 = m2:

(p · σ)(p · σ) = p20 − pi pj σi σj = p20 − p2 = p2 = m2 . (3.56)

(Use {σi, σj} = 2δij). Note that ψL and ψR are no longer helicity eigenstates because
of the mass term. Instead, their solution can be written as

uL =
√
p · σ ξ , uR =

√
p · σ ξ , (3.57)

where ξs with s = ±1 are two-component spinors that we normalize to ξ†s ξs′ = δss′ .
The analogous analysis for negative-frequency modes gives

vL =
√
p · σ η , vR = −

√
p · σ η , (3.58)

so that we obtain in total

us(p) =

(√
p · σ ξs√
p · σ ξs

)
, vs(p) =

( √
p · σ ηs

−√p · σ ηs

)
. (3.59)

The two components of s can be interpreted as the spin direction. For example, if we
choose the basis for the two-component spinors ξs as

ξ+ =

(
1

0

)
, ξ− =

(
0

1

)
, (3.60)

they are eigenvectors of the spin matrix σ3/2 with eigenvalues ±1
2 , so they describe

spinors with spin ±1
2 in z−direction.

Using the explicit form of the spinors, it is easy to prove the orthogonality relations

(Ex) us(p)us′(p) = 2mδss′ ,

vs(p) vs′(p) = −2mδss′ ,

us(p) vs′(p) = 0 ,

vs(p)us′(p) = 0 ,

u†s(p)us′(p) = 2Ep δss′ ,

v†s(p) vs′(p) = 2Ep δss′ ,
(3.61)

as well as the completeness relations∑
s

us(p)us(p) = /p+m,
∑
s

vs(p) vs(p) = /p−m. (3.62)

Be careful because u†s(p) vs′(p) ̸= 0 and v†s(p)us′(p) ̸= 0, but instead one has

u†s(p) vs′(−p) = v†s(p)us′(−p) = 0 . (3.63)

The general solutions of the Dirac equation can be written as

ψ(x) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
as(p)us(p) e

−ipx + b∗s(p) vs(p) e
ipx
)
p0=Ep

. (3.64)



3 Dirac field 37

If we define the positive- and negative-energy projectors
(Ex)

Λ±(p) =
1

2

(
1± /p

m

)
=

±/p+m

2m
, ⇒

Λ±(p)
2 = Λ±(p),

Λ±(p) Λ∓(p) = 0
(3.65)

and write w+
s (p) = us(p) and w

−
s (p) = vs(p), then the Dirac equation simply becomes

Λ∓(p)w
±
s (p) = 0 , Λ±(p)w

±
s (p) = w±

s (p) (3.66)

and Eqs. (3.61–3.62) take the compact form

w±
s (p)w

±
s′(p) = ±2mδss′ ,

∑
s

w±
s (p)w

±
s (p) = 2mΛ±(p) . (3.67)

We can derive more useful relations by adding and subtracting the Dirac equations for w± and w±:

(/p∓m)w± = 0

w±(/p∓m) = 0
⇒

w± O (/p∓m)w± = 0

w±(/p∓m)Ow± = 0
⇒

w±{O, /p}w± = ±2mw±Ow± ,

w±[O, /p]w± = 0 ,
(3.68)

where O is some combination of Dirac matrices. For example, it follows that

w±γ5 w
± = 0 , w±γµw± = 2pµ , etc. (3.69)

In the standard representation we write u = (ϕ, χ), and with the explicit form
of the γ−matrices in Eq. (3.19) the Dirac equation for u(p) becomes(

Ep −m −p · σ
p · σ −(Ep +m)

)(
ϕ
χ

)
= 0 ⇒ (p · σ)χ = (Ep −m)ϕ ,

(p · σ)ϕ = (Ep +m)χ .
(3.70)

This is again consistent because (p · σ)(p · σ) = p2 = E2
p −m2 = (Ep +m)(Ep −m),

and the solution can be written as

us(p) =
√
Ep +m

(
ξs

p·σ
Ep+m

ξs

)
, vs(p) =

√
Ep +m

( p·σ
Ep+m

ηs
ηs

)
. (3.71)

The standard representation is convenient because in the rest frame (p = 0, Ep = m)
only the upper component of us(p) and the lower component of vs(p) survives, which
correspond to the positive- and negative-energy eigenstates. Therefore it is also useful
for describing a nonrelativistic particle with v ≪ c where the lower component of us(p)
can be neglected. This is the essential difference between the chiral representation,
where the upper and lower components separate left- and right-handedness, and the
standard representation where they are related to positive and negative energies.

Classical field theory vs. quantum mechanics. In the spirit of the scalar field we
could equip the solutions of the Dirac equation with a scalar product,

⟨ψ1, ψ2⟩ :=
∫
dσµ ψ1(x) γ

µψ2(x) =

∫
d3xψ†1(x)ψ2(x) , (3.72)

whose norm ⟨ψ|ψ⟩ is again the U(1) charge. By doing so we entered relativistic quantum
mechanics: if we interpret the field ψ(x) as the wave function of a single particle, whose
scalar product is Eq. (3.72), then the quantities H, P and J̃ in Eqs. (3.37) and (5.21)
can be interpreted as the expectation values of the Hamilton operator γ · (−i∇) +m,
the momentum operator −i∇, and the angular momentum operator x × (−i∇) + Σ

2 ,
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respectively. In that sense, quantum mechanics is essentially classical field theory,
except that the additional scalar product also allows for a probability interpretation of
the field. In contrast to the scalar field, the scalar product is indeed positive definite
because when we insert the Dirac solutions the U(1) charge takes the form

⟨ψ,ψ⟩ =
∫
d3xψ†(x)ψ(x) =

∫
d3p

2Ep

∑
s

(
|ap,s|2 + |bp,s|2

)
. (3.73)

In exchange, the Hamiltonian is no longer positive definite and permits negative-energy
eigenvalues.

In quantum field theory we omit the single-particle interpretation but rather view
ψ(x), ψ(x) as field operators on the Fock space. The quantities H, P and J̃ then
become the Hamilton, momentum and angular-momentum operators of the field, and
their eigenvalues are the total energy, momentum and angular momentum of some
multiparticle state. After quantization with anticommutators, the situation above is
also reversed: the Hamiltonian becomes positive but the U(1) charge is no longer
positive definite. This is no reason to worry because the charge is no longer interpreted
as a probability; it is the number operator that counts the number of particles minus
antiparticles in a state.

There is another piece of insight that we can take away from the discussion: since
the structure of quantum mechanics is basically that of classical field theory, it reflects
the ‘classical’ tree-level contributions to quantum processes, whereas loop corrections
are reserved for the quantum field-theoretical treatment. In QED the electromagnetic
coupling is so small that tree-level diagrams already provide a good approximation —
which explains the successes of quantum mechanics in describing electrons, photons,
and the physics of atoms and molecules.
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4 Quantization of the Dirac field

The quantization of the Dirac field proceeds almost along the same lines as that for the
classical field, except for one important difference: instead of commutation relations
for the fields we will need anticommutation relations to ensure a positive spectrum.

Quantized Hamiltonian. To see this, let’s calculate the Hamiltonian without im-
posing any commutation relations yet. We start with the general solutions ψ(x), ψ(x)
of the Dirac equation, which we reinterpret as operators on a state space:

ψ(x) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
ap,s up,s e

−ipx + b†p,s vp,s e
ipx
)
p0=Ep

,

ψ(x) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
bp,s vp,s e

−ipx + a†p,s up,s e
ipx
)
p0=Ep

.

(4.1)

The coefficients ap,s = as(p) and bp,s = bs(p) inherit the operator structure, whereas
up,s = us(p) and vp,s = vs(p) are the Dirac spinors that we worked out above. The
conjugate momentum is

Π =
∂L
∂ψ̇

= ψ iγ0 = iψ† , (4.2)

and therefore the Hamiltonian becomes

H =

∫
d3xψ†(x) γ0(−iγ ·∇+m)ψ(x) . (4.3)

This agrees with our earlier result (3.37) extracted from the energy momentum tensor.
Note also that γ0(−iγ · ∇ + m) is the Dirac Hamiltonian that is well known from
quantum mechanics.

When we insert the Fourier decomposition for the fields, then after some calculation
(which is analogous to Eqs. (2.6–2.11)) we arrive at

H =

∫
d3p

2Ep
Ep
∑
s

(
a†p,s ap,s − bp,s b†p,s

)
. (4.4)

The calculation goes along the same lines as before: take the three-dimensional Fourier transform
(Ex)

ψ(x) =
1

(2π)3/2

∫
d3p ψ̃p(t) e

ip·x , ψ̃p(t) =
1

2Ep

(
ap,s up,s e

−iEpt + b†−p,s v−p,s e
iEpt

)
(4.5)

and plug it into the Hamiltonian, which in momentum space becomes

H =

∫
d3p ψ̃†

p(t) γ
0(p · γ +m) ψ̃p(t) . (4.6)

From Eq. (3.54) we know that the solutions of the Dirac equation are eigenfunctions of the Dirac
Hamiltonian, which simplifies the calculations a lot:

γ0(p · γ +m) ψ̃p(t) =
1

2

(
ap,s up,s e

−iEpt − b†−p,s v−p,s e
iEpt

)
. (4.7)

With the orthogonality relations (3.61) and (3.63), the time dependencies cancel and one arrives at the
result above.
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Actually, the result in Eq. (4.4) looks rather suspicious because of the minus sign.
Suppose we postulate canonical commutation relations:

[ψα(x), ψ
†
β(y)]x0=y0

!
= δαβ δ

3(x− y) . (4.8)

Then the corresponding commutator relations in momentum space would read

[a
p,s
, a†p′,s′ ] = [b†

p,s
, bp′,s′ ] = 2Ep δss′ δ

3(p− p′) , (4.9)

with all other commutators zero, which is easy to verify by inserting the Fourier de-
composition into Eq. (4.8). In that way, once we subtract the vacuum energy, the
Hamiltonian is proportional to a†a− b† b and therefore the energy

⟨λ|H|λ⟩ =
∫
d3p

2Ep
Ep ⟨λ| a†p,s ap,s − b†p,s bp,s |λ⟩ (4.10)

is unbounded from below. We could ensure that the energy is positive by demanding
a negative norm, ||bp,s |λ⟩||2 < 0, but this violates unitarity. So apparently we face a
dilemma: either we have an unstable vacuum (negative energies) or we violate unitarity
of the theory (negative norms).

The correct way to resolve the problem is to impose anticommutation relations:

{ψα(x), ψ†β(y)}x0=y0 = δαβ δ
3(x− y) , (4.11)

with all other anticommutators zero, which entails

{a
p,s
, a†p′,s′} = {bp,s, b

†
p′,s′} = 2Ep δss′ δ

3(p− p′) , (4.12)

again with all other anticommutators zero. In that case the second term in (4.4) picks
up a minus sign, and after throwing away the infinite constant the normal-ordered
Hamiltonian is again positive:

H =

∫
d3p

2Ep
Ep
∑
s

(
a†p,s ap,s + b†p,s bp,s

)
. (4.13)

In that way the normal ordering for fermions introduces a minus sign for each inter-
change of operators. The same result follows for the four-momentum operator:

Pµ =

∫
d3p

2Ep
pµ
∑
s

(
a†p,s ap,s + b†p,s bp,s

)
. (4.14)

Fock space and Fermi-Dirac statistics. Despite the anticommutation relation for
the fields, the commutation relations (2.24) for the momentum operator still hold as
a consequence of the identity [AB,C] = A{B,C} − {A,C}B. Hence we can take over
the analysis from the scalar field: the vacuum is still defined by ap,s |0⟩ = bp,s |0⟩ = 0,

multi-particle states are obtained by acting on the vacuum with a†p,s or b
†
p,s, and their

normalization is the same as before. Note in particular that the norm is positive:4

⟨0| ap,s a†p′,s′ |0⟩ = ⟨0| bp,s b
†
p′,s′ |0⟩ = 2Ep δss′ δ

3(p− p′) . (4.15)

4Remember that δ3(0) is proportional to the volume, so this infrared divergence is not a serious
problem. Had we worked with smeared operators from the beginning (at the expense of a simple
notation), the norm would be well-defined.
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As before, the eigenvalue of the momentum operator Pµ is the total momentum of the
state.

However, there is one important difference: since these operators anticommute be-
tween themselves, an N−particle state is antisymmetric under particle exchange:

a†p,s a
†
q,r |0⟩ = −a†q,r a†p,s |0⟩ . (4.16)

Therefore, spin-12 particles are fermions, i.e., they obey Fermi-Dirac statistics. In par-
ticular, they satisfy the Pauli principle: no two fermionic states of exactly the same
quantum numbers are possible, because we can never create more than one particle in
the same state:

{a†p,s, a†p,s} = 0 ⇒ a†p,s a
†
p,s |0⟩ = 0 . (4.17)

This is another manifestation of the spin-statistics theorem: Lorentz invariance,
positive energies, unitarity (=positive norms) and causality together imply that parti-
cles with integer spin obey Bose-Einstein statistics, whereas particles with half-odd in-
teger spin obey Fermi-Dirac statistics. By working out the U(1) charge from Eq. (3.44),

Q =

∫
d3x :ψ† ψ : =

∫
d3p

2Ep

∑
s

(
a†p,s ap,s − b†p,s bp,s

)
, (4.18)

we arrive at the same interpretation as for the complex scalar field: a†p,s and b†p,s
create fermions and antifermions, respectively, and the charge equals the number of
particles minus antiparticles. Note that the minus sign in Q is also a consequence of
the anticommutation relations: Q was non-negative in the classical theory, where it
could be interpreted as a scalar product between fields, cf. Eq. (3.73).

The spin operator that follows from the classical Noether charge (5.21) is given by∫
d3x :ψ†

Σ

2
ψ : . (4.19)

One can show (Peskin-Schroeder, p.61) that applying it to a state a†p,s |0⟩ gives eigen-
value s/2 whereas applied to b†p,s |0⟩ it gives eigenvalue −s/2, where s = ±1. Therefore,
a†p,s |0⟩ describes a fermion (for example an electron) with mass m, energy Ep, spin

1
2

and spin polarization s/2, whereas b†p,s |0⟩ describes an antifermion (positron) with
mass m, energy Ep, spin

1
2 and spin polarization −s/2. The state ψ(x) |0⟩ describes a

fermion at position x and ψ(x) |0⟩ an antifermion at position x.

Causality. Despite the anticommutator relations that we imposed for the Dirac fields,
the microcausality axiom must remain unchanged: all physical observables are bosonic
operators and must commute at spacelike distances,

[O1(x),O2(y)]
!
= 0 if (x− y)2 < 0 . (4.20)

This is ensured by requiring

Sαβ(x− y) := {ψα(x), ψβ(y)} !
= 0 if (x− y)2 < 0 , (4.21)
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which is the generalization of Eq. (2.74) in the scalar case. Eq. (4.20) can be checked
(Ex)directly for fermion bilinearsOi(x) = ψ(x) Γi ψ(x), where Γi is any of the Dirac matrices

in Eq. (3.21), by exploiting the identity

[AB,CD] = A {B,C}D − C {A,D}B − {A,C} [B,D] + [A,C] {B,D}
2

. (4.22)

Inserting the Fourier decomposition (4.1), the anticommutator relation (4.12) and
the completeness relations (3.62), this expression becomes

S(z) =
1

(2π)3

∫
d3p

2Ep

(
(/p+m) e−ipz + (/p−m) eipz

)
= (i/∂ +m)

1

(2π)3

∫
d3p

2Ep

(
e−ipz − eipz

)
= (i/∂ +m)∆(z)

(4.23)

where ∆(z) is the scalar analogue in Eq. (2.69). From here it is easy to recover our
original commutator relations (4.11):

S(z)
∣∣
z0=0

= (i/∂ +m)∆(z)
∣∣
z0=0

= γ0 δ3(z) , (4.24)

because ∂0∆(z)
∣∣
z0=0

= −iδ3(z), ∂i∆(z)
∣∣
z0=0

= 0 and ∆(z)
∣∣
z0=0

= 0.

Feynman propagator. Similarly, we define the Feynman propagator for fermions as

SF (x− y) := ⟨0|Tψ(x)ψ(y) |0⟩ =
{
⟨0|ψ(x)ψ(y) |0⟩ if x0 ≥ y0 ,
−⟨0|ψ(y)ψ(x) |0⟩ if y0 ≥ x0 ,

(4.25)

with the crucial difference of the minus sign. It is necessary because if (x− y)2 < 0 we
have S(x − y) = 0 and therefore ψ(x)ψ(y) = −ψ(y)ψ(x). For spacelike distances the
question of whether x0 > y0 or x0 < y0 depends on the frame, and to arrive at a frame-
independent definition of the time-ordering symbol T the expression for Tψ(x)ψ(y)
for x0 > y0 and x0 < y0 must agree.

Using the definition above and inserting the Fourier decomposition, one evaluates
SF (z) = (i/∂ +m)∆F (z) and therefore the fermion propagator becomes

SF (z) =

∫
d4p

(2π)4
e−ipz

i (/p+m)

p2 −m2 + iϵ
. (4.26)

Since (/p+m) (/p−m) = p2 −m2, the inverse propagator in momentum space has the
form

S−1F (p) = −i (/p−m) . (4.27)

The Feynman propagator is a Green function of the Dirac equation, i.e., it is one of
the four possible solutions to the equation (i/∂−m)G(z) = iδ4(z). Their interpretation
and closure procedure in the complex plane are as in the scalar theory.
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Parity. Earlier we have seen that the parity operation x→ x′ = (t,−x) exchanges the
left- and right-handed Weyl spinors:(

ψ′L(x
′)

ψ′R(x
′)

)
=

(
ψR(x)

ψL(x)

)
⇒ ψ′(x′) = γ0 ψ(x)

ψ′(x′) = ψ(x) γ0 .
(4.28)

Consequently, the bilinears ψψ and ψ iγ5 ψ transform as scalars and pseudoscalars under parity (γ0

anticommutes with γ5):

ψ′(x′)ψ′(x′) = ψ(x)ψ(x) , ψ′(x′) iγ5 ψ
′(x′) = −ψ(x) iγ5 ψ(x) . (4.29)

The factor i is necessary to make the pseudoscalar bilinear real: (ψ iγ5ψ)
† = ψ iγ5ψ. Likewise, ψγµψ

and ψγµγ5ψ transform as vectors and axialvectors, respectively:

ψ′(x′)γµψ′(x′) = ±ψ(x)γµψ(x) ψ′(x′)γµγ5ψ
′(x′) = ∓ψ(x)γµγ5ψ(x) , (4.30)

where the upper sign corresponds to µ = 0 and the lower one to µ = 1, 2, 3.

How does parity act on the Fock space? If we introduce the unitary operator UP that
transforms a state as |λ′⟩ = UP |λ⟩, then the quantum version of Eq. (4.28) follows
from the same reasoning as in Eq. (2.59):

UP ψ(x)U
−1
P = γ0 ψ(x′) , UP ψ(x)U

−1
P = ψ(x′) γ0 . (4.31)

We ignore possible phase factors for simplicity because they are not important for the
discussion. Applied to the Fourier decomposition (4.1), we can work out the action of
UP on the creation and annihilation operators:

UP ap,s U
−1
P = a−p,s , UP b

†
p,s U

−1
P = −b†−p,s . (4.32)

To derive this, start with
(Ex)

γ0ψ(x′) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
ap,s (γ

0up,s) e
−iEpt−p·x + b†p,s (γ

0vp,s) e
iEpt+p·x

)
.

From Eq. (3.59) it follows that γ0up,s = u−p,s and γ0vp,s = −v−p,s; remember our shorthand notation
up,s = us(p), so the minus sign switches only the spatial components. Exchanging p → −p in the
integral leads to

γ0ψ(x′) =
1

(2π)3/2

∫
d3p

2Ep

∑
s

(
a−p,s up,s e

−ipx − b†−p,s vp,s e
ipx
)
p0=Ep

, (4.33)

and comparison with the direct expression for UP ψ(x)U
−1
P gives the result in Eq. (4.32).

Applied to one-particle and -antiparticle states, this entails

UP |p, s, a⟩ = UP a
†
p,s|0⟩ = a†−p,s|0⟩ = | − p, s, a⟩ ,

UP |p, s, b⟩ = UP b
†
p,s|0⟩ = −b†−p,s|0⟩ = −| − p, s, b⟩ ,

(4.34)

where we assumed parity invariance of the vacuum UP |0⟩ = |0⟩. The relative minus
sign tells us that fermions and antifermions carry opposite intrinsic parity. For scalar
fields we would not get the relative minus sign: the intrinsic parity of a spin-0 particle
and its antiparticle are equal.
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Charge conjugation. As we remarked in the context of Majorana spinors, one cannot
construct a charge-conjugate Dirac spinor in the form ψ → ψ∗ because this is not
Lorentz-invariant: since D∗(Λ) ̸= D(Λ), a Lorentz transformation will mix ψ and ψ∗.
Instead, the property γµ∗ = γ2γµγ2 implies D∗(Λ) = −γ2D(Λ) γ2, which allows us to
define the operation of charge conjugation as

ψc = −iγ2 ψ∗ , ψc = iψ∗γ2 . (4.35)

This is now indeed compatible with a Lorentz transformation:

(ψc)′(x′) = −iγ2
(
ψ′(x′)

)∗
= −iγ2D∗(Λ)ψ∗(x) = D(Λ)ψc(x) . (4.36)

Let’s work this out in the chiral representation:
(Ex)

γ2D(Λ)∗γ2 =

(
0 σ2

−σ2 0

)(
D∗
L(Λ) 0

0 D∗
R(Λ)

)(
0 σ2

−σ2 0

)
=

(
−σ2D∗

R(Λ)σ
2 0

0 −σ2D∗
L(Λ)σ

2

)
.

Using the explicit form of DL,R(Λ) from Eq. (3.9) together with the properties σ2σiσ2 = −σi∗ and
σ2σ2 = 1, it follows that

σ2D∗
L,R(Λ)σ

2 = D(Λ)R,L ⇒ γ2D∗(Λ)γ2 = −D(Λ) . (4.37)

In terms of Weyl spinors, the charge-conjugate spinor takes the form

ψc =

(
ψcL

ψcR

)
=

(
−iσ2 ψ∗

R

iσ2 ψ∗
L

)
. (4.38)

Let’s express ψ∗ through the conjugate spinor: ψ∗ = (ψ†)T = (ψγ0)T = γ0 ψT . Defining
the charge-conjugation matrix C = iγ2γ0, we arrive at

ψc = CT ψT , ψc = ψTCT . (4.39)

The transpose on a spinor is not really necessary; it just means that ψcα = (CT )αβ ψβ =
ψβ Cβα. The charge-conjugation matrix has some useful properties:

C† = CT = C−1 = −C, C γT5 C
T = γ5, C γTµ C

T = −γµ . (4.40)

Since charge conjugation does not change the spacetime argument, we can identify it
directly with the operator transformation:

UC ψ U
−1
C = CT ψT , UC ψ U

−1
C = ψTCT . (4.41)

If we insert the Fourier decomposition and use the relations γ2up,s = vp,s and γ
2vp,s =

up,s, which follow again from Eq. (3.59), we arrive at

UC ap,s U
−1
C = bp,s , UC bp,s U

−1
C = ap,s . (4.42)

As desired, charge conjugation transforms a particle |p, s, a⟩ into its antiparticle |p, s, b⟩.
Recall that the state |p, s, a⟩ describes a particle with spin polarization s/2 and the
state |p, s, b⟩ an antiparticle with spin polarization −s/2; therefore, charge conjugation
also reverses the helicity.
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Time reversal. Although the time reversal operation x→ x′ = (−t,x) looks similar to
the parity transformation, it is probably the most confusing of the discrete symmetries
and has a rather special status. In the classical theory, all particles of the time-mirrored
system follow their trajectories backwards: the momenta and angular momenta are
reversed, and the roles of the initial and final configurations are interchanged. A Dirac
spinor transforms as

ψ′(x′) = γ0γ5 ψc(x) = γ1γ3 ψ∗(x) , (4.43)

which can be derived from the transformation behavior of the Dirac equation, or that
of fermion bilinears. The need for complex conjugation can be understood intuitively
from the picture of antiparticles as particles moving backwards in time (a time re-
versal of the phase e−iEpt would lead to negative energies of the mirrored system
and necessitates a sign change of i). Correspondingly, the Weyl spinors transform
as ψ′L,R(x

′) = iσ2 ψ∗L,R(x).
The speciality of time reversal is that, when taking matrix elements, it exchanges

the in and out states:

⟨UTλ1|ψα(x′) |UTλ2⟩ = (γ1γ3)αβ ⟨λ1|ψβ(x) |λ2⟩∗ = (γ1γ3)αβ ⟨λ2|ψ†β(x) |λ1⟩ , (4.44)

and therefore we cannot simply compare both sides of the equation anymore to obtain
a transformation law for the field operators. To do so, we must identify UT with an
antiunitary operator, which leads to

UT ψ(x)U
−1
T = γ1γ3 ψ(x′) , UT ψ(x)U

−1
T = ψ(x′) γ3γ1 , (4.45)

again ignoring possible phases. This is compatible with the Wigner theorem, which
states that symmetries in the quantum theory must be implemented by unitary or
antiunitary operators. Note that an antiunitary operator induces complex conjugation
for numbers: UT cU

−1
T = c∗. However, since the transformation of the quantum fields

ψ, ψ no longer requires complex conjugation, the transformation does not send particles
to antiparticles but rather particles to particles.

The point is that Hilbert state vectors that differ only by phases are physically equivalent, which is
why it is sufficient to demand |⟨Uλ1 |Uλ2⟩| = |⟨λ1|λ2⟩| for symmetry operations. This can be realized
by a unitary operator,

⟨Uλ1|Uλ2⟩ = ⟨λ1|λ2⟩ , U(c1 |λ1⟩+ c2 |λ2⟩) = c1 U |λ1⟩+ c2 U |λ2⟩ (4.46)

or an antiunitary operator:

⟨Uλ1|Uλ2⟩ = ⟨λ1|λ2⟩∗ = ⟨λ2|λ1⟩ , U(c1 |λ1⟩+ c2 |λ2⟩) = c∗1 U |λ1⟩+ c∗2 U |λ2⟩ . (4.47)

Clearly, both possibilities are compatible with the symmetry requirement, but the essence of the Wigner
theorem (whose proof is rather lengthy) is that these are the only options. Note that in both cases
U†U = UU† = 1, but the definition of the hermitian conjugate changes in the antiunitary case:
⟨λ1|U†λ2⟩ = ⟨λ2|Uλ1⟩. Hence, Eq. (4.44) requires UT to be antiunitary:

⟨UTλ1|ψ(x′) |UTλ2⟩ = ⟨λ2|U†
T ψ(x

′)† UT |λ1⟩ , (4.48)

and the comparison with the r.h.s. leads to Eq. (4.45) (again, up to an irrelevant phase factor).
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C P T CPT

S ψψ 1 1 1 1

P ψ iγ5 ψ 1 −1 −1 1

V ψ γµψ −1 (1,−1) (1,−1) −1
A ψ γµγ5ψ 1 (−1,1) (1,−1) −1

T ψ σµνψ −1
(

1 −1
−1 1

) (
−1 1

1 −1

)
1

∂µ 1 (1,−1) (−1,1) −1

Table 1: Transformation properties under C, P and T .

CPT. The transformation properties of the various fermion bilinears : ψ(x) Γψ(x) :
under C, P and T are summarized in Table 1. The free Dirac action is invariant under
C, P and T separately. We can construct more general actions that violate any of
these symmetries, but since they must be Lorentz scalars, the free Lorentz indices in
γµ, γµγ5 and σµν must be contracted with the derivative ∂µ (or other bilinears). As
a consequence, the combined symmetry CPT is always conserved: one cannot build
a Lorentz-invariant quantum field theory with a hermitian Hamiltonian that violates
CPT .

For example, under charge conjugation the bilinears behave as

ψ Γψ → UC (ψ Γψ)U−1
C = ψTCTΓCT ψT = (ψ)α (CTΓCT )αβ ψβ

= −ψβ (CTΓCT )αβ (ψ)α = ψ (C ΓTCT )ψ ,
(4.49)

where we used fermion anticommutation: ψαψα = −ψαψα (the infinite constant vanishes by normal
ordering). Together with the relations (4.40) it is then straightforward to obtain the ‘C’ column in
Table 1; note that the vector and tensor bilinears switch sign under charge conjugation. Similarly,
under parity one has

ψ(x) Γψ(x) → UP
(
ψ(x) Γψ(x)

)
U−1
P = ψ(x′) (γ0 Γ γ0)ψ(x′) , (4.50)

and time reversal leads to

ψ(x) Γψ(x) → UT
(
ψ(x) Γψ(x)

)
U−1
T = ψ(x′) (γ3γ1 Γ∗ γ1γ3)ψ(x′) , (4.51)

where the complex conjugate Γ∗ is a consequence of the antiunitarity: UT ΓU−1
T = Γ∗. Since we can

express time reversal through charge conjugation via Eq. (4.43), the result can be also written as

UT
(
ψ(x) Γψ(x)

)
U−1
T = ψ(x′) γ5γ

0 (C ΓTCT ) γ0γ5 ψ(x
′) . (4.52)

In summary, the signs in the table are simply obtained from the signs of

C → C ΓTCT , P → γ0 Γ γ0 , T → γ5γ
0 (C ΓTCT ) γ0γ5 . (4.53)

Taking everything in combination, the CPT symmetry amounts to γ5 Γγ5 together with a spacetime
reflection x→ −x.
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5 Electromagnetic field

Classical electromagnetism. Classical Maxwell equations:

∇ ·E = ρ , ∇×B − ∂E

∂t
= j , ∇ ·B = 0 , ∇×E +

∂B

∂t
= 0 . (5.1)

The inhomogeneous equations imply local charge conservation:

∂ρ

∂t
+∇ · j = 0 . (5.2)

To arrive at covariant equations, define the current jµ = (ρ, j) and the antisymmetric
field-strength tensor Fµν = −F νµ as

F ij = −εijk Bk ⇔ Bi = −1
2 εijk F

jk , F 0i = −Ei , (5.3)

together with its dual:

F̃µν =
1

2
εµνρσ Fρσ ⇒ F̃ ij = εijk F

0k = −εijk Ek ,
F̃ 0i = −1

2 εijk F
jk = Bi .

(5.4)

The combination of Maxwell equations and current conservation becomes

∂µ F
µν = jν , ∂µ F̃

µν = 0 , ∂µ j
µ = 0 . (5.5)

Current conservation follows again from the inhomogeneous Maxwell equation because
∂µ∂νF

µν = 0. The homogeneous Maxwell equations allow us to construct a vector
potential Aµ = (ϕ,A) via

Fµν = ∂µAν − ∂νAµ ⇔ E = −∇ϕ− ∂A

∂t
, B = ∇×A , (5.6)

which is then only determined up to a derivative:

A′
µ
(x) = Aµ(x) + ∂µε(x) ⇔ ϕ′ = ϕ+

∂ε

∂t
, A′ = A−∇ε . (5.7)

In other words, Fµν and therefore the fields E and B are invariant under local gauge
transformations, and vector fields Aµ that differ only by such a term are physically
equivalent. Local gauge invariance will eventually become the fundamental construc-
tion principle for interacting field theories. At the present stage it merely corresponds
to a redundancy in the description of the system, and to determine the true physical
degrees of freedom we must be sure to divide out this redundancy (which will be the
main difficulty in quantizing the system). In summary, all three equations in Eq. (5.5)
can be combined into the Maxwell equations

2Aµ − ∂µ∂νAν = jµ . (5.8)
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Lagrangian of the electromagnetic field. We interpret the vector field Aµ(x)
now as the fundamental electromagnetic field. The Maxwell equations follow as the
equations of motion from the action

S =

∫
d4xL =

∫
d4x

[
−1

4
FµνF

µν − jµAµ
]
=

∫
d4x

[
1

2
(E2 −B2)− jµAµ

]
. (5.9)

The current jµ(x) that appears here as a static source term is presently just a com-
promise that we will eventually get rid of: in a fully interacting theory the current will
emerge from other fields and thereby carry their dynamical information (in a free field
theory jµ = 0). Let’s rewrite the action in terms of Aµ and its derivatives:

S =

∫
d4x

[
−1

2
(∂µAν − ∂νAµ) ∂µAν − jµAµ

]
p.I.
=

∫
d4x

[
1

2
Aµ (2 g

µν − ∂µ∂ν)Aν − jµAµ
]
.

(5.10)

From the first line above it is easy to derive the Maxwell equations via

∂L
∂Aν

= −jν ,
∂L

∂(∂µAν)
= −∂µAν + ∂νA

µ = −Fµν , (5.11)

and we can read off the canonical conjugate momentum:

Πν =
∂L

∂(∂0Aν)
= −F 0

ν ⇒ Π0 = 0 , Π = E . (5.12)

Note that the time component A0 has no conjugate momentum, which will produce
difficulties in the quantization. The Hamilton function becomes

H =

∫
d3xH =

∫
d3x

[
Πν

∂Aν

∂t
− L

]
=

∫
d3x

[
1

2
(E2 +B2) +E ·∇ϕ+ ρ ϕ− j ·A

]
p.I.
=

∫
d3x

[
1

2
(E2 +B2)− j ·A

]
.

(5.13)

Poincaré transformations. Let’s study the conservation laws that follow from the
Poincaré invariance of the action. According to Eq. (1.40), the generic infinitesimal
current takes the form

−δjµ =
∂L

∂(∂µAν)
δAν − Tµνδxν = −Fµν δAν − Tµνδxν , (5.14)

and the energy-momentum tensor is given by

Tµν =
∂L

∂(∂µAα)
∂νAα − gµνL = −Fµα ∂νAα − gµνL . (5.15)

Translation invariance (δAν = 0, δxν = aν) implies that it is conserved; however, in
the presence of the current jµ(x) its divergence is ∂µT

µν = (∂νjα)A
α ̸= 0. This is
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just because we treat the current as an external source: in a complete theory it would
emerge from other fields which also contribute to the energy-momentum tensor. (By
the way, note that δjµ has nothing to do with jµ.)

Under Lorentz transformations the field transforms as

A′
µ
(x′) = ΛµνA

ν ⇔ δxα = εαβ x
β ,

δAα = εαβA
β = i

2 εµν (M
µν)αβ A

β ,
(5.16)

because in the vector representation the irreducible representation matrix is just the
Lorentz transformation itself. The infinitesimal generator of Lorentz transformations
was given in Eq. (2.54):

(Mµν)αβ = −i (δµα δνβ − δνα δµβ) . (5.17)

The corresponding infinitesimal current defines the angular momentum density,

−δjµ = −1
2 εαβ

(
FµαAβ − FµβAα + Tµαxβ − Tµβxα

)︸ ︷︷ ︸
=: mµ,αβ

, (5.18)

which is conserved (if the external current jµ = 0): ∂µm
µ,αβ = 0. Once again we

can insert the explicit form of the energy-momentum tensor and isolate the orbital
angular-momentum part:

Tµαxβ − Tµβxα = iFµρ LαβAρ + (xαgµβ − xβgµα)L , (5.19)

where Lαβ was defined in Eq. (1.44). In combination with the spin contribution, the
angular momentum density becomes

mµ,αβ = iFµρ
[
(Mαβ)ρσ + gρσL

αβ
]
Aσ =: iFµρ (Jαβ)ρσA

σ . (5.20)

Hence, the charge that is conserved under rotations is the angular momentum of the
electromagnetic field∫

d3xm0,ij = −i
∫
d3xEk(J ij)klA

l =: −εijk J̃k , (5.21)

whose explicit form is

J̃ =

∫
d3x

(
E ×A− iEkLAk

)
(5.22)

with L = x× (−i∇). The spin of the electromagnetic field is
∫
d3xE ×A.

The energy-momentum tensor Tµν in Eq. (5.15) is neither symmetric in its indices nor gauge-invariant
(because it depends explicitly on Aα). An alternative symmetric form of the energy-momentum tensor

(Ex)is the Belinfante tensor, which is still conserved and therefore physically equivalent:

Θαβ = Tαβ − 1
2
∂µ (s

µ,αβ + sα,βµ − sβ,µα) . (5.23)

Here, sµ,αβ is the spin contribution to the angular momentum density, i.e.

mµ,αβ = sµ,αβ + Tµαxβ − Tµβxα . (5.24)
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This statement is general and holds independently of the nature of the fields. Its proof is simple: by
construction, sµ,αβ is antisymmetric in α, β and therefore

Θαβ −Θβα = Tαβ − T βα − ∂µ s
µ,αβ . (5.25)

On the other hand, by taking the derivative of mµ,αβ we see that

∂µm
µ,αβ = ∂µ s

µ,αβ − (Tαβ − T βα) = 0 (5.26)

and therefore Θαβ is symmetric. (We used the fact that Tαβ and mµ,αβ are conserved.) Θαβ is
conserved because the bracket in Eq. (5.23) is antisymmetric under an exchange µ↔ α:

∂αΘαβ = − 1
2
∂α∂µ (s

µ,αβ − sα,µβ − sβ,µα) = 0 . (5.27)

Let’s work out the Belinfante tensor for the electromagnetic field. When inserting sµ,αβ = FµαAβ−
FµβAα into Eq. (5.23) we obtain

Θαβ = Tαβ − ∂µ (F
µαAβ) = −Fαµ ∂βAµ − ∂µ (F

µαAβ)− gαβL

= FαµF β
µ − jαAβ − gαβL .

(5.28)

Apart from the j · A term it is now also gauge-invariant. (Although Tµν was gauge dependent, the
charges derived from it are gauge-invariant because gauge transformations would only produce surface
terms – see Maggiore, p.68.) Its components are

Θ00 = (F 0i)2 − j0A0 − L =
1

2
(E2 +B2)− j ·A = H ,

Θ0i = F 0k F ik − j0Ai = (E ×B)i − ρA .
(5.29)

Likewise, Θij would give the Maxwell stress tensor. The corresponding charges are the components of
the four momentum Pµ =

∫
d3xΘ0i. Therefore, in the absence of an external current jµ, the energy

density of the electromagnetic field is 1
2
(E2+B2), its momentum density is the Poynting vector E×B,

and its spin density is E ×A.

Gauge fixing. Gauge invariance poses new problems for the quantization of the
electromagnetic field. The field carries spin 1 and is of bosonic nature, so in principle
we should impose the commutator relations

[Aµ(x),Πν(y)]x0=y0 = igµν δ3(x− y) . (5.30)

Unfortunately this gives a contradiction because Π0 = 0 vanishes and cannot have a
non-trivial commutator with A0. This reflects the redundancy that is inherent in the
field Aµ. Gauge invariance tells us that we should restrict ourselves to a subset of fields
Aµ that satisfy a certain gauge-fixing condition, for example

� the Lorenz gauge ∂µA
µ = 0: it only partially fixes the gauge, because we are

still free to perform a residual gauge transformation A′µ = Aµ + ∂µε as long as
2 ε = 0. The Maxwell equations in the Lorenz gauge simply become 2Aµ = jµ.

� the radiation gauge A0 = 0, ∇ · A = 0: here the gauge fixing is complete
because the remaining gauge parameter ε can be only a constant. The radiation
gauge implies the Lorenz gauge ∂µA

µ = 0 but it is more restrictive.

There are two possible strategies for quantizing the theory: we could either fix the
gauge in advance and thereby eliminate the unphysical degrees of freedom. The price
we have to pay is the loss of manifest Lorentz covariance, and we have to check at the
end of the quantization procedure that Lorentz symmetry is still intact. The second
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option is to work with the full gauge field Aµ and start from a modified Lagrangian
where Π0 does not vanish. This will introduce spurious degrees of freedom which we
have to eliminate at the end.

We follow the second avenue and start from the following ‘gauge-fixed’ Lagrangian,
where the gauge-fixing condition ∂µA

µ = 0 is implemented in the form of a Lagrange
multiplier:

L = −1

4
FµνF

µν − λ

2
(∂ ·A)2 . (5.31)

The resulting equations of motion become

∂µ F
µν + λ∂ν∂µA

µ = 0 ⇔ 2Aµ + (λ− 1) ∂µ∂νA
ν = 0 . (5.32)

Taking their divergence yields λ2 ∂µA
µ = 0, which means that ∂µA

µ must be a free
scalar field that satisfies the massless Klein-Gordon equation. The additional term in
the Lagrangian ensures that Π0 = −λ∂µAµ is no longer zero (the spatial components
Πi are unchanged), so in principle we can proceed with the quantization. Although we
could discuss what follows for general λ, we set λ = 1 (Feynman gauge) because this
simulates the Lorenz gauge condition in the Maxwell equations: 2Aµ = 0. (The limit
where λ→∞ at the end of all calculations is called Landau gauge.) Following the steps
in Eq. (5.10), it is easy to show that the action obtained from the Lagrangian (5.31)
with λ = 1 is equivalent to that of the Fermi Lagrangian

L = −1

2
(∂µAν)(∂

µAν) . (5.33)

Its canonical conjugate momentum is

Πν =
∂L

∂(∂0Aν)
= −∂0Aν = −Ȧν , (5.34)

and the Hamiltonian of this theory becomes

H =

∫
d3x

(
ΠνȦ

ν − L
)
=

∫
d3x

[
−1

2
Ȧ2 − 1

2
(∇Aν)(∇Aν)

]
. (5.35)

Polarization vectors. The solutions of the free Maxwell equations have the form

Aµ(x) =
1

(2π)3/2

∫
d3p

2Ep

3∑
λ=0

(
ap,λ ϵ

µ
p,λ e

−ipx + a†p,λ ϵ
∗µ
p,λ e

ipx
)
, (5.36)

which is compatible with 2Aµ = 0 as an operator equation as long as the four-vector
pµ is lightlike: p2 = 0 ⇔ Ep = |p|. The 4 linearly independent polarization vectors
ϵµp,λ = ϵµ(p, λ) depend on pµ, and they can always be chosen to satisfy the following
orthogonality and completeness relations:

ϵp,λ · ϵp,λ′ = gλλ′ ,
∑
λλ′

gλλ
′
ϵµp,λ ϵ

ν
p,λ′ = gµν . (5.37)

The first relation implies that ϵ2p,0 = 1 and ϵ2p,i = −1 so that ϵµp,0 is timelike whereas
the others with i = 1, 2, 3 are spacelike. In particular, without going into a specific
reference frame one can proceed as follows:
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� The most general timelike vector that satisfies n2 = 1 can be written in the form
n = (

√
1 + n2,n)T . Therefore, set εµp,0 = nµ for the timelike polarization. The

remaining εµp,i must be transverse to nµ with n · εp,i = 0.

� Choose ϵµp,1 and ϵµp,2 transverse to pµ, so that p · εp,i = 0 for i = 1, 2.

� The remaining polarization vector ϵµp,3 must be a linear combination of nµ and

pµ. The conditions n ·εp,3 = 0 and ϵ2p,3 = −1 fix it uniquely: εµp,3 = pµ/(p ·n)−nµ.
We call it the longitudinal polarization.

For example, with p in z−direction and n = 0 this implies

p = |p|

 1
0
0
1

, n =

 1
0
0
0

 ⇒ εµp, 0...3 =

 1
0
0
0

 ,

 0
1
0
0

,
 0

0
1
0

,
 0

0
0
1

. (5.38)

Canonical quantization. Expressed in terms of the conjugate momentum (5.34), the
commutation relations (5.30) take the form

[Aµ(x), Ȧν(x)]x0=y0 = −igµν δ3(x− y) ,

[Aµ(x), Aν(y)]x0=y0 = 0 ,

[Ȧµ(x), Ȧν(y)]x0=y0 = 0 .

(5.39)

Note that the spatial components behave like ordinary scalar fields with respect to
the commutator relation, whereas the sign for the timelike component is reversed. To
extract the commutation relations for the ladder operators we can simply copy the
steps from Eqs. (2.6–2.11) for the scalar field; the result is

[ap,λ, a
†
p′,λ′ ] = −2Ep gλλ′ δ3(p− p′) (5.40)

with all other commutators zero. Likewise, the momentum operator turns out to be

Pµ = −
∫

d3p

2Ep
pµ
∑
λλ′

gλλ
′
a†p,λ ap,λ′

∣∣∣
p0=Ep=|p|

=

∫
d3p

2Ep
pµ
[
− a†p,0 ap,0 +

3∑
λ=1

a†p,λ ap,λ

]
p0=Ep=|p|

.

(5.41)

Also here the spatial modes have a positive sign but the timelike component comes
with a minus. The number operator has an analogous form,

N̂ =

∫
d3p

2Ep

[
− a†p,0 ap,0 +

3∑
λ=1

a†p,λ ap,λ

]
p0=Ep=|p|

. (5.42)

Despite appearances, the minus sign does not imply negative eigenvalues for these
operators because when they act on a state a†k,0 |0⟩ the sign cancels with that in the
commutator relation:

Pµ a†k,0 |0⟩ = kµ a†k,0 |0⟩ , N̂ a†k,0 |0⟩ = a†k,0 |0⟩ . (5.43)
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But this is exactly the problem: the one-particle states a†k,0 |0⟩ with timelike polariza-
tion λ = 0 have a negative norm,

⟨0| aq,0 a†k,0|0⟩ = −2Ek δ3(k − q) , (5.44)

which spoils the unitarity of the theory. How can we resolve this?

Gupta-Bleuler method. So far our quantization procedure is incomplete because
we have not yet implemented the constraint ∂µA

µ = 0. It is impossible to impose it
as an operator equation for the fields, because this would contradict our commutator
relations:

0
!
= [Aµ(x), ∂νA

ν(y)]x0=y0 = [Aµ(x), Ȧ0(y)]x0=y0 = −igµ0 δ3(x− y) ̸= 0 . (5.45)

What we can do instead is to implement it not at the level of the fields, but rather as
a restriction on the Hilbert space. Let’s decompose the field Aµ(x) into positive- and
negative-frequency modes

Aµ+(x) =
1

(2π)3/2

∫
d3p

2Ep

3∑
λ=0

ap,λ ϵ
µ
p,λ e

−ipx,

Aµ−(x) =
1

(2π)3/2

∫
d3p

2Ep

3∑
λ=0

a†p,λ ϵ
∗µ
p,λ e

ipx,

(5.46)

so that Aµ = Aµ+ +Aµ−. We say that the physical states |ψ⟩ ∈ Hphys are those states
that satisfy the Gupta-Bleuler condition

∂ ·A+ |ψ⟩ !
= 0 ⇔ ⟨ψ| ∂ ·A− = 0 . (5.47)

The two conditions are equivalent because A†+ = A−, and taken together they imply
that the classical constraint ∂ · A = 0 is now realized in the form of an expectation
value:

⟨ψ| ∂ ·A |ψ⟩ = ⟨ψ| ∂ ·A+ + ∂ ·A− |ψ⟩ = 0 . (5.48)

We can work out the consequences of this relation by writing ∂ ·A+ in Fourier modes.
According to our construction of the polarization vectors, their contraction with the
lightlike momentum pµ gives

pµ ϵ
µ
p,λ =


p · n λ = 0

0 λ = 1, 2

−p · n λ = 3 ,

(5.49)

and therefore

∂ ·A+ = −i
∫

d3p

2Ep
e−ipx

∑
λ

ap,λ pµ ϵ
µ
p,λ = −i

∫
d3p

2Ep
e−ipx p · n (ap,0 − ap,3) . (5.50)

Hence, the condition (5.47) for physical states |ψ⟩ is equivalent to the condition

ap,0 |ψ⟩ !
= ap,3 |ψ⟩ . (5.51)
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Now observe that whenever we evaluate expectation values of operators of the form (5.41)
or (5.42), we arrive at

⟨ψ| a†p,0 ap,0 − a†p,3 ap,3 |ψ⟩ = ⟨ψ| (a†p,0 − a†p,3) ap,3 |ψ⟩ = 0 . (5.52)

Therefore, the timelike and longitudinal photons cancel each other in matrix elements,
and only the transverse, physical polarizations λ = 1, 2 survive:

⟨ψ|
[
− a†p,0 ap,0 +

3∑
λ=1

a†p,λ ap,λ

]
|ψ⟩ = ⟨ψ|

2∑
λ=1

a†p,λ ap,λ |ψ⟩ . (5.53)

Physical state space. Let’s find out what this means for a ‘physical’ one-particle
state. We start by writing it as the most general superposition of polarization states
with momentum k:

|ψ⟩ =
∑
λ

cλ a
†
k,λ |0⟩ . (5.54)

Applying the condition (5.51) to it entails

(ap,0 − ap,3) |ψ⟩ =
∑
λ

cλ (ap,0 − ap,3) a†k,λ |0⟩︸ ︷︷ ︸
−2Ep δ3(p−k) (gλ0−gλ3) |0⟩

!
= 0 , (5.55)

and therefore c0 = −c3, whereas c1 and c2 are unconstrained. This means there are
two types of ‘physical states’ |ψ⟩ that satisfy the transversality condition:

|ψT ⟩ =
(
c1 a

†
k,1 + c2 a

†
k,2

)
|0⟩ , |ϕ⟩ =

(
a†k,0 − a

†
k,3

)
|0⟩ , (5.56)

whereas the negative-norm state a†k,0 |0⟩ does not satisfy the constraint. On the other
hand, a massless photon has only two physical polarizations, so what is the meaning
of the state |ϕ⟩? Consider the scalar product

⟨ψ|ϕ⟩ = ⟨ψ|
(
a†k,0 − a

†
k,3

)
|0⟩ = 0 , (5.57)

which must be zero because of Eq. (5.51). Since this holds for all states |ψ⟩, and |ϕ⟩
is also one of them, it implies in particular ⟨ϕ|ϕ⟩ = 0, i.e., the state |ϕ⟩ has zero norm.
Because |ϕ⟩ is orthogonal to all |ψ⟩, all scalar products of a general state |ψT ⟩ + c |ϕ⟩
with any other physical state are the same as those with |ψT ⟩ alone, and therefore |ϕ⟩
decouples from all physical processes. In particular, it does not contribute to any matrix
elements such as in Eq. (5.53), which are obtained from the transverse states |ψT ⟩ only:
⟨ϕ| O |ϕ⟩ = 0. States that decouple from the physics are also called spurious.

The decoupling statement will become nontrivial in the presence of interactions.
As long as the interactions satisfy gauge invariance, the spurious states decouple from
the S−matrix in all external legs where only the two transverse polarizations survive
(this is a consequence of the Ward identities). However, the spurious states still con-
tribute internally in the sense of virtual particles, where they are necessary to preserve
unitarity.
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6 Interactions and the S-matrix

So far we have been dealing with free, non-interacting quantum field theories for spin-0,
spin-12 and spin-1 particles:

Lsc0 =
1

2
(∂Φ)2 − 1

2
m2

0Φ
2 , LDirac

0 = ψ (i/∂ −m0)ψ , Lem0 = −1

4
F 2 . (6.1)

We denote the free Lagrangian by L0 and the mass parameter in the Lagrangian by
m0. We can solve the corresponding equations of motion (the Klein-Gordon, Dirac and
Maxwell equations) exactly in terms of superpositions of plane waves. After quantizing
such a theory, the Hilbert space is the Fock space of the multiparticle states that are
created from the free vacuum |0⟩.

Interactions. What happens when we include interactions? Let’s write the interacting
Lagrangian as L = L0 + Lint and the interacting Hamiltonian as H = H0 + Hint.
Examples for interactions are:

� Higher-order terms in theories with one type of field, for example the Φ3 and Φ4

interactions in a scalar theory: Lint = − g
3! Φ

3 or Lint = − λ
4! Φ

4. They describe
self-interactions of a scalar particle with respective coupling strengths g and λ.

� Interactions that couple different types of fields, for example the Lagrangian of
QED: LQED = LDirac

0 + Lem0 + g ψ /Aψ.

Later we will see that the possible forms of interactions are tightly constrained by the
requirements of gauge invariance and renormalizability.

To keep the discussion generic, let’s stick with scalar fields and work out the con-
sequences of their interactions. Unfortunately this complicates matters enormously.
Usually we can no longer solve the equations of motion exactly; for example, the Klein-
Gordon equation with Φ3 and Φ4 interactions becomes

(2+m2
0) Φ = −g

2
Φ2 − λ

3!
Φ3 , (6.2)

which is non-linear in the fields. Since the field is not free, there is no simple ex-
pansion in terms of creation and annihilation operators. At some given time t0, we
could try to expand Φ(x, t0) into Fourier modes and formally evolve it with Φ(x, t) =
eiH(t−t0)Φ(x, t0) e

−iH(t−t0), but H depends on higher powers of Φ which complicates

the solution. A state a†k|0⟩ can evolve into a†
2|0⟩, a†a2|0⟩, a†3|0⟩ terms etc., which

would describe the decay of a one-particle state into two- and three-particle states.
Hence, Φ(x) no longer creates just one-particle states but also multiparticle states.
Similarly, a fermion operator ψ in QED would not only create a single electron but also
states that contain an electron plus arbitrarily many photons; Aµ would create states
that contain besides a single photon also e+e− pairs.

As a consequence, the Hilbert space differs from the free theory: the ground state
of the free Hamiltonian H0 was the free vacuum |0⟩; the ground state of the full Hamil-
tonian is the interacting vacuum |Ω⟩. The masses m of the 1-particle momentum
eigenstates of H no longer equal the mass parameter m0 in the Lagrangian. The states
interact, and there may be bound states.
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The basic quantity of interest is then the scattering amplitude or transition am-
plitude between such multiparticle states. Ideally one would like to find the exact
solution of the interacting QFT, compute the exact spectrum and calculate the in-
teractions exactly. Unfortunately such analytic solutions are available only for a few
special cases. In general one has to resort to numerical methods (lattice QFT, Dyson-
Schwinger equations, functional renormalization-group equations, . . . ) or simplified
models. On the other hand, as long as the couplings are small (g, λ ≪ 1), one can
view Lint as a small perturbation and expand scattering amplitudes in powers of the
coupling constant(s). The resulting perturbation theory still allows us to perform
analytic calculations and it will be our tool of choice in practice. However, before
getting there (in Sec. 7), let us first make some general statements that are also valid
non-perturbatively.

Källén-Lehmann spectral representation. How can we determine the masses in
an interacting quantum field theory? First of all, Lorentz invariance tells us that the
commutation relation [Pµ, P ν ] = 0 must still hold, which implies that the momentum
operator commutes with the Hamiltonian and they are simultaneously diagonalizable:
[H,P ] = 0. We label their eigenstates by

H |λp⟩ = Ep(λ) |λp⟩ , P |λp⟩ = p |λp⟩ . (6.3)

There are now several types of possible Fock states:

� The ground state or vacuum |Ω⟩, which is invariant under Poincaré transforma-
tions. In particular, this means it has zero energy and momentum: Pµ|Ω⟩ = 0.

� One-particle states |p⟩ with momentum p and energy Ep =
√
p2 +m2, where

m ̸= m0 is no longer the mass parameter in the Lagrangian.

� N−particle states that are specified by a center-of-mass momentum p, the relative
momenta among the particles, and potentially further parameters. For example,
the lowest possible energy of a two-particle state in its rest frame (p = 0) is
2m, but since the two particles can have relative momentum, which contributes
to their total energy, the state can have any energy above 2m. Therefore, the
multiparticle states form a continuum. We write the energy of an N−particle
state |λp⟩ as Ep(λ) = (p2 +m2

λ)
1/2, where mλ ≥ 2m is the invariant mass of the

state (its energy in the rest frame).

� Bound states with mass < 2m, which have no analogue in the free theory.

The resulting eigenvalue spectrum of H will generally have the form shown in Fig. 6.1.
We can then write the completeness relation for the entire Fock space as

1 = |Ω⟩⟨Ω|+
∑
λ

∫
d3p

2Ep(λ)
|λp⟩⟨λp| . (6.4)

The sum over λ is formal and includes integrals over continuous parameters like relative
momenta.

Let’s have a look at the full two-point correlation function ⟨Ω|TΦ(x)Φ(y) |Ω⟩
for scalar fields (the ‘dressed propagator’). We start with ⟨Ω|Φ(x)Φ(y) |Ω⟩, whose
analogue in the free theory is Eq. (2.72). Inserting the completeness relation, we can
make the following observations:
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Figure 6.1: Eigenvalue spectrum of the Hamiltonian in terms of one-particle states with
mass m and multiparticle states with invariant mass mλ ≥ 2m.

� Remembering Eq. (2.61), we infer that the field behaves under translations as
Φ(x) = eix·P Φ(0) e−ix·P . Since the vacuum is translationally invariant, the VEV
of a single field ⟨Ω|Φ(x) |Ω⟩ = ⟨Ω|Φ(0) |Ω⟩ must be a constant. We can always
redefine the field by subtracting this constant so that the VEV vanishes. (For
higher spin fields it vanishes automatically by Lorentz invariance.)

� For the matrix element ⟨Ω|Φ(x) |λp⟩ we can also use translation invariance be-
cause λp is an eigenstate of Pµ:

⟨Ω|Φ(x) |λp⟩ = ⟨Ω| eix·P Φ(0) e−ix·P |λp⟩ = ⟨Ω|Φ(0) |λp⟩ e−ip·x . (6.5)

If we denote by U |λ0⟩ = |λp⟩ a Lorentz boost from the rest frame to the momen-
tum p, we can further exploit Lorentz invariance from Eq. (2.65):

⟨Ω|Φ(0) |λp⟩ = ⟨Ω|UΦ(0)U−1|λp⟩ = ⟨Ω|Φ(0) |λ0⟩ . (6.6)

This quantity measures the overlap of ⟨Ω|Φ(0) with the state |λ0⟩. For a one-
particle state it is simply a constant, whereas for a general N−particle state it
still depends on the relative momenta. In the following we will write

|⟨Ω|Φ(0) |λ0⟩|2 =:
Z(λ)

(2π)3
. (6.7)

Compare this with the free theory, Eq. (2.35): If Φ(x) would only create a free
particle from the vacuum, then the overlap would be Z(1) = 1 for one-particle
states and zero for all others. This is no longer true in an interacting theory
because Φ(x) creates not only one-particle states. In the context of renormaliza-
tion, we will later absorb Z(1) (which actually turns out to be infinite!) in the
definition of the renormalized field so that the r.h.s. above becomes 1/(2π)3;
however, this still leaves Z(λ) ̸= 0 for multiparticle states.
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Figure 6.2: Left: spectral function of a typical field theory, with a single-particle peak
at M2 = m2 and a multiparticle continuum for M2 ≥ 4m2. Right: Analytic structure of
the corresponding dressed propagator with single-particle (and potential bound-state) poles,
together with a branch cut above p2 = 4m2.

For now, we arrive at

⟨Ω|Φ(x)Φ(y) |Ω⟩ = 1

(2π)3

∑
λ

∫
d3p

2Ep(λ)
e−ip(x−y) Z(λ) . (6.8)

Including the time ordering, we can make the same manipulations for the integral as
in the free theory, Eqs. (2.84) and (2.86), which leads to

⟨Ω|TΦ(x)Φ(y) |Ω⟩ =
∫

d4p

(2π)4
e−ip(x−y)

∑
λ

iZ(λ)

p2 −m2
λ + iϵ

=
∑
λ

Z(λ)DF (x− y,m2
λ) ,

where we abbreviated the free Feynman propagator by

DF (z,M
2) :=

∫
d4p

(2π)4
e−ipz

i

p2 −M2 + iϵ
. (6.9)

Remember that the sum over λ is a multi-dimensional integral over relative momenta.
If we further define the spectral function

ρ(M2) :=
∑
λ

2π δ(M2 −m2
λ)Z(λ) , (6.10)

then we arrive at the Källén-Lehmann spectral representation:

⟨Ω|TΦ(x)Φ(y) |Ω⟩ =
∞∫
0

dM2

2π
ρ(M2)DF (x− y,M2) . (6.11)

Therefore, the spectral function encodes the change from a free propagator to a dressed
one. The spectral function for a typical theory is positive and has the form of Fig. 6.2.
The one-particle states lead to an isolated δ−function peak at M2 = m2, which allows
us to extract the squared mass m2 of the particle as the lowest-lying pole location
of the propagator in momentum space:∫

d4x eip(x−y) ⟨Ω|TΦ(x)Φ(y) |Ω⟩ = iZ

p2 −m2 + iϵ
+

∞∫
4m2

dM2

2π

i ρ(M2)

p2 −M2 + iϵ
, (6.12)
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Figure 6.3: Idealized scattering process from r incoming to n outgoing particles.

where from now on we write Z = Z(1). The continuum of N−particle states begins at
M2 ≥ (2m)2, which leads to a branch cut in the propagator starting at p2 = 4m2. In
addition, there could be further bound state poles below M2 = (2m)2. This property
is usually more relevant in the context of composite fields (or higher n−point functions
of elementary fields) but it can also happen in an elementary two-point function. For
example, think of a scalar theory with a Φ3 interaction: a particle can split into two,
which contribute to the two-particle continuum, but in principle they could also form
a scalar bound state with mass below 2m.

S-matrix. The basic observables in scattering experiments are cross sections, which
are related to the transition amplitudes that describe the scattering of incoming states
|g, in⟩ to outgoing states |h, out⟩, cf. Fig. 6.3. Suppose that in the asymptotic past
t→ −∞ the state

|g, in⟩ =
∫
d3q1· · ·

∫
d3qr g(q1, . . . qr) a

†
in(q1) . . . a

†
in(qr) |Ω⟩ (6.13)

describes a collection of wave packets (defined by the function g) that correspond to
individual, well-separated single-particle states. When the particles approach each
other, they start to interact and scatter into the final state |h, out⟩, which for t → ∞
describes again asymptotically free and well separated 1-particle states:

|h, out⟩ =
∫
d3p1· · ·

∫
d3pn h(p1, . . .pn) a

†
out(p1) . . . a

†
out(pn) |Ω⟩ . (6.14)

The in and out states are created from the interacting vacuum |Ω⟩ by action of the
fields Φin and Φout at t→ ±∞. These are free fields that satisfy the free Klein-Gordon
equation, however with mass m ̸= m0, which is the one-particle pole of the Feynman
propagator of the full interacting theory, and energy Ep =

√
p2 +m2. Therefore, we

can expand Φin and Φout into Fourier modes with corresponding creation and annihi-
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lation operators:

Φin(x) =

∫
d3p

2Ep

(
ain(p) fp(x) + a†in(p) f

∗
p (x)

)
,

Φout(x) =

∫
d3p

2Ep

(
aout(p) fp(x) + a†out(p) f

∗
p (x)

)
,

fp(x) =
1

(2π)3/2
e−ipx

∣∣∣
p0=Ep

.

(6.15)

The question is: how is the full interacting field Φ(x) related to Φin(x) and Φout(x)?
What we will need in the following is that

⟨α|Φ(x) |β⟩ t→−∞−−−−→ C ⟨α|Φin(x)|β⟩ ,
⟨α|Φ(x) |β⟩ t→∞−−−−→ C ⟨α|Φout(x)|β⟩ .

(6.16)

This does not hold as an operator equation, i.e., the field Φ(x) does not simply become
a free field for t→ ±∞. The corresponding statement is Haag’s theorem which says,
in short, that a field that is free at a given time remains free for all times. Since we
cannot perform measurements with free fields, the corresponding quantum field theory
would not have any empirical content. Hence, we only need Eq. (6.16) to hold in the
weak sense, i.e., the matrix elements of Φ(x) should converge to those of Φin,out(x)
in a suitable manner at t → ±∞. For the overlap of Φ(x) between the vacuum and
one-particle states this entails

|⟨Ω|Φ(0) |λ0⟩|2︸ ︷︷ ︸
Z/(2π)3

= C2 |⟨Ω|Φin(0) |λ0⟩|2︸ ︷︷ ︸
1/(2π)3

(6.17)

and therefore C =
√
Z, whereas the (momentum-dependent) overlap with multiparticle

states Z(λ) must vanish for t → ±∞. This can be intuitively understood as follows:
although all interactions between the incoming and outgoing particles are switched off
asymptotically, the self-interactions of the particles remain, which leads to m ̸= m0.

LSZ reduction formula. The operators Φin(x) and Φout(x) act on the same Hilbert
space of a free theory. Hence, there must be an operator S (the scattering operator)
that maps the out states onto the in states: |g, in⟩ = S |g, out⟩. From this definition it
follows that

S is unitary: S−1 = S†, S |Ω⟩ = |Ω⟩, Φin(x) = S Φout(x)S
−1 . (6.18)

The goal in the following will be to compute the transition amplitude or S-matrix
element

⟨h, out | g, in⟩ = ⟨h, out |S | g, out⟩ = ⟨h, in |S | g, in⟩ . (6.19)

For simplicity we will work directly with the matrix element

⟨p1 . . . pn, out | q1 . . . qr, in⟩ = ⟨Ω | aout(p1) . . . aout(pn) a
†
in(q1) . . . a

†
in(qr) |Ω⟩ , (6.20)
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but keep in mind for the following discussion that we should really smear this with
normalizable wave packets as in Eqs. (6.13–6.14).

The strategy in calculating the S-matrix element is to successively replace the cre-
ation and annihilation operators that appear in Eq. (6.20) by the fully interacting field
Φ(x). To simplify the notation, we return to our definition of the Lorentz-invariant
scalar product between fields in Eq. (1.22),

(Ψ,Φ) := i

∫
d3xΨ∗(x)

↔
∂0Φ(x) = i

∫
d3x

[
Ψ∗(x)Φ̇(x)− Ψ̇∗(x)Φ(x)

]
, (6.21)

which is time-independent as long as Ψ(x) and Φ(x) are solutions of the free Klein-
Gordon equation. The relations

(fp, fp′) = 2Ep δ
3(p− p′) , (f∗p , f

∗
p′) = −2Ep δ3(p− p′) , (fp, f

∗
p′) = 0 (6.22)

then allow us to extract the Fourier coefficients of Eq. (6.15) as

ain(p) = (fp,Φin),

a†in(p) = −(f∗p ,Φin) ,

aout(p) = (fp,Φout),

a†out(p) = −(f∗p ,Φout) .
(6.23)

To begin with, we can write for any function F (x):

∞∫
−∞

dt
∂

∂t
F (x) = lim

t→∞
F (x)− lim

t→−∞
F (x) . (6.24)

Therefore, we can establish the relation

Z−1/2
∞∫
−∞

dt ∂0 (fp,Φ) = lim
t→∞

Z−1/2 (fp,Φ)− lim
t→−∞

Z−1/2 (fp,Φ)

= (fp,Φout)− (fp,Φin) = aout(p)− ain(p) ,
(6.25)

where we used Eq. (6.16). Remember that this only holds inside expectation values
such as that in Eq. (6.20); it is not an operator identity because the identification of
Z−1/2Φ(x) with Φout(x), Φin(x) for t → ±∞ is only valid in the weak sense. Note
that the terms (fp,Φout) and (fp,Φin) in the second line are time-independent because
Φout(x) and Φin(x) solve the Klein-Gordon equation, but (fp,Φ) depends on time since
Φ(x) is the interacting field. We can then work out its time derivative:

∂0 (fp,Φ) = i

∫
d3x ∂0

[
f∗p (x)

↔
∂ 0Φ(x)

]
= i

∫
d3x

[
f∗p (x) ∂

2
0 Φ(x)− ∂20 f∗p (x) Φ(x)

]
,

(6.26)

because the crossed terms cancel each other. The idea is now to shuffle the time
derivative in the second term from f∗p to Φ. Since f∗p is a plane wave, cf. Eq. (6.15),
we can convert the time derivative into a spatial derivative:

(∂0)
2 f∗p (x) = −E2

p f
∗
p (x) = −(p2 +m2) f∗p (x) = (∇2 −m2) f∗p (x) . (6.27)
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At this point we should remember that we will ultimately put this back into the S-
matrix element (6.19) that is smeared with wave packets; otherwise the following partial
integration cannot be justified because the surface terms would not vanish. In that case
we obtain

∂0 (fp,Φ) = i

∫
d3x f∗p (x) (∂

2
0 −∇2 +m2) Φ(x) = i

∫
d3x f∗p (x) (2+m2) Φ(x) . (6.28)

In total, Eq. (6.25) becomes

aout(p) = ain(p) + iZ−1/2
∫
d4x f∗p (x) (2+m2) Φ(x) , (6.29)

which again holds only inside the expectation value. Recall that Φ(x) does not satisfy
the free Klein-Gordon equation, otherwise the integral would be zero.

Putting this back into the S-matrix element (6.20) and thereby replacing aout(pn),
we can successively permute ain(pn) to the right until it annihilates on the vacuum.
Each step generates a factor 2Epn δ

3(pn− qj), together with another S-matrix element
where two momenta are taken out. Therefore, they describe the scattering of r − 1 in
states into n − 1 out states. From the perspective of the full S-matrix element they
are disconnected terms, whereas the connected contribution comes from the second
piece in Eq. (6.29):

iZ−1/2
∫
d4x f∗p (x) (2+m2) ⟨Ω | aout(p1) . . .Φ(x) a

†
in(q1) . . . a

†
in(qr) |Ω⟩ . (6.30)

This completes the first step. Next, we want to repeat the procedure for a†in(q1)
which appears to the right of Φ(x). However, in this case it is not sufficient to write

a†in(q1) = a†out(q1) + . . . because ultimately a†out(q1) should annihilate on the left,
but we still need to interchange its position with Φ(x). Earlier we teased that it is
the time-ordered propagator (with the Feynman prescription to integrate over poles),
and time-ordered correlation functions, that will become important in the interacting
theory. In fact, the next step is where the time ordering finally comes in:

Φ(x) a†in(q)− a
†
out(q) Φ(x) =

= (f∗q ,Φout) Φ(x)− Φ(x) (f∗q ,Φin)

= i

∫
d3y fq(y)

←→
∂

∂y0
Φout(y) Φ(x)− i

∫
d3y fq(y)

←→
∂

∂y0
Φ(x) Φin(y)

= iZ−1/2

[
lim
y0→∞

∫
d3y fq(y)

←→
∂

∂y0
Φ(y) Φ(x)− lim

y0→−∞

∫
d3y fq(y)

←→
∂

∂y0
Φ(x) Φ(y)

]

= iZ−1/2
∞∫
−∞

dy0
∂

∂y0

∫
d3y fq(y)

←→
∂

∂y0
TΦ(x) Φ(y)

= iZ−1/2
∫
d4y fq(y) (2y +m2)TΦ(x) Φ(y). (6.31)
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In the third equality we used the fact that the scalar products with Φin and Φout are
time-independent, so we are free to shift the time variable y0 → ±∞ and replace the
interacting field with the in and out fields (which holds inside matrix elements). In
the fourth equality we used Eq. (6.24), and we finally repeated the steps that led us

from Eq. (6.26) to (6.29). As desired, the second term a†out(q) Φ(x) on the l.h.s. will
produce disconnected terms upon permuting it to the left, whereas the interacting part
is generated by the r.h.s. of the equation.

In this way one can proceed until all creation and annihilation operators are replaced
by the respective field operators. The final result is

⟨p1 . . . pn, out | q1 . . . qr, in⟩conn. = (iZ−1/2)n+r

[
n∏
i=1

∫
d4xi f

∗
pi(xi) (2xi +m2)

]
×

×
[

r∏
j=1

∫
d4yj fqj (yj) (2yj +m2)

]
⟨Ω |TΦ(x1) . . .Φ(xn) Φ(y1) . . .Φ(yr) |Ω⟩ .

(6.32)

This is known as the LSZ reduction formula (Lehmann, Symanzik, Zimmermann).
It reduces the computation of S-matrix elements to the calculation of the time-ordered
correlation functions or simply Green functions of the fully interacting theory:

G(x1 . . . xn, y1 . . . yr) := ⟨Ω |TΦ(x1) . . .Φ(xn) Φ(y1) . . .Φ(yr) |Ω⟩ . (6.33)

For further interpretation, we can use∫
d4x f∗p (x) (2+m2) Φ(x) =

∫
d4x (2+m2) f∗p (x) Φ(x)

= (−p2 +m2)

∫
d4x f∗p (x) Φ(x)

(6.34)

for wave packets, which leads to the following form of the LSZ formula:

n∏
i=1

∫
d4xi f

∗
pi(xi)

r∏
j=1

∫
d4yj fqj (yj)G(x1 . . . xn, y1 . . . yr)

=

(
n∏
i=1

i
√
Z

p2i −m2

)(
r∏
j=1

i
√
Z

q2j −m2

)
⟨p1 . . . pn, out | q1 . . . qr, in⟩conn. ,

(6.35)

plus further disconnected terms. The left-hand side is now just the Fourier transform
of the Green function, i.e., the Green function in momentum space (modulo factors
(2π)3/2 from the f ’s). Note that all momenta in the S-matrix element are onshell,
p2i = q2j = m2, because these are the physical momenta of 1-particle states. The
prefactors on the r.h.s. are therefore singular; they correspond exactly to the pole
contributions of the full propagator of the theory, cf. Eq. (6.12). Consequently, they
must cancel with the l.h.s.: the Green function will contain a sum of terms with poles
in the momenta, where only those terms survive in the connected S-matrix whose poles
cancel exactly with the kinematic factors

n∏
i=1

(p2i −m2)
r∏
j=1

(q2j −m2) , (6.36)
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because all other contributions are not connected. Therefore, the recipe for calculating
S-matrix elements is as follows:

� Calculate the Fourier transform of the Green function G(x1 . . . xn, y1 . . . yr).

� Set all external momenta onshell: p2i = m2, q2j = m2. This generates a sum of
terms that are distinguished by their pole structure.

� To obtain the connected S-matrix element, take the residue with respect to the
n+ r pole factors.

This sounds straightforward enough, but the open question is: how can we actually
calculate such Green functions?
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7 Perturbation theory

The goal in the following is to calculate the n-point Green functions

⟨Ω |TΦ(x1) . . .Φ(xn) |Ω⟩ (7.1)

of a scalar theory in perturbation theory. That is, we assume that the interactions
contained in Lint = L − L0 or Hint = H −H0 are so weak that we can systematically
expand these Green functions (and therefore also scattering amplitudes) in powers of
the coupling constant. Perturbation theory has turned out to be immensely successful
in many different contexts such as QED, the weak interaction, (to some extent) QCD,
or also effective field theories.

Correlators in the interaction picture. How can we rearrange Eq. (7.1) in a form
where Lint appears explicitly? To begin with, recall Eq. (2.61) which follows from
translation invariance and tells us how the field Φ(x) evolves in time:

Φ(t,x) = eiH(t−t0)Φ(t0,x) e
−iH(t−t0) . (7.2)

Φ(x) is the field operator in the Heisenberg picture and carries the full spacetime
dependence. Now let’s define the interaction picture field ΦI(x) as a field that
‘evolves’ with the Hamiltonian H0 of the free theory:

ΦI(t,x) = eiH0(t−t0)ΦI(t0,x) e
−iH0(t−t0) . (7.3)

By definition this is a free field that satisfies the free KG equation with massm0, and we
can expand it into Fourier modes as in Eq. (1.16). We now assume that the two fields are
equal at some time t0, where they have the same functional form Φ(t0,x) = ΦI(t0,x).
In that case we can relate Φ(x) and ΦI(x) at arbitrary time x0 = t by

Φ(t,x) = U †(t, t0) ΦI(t,x)U(t, t0) , U(t, t0) = eiH0(t−t0) e−iH(t−t0) . (7.4)

Note that U(t, t0) ̸= e−iHint(t−t0) because H does not commute with H0.
Actually the assumption Φ(t0,x) = ΦI(t0,x) cannot hold in general, because Haag’s

theorem states that a free field will always remain free. That is, there is no unitary
transformation that relates Φ to ΦI , and consequently the interaction picture does not
exist. We will ignore this problem in the following and hope that everything we do can
still be justified in the sense of weakly converging matrix elements.

In any case, we can derive the following Schrödinger equation for the evolution
operator U(t, t0):

i
∂U

∂t
= eiH0(t−t0) (H −H0) e

−iH(t−t0)

= eiH0(t−t0)Hint e
−iH0(t−t0) U(t, t0) =: HI(t)U(t, t0) .

(7.5)

HI(t) is the Hamiltonian in the interaction picture, i.e., Hint evolved with H0. It is
simple because the functional dependence of HI(t) on ΦI(t,x) is the same as that of
Hint on Φ(t0,x), for example in Φ4 theory:

Hint(t0) =

∫
d3x

λ

4!
Φ(t0,x)

4 ⇒ HI(t) =

∫
d3x

λ

4!
ΦI(t,x)

4 . (7.6)
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Figure 7.1: Symmetric integration domain in Eq. (7.7).

Therefore, the solution of (7.5) allows us to express the full field Φ(t,x) in terms of
the interaction-picture Hamiltonian HI(t) and ultimately the interaction-picture field
ΦI(t,x), which is simple to handle because it is a free field that can be expanded into
Fourier modes.

Another remark is in order: the explicit form for U(t, t0) in Eq. (7.4) only holds
for the case where H, H0 and Hint are all time-independent. This is true for the full
Hamiltonian H but in general not for H0(t) and Hint(t): Ḣint(t) = i[H,Hint(t)] =
i[H0(t), Hint(t)]. Fortunately, it is not necessary to specify U(t, t0) explicitly: one can
show that the generic relation between Φ(x) and ΦI(x) in Eq. (7.4) leads to the same
Schrödinger equation.

Eq. (7.5) is solved by

U(t, t0) = 1 + (−i)
t∫

t0

dt1HI(t1) + (−i)2
t∫

t0

dt1

t1∫
t0

dt2HI(t1)HI(t2) + . . . (7.7)

To see this, take the time derivative with (∂/∂t)
∫ t
t0
dt′f(t′) = f(t): each term in the

series reproduces the previous one with a factor −iHI(t), and the initial condition
U(t0, t0) = 1 is satisfied. Note that the factors HI in the integrand are automatically
time-ordered because t1 > t2 > t3 > . . . , so we can equally write

U(t, t0) = 1 + (−i)
t∫

t0

dt1HI(t1) +
(−i)2
2!

t∫
t0

dt1

t∫
t0

dt2 T {HI(t1)HI(t2)}+ . . . (7.8)

Here we additionally exploited the fact that the integral is symmetric in t1 and t2,
cf. Fig. 7.1; this also holds for the higher-order diagrams. The series defines the time-
ordered exponential

U(t, t0) =: T exp

[
−i

t∫
t0

dt′HI(t
′)

]
(7.9)
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as the time ordering of the individual terms in the series expansion. From the expansion
one can also prove the properties

U †(t1, t2) = U−1(t1, t2) = U(t2, t1) ,

U(t1, t2)U(t2, t3) = U(t1, t3) for t1 ≥ t2 ≥ t3 .
(7.10)

The hermitian conjugation switches all i factors and can be reversed by exchanging the
integration limits, which leads to the first relation. To verify the second one, observe
that U(t, t2)U(t2, t3) satisfies the same Schrödinger equation (7.5) so it can be written
as U(t, t′), and the boundary condition U(t3, t

′) = 1 entails t′ = t3.

With Eqs. (7.4) and (7.10) at hand, we can work out the full two-point function.
Consider first the case x0 > y0:

⟨Ω|Φ(x) Φ(y) |Ω⟩ = ⟨Ω|U †(x0, t0) ΦI(x)U(x0, t0)U
†(y0, t0) ΦI(y)U(y0, t0) |Ω⟩

= ⟨Ω|U(t0, x0) ΦI(x)U(x0, y0) ΦI(y)U(y0, t0) |Ω⟩ .
(7.11)

Let’s insert some large time T ≫ x0, y0:

· · · = ⟨Ω|U(t0, T ) U(T, x0) ΦI(x)U(x0, y0) ΦI(y)U(y0,−T )︸ ︷︷ ︸
time-ordered

U(−T, t0) |Ω⟩ . (7.12)

The bracket is then already time-ordered, so we can put a time-ordering symbol in
front of it and combine all U ’s inside:

· · · = ⟨Ω|U(t0, T )T
{
ΦI(x) ΦI(y)U(T,−T )

}
U(−T, t0) |Ω⟩ . (7.13)

Since this is time-ordered, the opposite case with y0 > x0 gives the same result, and
therefore the full correlator becomes

⟨Ω|TΦ(x) Φ(y) |Ω⟩ = ⟨Ω|U(t0, T )T
{
ΦI(x) ΦI(y)U(T,−T )

}
U(−T, t0) |Ω⟩ . (7.14)

The quantity U(T,−T ) is given by

U(T,−T ) = T exp

[
−i

T∫
−T

dtHI(t)

]
= T eiSI , (7.15)

where SI =
∫
d4xLI = −

∫
d4xHI is the action corresponding to the interacting part

that depends on the field ΦI(x). We assumed that the interacting Lagrangian contains
no field derivatives so that LI = −HI . The expression (7.14) still depends on the
arbitrary reference time t0 and the interacting vacuum |Ω⟩ which we have to get rid of.

Free vs. interacting vacuum. We would like to relate the full interacting vacuum
|Ω⟩ to the vacuum |0⟩ of the free theory. To do so, recall that H |Ω⟩ = 0 and ⟨Ω|Ω⟩ = 1.
That is, we ‘renormalized’ the interacting theory so that the vacuum energy EΩ = 0,
which we motivated with the arbitrary counterterm V0 in the Lagrangian. However,
doing so removes our freedom to set the vacuum energy in the corresponding free theory
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(defined by H0) to zero: H0 |n⟩ = En |n⟩ with E0 ≤ E1 ≤ E2 ≤ . . . , but E0 ̸= 0. In
any case we can write

U(−T, t0) |Ω⟩ = e−iH0(T+t0) eiH(T+t0) |Ω⟩︸ ︷︷ ︸
=|Ω⟩

=

∞∑
n=0

e−iEn(T+t0) |n⟩⟨n|Ω⟩ .

In the last step we inserted a complete set of states of the free theory. Assuming that
⟨0|Ω⟩ ≠ 0, we can eliminate the contributions from the states with higher energy by
taking the limit T → ∞(1 − iϵ) because this will eliminate all contributions from the
energies En > E0:

U(−T, t0) |Ω⟩
T→∞(1−iϵ)−−−−−−→ e−iE0(T+t0) |0⟩⟨0|Ω⟩ =: c(−T, t0) |0⟩ .

The analogous case for ⟨Ω| gives

⟨Ω|U †(T, t0)
T→∞(1−iϵ)−−−−−−→ ⟨0| c∗(T, t0) . (7.16)

After plugging this into Eq. (7.14) we are still left with the awkward factors c(−T, t0)
and c∗(T, t0). We can remove them too by noting that

⟨Ω|Ω⟩ = 1
T→∞(1−iϵ)−−−−−−→ c∗(T, t0) c(−T, t0) ⟨0|U(T, t0)U

†(−T, t0) |0⟩
= c∗(T, t0) c(−T, t0) ⟨0|U(T,−T ) |0⟩ .

(7.17)

Inserting everything into Eq. (7.14) we arrive at the final result for the full propagator:

⟨Ω|TΦ(x) Φ(y) |Ω⟩ = lim
T→∞(1−iϵ)

⟨0|T
{
ΦI(x) ΦI(y)U(T,−T )

}
|0⟩

⟨0|U(T,−T ) |0⟩ . (7.18)

It can be generalized to arbitrary n−point functions:

⟨Ω|TΦ(x1) . . .Φ(xn) |Ω⟩ = lim
T→∞(1−iϵ)

⟨0|T
{
ΦI(x1) . . .ΦI(xn) e

iSI
}
|0⟩

⟨0|T eiSI |0⟩ . (7.19)

With this formula we have in principle everything in place to do perturbation theory.
We could expand eiSI in the small coupling constant, express ΦI in terms of creation and
annihilation operators (since it is a free field), take the time ordering, and calculate any
correlation function simply by brute force. However, this also becomes quite repetitive
and cumbersome, which is where Wick’s theorem comes to rescue.

Wick’s theorem. To shorten the notation, we will write the interaction-picture field
as ΦI(x) = ϕ(x). Since it is a free field, we can decompose it into positive- and
negative-frequency parts:

ϕ(x) =
1

(2π)3/2

∫
d3p

2Ep
(ap e

−ipx + a†p e
ipx) = ϕ+(x) + ϕ−(x) , (7.20)

with ϕ+(x) |0⟩ = 0 = ⟨0|ϕ−(x). In the following we want to express products of field
operators in terms of their normal ordered versions, which means that all creation oper-
ators are shuffled to the left and all annihilation operators to the right or, equivalently,
all instances of ϕ−(x) go to the left and all instances of ϕ+(x) to the right.
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Consider the product of two fields ϕ(x)ϕ(y). In terms of positive- and negative-
frequency modes it has the form

ϕ(x)ϕ(y) = ϕ+(x)ϕ+(y) + ϕ+(x)ϕ−(y) + ϕ−(x)ϕ+(y) + ϕ−(x)ϕ−(y)

= :ϕ(x)ϕ(y) : + [ϕ+(x), ϕ−(y)] ,
(7.21)

and likewise ϕ(y)ϕ(x) = :ϕ(x)ϕ(y) : + [ϕ+(y), ϕ−(x)]. Inserting the Fourier modes, we
find for the commutator

[ϕ+(x), ϕ−(y)] =
1

(2π)3

∫
d3p

2Ep
e−ip(x−y)

∣∣∣
p0=Ep

= D(x− y) , (7.22)

where D(x− y) has been given in Eq. (2.72). In total this yields

Tϕ(x)ϕ(y) = :ϕ(x)ϕ(y) : +Θ(x0 − y0)D(x− y) + Θ(y0 − x0)D(y − x)
= :ϕ(x)ϕ(y) : +DF (x− y) .

(7.23)

Since ⟨0| :O : |0⟩ = 0, this implies for the vacuum expectation value

⟨0|Tϕ(x)ϕ(y) |0⟩ = DF (x− y) , (7.24)

which is just our earlier definition of the Feynman propagator (remember that ϕ(x) is
a free field and |0⟩ the free vacuum).

What is useful about the identity is that we can immediately generalize it to ar-
bitrary n−point functions. This is known as Wick’s theorem, and it states that
the time-ordered product Tϕ(x1) . . . ϕ(xn) is equal to the normal-ordered product
: ϕ(x1) . . . ϕ(xn) : plus all possible combinations of normal orderings and contractions
of distinct fields. A contraction of two fields ϕ(x1), ϕ(x2) is defined to be equal to the
Feynman propagator D(x1 − x2) and denoted by

ϕ(x)ϕ(y) = DF (x− y) . (7.25)

Using the shorthand notation ϕ(xi) = ϕi and DF (xi − xj) = Dij , let’s illustrate the
result for the four-point function:

T {ϕ1 ϕ2 ϕ3 ϕ4} = :ϕ1 ϕ2 ϕ3 ϕ4 :

+D12 :ϕ3 ϕ4 : +D13 :ϕ2 ϕ4 : +D14 :ϕ2 ϕ3 :

+D23 :ϕ1 ϕ4 : +D24 :ϕ1 ϕ3 : +D34 :ϕ1 ϕ2 :

+D12D34 +D13D24 +D14D23 .

(7.26)

The Wick theorem for arbitrary n−point functions can be proven via induction (see
Peskin-Schroeder, p.90). Only the last line above survives when taking vacuum expec-
tation values, and therefore the VEV of a time-ordered product of fields equals the sum
over all possible contractions:

⟨0|T {ϕ1 ϕ2 ϕ3 ϕ4} |0⟩ = D12D34 +D13D24 +D14D23 . (7.27)

If n is odd, the VEV vanishes because there is always an odd number of normal-ordered
fields remaining.
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Feynman diagrams. A diagrammatic way to visualize such contractions is to draw
Feynman diagrams: draw a point for each spacetime argument xi and connect them
by lines, which represent the Feynman propagators of the free theory. The four-point
function from Eq. (7.27) then becomes

⟨0|T {ϕ1 ϕ2 ϕ3 ϕ4} |0⟩ = . (7.28)

More interesting are expressions that contain more than one field at the same spacetime
point, which leads to loop diagrams. Let’s put Eq. (7.18) for the two-point function
in ϕ4 theory to use. When we expand the exponential in the numerator to O(λ) we
obtain

⟨0|Tϕ(x)ϕ(y) e−i λ4!
∫
d4z ϕ(z)4 |0⟩ =

= ⟨0|Tϕ(x)ϕ(y) |0⟩ − i λ
4!
⟨0|Tϕ(x)ϕ(y)

∫
d4z ϕ(z)4 |0⟩+ . . .

(7.29)

The first term is just the propagator line from x to y. Applying the Wick theorem to
the combination ϕ(x)ϕ(y)ϕ(z)4 yields only two distinct expressions:

� If we contract ϕ(x) with ϕ(y), there are three distinguishable ways how to contract
ϕ(z) with ϕ(z):

ϕ(x)ϕ(y)ϕ(z)ϕ(z)ϕ(z)ϕ(z) .

� if we contract ϕ(x) with ϕ(z) (four possibilities) and ϕ(y) with ϕ(z) (three pos-
sibilities), there is one possibility left how to contract ϕ(z) with ϕ(z):

ϕ(x)ϕ(y)ϕ(z)ϕ(z)ϕ(z)ϕ(z) .
In total, this gives

⟨0|T
{
ϕx ϕy ϕz ϕz ϕz ϕz

}
|0⟩ = 3 ·DxyDzzDzz + 4 · 3 ·DxzDyzDzz , (7.30)

or in terms of diagrams:

⟨0|T
{
ϕx ϕy

∫
z

ϕz ϕz ϕz ϕz

}
|0⟩ = 3

 + 4 · 3

  , (7.31)

where we abbreviated
∫
d4z =

∫
z.

Clearly, for higher products of fields the number of possible Wick contractions will
rise dramatically. Fortunately, however, this number almost cancels with the factors 4!
from the denominators in the Taylor expansion. In the example above, the final prefac-
tors are 1/8 and 1/2. Their denominators 8 and 2 are called symmetry factors of the
diagrams, because they count the number of possibilities to exchange the components
without changing the diagram itself. For example:

(7.32)
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In the first diagram we can flip both the upper and the lower loop horizontally, and we
can exchange the loops vertically, which gives 2× 2× 2 = 8. In the second diagram we
can only do a horizontal flip, so the symmetry factor is 2. In the third diagram there
are 3! = 6 possibilities to exchange the three internal lines, and in the fourth diagram
we can additionally perform a horizontal flip (3! × 2 = 12). Note that the external
points x and y are fixed and cannot be flipped.

Feynman rules. These observations hold in general and can be summarized by the
Feynman rules. Consider an n−point function for a theory with a ϕm interaction:

⟨0|Tϕ(x) . . . ϕ(xn) e−i
λ
m!

∫
d4z ϕ(z)m |0⟩ . (7.33)

You can find all diagrams at a given order O(λk) in perturbation theory if you draw

� n external points xi,

� k internal points zj (vertices)
with m incoming lines,

� connect all points by Feynman
propagators of the free theory,

� divide each diagram
by its symmetry factor,

� and sum up all diagrams in the end.

It is usually more convenient to write the Feynman propagator in momentum space:

DF (x− y) =
∫

d4p

(2π)4
e−ip(x−y)DF (p) , DF (p) =

i

p2 −m2
0 + iε

. (7.34)

We will use the convention that the momentum points from right to left, i.e., from y to
x. This is irrelevant for a scalar propagator because DF (x− y) = DF (y − x), but the
distinction will become important when we generalize the Feynman rules to fermions.

As an example, let’s work out the ‘tadpole’ diagram, now with the abbreviation∫
p =

∫ d4p
(2π)4

:

=
1

2
(−iλ)

∫
d4z DF (x− z)DF (y − z)DF (z − z)

= − iλ
2

∫
d4z

∫
p

∫
q

∫
k

e−ip(x−z) eiq(y−z)DF (p)DF (q)DF (k)

= − iλ
2

∫
p

∫
q

∫
k

e−ipx eiqyDF (p)DF (q)DF (k) (2π)
4 δ4(p− q) .

(7.35)
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From here one can read off the Feynman rules ‘in momentum space’ (this is a bit
of a misnomer because the Green function is still given in real space), which are easier
to handle in practice:

•) = e−ipx

•) = −iλ (2π)4 δ4
(∑

pi −
∑
qj

)

•) = DF (p) =
i

p2 −m2
0 + iε

•) integrate over all momenta:

∫
d4p

(2π)4

•) divide by the symmetry factor.

Propagator in ϕ4 theory. Let’s put the Feynman rules to use and calculate the
propagator of ϕ4 theory, i.e., all diagrams that contribute to

⟨0|Tϕ(x)ϕ(y) e−i λm!

∫
d4z ϕ(z)m |0⟩ (7.36)

up to O(λk). The propagator has two external points x and y, and a diagram at O(λk)
has k vertices. Here is the complete list up to O(λ2):

� O(λ0) :

� O(λ1) :

� O(λ2) :

Observe that we arrive at the same result if we multiply the sum of all connected
diagrams (those in the boxes) by the sum of all vacuum bubbles:[

+ + ++ + . . .

]
×
[

+ + + +1 + . . .

]
.

This is not a coincidence because so far we have only dealt with the numerator in
Eq. (7.19). To obtain the full Green function, we should also take into account the
denominator

⟨0|T e−i λm!

∫
d4z ϕ(z)m |0⟩ , (7.37)
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which is called the partition function. Its perturbative expansion generates just these
vacuum bubbles:

O(λ0) : 1 O(λ1) : O(λ2) :

so they factor out in the full Green function. Therefore we find

⟨Ω|TΦ(x) Φ(y) |Ω⟩ =
∑

(partially) connected terms . (7.38)

The meaning of ‘partially connected’ will become clear in a moment.

Four-point function in ϕ4 theory. As another example, let’s have a look at the
four-point function

⟨0|Tϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) e−i
λ
m!

∫
d4z ϕ(z)m |0⟩

⟨0|T e−i λm!

∫
d4z ϕ(z)m |0⟩

. (7.39)

It has four external points and k vertices at O(λk). Ignoring pure vacuum bubbles, the
diagrams up to O(λ2) are given by

� O(λ0) :

� O(λ1) :

� O(λ2) :

We already found the zeroth-order result in Eq. (7.28) as the sum of the three discon-
nected terms. Since they all have the same structure we have represented them here by
a single diagram for brevity. The same goes for the other diagrams where we have only
drawn one representative for each case, e.g. for the fourth diagram at O(λ2): we can
attach the two bubbles at the upper and lower line, and there are three permutations
of the two lines. Here it also becomes clear why we referred to ‘partially connected’
terms in Eq. (7.38): the full Green function is the sum of those diagrams where we can
no longer factor out vacuum bubbles, but they do not need to be fully connected.

1-particle irreducible diagrams. A class of diagrams that are important for the-
oretical analyses are the 1PI (one-particle irreducible) diagrams. The 1PI property is
defined as follows: consider only diagrams which are fully connected. Remove (‘ampu-
tate’) its external legs. If the diagram is still connected after cutting a single internal
line, it is 1PI. Some examples and counterexamples are:

1PI: not 1PI:
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Up to O(λ2), the 1PI contributions to the propagator and the four-point function are
therefore the following:

+ + and + .

Now let’s denote the full propagator by

G(x− y) = ⟨Ω|TΦ(x) Φ(y) |Ω⟩ =
∫

d4p

(2π)4
e−ip(x−y)G(p) = (7.40)

and define the self-energy of the scalar particle as the sum of all 1PI graphs for the
2-point function:

Σ(p)

i
:= + + . . .= + .

Observe that we can obtain the propagator by resumming its 1PI contributions:

G(p) =

= DF

[
1 +

Σ

i

(
DF +DF

Σ

i
DF + . . .

)]
(7.41)

= DF

[
1 +

Σ

i
G(p)

]
, (7.42)

and therefore

iG−1(p) = p2 −m2
0 − Σ(p) ⇔ G(p) =

i

p2 −m2
0 − Σ(p) + iϵ

. (7.43)

On the other hand, we know from the Källén-Lehmann spectral representation (6.12)
that the full propagator must have the form

G(p) =
iZ

p2 −m2 + iϵ
+ terms that are regular at p2 = m2 . (7.44)

In this sense the self-interactions of the particle (the quantum loop corrections) shift
its mass from m0 to m, so that the pole appears at p2 = m2, and Σ(p) takes indeed
the meaning of a self-energy.

What we have done here is resumming the geometric series. For illustration, replace Σ → x, DF → i
and G→ if(x):

f(x) = 1 + x+ x2 + · · · = 1 + x (1 + x+ . . . ) = 1 + xf(x) ⇒ f(x) =
1

1− x
. (7.45)

Of course this is only justified for |x| < 1, i.e., as long as the coupling is small. Fortunately, Eq. (7.43)
can be also derived nonperturbatively: it is the Dyson-Schwinger equation for the propagator, which
is an exact equation:

. (7.46)
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All ingredients with filled blobs are dressed. In our example this means that

f(x) =
1

1− x
= 1 + xf(x) = 1 + x+ x2f(x) = . . . (7.47)

is valid for all x except x = 1, because there is always a remainder that reproduces the exact result,
whereas the geometric series f(x) =

∑∞
n=0 x

n converges to the exact value only for |x| < 1. Hence, the
Dyson-Schwinger equation is more general than the perturbative expansion.

There may be also genuinely nonperturbative effects that are not reproducible by the perturbative
series, not even for a small coupling. An example is QCD in the chiral limit, where the dressed
propagator has a nonvanishing mass function even if the mass in the Lagrangian is zero. This effect is
due to spontaneous chiral symmetry breaking; although it follows from the Dyson-Schwinger equation,
it cannot be achieved at any order in perturbation theory.

In a similar way one can generate higher n−point functions from their 1PI counter-
parts because they can only differ by internal (fully resummed) propagator lines. Hence,
the 1PI correlation functions encode the ‘irreducible’ content of an n−point interaction.
In Sec. 8 we will also see that they are convenient for discussing the renormalization of
the quantum field theory.

Scattering amplitude. With all that in mind, we can now go back to the scattering
amplitude and the LSZ formula (6.35). There we found that the full Green function is
proportional to the connected S-matrix element, with one pole of mass m attached for
each external particle, plus further disconnected diagrams. We argued that the Green
function will be a sum of terms with different pole factors, and only those terms survive
in the S-matrix element where the number of poles matches exactly.

From the discussion above it is clear that such pole factors can only come from fully
resummed propagators with mass m. This means that only connected terms in the
Green function can contribute to the S-matrix, for example:

4 poles

2 poles
.

Since the external particles are onshell, removing the pole factors is equivalent to
removing the dressed propagators according to Eq. (7.44). We ignore the remaining Z
factors because in the process of renormalization we will absorb them into the fields.
In that way we arrive at the final result for the S-matrix element expressed through
the renormalized field Φ(x), which we write in terms of the invariant amplitudeM:

(2π)4 δ4
(∑

pi −
∑

qj

)
iM : = (2π)

3
2
(n+r)⟨p1 . . . pn, out | q1 . . . qr, in⟩conn.

= FT ⟨Ω|TΦ(x1) . . .Φ(yr) |Ω⟩ connected,
amputated,
onshell

. (7.48)

Since all external momenta are onshell, they describe physical particles with p2i = m2.
The internal propagators, whose loop momenta are integrated over, are offshell and
correspond to virtual particles with k2 ̸= m2 (note that four-momentum conservation



76 CONTENTS

is still satisfied at each vertex). In this sense the scattering amplitude is the summation
over all possible virtual processes that can contribute.

What remains to be done is to state the Feynman rules for the scattering matrix
element. Let’s derive them explicitly for the 1-loop graph at O(λ2):

= I(x1, x2, y1, y2) (7.49)

Employing the Feynman rules in momentum space, the diagram takes the form

· · · = (−iλ)2
2

∫
p1

∫
p2

∫
q1

∫
q2

∫
k1

∫
k2

(2π)4 δ4(p1 + p2 − k1 − k2) (2π)4 δ4(k1 + k2 − q1 − q2)

× e−ip1x1 e−ip2 x2 eiq1 y1 eiq2 y2 (7.50)

×DF (p1)DF (p2)DF (q1)DF (q2)DF (k1)DF (k2) .

For the S-matrix element we need the amplitude in momentum space, so we take the
Fourier transform∫

d4x1 e
ip1x1

∫
d4x2 e

ip2 x2

∫
d4y1 e

−iq1 y1
∫
d4y2 e

−iq2 y2 I(x1, x2, y1, y2)

=
(−iλ)2

2
DF (p1)DF (p2)DF (q1)DF (q2)

×
∫
k1

∫
k2

(2π)4 δ4(p1 + p2 − k1 − k2) (2π)4δ4(k1 + k2 − q1 − q2)DF (k1)DF (k2)

︸ ︷︷ ︸
=(2π)4 δ4(p1+p2−q1−q2)

∫
kDF (k)DF (p1+p2−k)

(7.51)

By amputating the external propagators we obtain the contribution to the S-matrix
element:

FT {I(x1, x2, y1, y2)}amputated =

= (2π)4 δ4(p1 + p2 − q1 − q2)
(−iλ)2

2

∫
k

DF (k)DF (p1 + p2 − k)
= (2π)4 δ4(p1 + p2 − q1 − q2) iM .

(7.52)

The δ−function reflects total momentum conservation; we already anticipated it when
we defined the invariant amplitude via Eq. (7.48). Therefore, the result is simply

iM =
(−iλ)2

2

∫
k

DF (k)DF (p1 + p2 − k) . (7.53)
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From this expression we can read off the Feynman rules for S-matrix elements,
which become extremely simple because all external propagators have disappeared. For
an n−point function in a Φm theory at O(λk),

� draw n external points and k vertices with m ingoing lines, and connect all lines;

� write the propagators and vertices as

= DF (p) =
i

p2 −m2
0 + iε

, = −iλ , (7.54)

and impose momentum conservation at each vertex;

� integrate over all loop momenta
∫
d4k
(2π)4

;

� divide by the symmetry factor of the diagram;

� set all external momenta onshell.

The two diagrams in Eq. (7.54) are the only elementary building blocks that we
have at our disposal in a Φ4 theory. In principle we can read them off directly from
the Lagrangian:

S =

∫
d4x

[
1

2
∂µΦ ∂

µΦ− 1

2
m2

0Φ
2 − λ

m!
Φm
]

p.I.≃
∫
d4x

[
−1

2
Φ (2+m2

0) Φ−
λ

m!
Φm
]
.

(7.55)

After taking a Fourier transform of each field, the Klein-Gordon operator becomes
the inverse tree-level propagator D−1F (p) = p2 − m2

0 + iε in momentum space, and
the tree-level interaction vertex follows from removing the fields together with the
combinatorial factor 4!. In an extremely symbolic sense we could write the action (here
for a Φ4 theory) as

+
-1

S �

where the circles represent the fields Φ(x). Such a symbolic notation is indeed use-
ful in the path-integral approach, where Green functions are obtained as functional
derivatives of the classical action or the quantum effective action.

To summarize, the basic goal of a quantum field theory is to calculate the fully
dressed n−point Green functions, including all quantum corrections, by starting from
the tree-level expressions that are specified by the classical Lagrangian. These n−point
functions are the quantities that enter scattering matrix elements from where we can
extract observables.
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8 Loops and renormalization

From the Feynman rules in the last section we know how to write down the diagrams
that contribute to a given n−point function at some order in perturbation theory. Take
for example the four-point function in ϕ4 theory:

iM = −iλ+
(−iλ)2

2

[ ∫
d4k

(2π)4
DF (k)DF (p− k)︸ ︷︷ ︸
=:A(p)

+perm.

]
+O(λ3) . (8.1)

Here, −iλ is the tree-level vertex and A(p) with p = p1 + p2 the amputated 1-loop
diagram in Eq. (7.49) that leads to Eq. (7.53):

A(p) =
∫

d4k

(2π)4
i

k2 −m2
0 + iϵ

i

(k − p)2 −m2
0 + iϵ

. (8.2)

It depends on an external momentum p and we integrate over the loop momentum k.
For k2 →∞, the integral is proportional to d4k/k4, and therefore the integral diverges
logarithmically.

The question is: how can we actually calculate such integrals and isolate the diver-
gences that they contain? And after doing so, what should we do with them? It will
turn out that the structure of 1-loop integrals is the same independently of the theory
we are interested in, so eventually we can take over the results directly to QED.

Feynman parameters. The first step is a convenient trick based on the formula

1∫
0

dx
1

[xa+ (1− x) b ]2
= − 1

a− b
1

xa+ (1− x) b

∣∣∣∣1
0

= − 1

a− b

(
1

a
− 1

b

)
=

1

ab
, (8.3)

which we can also write in the form

1

ab
=

1∫
0

dx

1∫
0

dy δ(x+ y − 1)
1

(xa+ yb)2
, (8.4)

where x, y ∈ [0, 1] are called Feynman parameters. More generally,

1

a1 . . . an
=

∫
dx1 . . . dxn δ

(
n∑
i=1

xi − 1

)
(n− 1)![
n∑
i=1

xi ai

]n . (8.5)

The structure of loop integrals is always that of Eq. (8.2), with one loop momentum
k and one or several external momenta pi, and possibly more than just two internal
propagators. Let’s evaluate the formula specifically for ai = (k + pi)

2 − m2
i + iϵ. In

that case∑
i

xi ai =
∑
i

xi
(
k2 + p2i + 2k · pi −m2

i + iϵ
)
= k2 +

∑
i

xi
(
2k · pi + p2i −m2

i

)
+ iε ,
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where we exploited the constraint
∑

i xi = 1 that is imposed by the δ−function. Now,
define a new loop momentum l via

l = k +
∑
i

xi pi ⇒ l2 = k2 + 2
∑
i

xi k · pi +
(∑

i

xi pi

)2

, (8.6)

which leads to

∑
i

xi ai = l2 −
[(∑

i

xi pi

)2

−
∑
i

xi (p
2
i −m2

i )︸ ︷︷ ︸
=:∆

]
+ iϵ = l2 −∆+ iϵ . (8.7)

The quantity ∆ no longer depends on the loop momentum l. The expression (8.2)
corresponds to n = 2; the resulting integrand only depends on l2:

A(p) = −
1∫

0

dx

∫
d4l

(2π)4
1

(l2 −∆+ iϵ)2
. (8.8)

In that case p1 = −p, p2 = 0 and m1 = m2 = m0, and therefore l = k − xp and

∆ = x2p2 − xp2 + xm2
0 + (1− x)m2

0 = m2
0 − x(1− x) p2 . (8.9)

Wick rotation. The pole structure of A(p) is the same as that for a single propagator:
when we split the integral

∫
d4l =

∫
d3l
∫
dl0, the bracket in the denominator gives

l2 −∆+ iϵ = l20 − (l2 +∆) + iϵ , (8.10)

with the same Feynman prescription for the integration contour: integrate below the
pole at negative l0 and above the pole at positive l0. Since there are no further poles
in the complex l0 plane, we can equally deform the integration contour to follow the
imaginary axis (Wick rotation) and define a Euclidean momentum lµE :

l0 = il0E , l = lE ⇒ l2 = −(l0E)2 − l2E = −l2E , d4l = id4lE . (8.11)

The integral then becomes

A(p) = −i
1∫

0

dx I
(4)
2 , I

(4)
2 :=

∫
d4lE
(2π)4

1

(l2E +∆)2
, (8.12)

where the subscript ‘2’ is the power of the denominator and the superscript ‘(4)’ the
number of spacetime dimensions. For general loop integrals we arrive at the formula∫

d4k

(2π)4
1∏

i

[
(k + pi)2 −m2

i + iϵ
] = i(−1)n(n− 1)!

∫
dx1 . . . dxn δ

(∑
i

xi − 1

)
I(4)n ,

(8.13)
with l defined in Eq. (8.6) and ∆ in Eq. (8.7).
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Regularization. Next, we want to calculate the integral I
(4)
2 explicitly. To do so, we

write the four-dimensional integral as

d4lE = dlE l
3
E dΩ4 =

1

2
dl2E l

2
E dΩ4 , (8.14)

where dΩ4 is the four-dimensional unit sphere and
∫
dΩ4 = 2π2. Hence we are left with

a radial integral

I
(4)
2 =

1

(4π)2

∞∫
0

dl2E
l2E

(l2E +∆)2
, (8.15)

which diverges logarithmically when l2E →∞.
The idea is to make the integral finite by introducing some regulator, which will also

isolate the components that diverge once the regulator is removed. There are several
possible ways of regularization. We will discuss three of them here: a momentum cutoff,
Pauli-Villars regularization, and dimensional regularization. There are also other well-
established methods such as lattice regularization, proper-time regularization etc.

UV momentum cutoff. Since the divergence is produced by the UV momentum
modes, the simplest strategy is to impose a hard cutoff: we do not integrate l2E over
the full momentum range but only up to a cutoff l2E < Λ2. Setting l2E = z, the integral
becomes:

Λ2∫
0

dz
z

(z +∆)2
=

Λ2∫
0

dz

[
z +∆

(z +∆)2
− ∆

(z +∆)2

]
=

[
ln(z +∆) +

z

z +∆

]Λ2

0

= ln

(
Λ2 +∆

∆

)
+

∆

Λ2 +∆
− 1

Λ→∞−−−−→ ln
Λ2

∆
.

(8.16)

In the context of QED we will later see that a cutoff regularization breaks gauge
invariance, so it is not the most suitable method to use. In practice it is more convenient
to use dimensional regularization or Pauli-Villars regularization which both preserve
gauge invariance.5

Pauli-Villars regularization. The idea of Pauli-Villars regularization is to modify
one of the propagators in the loop integral so that the integrand vanishes faster in the
ultraviolet. To do so, we start from the original expression (8.2), where we subtract
another propagator with a large mass

√
m2

0 + Λ2:

1

k2 −m2
0

→ 1

k2 −m2
0

− 1

k2 −m2
0 − Λ2

=
1

k2 −m2
0

1

1− k2−m2
0

Λ2

. (8.17)

Therefore, the propagator now vanishes as ∼ 1/k4 for k2 →∞, and the integrand with
a power ∼ 1/k6. The remaining steps up to Eq. (8.15) go through as before, but we

5One should keep in mind, however, that in the course of a numerical evaluation of loop integrals,
where the momentum integration becomes a discretized sum, one always introduces a hard cutoff
because a computer cannot integrate up to infinity. In that case one has to be especially careful about
potential gauge artifacts.
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have to subtract I
(4)
2 − I ′2(4), where I ′2(4) is obtained from setting

p1 = −p ,
p2 = 0 ,

m1 =
√
m2

0 + Λ2 ,

m2 = m0

⇒ ∆′ = ∆+ xΛ2 (8.18)

in the Feynman parameter representation. Then we get

∞∫
0

dl2E

[
l2E

(l2E +∆)2
− l2E

(l2E +∆+ xΛ2)2

]
...
= ln

(
1 +

xΛ2

∆

)
(8.19)

which for Λ→∞ diverges again logarithmically.

Dimensional regularization. The most common regularization method in the con-
text of perturbation theory is dimensional regularization. Here the idea is to first
calculate the integral in d dimensions and take the limit d→ 4 in the end. We write

I
(d)
2 =

1

Md−4

∫
ddlE
(2π)d

1

(l2E +∆2)2
, (8.20)

where the factor M is an arbitrary mass scale that we introduced to ensure that the
integral remains dimensionless also in d spacetime dimensions. Its origin is the dimen-
sion of the coupling constant in front of the integral: for a ϕ4 theory in four dimensions,
λ is dimensionless but this is no longer the case for arbitrary d. The volume integral
becomes

ddlE = dlE l
d−1
E dΩd =

1

2
dl2E (l2E)

d
2
−1 dΩd ,

∫
dΩd =

2π
d
2

Γ
(
d
2

) , (8.21)

where dΩd is the unit sphere in d dimensions. Γ(n) is the Gamma function; let us recall
a few of its properties:

� Γ(n) =
∫∞
0 dxxn−1e−x,

� Γ(n) = (n− 1)! for n ∈ N+,

� Γ(n) has poles
at n = 0,−1,−2, . . .

� Γ(n+ 1) = nΓ(n),

� Γ′(1) = −γ = −0.5772 . . .
is the Euler-Mascheroni
constant.

1 2

2

4

-2

3-1-2-3
n

)nΓ(

It is easy to prove the result (8.21) for
∫
dΩd:

(
√
π)d =

 ∞∫
−∞

dx e−x
2

d = ∫ ddx e− d∑
i=1

x2i

=
1

2

∫
dx2(x2)d/2−1 e−x

2

∫
dΩd =

1

2
Γ

(
d

2

)∫
dΩd .

(8.22)



82 CONTENTS

Now, take the integral (8.20) and insert Eq. (8.21):

I
(d)
2 =

1

Md−4
πd/2

(2π)d
1

Γ
(
d
2

) ∞∫
0

dl2E
(l2E)

d/2−1

(l2E +∆)2
. (8.23)

With the substitution

z =
∆

l2E +∆
⇒ dz = −dl2E

∆

(l2E +∆)2
, l2E =

∆

z
(1− z) (8.24)

we can transform it into

I
(d)
2 =

1

Md−4
1

(4π)d/2
1

Γ
(
d
2

) ( 1

∆

)2−d/2 1∫
0

dz z1−d/2 (1− z)d/2−1

︸ ︷︷ ︸
=B
(
2−d2 ,

d
2

)
=

Γ
(
2−d2

)
Γ
(
d
2

)
Γ(2)

. (8.25)

We expressed the remaining integral through Euler’s Beta function

B(m,n) =
1∫

0

dxxm−1 (1− x)n−1 = Γ(m) Γ(n)

Γ(m+ n)
, (8.26)

so that we arrive at the result

I
(d)
2 =

1

Md−4
Γ
(
2− d

2

)
(4π)d/2

(
1

∆

)2−d/2
. (8.27)

This expression diverges for d = 4, 6, 8, . . . but is otherwise well-defined, even if d is
non-integer. Hence, we can use it as a definition of the original integral for non-integer
dimensions.

In the final step we set d = 4− ε,

I
(d)
2 =M ε Γ

(
ε
2

)
(4π)2−ε/2

(
1

∆

)ε/2
=

Γ
(
ε
2

)
(4π)2

(
4πM2

∆

)ε/2
, (8.28)

and expand the expression around ε = 0. Using xε/2 = e
ε
2 lnx = 1+ ε

2 lnx+O(ε2) and
Γ
(
ε
2

)
= 2

ε − γ +O(ε), we find

I
(d)
2 =

1

(4π)2

[
2

ε
− γ + ln

(
4πM2

∆

)
+O(ε)

]
. (8.29)

The integral has a part ∼ 1/ε that diverges for ε → 0, and a remainder that is finite
and depends on M , which is completely arbitrary because it was only introduced for
dimensional reasons. In principle we could also combine the finite parts since −γ =
ln e−γ and write

−γ + ln

(
4πM2

∆

)
= ln

(
4πM2 e−γ

∆

)
= ln

M̃2

∆
. (8.30)
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The finite parts have formally the same structure as for cutoff and Pauli-Villars reg-
ularization, because also in those cases we can always introduce a mass scale M̃ such
that for Λ→∞

ln
xΛ2

∆
= ln

xΛ2

M̃2
+ ln

M̃2

∆
. (8.31)

The divergent terms differ, however: they may diverge logarithmically with lnΛ2, or
with 1/ε as in dimensional regularization.

In complete analogy one can also work out the following integrals:

I(d)n =

∫
ddlE
(2π)d

1

(l2E +∆)n
=

1

(4π)d/2
Γ
(
n− d

2

)
Γ(n)

(
1

∆

)n−d2
,

Ĩ(d)n =

∫
ddlE
(2π)d

l2E
(l2E +∆)n

=
1

(4π)d/2
d

2

Γ
(
n− d

2 − 1
)

Γ(n)

(
1

∆

)n−d2−1
.

(8.32)

In summary, the expression for A(p) in Eq. (8.1), using Eqs. (8.12) and (8.29), becomes

A(p) = −i
1∫

0

dx I
(4)
2 = − i

(4π)2
lim
ε→0

1∫
0

dx

[
2

ε
− γ + ln

(
4πM2

∆

)]
. (8.33)

A common feature of all regularization methods is that they always introduce a scaleM
in the theory, which remains there even if we formally remove the divergent terms. This
new scale dependence has profound consequences: even if the mass parameter in the
Lagrangian is zero and the classical theory is scale invariant, the renormalized quantum
field theory is not because in the process of regularization we have picked up a scale.
Classical symmetries that are broken at the quantum level are called anomalous, so
this effect is also called the ‘anomalous breaking of scale invariance’.

Renormalization. So we can calculate loop diagrams explicitly by introducing some
regulator, and we can separate the finite parts from the divergent ones. The ultimate
question is: what should we do with the divergences? Should we simply throw them
away, and if yes, how would that make any sense? Surprisingly enough, this is indeed
what eventually has to happen, but there is a deeper underlying reason which can be
understood in the course of renormalization. The idea is the following: let’s interpret
all fields, masses and couplings that appear in the Lagrangian as ‘bare’ and unphysical,
and write the Lagrangian as

L =
1

2
∂µΦB ∂

µΦB −
1

2
m2

BΦ2
B −

λB
4!

Φ4
B

p.I.
= −1

2
ΦB (2+m2

B) ΦB −
λB
4!

Φ4
B (8.34)

with a subscript ‘B’ for bare. Now define a renormalized field Φ, renormalized mass
m and renormalized coupling λ by

ΦB = Z
1/2
ϕ Φ , m2

B = Zmm
2 , λB = Zλ λ , (8.35)

where we introduced three renormalization constants Zϕ, Zm and Zλ. They are, as
of now, undetermined and potentially divergent. Consequently, the Lagrangian takes
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the form6

L = −1

2
ZϕΦ (2+ Zmm

2) Φ− Zλ Z2
ϕ

λ

4!
Φ4 . (8.36)

Since we can read off the tree-level propagators and vertices from the Lagrangian, the
renormalization constants will also enter in their Feynman rules. We will call them the
renormalized tree-level propagator and vertex:

D0(p) =
i

Zϕ (p2 − Zmm2)
⇔ iD−10 (p) = Zϕ (p

2 − Zmm2) ,

Γ0({pi}) = −iλZλ Z2
ϕ .

(8.37)

The iϵ prescription is still intact but we drop it for brevity.
Consider now the full 1PI Green functions of the theory. The set of all 1PI func-

tions defines the quantum field theory completely because the effective action can be
expressed by them (we might return to this at some later point). We have seen that we
can reconstruct the propagator from its 1PI counterpart, Eq. (7.42), and generally this
is true for all S-matrix elements: the connected, amputated S-matrix elements can be
expressed in terms of 1PI Green functions together with dressed propagator insertions.
The 1PI n-point functions are also convenient for the discussion of renormalization as
we will see shortly. If we denote the full propagator by D(p), then it is related to the
1PI self-energy via

D(p) = D0 +D0
Σ

i
D0 + · · · = D0 (1 + iΣD) ⇒ iD−1 = iD−10 − Σ , (8.38)

and so we can generally write
 

iD−1(p) = Zϕ (p
2 − Zmm2)− Σ(p) ,

Γ({pi}) = −iλZλ Z2
ϕ + iΩ({pi}) .

(8.39)

Σ(p) defines the self-energy as before, and its analogue for the four-point function is
Ω: it contains all 1PI loop diagrams that we can draw order by order in perturbation
theory. In terms of Feynman diagrams:

(8.40)

In principle the list goes on for the six-point function, eight-point function, etc.,

(8.41)

6This way of discussing renormalization is also called ‘renormalized perturbation theory’. The
alternative is ‘bare perturbation theory’ which is completely equivalent but somewhat more confusing,
so we will not discuss it here.
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except that they do not have tree-level contributions but start off with loop diagrams
right away. In ϕ4 theory there are also no n−point functions with an odd number of
legs; this is due to the invariance of the Lagrangian under ϕ→ −ϕ.

The idea is now that the full propagator should have a pole at p2 = m2, where it
corresponds to a free particle with mass m. Likewise, the full vertex should become a
free vertex if its external legs are onshell:

D(p)
p2=m2

−−−−→ i

p2 −m2
, Γ({pi})

p2i=m
2

−−−−→ −iλ . (8.42)

Here, m and λ are the physical, measurable mass and coupling constant of the theory.
Actually these renormalization conditions are completely arbitrary, so it makes
sense to generalize them to some arbitrary renormalization point p2 = µ2. This is
especially practical in theories where the propagator does not have a Källén-Lehmann
representation. An example is QCD, where there are no free quarks due to confinement.
Hence we demand

iD−1(p)
∣∣∣
p2=µ2

!
= p2 −m2 ,

d

dp2
iD−1(p)

∣∣∣
p2=µ2

!
= 1 , Γ({pi})

∣∣∣
p2i=µ

2

!
= −iλ . (8.43)

The first condition fixes the ‘pole position’ through the mass m (which is a true pole
only if µ = m), the second sets the residue at the pole, and the third fixes the coupling
constant. Now let’s insert this into Eq. (8.39). If we abbreviate

Σ(p)
∣∣∣
p2=µ2

= Σµ ,
d

dp2
Σ(p)

∣∣∣
p2=µ2

= Σ′µ , Ω({pi})
∣∣∣
p2i=µ

2
= Ωµ (8.44)

we arrive at

Zϕ (µ
2 − Zmm2)− Σµ = µ2 −m2 ⇒ Zϕ Zm = 1 +

µ2Σ′µ − Σµ

m2
,

Zϕ − Σ′µ = 1 ⇒ Zϕ = 1 + Σ′µ , (8.45)

−iλZλ Z2
ϕ + iΩµ = −iλ ⇒ Z2

ϕ Zλ = 1 +
Ωµ
λ
.

These conditions determine the three renormalization constants: at lowest order per-
turbation theory they are all equal to one, whereas at higher orders they pick up loop
contributions from Σµ, Σ

′
µ and Ωµ which have divergent and finite parts. Hence their

generic structure is of the form

Zi(λ,m, ϵ) = 1 +

∞∑
k=1

ck(λ,m, ϵ)λ
k , (8.46)

with divergent coefficients ck. On the other hand, when we substitute this back into
Eq. (8.39) we find

iD−1(p) = (1 + Σ′µ) p
2 −m2 − µ2Σ′µ +Σµ − Σ(p)

= p2 −m2 − (Σ(p)− Σµ) + (p2 − µ2) Σ′µ ,
Γ({pi}) = −iλ+ i (Ω({pi})− Ωµ) .

(8.47)
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The crucial point is that by means of the subtraction at the renormalization point the
divergences cancel in the renormalized Green functions. Therefore, the renormalized
n-point functions are finite!

Let’s have a look at a concrete example, namely the one-loop contribution to the
four-point function. We have worked out its structure earlier; the result in dimensional
regularization was Eq. (8.33):

Ω({pi}) =
λ2

2

1∫
0

dx I
(4)
2 =

λ2

2

1

(4π)2

1∫
0

dx

[
2

ϵ
− γ + ln

4πM2

∆

]
, (8.48)

with ∆ = m2
B − x(1 − x) p2 and p = p1 + p2, plus the two permutations which we do

not write explicitly. In principle, by means of the Feynman rules (8.37) the diagram
picks up an additional prefactor

Z2
λ Z

4
ϕ

Z2
ϕ

= Z2
λ Z

2
ϕ = 1 +O(λ) , (8.49)

but since the correction comes with powers of the coupling constant it will only con-
tribute at higher orders in perturbation theory, so we can ignore it in the one-loop
result. For simplicity we renormalize the four-point function at p2 = (p1 + p2)

2 = µ2.
Observe that the subtraction cancels the divergent piece ∼ 1/ϵ:

Ω({pi})− Ωµ =
λ2

2

1

(4π)2

1∫
0

dx ln
∆µ

∆
=
λ2

2

1

(4π)2

1∫
0

dx ln
m2

B − x(1− x)µ2
m2

B − x(1− x) p2

=
λ2

2

1

(4π)2

1∫
0

dx ln
m2 − x(1− x)µ2
m2 − x(1− x) p2 .

(8.50)

In the last step we have used that m2
B = Zmm

2 = m2+O(λ), so the correction will also
only appear at higher orders and to lowest order we can set mB = m. The resulting
expression depends on the renormalized mass m and coupling λ. It is finite, but in
turn it depends now on the arbitrary renormalization point µ.

Counterterms. It is customary to write the renormalization constants as

Zϕ = 1 + δZϕ , Zm Zϕ = 1 +
δm2

m2
, Zλ Z

2
ϕ = 1 +

δλ
λ
. (8.51)

In that way the Lagrangian (8.34) can be split into a piece that depends only on
renormalized quantities, plus a counterterm that includes the new ’renormalization
constants’ δZϕ, δm

2 and δλ:

L = −1

2
Φ (2+m2) Φ− λ

4!
Φ4 − 1

2
Φ (δZφ2+ δm2) Φ− δλ

4!
Φ4 . (8.52)

The counterterms can be interpreted as new tree-level propagators and vertices with
corresponding Feynman rules. This is especially convenient for calculating higher loops,
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because eventually it would become hard to keep track of the Zi factors in front of the
integrals from lower orders in perturbation theory (which we can ignore for one-loop
graphs). Instead, one must now systematically add diagrams with ‘counter’ propagators
and vertices. The expressions (8.39) for the full 1PI Green functions become

 
iD−1(p) = p2 −m2 − Σ(p) + δZϕ p

2 − δm2 ,

iΓ({pi}) = λ− Ω({pi}) + δλ ,

(8.53)

i.e., the new renormalization constants can be directly identified with the counterterms
that cancel the singularities. If we apply our earlier renormalization conditions and
compare Eq. (8.51) with (8.45) we find

δZϕ = Σ′µ , δm2 = µ2Σ′µ − Σµ , δλ = Ωµ . (8.54)

Renormalization schemes. The examples discussed so far highlight some general
features of renormalization:

� If a given theory contains a finite number of renormalization constants Zi (three in
ϕ4 theory), we must specify equally many renormalization conditions to determine
them. This in turn removes all UV divergences from the theory. We will provide
more detailed arguments below.

� All physical quantities are independent of ϵ and Zi and they are finite. The La-
grangian L itself is divergent, but this is irrelevant because it is not an observable.

� The mass m(µ) and coupling λ(µ) depend now on the renormalization point µ,
where they are specified as an external input. That is, they are parameters of
the theory and can no longer be determined within the theory — they must be
taken from experiment.

In QED we can use onshell renormalization with µ2 = m2. The electron propa-
gator has a pole at p2 = m2, where m is the physical mass of the electron. The photon
is massless, so its propagator has a pole at q2 = 0. This is where one can match the
coupling constant (the electron charge) with experiment, because two infinitely sep-
arated charges correspond to a propagator evaluated at q2 = 0. On the other hand,
onshell renormalization doesn’t work in QCD because there are no free quarks and
gluons due to confinement. As a consequence, the quark masses and the coupling have
to be specified at some suitable renormalization scale where theory predictions can be
compared to experiment.7

The arbitrariness in the specification of m(µ) and λ(µ) is reflected in the renor-
malization scheme. Imposing overall renormalization conditions of the form (8.43)
on the Green functions defines a momentum subtraction (MOM) scheme. This is con-
venient for nonperturbative calculations since at no point in the previous discussion

7This scale should also be spacelike (µ2 < 0 in Minkowski conventions) to avoid branch-cut sin-
gularities that appear in the loop diagrams. High-energy scattering experiments with hadrons probe
the domain of large spacelike momenta of internal quarks and gluons, which is also where the QCD
coupling is small and perturbation theory applicable.
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we needed to resort to a perturbative expansion: Eqs. (8.39) can be equally viewed as
Dyson-Schwinger equations (cf. Eq. (7.46)) which are nonperturbative and exact. Al-
ternatively, one can also explicitly subtract only the divergent terms order by order in
perturbation theory, such as the one ∼ 1/ϵ in Eq. (8.48), which defines the MS scheme
(minimal subtraction). In that case our definition of the renormalization scale µ is no
longer available; instead, the scale M ≡ µ takes its place as it doesn’t get cancelled
by the subtraction anymore. (In the MOM scheme, we have essentially traded the
dependence on M by a dependence on µ.) Another possibility is to subtract not only
the divergences but all terms that are not explicitly dependent on M ≡ µ; this defines
the MS scheme (modified minimal subtraction).

As a consequence, the masses and couplings depend not only on the renormalization
point but also on the renormalization scheme, and the different schemes are related to
each other by finite constants:

m(µ)MOM

λ(µ)MOM

↔ m(µ)MS

λ(µ)MS

↔ m(µ)MS

λ(µ)MS

↔ . . . (8.55)

The Green functions themselves depend on the renormalization point µ, but they are
independent of the scheme. For example:

D (p, µ,m(µ)MOM, λ(µ)MOM) = D
(
p, µ,m(µ)MS, λ(µ)MS

)
= . . . (8.56)

The invariance of measurable quantities under a change of µ and different renormal-
ization schemes leads to the concept of the renormalization group.

As an example, consider the 1PI four-point function and write it with counterterms as in Eq. (8.53):

iΓ(p) = λ− Ω(p) + δλ = λ− λ2

32π2

∫
dx

[
2

ϵ
− γ + ln

4πµ2

∆

]
+ δλ

= λ− λ2

32π2

[
2

ϵ
− γ + ln

4πµ2

m2
−
∫
dx ln

(
1− x(1− x)

p2

m2

)]
+ δλ .

(8.57)

For simplicity we ignore again the contribution from the two permuted diagrams, so the expression
depends only on the s−channel momentum p = p1 + p2. In the MOM scheme we impose the condition

iΓ(p)p2=µ2
!
= λMOM , (8.58)

which leads to

δλMOM =
λ2
MOM

32π2

[
2

ϵ
− γ + ln

4πµ2

m2
−
∫
dx ln

(
1− x(1− x)

µ2

m2

)]
. (8.59)

In the MS and MS scheme we do not impose such a condition but instead subtract terms by hand.
In MS we would only subtract the divergent term, whereas in MS we also subtract the remaining
µ−independent terms:

δλMS =
λ2
MS

32π2

2

ϵ
, δλMS =

λ2
MS

32π2

[
2

ϵ
− γ + ln 4π

]
. (8.60)

In any case, whatever we decide to do cannot change the four-point function, which must remain the
same. For example evaluated at the renormalization point:

iΓ(p)p2=µ2 = λMOM = λMS −
λ2
MS

32π2

[
ln

µ2

m2
MS

−
∫
dx ln

(
1− x(1− x)

µ2

m2
MS

)]
, (8.61)

which gives us the relation between λMOM and λMS.
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Renormalizability. So far we have only considered one explicit diagram. Do the
singularities always cancel? Let’s consider the action for a generic ϕp theory:

S = −
∫
d4x

[
1

2
Φ (2+m2)Φ +

λ

p!
Φp
]
, (8.62)

where we suppress the renormalization constants for simplicity. Now count the mass
dimensions of the quantities that appear in the action:

[S] = 0 ⇒ [L] = 4 , [Φ] = 1 , [Φp] = p , [λ] = 4− p . (8.63)

From here we can infer the dimensions of the 1PI Green functions in momentum space:

Γ2 =

 
= p2 −m2 + . . . ⇒ [Γ2] = 2 ,

Γ4 =
ϕ4
= − iλ+ . . . ⇒ [Γ4] = 0 , (8.64)

Γ6 =
ϕ6
= − iλ+ . . . ⇒ [Γ6] = −2 .

Remember from Eq. (7.33) that the tree-level vertex is always of the form −iλ as long
as λ is the corresponding ϕ4, ϕ6, . . . coupling constant. That is, in a ϕ4 theory the
six-point function does not have a tree-level term, in a ϕ6 theory the four-point function
does not have a tree-level term, etc. In any case, the dimension of Γn is always the
same independently of p, because it is already determined by −iλ:

[Γn] = 4− n . (8.65)

On the other hand, we can also count the dimension of a given n-point function by
going into some order in perturbation theory. In that case, we would count the number
of loops L (each comes with dimension four), the number of internal propagators I (each
comes with dimension −2), and the number of vertices (where each has dimension [λ]).
Therefore:

[Γn] = 4L− 2I + [λ]V . (8.66)

For example in ϕ4 theory, where [λ] = 0:

(8.67)

Obviously this is consistent.
Now, the quantity D = 4L − 2I also tells us how badly divergent a given diagram

will be: if the number of loops L beats the number of propagators I it will diverge;
if there are many propagators in a loop it will converge. D is called the superficial
degree of divergence: if D < 0 the diagram converges, if D ≥ 0 it will diverge. The
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first diagram above has D = 0 and diverges logarithmically. The second has D = −2
and is convergent; the third has D = −2 but unfortunately it is still divergent because
it contains a divergent subdiagram (the one on the left). Hence the name ‘superficial’
degree of divergence:

� a diagram with D ≥ 0 can still be finite due to cancellations,

� a diagram with D < 0 can be divergent if it contains divergent subdiagrams,

� tree-level diagrams have D = 0 but they are finite.

Let’s ignore these subtleties for a moment and assume that D counts the actual
degree of divergence. From Eq. (8.66) we can determine it as

D = [Γn]− [λ]V . (8.68)

The mass dimension [Γn] is fixed and does not depend on the order in perturbation
theory, which is determined by V . However, D depends on V — it rises or falls with
higher orders depending on the mass dimension of the coupling [λ]. Take ϕ4 theory,
where [λ] = 0 and D is independent of V :

convergent

D = 2

D = 0

D = - 2

D = - 4

Therefore, there are only two divergent Green functions in ϕ4 theory: the inverse prop-
agator and the four-point function. Those are exactly the ones with a tree-level term
in the Lagrangian; they are also called the primitively divergent Green functions.

One can indeed show that the analysis goes through in general, also for divergent
subdiagrams, which is known as the BPHZ theorem (Bogoliubov, Parasiuk, Hepp,
Zimmermann). The reason is that the Zi factors in front of the diagrams (which we
can neglect at one-loop) cancel the divergences at higher orders. Take for example the
two diagrams on the right in Eq. (8.67): both contribute to the six-point function, one
with V = 3 and the other with V = 4. The V = 3 diagram carries factors Z = 1+ δZ,
where δZ contributes at higher order to the V = 4 graph. The sum of all contributions
at a given order cancels the divergences. Here it is especially useful to employ the
counterterm language, because the subdivergences will cancel with the counterterms
at each order in perturbation theory.
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On the other hand, the same analysis for ϕ6 theory gives us:

divergent

2

V = 0 V = 1 V = 2

0

- 2

- 4

4

2

0

- 2

6

4

2

0

In other words, if we go high enough in perturbation theory eventually every Green
function will diverge!

This leads to the notion of renormalizability: a theory is renormalizable if only
a finite number of Green functions have D ≥ 0, so that only a finite number of renor-
malization conditions are necessary to remove the divergences from the theory. From
Eq. (8.68) this is equivalent to the following statement:

A theory is renormalizable if [λ] ≥ 0 .

That is, the coupling must be either dimensionless or have a positive mass dimension
(in the latter case the theory is called super-renormalizable). A non-renormalizable
theory has a coupling with negative mass dimension: in that case every Green function
eventually becomes divergent. Here we would need new renormalization conditions at
each order in perturbation theory, and eventually infinitely many, so we must specify
infinitely many constants from outside. The theory thereby loses its predictive power.

The good news is that we can read off a theory’s renormalizability directly from
its Lagrangian: we just need to look at the mass dimension of the coupling constant.
For a scalar ϕp theory only ϕ3 and ϕ4 interactions are renormalizable whereas those
with p > 4 are not. Renormalizability restricts the possible forms of interactions
dramatically!
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9 Cross sections and decay rates

[To come]
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10 QED

[To come]

Lagrangian and gauge invariance.

Feynman rules for fermions.

Feynman rules for photons.

Tree-level scattering processes.

Coulomb potential.

Cross sections.
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11 Renormalization of QED

Renormalization constants. We have already discussed the underlying principles of
renormalization in the context of a scalar field. This saves us from the trouble of going
through the same steps all over again: we don’t need to calculate loop diagrams in
QED only to realize that they diverge and then figure out what to do about it, because
with a few adaptations we can take over the ideas from the scalar theory.

Once again, we interpret all quantities in the Lagrangian as bare und unphysical,

LQED
p.I.≃ ψB (i/∂ −mB)ψB + gB ψB /AB ψB

+
1

2
AµB (2 gµν − ∂µ∂ν)AνB +

λB
2
AµB ∂µ ∂νA

ν
B ,

(11.1)

and define their renormalized counterparts by

ψB = Z
1/2
ψ ψ , AB = Z

1/2
A A , mB = Zmm, gB = Zg g , λB = Zλ λ . (11.2)

In principle there are five renormalization constants, but we will later see that gauge
invariance relates two of them via Ward identities:

Zg Z
1/2
A = 1 , Zλ ZA = 1 . (11.3)

Hence, there are just three independent renormalization constants: Zψ, ZA and Zm.
The resulting Lagrangian takes the form8

LQED = Zψ ψ (i/∂ − Zmm)ψ + Zψ g ψ /Aψ

+ ZA
1

2
Aµ (2 gµν − ∂µ∂ν)Aν +

λ

2
Aµ ∂µ ∂νA

ν .
(11.4)

The price we have to pay is that the renormalization constants now also enter in the
Feynman rules:

p
S0(p) =

i

Zψ

/p+mB

p2 −m2
B + iϵ

,

q
Dµν

0 (q) = − i

q2 + iϵ

(
1

ZA
Tµνq +

1

λ
Lµνq

)
, (11.5)

q

+p −p
ig Γµ0 (p, q) = ig Zψγ

µ .

Note that we pulled out a factor ig in defining the vertex Γµ0 . Our momentum routing
for the vertex is such that the photon momentum is q = pf−pi and the average fermion

8If ZΓ = Zψ Zg Z
1/2
A denotes the prefactor that we would get in front of the coupling term ∼ ψ /Aψ,

then the first condition in Eq. (11.3) is equivalent to ZΓ = Zψ. To compare with the standard notation
in the literature, set ZΓ = Z1, Zψ = Z2 and ZA = Z3.
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momentum is p = (pf + pi)/2. Along the same lines as earlier (using the projectors
Tµνq = gµν − qµqν/q2 and Lµνq = qµqν/q2) we obtain the inverse tree-level propagators:

iS−10 (p) = Zψ (/p−mB) , i(D−10 )µν(q) = −q2 (ZA Tµνq + λLµνq ) . (11.6)

In analogy to the scalar theory, we can get the full 1PI Green functions (the inverse
propagators and the fermion-photon vertex) by resumming its 1PI loop contributions.
Omitting momentum arguments, this means for the fermion propagator

S = S0 + S0 iΣS0 + S0 iΣS0 iΣS0 + . . .

= S0 [1 + iΣ (S0 + S0 iΣS0 + . . . )] = S0 (1 + iΣS)

⇒ S−1 = S−10 − iΣ or iS−1 = iS−10 +Σ .

(11.7)

Σ(p) is the fermion self-energy, the sum of all 1PI loop contributions to the propagator.
Applying the same steps to the photon propagator, we arrive at the perturbative series
for the inverse propagators and the vertex:

iS−1(p) = iS−10 (p) + Σ(p) ,

i(D−1)µν(q) = i(D−10 )µν(q) + Πµν(q) ,

Γµ(p, q) = Γµ0 (p, q) + Ωµ(p, q) .

(11.8)

The terms on the right-hand side define the fermion self-energy Σ(p), the photon
vacuum polarization Πµν(q), and the vertex correction Ωµ(p, q). To lowest order
in perturbation theory they are given by the following one-loop diagrams:

=

= +

+
-1

-1

-1

-1
= +

Tensor decomposition. Before we proceed, let’s pause for a moment and think about
the general tensor decomposition of these quantities. The self-energy depends on one
momentum p, so the only possible tensor structures compatible with Lorentz covariance
are /p and 1 (γ5 or γ5 /p would have the wrong sign under a parity transformation), and
the coefficients can only depend on the Lorentz-invariant p2:

Σ(p) =: ΣA(p
2) /p− ΣM (p2) . (11.9)

An analogous decomposition holds for the inverse propagator itself:

iS−1(p) = A(p2) (/p−M(p2)) , (11.10)

which defines the fermion mass function M(p2), and 1/A(p2) is called the fermion
‘wave-function renormalization’. When substituting both equations into Eq. (11.8) we
find the perturbative expansion of these dressing functions:

A(p2) = Zψ +ΣA(p
2) , A(p2)M(p2) = ZψZmm+ΣM (p2) . (11.11)
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Likewise, the only two possible tensors for the photon vacuum polarization are gµν

and qµqν , so we can write

Πµν(q) = a(q2) gµν + b(q2) qµqν . (11.12)

The scalar functions a and b cannot have poles at q2 = 0 because that would correspond
to an intermediate massless particle; but since the vacuum polarization is already the
sum of all 1PI diagrams, intermediate propagators are excluded by definition. Now, the
Ward identity qµΠ

µν = 0 entails that the vacuum polarization must be transverse to
the photon momentum and therefore a = −b q2. The only remaining tensor structure
is then

Πµν(q) = Π(q2) (q2 gµν − qµqν) = q2Π(q2)Tµνq (11.13)

which is proportional to the transverse projector, however with an additional factor
q2 in front.9 From the geometric resummation of the photon propagator analogous
to Eq. (11.7) it is immediately clear that all longitudinal parts will be annihilated by
Πµν(q), except for the leading tree-level term that contains the gauge parameter λ.
Therefore, the longitudinal part of the photon propagator does not pick up any loop
corrections beyond tree-level:

i(D−1)µν(q) = −q2
(
Tµνq
D(q2)

+ λLµνq

)
, D−1(q2) = ZA −Π(q2) . (11.14)

Because the longitudinal part does not get dressed, it contains no divergences and does
not need to be renormalized either. This is precisely the origin of the second constraint
in Eq. (11.3). As another consequence, the global factor q2 in front of the bracket
remains and, after inversion, becomes a factor 1/q2 in the photon propagator. Hence
the photon remains massless, even with interactions, due to gauge invariance!

After inverting the above formulas, the general expressions for the fully dressed
propagators and the dressed vertex become

S(p) =
i

A(p2)

/p+M(p2)

p2 −M2(p2) + iϵ
, (11.15)

Dµν(q) = − i

q2 + iϵ

(
D(q2)Tµνq +

1

λ
Lµνq

)
, (11.16)

ig Γµ(p, q) = ig
(
f1(p

2, q2, p · q) γµ + . . .
)
. (11.17)

The fermion-photon vertex is more complicated because it depends on two momenta,
which leads to 12 possible tensors (we will return to this point later). In any case,
when we write the vertex correction as Ωµ(p, q) = V1(p

2, q2, p · q) γµ + . . . , where the
dots refer to the remaining tensor structures, the general form of the vertex dressing
of γµ is:

f1(p
2, q2, p · q) = Zψ + V1(p

2, q2, p · q) . (11.18)

9Had we solved for b = −a/q2 instead, b would pick up a pole at q2 = 0 contrary to what we just
observed.



11 Renormalization of QED 97

Renormalization conditions. The next step is to impose the renormalization condi-
tions that are necessary to eliminate the three renormalization constants. We demand
that the fermion and photon propagators become free propagators at the respective
pole location, which entails

A(p2 = m2)
!
= 1 , M(p2 = m2)

!
= m, D(q2 = 0)

!
= 1 . (11.19)

This determines the renormalization constants via Eqs. (11.11) and (11.14):

Zψ = 1− ΣA(m
2) , ZψmB = m− ΣM (m2) , ZA = 1 + Π(0) . (11.20)

The resulting dressing functions, which are now finite, become

A(p2) = 1 + ΣA(p
2)− ΣA(m

2) ,

A(p2)M(p2) = m+ΣM (p2)− ΣM (m2) ,

D−1(q2) = 1−Π(q2) + Π(0) .

(11.21)

We could impose another condition on the vertex,

f1(m
2, 0, 0)

!
= 1 ⇒ Zψ = 1− V1(m2, 0, 0) , (11.22)

but this is not necessary because it is already guaranteed by the Ward identity which
allowed us to relate Zg with ZA. We will later see that V1(m

2, 0, 0) = ΣA(m
2) is

automatically satisfied in the one-loop calculation. More generally, we will also see this
directly from the nonperturbative form of the vertex that follows from gauge invariance.

In summary we arrive at analogous conclusions as for the scalar theory: we can elimi-
nate the UV divergences from the theory by imposing three renormalization conditions.
We chose an onshell renormalization to make a direct connection with experiment, but
our choice of renormalization conditions is arbitrary. In turn, the renormalized mass
m and the renormalized charge g = e are no longer predictions of the theory but they
must be taken from experiment.

Fermion self-energy. As a concrete example, let us work out the one-loop contribu-
tion to the fermion self-energy in Fig. 11.1. It has the form

iΣ(p) =

∫
d4k

(2π)4
(igγµ)S0(k) (igγν)D

µν
0 (p− k) . (11.23)

We can ignore all renormalization constants that enter through the Feynman rules
in Eq. (11.5) because they do not contribute at one-loop; the same is true for the
mass renormalization so we can simply set mB = m. In Feynman gauge the photon
propagator is proportional to gµν and therefore the integral becomes

iΣ(p) = −g2
∫

d4k

(2π)4
γµ(/k +m)γµ[

k2 −m2 + iϵ]
[
(p− k)2 + iϵ

] . (11.24)

Here we can exploit the formula (8.13) that we derived in the scalar theory after
employing Feynman parameters and performing a Wick rotation:∫

ddk

(2π)d
1∏2

i=1

[
(k + pi)2 −m2

i + iϵ
] = i

1∫
0

dx I
(d)
2 , (11.25)
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Figure 11.1: One-loop contributions to the fermion self-energy, the vacuum polarization and
the vertex correction.

with I
(d)
2 defined in Eq. (8.20) and the remaining quantities in Eqs. (8.6–8.7). Since

we want to carry on with dimensional regularization we already wrote the formula in
d spacetime dimensions. In our present example we have p1 = −p and p2 = 0, m1 = 0
and m2 = m, and x1 = x, x2 = 1− x and therefore

∆ = (1− x)(m2 − xp2), kµ = lµ + xpµ . (11.26)

Thus, the self-energy becomes

iΣ(p) = −ig2
1∫

0

dx

∫
ddlE
(2π)d

γµ(/k +m)γµ
(l2E +∆)2

∣∣∣
k→ l+xp

. (11.27)

We still have to work on the numerator. In d dimensions δµµ = d, and the Clifford
algebra {γµ, γν} = 2gµν entails γµγµ = δµµ = d. This leads to γµ/kγµ = (2 − d) /k and
finally

γµ(/k +m)γµ = (2− d) /k +md = (2− d)(/l + x/p) +md . (11.28)

Factors of lµ in the numerator are easily manageable because∫
ddlE
(2π)d

lµ

(l2E +∆)2
= 0 ,∫

ddlE
(2π)d

lµlν

(l2E +∆)2
= −1

d
gµν
∫

ddlE
(2π)d

l2E
(l2E +∆)2

.

(11.29)

The first integral vanishes due to symmetry (replace l → −l in the integrand), and
so does the second for µ ̸= ν. For µ = ν it must be proportional to gµν by Lorentz
invariance, and by contracting the indices one verifies that the prefactor on the r.h.s.
is correct. Hence, Eq. (11.28) becomes

γµ(/k +m)γµ = (2− d)x/p+md ⇒ iΣ(p) = −ig2
1∫

0

dx
[
(2− d)x/p+md

]
I
(d)
2 .

By comparing with Eq. (11.9) we read off the self-energy contributions:

ΣA(p
2) = g2(d− 2)

∫
dxx I

(d)
2 , ΣM (p2) = g2md

∫
dx I

(d)
2 . (11.30)
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Setting now d = 4− ϵ, taking the limit ϵ→ 0, and inserting the result (8.29) for I
(d)
2

in dimensional regularization, we arrive at

ΣA(p
2) =

α

2π

∫
dxx

[
2

ϵ
− γ + ln

4πM2

∆
− 1

]
,

ΣM (p2) =
αm

π

∫
dx

[
2

ϵ
− γ + ln

4πM2

∆
− 1

2

]
,

(11.31)

where we have also replaced the coupling by g2 = 4πα. This is the one-loop fermion self-
energy in dimensional regularization. We see that the method is completely analogous
to the scalar theory; from Eq. (11.30) we could have equally derived the result in Pauli-
Villars regularization. In both cases the expressions contain divergent and finite pieces:
in dimensional regularization the divergences are of the form ∼ 1/ϵ whereas with PV
regularization they are logarithmic.

To arrive at finite expressions, we apply the renormalization procedure outlined
above. That is, we subtract the self-energy at p2 = m2:

ΣA(p
2)− ΣA(m

2) =
α

2π

∫
dxx ln

∆m

∆
,

ΣM (p2)− ΣM (m2) =
αm

π

∫
dx ln

∆m

∆
,

∆m

∆
=
m2(1− x)
m2 − xp2 , (11.32)

which makes the dressing functions in Eq. (11.21) finite. Note that the logarithm
develops a branch cut for negative arguments. Since 0 < x < 1, the condition is

p2

m2
>

1

x
> 1 , (11.33)

and therefore the branch cut starts at p2 = m2. This is just what we anticipated with
the Källén-Lehmann representation, cf. Fig. 6.2. Due to the self-energy correction the
fermion can split into a fermion plus a photon (and, when going to higher orders in
perturbation theory, arbitrarily many photons), but since the photon is massless, the
multiparticle continuum that produces the cut starts at p2 = (m+mγ)

2 = m2.
From Eq. (11.21) we extract the one-loop result for the mass function M(p2):

M(p2) =
m+ΣM (p2)− ΣM (m2)

1 + ΣA(p2)− ΣA(m2)

≈ m+ΣM (p2)− ΣM (m2)−m
(
ΣA(p

2)− ΣA(m
2)
)

= m

[
1 +

α

π

∫
dx
(
1− x

2

)
ln

∆m

∆

]
,

(11.34)

which inherits the branch cut for p2 > m2. It is also instructive to work out the explicit
form for large spacelike Q2 := −p2 ≫ m2. In that case

ln
∆m

∆
≈ ln

m2(1− x)
xQ2

≈ − ln
Q2

m2
+ . . . (11.35)

and therefore the mass function falls off logarithmically with Q2 (see Fig. 11.2):

M(p2) = m

[
1− α

π
ln
Q2

m2

∫
dx
(
1− x

2

)
+ . . .

]
= m

[
1− 3α

4π
ln
Q2

m2
+ . . .

]
. (11.36)
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Vacuum polarization. We already discussed the general properties of the vacuum
polarization (transversality and analyticity at q2 = 0) above. The generally allowed
form for the vacuum polarization tensor is

Πµν(q) = Π(q2) (q2gµν − qµqν) + Π̃(q2) gµν , (11.37)

but the Ward identity qµΠ
µν = 0 enforces Π̃(q2) = 0. This is indeed true at each

order in perturbation theory provided that the regularization method respects gauge
invariance.

One can treat the one-loop expression in Fig. 11.1 in complete analogy to the fermion
self-energy example. The one-loop Feynman graph has the form

iΠµν(q) = −Tr
∫

d4k

(2π)4
(igγµ)S0(k+) (igγ

ν)S0(k−)

= −g2Tr
∫

d4k

(2π)4
γµ(/k+ +m)γν(/k− +m)[

k2+ −m2 + iϵ
][
k2− −m2 + iϵ

] . (11.38)

The calculation is a bit lengthier but still manageable; the result is
(Ex)

Π(q2) = −8g2
∫
dxx(1− x) I(d)2 ,

Π̃(q2) = −4g2
∫
dx
(
I
(d)
2 ∆+ (1− 2

d) Ĩ
(d)
2

) (11.39)

with ∆ = m2 − x(1 − x) q2. The integrals are given in Eq. (8.32), and with their
explicit form it is easy to check that Π̃(q2) vanishes indeed in dimensional regularization.
However, this is not true for a momentum cutoff: in that case Π̃(q2) is not only nonzero
but also develops a quadratic divergence (as one would infer from a dimensional analysis

of the diagram) due to the appearance of Ĩ
(d)
2 . Hence, a cutoff regulator breaks gauge

invariance, and therefore it is not the optimal choice when dealing with gauge theories
(unless one knows how to eliminate the contamination from such ‘gauge parts’).

The transverse piece, on the other hand, is only logarithmically divergent. In di-
mensional regularization it is given by

Π(q2) = −2α

π

∫
dxx(1− x)

(
2

ϵ
− γ + ln

4πM2

∆

)
. (11.40)

After performing the subtraction in Eq. (11.21) it becomes

Π(q2)−Π(0) = −2α

π

∫
dxx(1− x) ln ∆0

∆
,

∆0

∆
=

m2

m2 − x(1− x) q2 . (11.41)

Notice again the branch cut from the logarithm: since 0 < x(1− x) < 1
4 the condition

is now
q2

m2
>

1

x(1− x) > 4 ⇒ q2 > 4m2 (11.42)

as it should be, because 2m is the threshold for e+e− pair creation.



11 Renormalization of QED 101

)2Q(α

2m−

m
)2Q(M

2Q 2Q

137
1=α

Figure 11.2: One-loop behavior of the fermion mass function and running coupling.

Running coupling. The vacuum polarization has another practical relevance. We
can define an effective running coupling as the product of the coupling constant α
and the photon dressing:

α(q2) := αD(q2) =
α

1−Π(q2) + Π(0)
. (11.43)

It is fully determined by the vacuum polarization, so for positive q2 > 4m2 it inherits the
branch cut from Eq. (11.41). To obtain the form for large spacelike Q2 := −q2 ≫ m2

we plug in the one-loop result:

∆0

∆
≈ m2

x(1− x)Q2
⇒ Π(q2)−Π(0) =

2α

π

[
ln
Q2

m2

∫
dxx(1− x)︸ ︷︷ ︸

1/6

+ . . .
]
,

and we find that the running coupling rises logarithmically with Q2 as in Fig. 11.2:

α(q2) ≈ α

1− α
3π ln Q2

m2

. (11.44)

The reason behind the definition (11.43) is the following. Suppose we reformulate our renormalization
conditions (11.19) in terms of A(p2), M(p2) and α(q2):

A(p2 = m2)
!
= 1 , M(p2 = m2)

!
= m, α(q2 = 0)

!
= α , (11.45)

which makes the nature of m and α as an external input to QED explicit. With this we can calculate
the momentum dependence of M(p2) and α(q2), for example in one-loop perturbation theory as in
Fig. 11.2. However, these curves would look the same if we had not renormalized at p2 = m2 and
q2 = 0 but at some arbitrary scales p2 = µ2 and q2 = ν2, provided that we used M(µ2) and α(ν2)
as the new input values. Such a change cannot affect M(p2), α(q2) nor any other prediction of the
theory. On the other hand, this only holds as long as M(p2) and α(q2) do not additionally depend on
the renormalization point (that is, they must be renormalization-group invariant).

This is true for the fermion mass function, which we can easily confirm. From the relations (11.2)
between the bare and renormalized fields one immediately derives the relations between the bare and
renormalized n-point functions, for example

⟨Ω|Tψ(x)B ψB(y) |Ω⟩ = Zψ ⟨Ω|Tψ(x)ψ(y) |Ω⟩ (11.46)

and therefore SB(p) = Zψ S(p). When we impose the renormalization conditions at some renormaliza-
tion point p2 = µ2, Zψ will depend on the renormalization point and so will all the Green functions of
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the theory. For example, the renormalized propagator is S(p, µ) and its dressing functions A(p2) and
M(p2) have the form

AB(p
2) =

1

Zψ(µ2)
A(p2, µ2) but MB(p

2) =M(p2) . (11.47)

Due to our definition (11.10) the dependence on the renormalization constant Zψ is entirely carried
by the function A(p2), whereas M(p2) stays unrenormalized: MB(p

2) =M(p2). The divergences must
therefore cancel in the mass function even if we had not renormalized the theory. Because there is no
Z factor that relates the bare with the renormalized mass function, M(p2) also cannot depend on µ
and its interpretation as a ‘running fermion mass’ is acceptable.

The analogous combination for the coupling α must be of the form(
g2f(q2)

)
B
= g2f(q2) . (11.48)

The relation Zg Z
1/2
A in Eq. (11.3) that follows from the Ward identity suggests to identify f(q2) with

the photon dressing function, because also(
g2D(q2)

)
B
= Z2

g ZA
(
g2D(q2)

)
= g2D(q2) (11.49)

stays unrenormalized, i.e., it is a renormalization-group invariant.

Since the values for m and α are an input to QED, the theory ‘knows’ how the
electron mass and its charge evolve with the momentum scale, and this scale dependence
is encoded in the functional form ofM(p2) and α(q2). With e2 = 4πα we may interpret
α(q2) as the effective momentum dependence of the electron charge. Nonrelativistically,
the spacelike Q2 dependence translates into a potential between two electrons (or an
electron and a positron). If we pull two electrons infinitely far apart, we probe the
coupling at Q2 = 0; this is where we extract α(0) ≈ 1

137 experimentally. The rise of
α(q2) at Q2 > 0 can be viewed as a screening of the charge: at Q2 = 0, the electron
is screened by a cloud of virtual e+e− pairs, but at higher Q2 (smaller distances) we
eventually penetrate this charge cloud and see more of the electron’s ‘true’ charge which
is larger. Hence the name ‘vacuum polarization’, because the vacuum behaves like a
polarizable medium.

On the other hand, the rise of α(q2) happens extremely slowly and the coupling
remains the same over many orders of magnitude. Between Q2 = 0 . . . 30GeV2, this
rise is only about 1% from the e+e− loop and ∼ 5% in total (including heavier leptons
and also quarks). This is good news because α(q2) is also the expansion parameter in
perturbation theory. The result in Fig. 11.2 was obtained at one-loop; if α(q2) would
rise dramatically with the momentum, we could forget about applying perturbation
theory at larger Q2. Fortunately the coupling is still small at large momenta, so the
perturbative treatment is justified.

Nevertheless, the fact that this rise continues indefinitely casts doubt on the behavior
of the theory at very small distances or very large energies; it is referred to as the
Landau pole of QED. The one-loop formula develops a pole at Q2 ∼ (10277GeV)2,
which is completely irrelevant in practice because electromagnetism eventually merges
with the weak interactions and even the Planck scale 1019 GeV is much lower. Still, this
implies that QED by itself is not a well-defined theory at high energies. The situation
in QCD is reversed: α(Q2) falls off with higher momenta due to asymptotic freedom,
so the theory is well-defined in the ultraviolet.
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Fermion-photon vertex. Before discussing the perturbative one-loop result for the
vertex correction in Fig. 11.1, let’s have a look at the general properties of the fermion-
photon vertex. We use the same kinematics as earlier: q = p+ − p− is the incoming
photon momentum and p = (p+ + p−)/2 is the average momentum of the fermions.
The squared fermion momenta are given by

p2± = p2 +
q2

4
± p · q ⇒ p2+ − p2− = 2 p · q , (11.50)

so the onshell limit p2± = m2 corresponds to p · q = 0 and p2 = m2 − q2/4. The
dependence of the vertex on two independent momenta leads to 12 possible tensors:

{γµ, pµ, qµ} ×
{
1, /p, /q, [/p, /q]

}
. (11.51)

This looks rather hopeless, but fortunately gauge invariance provides us with some
ordering principle. We mentioned that local U(1) gauge invariance is equivalent to the
statement that the photons couple to fermions through the conserved vector current
of the global U(1) symmetry. A current that is classically conserved induces Ward-
Takahashi identities (WTIs) for the Green functions of the theory. These are
identities that relate an n−point function to (n− 1)−point functions. Without proof,
we state the WTI for the fermion-photon vertex:

qµ Γ
µ(p, q) = iS−1(p+ q

2)− iS−1(p−
q
2) , (11.52)

which holds not only for qµ → 0 but in general, and it tells us that the vertex is partially
determined by the inverse fermion propagator.

The WTI has several practical consequences. First, we can work it out explicitly us-
ing the tensor decomposition (11.10) for the inverse fermion propagator. Abbreviating
B(p2) = A(p2)M(p2), as well as A(p2±) = A± and B(p2±) = B±, it takes the form

qµ Γ
µ(p, q) =

(
/p+

/q

2

)
A+ −

(
/p− /q

2

)
A− −B+ +B−

=
A+ +A−

2︸ ︷︷ ︸
=:A

/q +
A+ −A−
2 p · q︸ ︷︷ ︸
=:∆A

2 p · q /p−
B+ −B−
2 p · q︸ ︷︷ ︸
=:∆B

2 p · q

= qµ
[
Aγµ + 2pµ (∆A /p−∆B)︸ ︷︷ ︸

=:ΓµBC(p,q)

]
.

(11.53)

The quantities ∆A and ∆B are difference quotients because 2 p ·q = p2+−p2−, and in the
limit p2+ = p2− they become the derivatives of the dressing functions A(p2) and B(p2)
with respect to p2. The bracket in the last line defines the Ball-Chiu vertex which is
the part of the vertex that is constrained by gauge invariance. Consequently, the full
vertex can only differ by a purely transverse part that does not contribute to the WTI:

Γµ(p, q) = ΓµBC(p, q) + ΓµT(p, q) . (11.54)

The transverse part cannot have analytic poles at q2 = 0 because that would again
contradict its 1PI property. In combination with the transversality condition, one can
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show that this has the consequence that the transverse part must be at least linear in
qµ, so it vanishes for qµ → 0. It depends on eight remaining tensors, and in analogy to
the vacuum polarization one can construct appropriate tensor bases so that its dressing
functions are free of kinematic singularities and constraints at q2 = 0.

We are now ready to verify the first relation in Eq. (11.3). It follows from the fact
that the WTI holds for renormalized and unrenormalized quantities alike: if we define

ZΓ = Zψ Zg Z
1/2
A , then the argument that we used in Eq. (11.46) entails

ΓB =
1

ZΓ
Γ , S−1B =

1

Zψ
S−1 . (11.55)

Therefore, the WTI for the bare vertex and propagator is identical to the renormalized
WTI in Eq. (11.52), except that an additional factor 1/ZΓ appears on the left-hand side

and 1/Zψ on the right. This, in turn, requires ZΓ = Zψ and consequently Zg Z
1/2
A = 1.

Since that identity eliminates the renormalization constant Zg we had no freedom
anymore to renormalize the vertex. Instead, we claimed that f(m2, 0, 0) = 1 will
be automatically ensured by the WTI. Now we can see how this comes about: we
renormalized the fermion propagator at p2 = m2 and the photon propagator at q2 = 0;
the corresponding onshell limit for the vertex is

Γµ(p, q)→ A(m2) γµ + 2pµ
(
A′(m2) /p−B′(m2)

)
. (11.56)

This is the exact form of the vertex in that limit because the transverse part does not
contribute. With our renormalization condition A(m2) = 1 the dressing function of the
the γµ component is indeed f(m2, 0, 0) = A(m2) = 1, as advertised.

Electromagnetic form factors. In onshell scattering matrix elements we addition-
ally need to attach Dirac spinors to the vertex, so we must work out the quantity
u(p+) Γ

µ(p, q)u(p−). In onshell kinematics p · q = 0 and p2 = m2 − q2/4, so q2 is the
only remaining Lorentz-invariant. In that case the WTI (11.52) reduces to the Ward
identity

qµ u(p+) Γ
µ(p, q)u(p−) = 0 . (11.57)

It follows immediately from taking (11.56) in the onshell limit p · q = 0 and exploiting
the Dirac equation for the onshell spinors:

u(p+) /p+ = mu(p+)

/p− u(p)− = mu(p−)
⇒ u(p+) /q u(p−) = u(p+) (/p+ − /p−)u(p−) = 0 . (11.58)

On the other hand, starting from the tensor structures in Eq. (11.51) we can write
down the most general onshell decomposition of the current. By judicious use of the
Dirac equations one can eliminate all slashed quantities, for example

u(p+) /p u(p−) = u(p+)
/p+ + /p−

2
u(p−) = mu(p−) . (11.59)

This leaves three possible dressing functions which can only depend on q2:

u(p+) Γ
µ(p, q)u(p−) = u(p+)

[
a γµ + b pµ + c qµ

]
u(p−) . (11.60)
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The Ward identity then enforces c = 0, so we are left with γµ and pµ. Using the Dirac
equations it is easy to prove the Gordon identity

(Ex)

u(p+)

[
γµ − pµ

m
− iσµνqν

2m

]
u(p−) , (11.61)

with σµν = i
2 [γ

µ, γν ], which allows us to eliminate pµ in favor of σµνqν . The final result
for the onshell vertex is

u(p+) Γ
µ(p, q)u(p−) = u(p+)

[
F1(q

2) γµ + F2(q
2)
iσµνqν
2m

]
u(p−) . (11.62)

F1(q
2) and F2(q

2) are called the electromagnetic Dirac and Pauli form factors,
respectively, and F2(0) is the anomalous magnetic moment of the fermion.

Along the same lines we can also apply spinors to Eq. (11.56), which amounts to replacing /p→ m and
eliminating pµ using the Gordon identity. The form factors become

F1(q
2) = A(m2)− C(m2) + q2 [. . . ], F2(q

2) = C(m2) + [. . . ] , (11.63)

where C(m2) := −2m
(
mA′(m2)−B′(m2)

)
= 2mA(m2)M ′(m2) and the dots refer to further con-

tributions coming from the transverse part of the vertex. Observe that the renormalization condition
A(m2) = 1 does not lead to F1(0) = 1; we have to choose A(m2) = 1 + C(m2) instead. This is
equivalent to the following modification of the renormalization conditions in Eq. (11.19):

iS−1(/p)
∣∣∣
/p→m

!
= 0 ⇒ M(m2) = m,

d

d/p
iS−1(/p)

∣∣∣
/p→m

!
= 1 ⇒ A(m2) = 1 + C(m2) . (11.64)

Here we view the propagator as a function of /p, with /p
2 = p2, and thereby also take the derivative of

the dressing functions. This will also modify the renormalization constants in Eq. (11.20),

Zψ = 1 + C(m2)− ΣA(m
2) , ZψmB =

(
1 + C(m2)

)
m− ΣM (m2) , (11.65)

as well as the result for the renormalized dressing functions:

A(p2) = 1 + C(m2) + ΣA(p
2)− ΣA(m

2) ,

A(p2)M(p2) =
(
1 + C(m2)

)
m+ΣM (p2)− ΣM (m2) .

(11.66)

If we write F1(q
2) = Zψ + δF1(q

2), then the Ward identity gives the result δF1(0) = ΣA(m
2)−C(m2).

Perturbative result for the vertex correction. The one-loop calculation for the
vertex correction in Fig. 11.1 is considerably more complicated than the self-energy
calculation but otherwise completely analogous. Starting from Eq. (11.8), the diagram
is given by

igΩµ(p, q) = u(p+)

∫
d4k

(2π)4
(ig γρ)S(k+) (ig γµ)S(k−) (ig γσ)D

ρσ(k)u(p−)

= g3
∫

d4k

(2π)4
u(p+) γρ (/k+ +m) γµ (/k− +m) γρ u(p−)[
k2+ −m2 + iϵ

][
k2− −m2 + iϵ

]
[k2 + iϵ]

.

(11.67)

Inserting the formula (8.13) with p1 = p + q
2 , p2 = p − q

2 , p3 = 0, m1 = m2 = m and
m3 = 0 yields

Ωµ(p, q) = −2g2
∫
dx dy dz δ(x+ y + z − 1)︸ ︷︷ ︸

:= dω

∫
d4lE
(2π)4

N
(l2E +∆)3

, (11.68)
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where N is the numerator with the replacement kµ → lµ−a pµ− b
2 q

µ and the function
in the denominator is given by

∆ = a2m2 + (b2 − a2) q
2

4
, a = x+ y = 1− z , b = x− y . (11.69)

The hardest part is working out the numerator. After some pages of calculation, the
vertex correction becomes

(Ex)

Ωµ(p, q) = 2g2
∫
dω u(p+)

[
H1 γ

µ +H2
iσµνqν
2m

]
u(p−) , (11.70)

where

H1 =
(d− 2)2

d
Ĩ
(d)
3 + 2

(
2m2 (a (1 + a)− 1)−∆+ (1− a) q2

)
I
(4)
3 ,

H2 = 4m2a (1− a) I(4)3 .

(11.71)

The divergent parts can only come from factors ∼ l2E in the numerator which lead to

the divergent integral Ĩ
(d)
3 . All other contributions are finite and proportional to I

(4)
3 ,

so we already took the limit d→ 4 for those. Note in particular that H2 is finite, i.e.,
the Pauli form factor is free of divergences.

Using dimensional regularization for Ĩ
(d)
3 , the form factors become

F1(q
2) = Zψ +

α

2π

∫
dω

[
2

ϵ
− γ + ln

4πM2

∆
− 3 +

2m2 (a(1 + a)− 1) + (1− a) q2
∆

]
,

F2(q
2) = m2 α

π

∫
dω

a(1− a)
∆

. (11.72)

At q2 = 0, we have ∆ = a2m2, and with a = 1− z from Eq. (11.69) we find

F2(0) =
α

π

∫
dω

z

1− z =
α

π

1∫
0

dz

1−z∫
0

dy
z

1− z =
α

π

1∫
0

dz z =
α

2π
. (11.73)

This is Schwinger’s famous result for the anomalous magnetic moment of the
electron at one-loop order. Inserting α ≈ 1

137 , the numerical value is about 1h:
F2(0) = 0.0011614, plus higher orders in perturbation theory. Compare this with the
experimental result: F2(0)exp = 0.0011597.

Another check is whether the Ward identity truly holds. From Eq. (11.72) we infer

F1(0) = Zψ +
α

2π

[
1

2

(
2

ϵ
− γ + ln

4πM2

m2
− 1

)
−
∫
da

(
2(1− a)

a
+ a ln a2

)]
. (11.74)

On the other hand, with C(m2) defined in Eq. (11.63), the fermion renormalization constant obtained
from Eq. (11.31) is

Zψ = 1 + C(m2)− ΣA(m
2)

= 1 +
α

2π

[
−1

2

(
2

ϵ
− γ + ln

4πM2

m2
− 1

)
+

∫
da (1− a)

(
2(1 + a)

a
+ ln a2

)]
,

(11.75)

and so we have in total

F1(0) = 1 +
α

2π

∫
da
[
2(1− a) + (1− 2a) ln a2

]
= 1 . (11.76)
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12 Path integrals

[Unfinished]

Path integrals in quantum mechanics. We want to compute the transition matrix
element

A = ⟨xf , tf |xi, ti⟩ = ⟨xf | e−iH(tf−ti) |xi⟩ . (12.1)

To do so, we split the difference tf − ti into N equal time steps:

{xf , tf} = {xN , tN} , {xi, ti} = {x0, t0} , tf − ti = N δt , (12.2)

where we will take the limit N → ∞ and δt → 0 in the end. Next, we insert the
completeness relation (??) for each time slice from {x1, t1} to {xN−1, tN−1}:

A =

∫
dx1 . . . dxN−1

N−1∏
k=0

⟨xk+1, tk+1|xk, tk⟩︸ ︷︷ ︸
=:Ak

. (12.3)

To evaluate Ak we go back into the Schrödinger picture:

Ak = ⟨xk+1| e−iH(tk+1−tk)︸ ︷︷ ︸
e−iHδt

|xk⟩ =
∫
dpk ⟨xk+1|pk⟩ ⟨pk| e−iHδt |xk⟩ . (12.4)

Here we additionally inserted a completeness relation for the momenta. If we assume
that the Hamilton operator has the form H(P,X) = f(P ) + V (X), then from the
Baker-Campbell-Hausdorff formula

eA+B = eA eB e−
1
2
[A,B]+... ⇒ e−iHδt = e−iδtf(P ) e−iδtV (X) e

1
2
(δt)2[f(P ),V (x)]+...

and in the limit δt → 0 we can neglect the term ∼ (δt)2. Since |pk⟩ and |xk⟩ are
eigenstates of P and X at the time tk, respectively, we can replace

⟨pk| e−iH(P,X)δt |xk⟩ = ⟨pk|xk⟩ e−iH(pk,xk)δt =
e−ipkxk√

2π
e−iH(pk,xk)δt (12.5)

to arrive at

Ak =

∫
dpk
2π

e
iδt

[
pk

xk+1−xk
δt −H(pk,xk)

]
N→∞−−−−→

∫
dpk
2π

eiδt [pkẋk−H(pk,xk)] . (12.6)

Consider now specifically a Hamiltonian of the form

H(P,X) =
P 2

2m
+ V (X) . (12.7)

If we give the time variable a small imaginary part, δt → δt(1 − iϵ), the kinetic term
becomes

Ak =

∫
dpk
2π

e
iδt(1−iϵ)

[
pk

xk+1−xk
δt − p2k

2m
−V (xk)

]
, (12.8)
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which is solved by the Gaussian integral∫
dp e−

1
2
ap2+bp =

√
2π

a
e
b2

2a , Re a > 0 , (12.9)

namely as

Ak =

√
m

2iπδt
e
im
2δt

(xk+1−xk)2 N→∞−−−−→ C eiδt [
m
2
ẋ2k−V (xk)] = C eiδt L(xk,ẋk) . (12.10)

Putting this back into Eq. (??), we find

A = lim
N→∞

CN
∫
dx1 . . . dxN−1 e

i
N−1∑
k=0

δt L
. (12.11)

This expression has a rather intuitive physical interpretation, cf. Fig. ??. Suppose we
define a function x(t) such that x(tk) = xk. Then at each time tk we integrate over
all possible values of xk, which means that we integrate over a large class of functions
x(t) with fixed boundary values x(t0) = x0 and x(tN ) = xN . We denote this by a path
integral:

A =:

x(tN )=xN∫
x(t0)=x0

Dx e
i
tN∫
t0

dtL

=

∫
Dx eiS[x] , (12.12)

where S[x] is the action evaluated between the times ti and tf . This result is known as
the Feynman-Kac formula. Note that in order to make the expression well-defined
by had to add the imaginary contribution to the time. Wick rotation. One can show
that the integral is well-defined in the limit N → ∞ for the specific form (??) of the
Hamiltonian, which is what we will need for the generalization to quantum field theory.

We can repeat the idea for matrix elements of position space operators. The matrix
element of an operator X(t) at time t, with tf > t > ti, is

⟨xN , tN |X(t)|x0, t0⟩ =
∫
dx ⟨xN , tN |X(t)|x, t⟩ ⟨x, t|x0, t0⟩

=

∫
dx ⟨xN , tN |x, t⟩x(t) ⟨x, t|x0, t0⟩

=

∫
dx

[ x(tN )=xN∫
x(t)=x

Dx e
i
tN∫
t
dtL
]
x(t)

[ x(t)=x∫
x(t0)=x0

Dx e
i
t∫
t0

dtL
]

=

x(tN )=xN∫
x(t0)=x0

Dx e
i
tN∫
t0

dtL

x =

∫
Dx eiS[x] x(t) .

(12.13)

The two path integrals in the third line run from x0 to fixed x and then from x to xN ,
but since we integrate over all x this is equivalent to the path integral from x0 to xN .
Repeating this for a product of operators at different times will automatically produce
a time-ordering for them, so we can write

⟨xN , tN |TX(t1) . . . X(tn)|x0, t0⟩ =
∫
Dx eiS[x] x(t1) . . . x(tn) . (12.14)
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Finally we would like to know how the transition amplitude behaves for tf → ∞,
ti → −∞. We insert a complete set of orthonormal eigenstates of the Hamiltonian,
with H|Ω⟩ = 0, and denote t0 = −T :

|x0,−T ⟩ = e−iHT |x0⟩ =
∑
n

e−iHT |n⟩ ⟨n|x0⟩ = |Ω⟩⟨Ω|x0⟩+
∑
n=1

e−iEnT |n⟩⟨n|x0⟩.

In the limit T →∞(1−iϵ) only the ground-state contribution will survive, and therefore
we obtain for a generic operator O:

lim
T→∞(1−iϵ)

⟨xN , T |O |x0,−T ⟩ = ⟨xN |Ω⟩ ⟨Ω|x0⟩ ⟨Ω|O |Ω⟩ . (12.15)

The same expression with O = 1 involves ⟨Ω|Ω⟩ = 1, and by dividing both we get rid
of the prefactor on the r.h.s.:

⟨Ω|TX(t1) . . . X(tn)|Ω⟩ = lim
T→∞(1−iϵ)

∫
Dx eiS x(t1) . . . x(tn)∫

Dx eiS , (12.16)

where the temporal integral in the action runs from −T to T .

Path integrals for scalar fields.

Generating functionals.

Perturbation theory. We split the action into a free and an interacting part:

S[Φ] = S0[Φ] + Sint[Φ] ⇒ Z[J ] =

∫
DΦ eiSint[Φ] eiS0[Φ]+iJ ·Φ . (12.17)

The trick is now to use the identities

δ

iδJ(x)
eiJ ·Φ = Φ(x) eiJ ·Φ and F

[
δ

iδJ(x)

]
eiJ ·Φ = F [Φ(x)] eiJ ·Φ , (12.18)

where F is some polynomial, to express Sint[Φ] through Sint[δ/iδJ ] and, since it no
longer depends on the field, pull it out of the path integral:

Z[J ] = e
iSint

[
δ

iδJ(x)

] ∫
DΦ eiS0[Φ]+iJ ·Φ = e

iSint

[
δ

iδJ(x)

]
Z0[J ] . (12.19)

The same trick would also work in reverse, i.e., we could have pulled out S0 instead of
Sint. The point is that we can work on the free part Z0[J ] of the generating functional.
We can write the free action as

S0[Φ] =
1

2
Φ ·KΦ , K(x, y) = −δ4(x− y) (2+m2

0 − iϵ) . (12.20)

The kernel is the inverse of the scalar propagator, which is the Green function of the
Klein-Gordon equation (cf. Eq. (2.77)):∫

d4y K(x, y)K−1(y, z) = −
∫
d4y δ4(x− y) (2x +m2

0 − iϵ)K−1(y, z)

= −(2x +m2
0 − iϵ)K−1(x, z) = δ4(x− z) .

(12.21)
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Due to the factor −iϵ it is the Feynman propagator: K(x, y) = iD−1F (x − y). This
is what we referred to earlier when we claimed that the free action is just the inverse
propagator.

We can further ‘complete the square’ by rewriting the exponent in Eq. (??) as

i

2
Φ ·KΦ+ iΦ · J =

i

2
(Φ +K−1J) ·K (Φ +K−1J)− i

2
J ·K−1J , (12.22)

because partial integration allows us to set Φ ·Kχ = (KΦ) ·χ. If we perform a shift of
the field Φ→ Φ+K−1J inside the path integral, then the measure remains the same,
DΦ = DΦ′, but the path integral becomes

Z0[J ] =

∫
DΦ′ e i2Φ′·KΦ′

e−
i
2
J ·K−1J = Z0[0] e

1
2
(iJ)·DF (iJ) , (12.23)

and in total:

Z[J ]

Z0[0]
= eiSint[ δ

iδJ ] e
1
2
(iJ)·DF (iJ) =

∞∑
n=0

1

n!

(
iSint

[
δ

iδJ

])n
e

1
2
(iJ)·DF (iJ) . (12.24)

This formula is all we need for doing perturbation theory: a generic n−point function
is the functional derivative

G(x1, . . . xn) =
δ

iδJ(x1)
. . .

δ

iδJ(xn)

Z[J ]

Z[0]

∣∣∣∣
J=0

, (12.25)

but since we have completely absorbed the path integral into Z0[0] we are left with
repeated functional derivatives with respect to the sources J(xi). Moreover, we can
simply forget about Z0[0] because it will always drop out in the ratio Z[J ]/Z[0].

Let’s start with the zeroth order in perturbation theory, which reproduces the free
theory. In that case we have just

Z[J ]

Z[0]
= e

1
2
(iJ)·DF (iJ) =: ω . (12.26)

Similarly to our analysis in the interaction picture it is helpful to employ a diagrammatic
notation. If we denote iJ(x) by a blob and the Feynman propagator DF (x − y) by a
line, we can write

1

2
(iJ) ·DF (iJ) =

1

2

∫
d4x

∫
d4y iJ(x)DF (x− y) J(y) =

1

2
, (12.27)

and a functional derivative amounts to

δ

iδJ(x1)

1

2
(iJ) ·DF (iJ) =

∫
d4xDF (x1 − x) iJ(x) = 1 . (12.28)

If we further abbreviate δ/iδJ(xi) ≡ δi, then we can write the non-interacting one-,
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two-, three- and four-point functions (before setting all sources to zero) as

δ1 ω = ω
(
1

)
,

δ1 δ2 ω = ω

(
1

1 2
2

+
)
,

δ1 δ2 δ3 ω = ω

(
1
2

1 2
3

3
+2 3

1
+1 3

2
+

)
,

δ1 δ2 δ3 δ4 ω = ω

(
1
2

1 2
3

3
+2 3

1
+1 3

2 4 4 4

4 1
2
3

+ 4+

+

1
2
4

+
3 2

1
4

+
3 1

3
4

+
2

1
2
3
4

+
1
2
3 4

)
.

Setting the sources to zero has the same effect as retaining only complete Wick con-
tractions, and so we are left with

G(x1, x2) = DF (x1 − x2) = 1 2 ,

G(x1 . . . x4) =

1 2

3 4

1 2

3 4

+

1 2

3 4

+ ,
(12.29)

just like earlier.
To first order perturbation theory we additionally have to apply the term Sint to ω:

iSint

[
δ

iδJ

]
ω = − iλ

4!

∫
d4z

δ4

iδJ(z)4
ω = − iλ

4!

∫
d4z δ4z ω . (12.30)

If we set z = x1 = x2 = x3 = x4 and identify the vertex with −iλ, we can simply read
off the result from the last line above:

− iλ
4!

∫
d4z δ4z ω =

ω

4!

3 + 6 +

 . (12.31)

Before calculating n−point functions, let’s put this back into Eq. (??) for the generating
functional:

Z[J ]

Z0[0]
= ω

1 + 1

8
+

1

4
+

1

24

 , Z[0]

Z0[0]
= 1 +

1

8
.

As we announced earlier around Eq. (??), the generating functional is the sum of all
vacuum bubbles together with their symmetry factors. On the other hand, these
vacuum bubbles cancel when we take the ratio

Z[J ]

Z[0]
= ω

1 + 1

4
+

1

24

 (12.32)
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and thereby do not contribute to the n−point functions.
To calculate Green functions we have to apply further derivatives. In the end all

sources will be set to zero, so if we are only interested in the propagator we can ignore
all diagrams with more than two source terms:

δ1
Z[J ]

Z[0]
= ω

1
2

1

+ 1 +
diagrams with
≥ 2 sources

 ,
δ1 δ2

Z[J ]

Z[0]
= ω

1
2

1 2

+ 1 2 +
diagrams with
≥ 1 source

 .
(12.33)

In total we arrive at the same result for the propagator up to O(λ) as earlier:

G(x1, x2) = + . (12.34)

If we repeat the procedure up to O(λ2) both for the propagator and the four-point
function, we will generate all partially connected diagrams from Eqs. (??) and (??).

Connected and 1PI diagrams. The language with source terms also allows us to
construct generating functionals for the connected and 1PI diagrams. The generating
functional for connected diagrams is the logarithm of Z[J ]/Z[0]:

G(x1, . . . xn)conn =
δ

iδJ(x1)
. . .

δ

iδJ(xn)

∣∣∣∣
J=0

iW [J ] , iW [J ] = ln
Z[J ]

Z[0]
, (12.35)

which can be seen as follows. The full n−point functions (including partially dis-
connected terms) are obtained by taking the derivatives of Z[J ]/Z[0] = eiW [J ]. We
abbreviate once more

δi iW [J ]
∣∣
J=0

= wi = 0 , δi δj iW [J ]
∣∣
J=0

= wij , etc., (12.36)

where wi is the connected one-point function (which is zero), wij the connected two-
point function etc. Then we find

δ1 δ2
Z[J ]

Z[0]

∣∣∣∣
J=0

= w12 ,

δ1 δ2 δ3 δ4
Z[J ]

Z[0]

∣∣∣∣
J=0

= w1234 + w12w34 + w13w24 + w14w23 ,

(12.37)

and so on, which are indeed the correct relations between the full and connected
n−point functions. We can easily verify this for the example in Eq. (12.32):

iW [J ] = ln
Z[J ]

Z[0]
=

1

2
+

1

4
+

1

24
+O(λ2) . (12.38)
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Taking derivatives is now much easier because we don’t need to worry about the con-
tribution from ω. In fact, it is so simple that we can already read off the result for the
two-point function (which is the propagator itself) and the four-point function (which
contains the connected diagram only).

To construct the generating functional for 1PI Green functions, we first define the
‘averaged field’ φ(x) as the vacuum expectation value of Φ(x) for a nonvanishing
source:

φ(x) :=
δW [J ]

δJ(x)
=

δ

iδJ(x)
ln
Z[J ]

Z[0]
=

1

Z[J ]

δ

iδJ(x)
Z[J ] = ⟨Ω|Φ(x) |Ω⟩J . (12.39)

That is, φ(x) is the 1-point function in the presence of the source J ; it vanishes if we
set J = 0 because the vacuum expectation value of the field vanishes.10 Now assume
that this relation is invertible, so that for a given φ(x) there exists a unique J(x) that
depends on φ(x).11 We can then define the effective action, which is a functional of
φ(x) only, through the Legendre transformation of W [J ]:

Γ[φ] :=W [J ]−
∫
d4y J(y)φ(y) . (12.40)

This leads to an analogous relation for J(x):

δΓ[φ]

δφ(x)
=

∫
d4y

δW [J ]

δJ(y)︸ ︷︷ ︸
φ(y)

δJ(y)

δφ(x)
− J(x)−

∫
d4y

δJ(y)

δφ(x)
φ(y) = −J(x) . (12.41)

Therefore, the sources J(x) and φ(x) are conjugated,

δW [J ]

δJ(x)
= φ(x) ,

δΓ[φ]

δφ(x)
= −J(x) , (12.42)

similarly to thermodynamic systems: if we were to interpret W [J ] and Γ[φ] as ther-
modynamic potentials, then J(x) would be the ‘intensive’ and φ(x) the ‘extensive’
variable, and differentiation with respect to one variable gives the conjugated one.12

To better understand the meaning of ‘effective action’, recall that

Z[J ]

Z[0]
=

∫
DΦ eiS[Φ]+iJ ·Φ∫
DΦ eiS[Φ]

= eiW [J ] = eiΓ[φ]+J ·φ . (12.43)

That is, the averaged field is the VEV of the classical field, and the effective action
is the quantum averaged action, integrated over quantum fluctuations, with the path
integral exponential as weight factor. In the same way as the classical action S[φ]
contains the full content of the classical field theory, either of the functionals Z[J ],

10By Lorentz invariance ⟨Ω|Φ(x) |Ω⟩ = ⟨Ω|Φ(0) |Ω⟩ = c, and if c ̸= 0 we can still redefine the field
by a shift Φ(x) → Φ(x)− c so that φ(x)J=0 = 0.

11This is indeed true in the Euclidean formulation where W [J ] is a convex function.
12The analogy between Euclidean quantum field theory and statistical physics can be taken further:

finite ℏ lead to quantum fluctuations and finite kbT to thermal fluctuations, which are encoded in the
effective action.
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W [J ] or Γ[φ] determines the quantum field theory completely since all Green functions
can be derived from them.

Our goal in the following is to show that the effective action generates all 1-particle
irreducible Green functions:

Γn(x1, . . . xn) =
δ

δφ(x1)
. . .

δ

δφ(xn)
iΓ[φ]

∣∣∣∣∣
φ=0

. (12.44)

Path integral for fermions. The path integral quantization has a convenient side
effect: all fields are numbers instead of operators, so in principle we could completely
forget about the operator structure, the equal-time commutation relations, etc. The
Green functions are time-ordered VEVs of operators, but at the same time the quantum
averages of the classical fields. There is one problem, though: what is the classical
counterpart of anticommuting fermion field operators?

The solution is that we must treat them as anticommuting Grassmann variables.
Consider an n−dimensional vector space with basis elements θ1, . . . θn, i.e., their addi-
tion and multiplication with scalars is defined. Since we also want to multiply the θi
among themselves, we impose the anticommutator relation

{θi, θj} = 0 (12.45)

which defines the Grassmann algebra. The fact that by this definition θi θj = −θj θi
and θ2i = 0 has some interesting consequences. First, the most general element of the
algebra has the form

f(θ1 . . . θn) = c+
∑
i

ci θi +
1

2!

∑
ij

cij θi θj + · · ·+
1

n!

∑
i1...in

ci1...in θi1 . . . θin , (12.46)

with totally antisymmetric coefficients ci1...in . Alternatively, we could omit the factorial
and sum over i1 < · · · < in only; the last term is simply c1...n θ1 . . . θn. In any case, the
expansion stops because the dependence on each θi can be at most linear. For example
in one or two dimensions:

f(θ) = c+ c1 θ , f(θ1, θ2) = c+ c1 θ1 + c2 θ2 + c12 θ1 θ2 , (12.47)

and a Taylor expansion has the form eaθ = 1 + aθ. Since each θi appears at most
linearly, applying a derivative has the effect of replacing θi → 1; however, one first has
to permute θi towards the derivative operator:

∂f(θ)

∂θ
= c1 ,

∂f(θ1, θ2)

∂θ1
= c1 + c12 θ2 ,

∂f(θ1, θ2)

∂θ2
= c2 − c12 θ1 (12.48)

and
∂2f(θ1, θ2)

∂θ1 ∂θ2
= −∂

2f(θ1, θ2)

∂θ2 ∂θ1
= −c12 . (12.49)

Next, we define the integration as∫
dθ 1 = 0 ,

∫
dθ θ = 1 . (12.50)
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The first relation follows from the requirement that translation invariance for a con-
vergent bosonic integral should also hold for an integral over Grassmann variables:∫

dθ f(θ) =

∫
dθ f(θ + η) ⇒

∫
dθ η = 0 , (12.51)

and the second is a normalization convention. In addition we require that the in-
tegration variable must be permuted to the integral measure, like for the derivative.
Consequently, the integration has the same effect as a derivative:∫

dθ f(θ) =

∫
dθ (c+ c1 θ) = c1 =

df(θ)

∂θ
. (12.52)

If we define the Grassmann measure as dnθ = dθn . . . dθ1, then∫
dnθ θ1 . . . θn = 1 ,

∫
dnθ θi1 . . . θin = εi1...in , (12.53)

where εi1...in is the totally antisymmetric tensor normalized to ε1...n = 1. Therefore,
in a generic integral only the last term in Eq. (12.46) survives because the number of
Grassmann variables it contains must be saturated by the integration measure:∫

dnθ f(θ1 . . . θn) =

∫
dnθ c1...n θ1 . . . θn = c1...n . (12.54)

For the same reason an integration by parts does not pick up any boundary terms
because the integral of a derivative vanishes:∫

dnθ
∂

∂θi
f(θ1 . . . θn) = 0 . (12.55)

From these relation one can show that the Jacobian that corresponds to the trans-
formation θ′i = Aij θj is the inverse determinant. Abbreviating {θ1 . . . θn} ≡ θ,∫

dnθ f(θ′) =

∫
dnθ c1...nA1i1 . . . Anin θi1 . . . θin

= εi1...in A1i1 . . . Anin︸ ︷︷ ︸
detA

c1...n = detA

∫
dnθ f(θ) = detA

∫
dnθ′ f(θ′) ,

(12.56)

and therefore dnθ′ = (detA)−1 dnθ. Compare this to the bosonic case, where for
x′i = Aijxj we have dnx′ = | detA| dnx.

One can generalize these formulas to complex Grassmann variables, where the com-
plex conjugation is defined by (θiθj)

∗ = θ∗j θ
∗
i and the integral measure by

dnθ dnθ∗ = dθ1 dθ
∗
1 . . . dθn dθ

∗
n = dθn dθ

∗
n . . . dθ1 dθ

∗
1 . (12.57)

The generalization of Eq. (??) is∫
dnθ dnθ∗

(
θ∗i1 θj1 . . . θ

∗
in θjn

)
= εi1...in εj1...jn . (12.58)
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For a generic integral ∫
dnθ dnθ∗ f(θ, θ∗) (12.59)

only the term which is proportional to θ1 . . . θn θ
∗
1 . . . θ

∗
n contributes. Under a unitary

transformation the Jacobian is (detU)(detU)∗ = 1 and therefore unitary transforma-
tions do not change the integral.

One often deals with Gaussian integrals, where the integrand is eθ
∗
i Bij θj . In the

series expansion only the term of order n survives because it has the same number of
Grassmann variables as the integral measure:∫

dnθ dnθ∗ eθ
∗
i Bij θj =

∫
dnθ dnθ∗

1

n!
(θ∗i Bij θj)

n

=
1

n!
Bi1j1 . . . Binjn

∫
dnθ dnθ∗

(
θ∗i1 θj1 . . . θ

∗
in θjn

)
=

1

n!
εi1...in εj1...jn Bi1j1 . . . Binjn = detB .

(12.60)

If the exponent comes with a minus sign, one picks up a factor (−1)n in the Taylor
expansion which can be compensated by interchanging dnθ dnθ∗ → dnθ∗ dnθ. Compare
these results again with the bosonic case:∫

dnθ∗ dnθ e−θ
∗
i Bij θj = detB (fermionic) ,∫

dnx∗ dnx e−x
∗
i Bij xj =

(2π)n

detB
(bosonic) .

(12.61)

If the variables are real, we have to take the square root instead:∫
dnθ e

1
2
θiBij θj =

√
detB (fermionic) ,∫

dnx e−
1
2
xiBij xj =

√
(2π)n

detB
(bosonic) .

(12.62)

With that we have everything in place to write down the path integral for
fermions. The fermion fields ψ(x) and ψ(x) are now Grassmann-valued fields; for
example, one could write them in a given basis as

ψ(x) =
∑
i

ψi ϕi(x) . (12.63)

The ϕi(x) are ordinary commuting fields (for example a basis of Dirac spinors), whereas
the coefficients ψi are Grassmann numbers. To arrive at the generating functional
analogous to Eq. (??), one introduces Grassmann-valued source terms η(x) and η(x):

Z0[η, η] =

∫
DψDψ ei

∫
d4x[ψ (i/∂−m0)ψ+η ψ+ψ η] . (12.64)

Following the same steps as in Eq. (??) leads to

Z0[η, η] = Z0[0, 0] e
(iη)·SF (iη) , (12.65)
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from where the Green functions of the free Dirac theory can be calculated. Since η(x)
and η(x) are Grassmann fields, however, we must be careful when taking derivatives
because the respective field must be first permuted to the left. For example, the two-
point function is given by

⟨0|Tψα(x1)ψβ(x2) |0⟩ =
(

δ

i δηα(x1)

)(
δ

−i δηβ(x2)

)
Z0[η, η]

Z0[0, 0]

∣∣∣∣
η=η=0

. (12.66)

DSEs and WTIs.
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Gauge �xing
surface: f[A]=0

Figure 13.1: Gauge orbits and gauge-fixing surface.

13 Non-Abelian gauge theories

[Unfinished]

Local gauge invariance revisited.

Non-Abelian gauge theories.

The Standard Model.

Faddeev-Popov quantization. The standard method is the Faddeev-Popov gauge
fixing procedure. Let’s denote a gauge transformation of the gluon field by A → AU ,
where U is some gauge transformation with gauge parameter ε. Impose a gauge-fixing
function f [A] which we want to set to zero at the end: f [A] = 0, to single out a
hypersurface of fixed gauge (cf. Fig. 13.1).

The basic idea is to restrict the path integral to a hypersurface that satisfies the
gauge-fixing condition by inserting some unity operator:∫

DAeiS =

∫
DA δ(f [A]) (. . . )︸ ︷︷ ︸

=1

eiS . (13.1)

To this end, consider a one-dimensional function f(ε). It satisfies the identity

∞∫
−∞

dε

∣∣∣∣df(ε)dε

∣∣∣∣
f(ε)=0

δ(f(ε)) =

∞∫
−∞

dε |f ′(ε0)|
δ(ε− ε0)
|f ′(ε0)|

= 1 , (13.2)

By means of the δ−function, ε0 is the value where f(ϵ) = 0; if f(ϵ) has several zeros
we would have to sum over them. The infinite-dimensional continuum version of this
relation is the ’functional unity’∫

DU detM [A ] δ(f [AU ]) = 1 , (13.3)
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where the Faddeev-Popov operator M [A ] is the derivative of the gauge-fixing con-
dition with respect to the gauge transformation parameter,

M [A ] :=
δf [AU ]

δε

∣∣∣∣
f [AU ]=0

. (13.4)

The δ−function is an infinite product of δ−functions at each space-time point x, and
DU is called the group measure. M [A ] does not depend on the gauge transformation
U : for example, a linear covariant gauge is defined by f [A] = ∂µA

µ, and from Eq. (??)
we have δAµ = 1

g D
µε, so that the Faddeev-Popov operator in this case is given by

M [A ]ab(x, y) =
1

g
∂µD

µ
ab δ

4(x− y) . (13.5)

In QED, this expression is also independent of A so we can pull it out of the path
integral. 13

We can insert Eq. (13.3) in the path integral:

Z =

∫
DU

∫
DA detM [A ] δ(f [AU ]) eiS[A] , (13.6)

and, since Z is gauge-invariant, perform a gauge transformation AU → A. The gauge
field measure DA, the group measure DU , the Faddeev-Popov determinant and the
classical action S[A ] are all invariant under this operation, so that it merely amounts
to replacing δ(f [AU ]) → δ(f [A]). The integrand then depends no longer on U and
the group integration DU factorizes; it produces an infinite constant which drops out
whenever we normalize Z, for example when calculating Green functions. The remain-
ing δ−function restricts the integration over all fields to the hypersurface f [A] = 0.
Each gauge orbit contributes only one field configuration and we have an integration
over physically distinct fields. In total we have indeed arrived at the form (??), where
the bracket with dots is the Faddeev-Popov determinant.

Recall that a determinant can be written as a Gaussian integral over Grassmann
variables. A functional determinant is therefore the Gaussian path integral over Grass-
mann fields:

detM [A] =

∫
DcDc e

−
∫
x

∫
y
ca(x)M [A]ab(x,y) cb(y)

, (13.7)

where the Faddeev-Popov ghosts ca(x), ca(x) are scalar but Grassmann-valued fields.
They carry the wrong Bose-Fermi statistics, but this is of no concern since they are
unphysical anyway. In conclusion, we have found that introducing a gauge-fixing term
also introduces ghost fields.14 This leads to new Green functions; from Eq. (13.7) we
see that the Faddeev-Popov operator defines the inverse tree-level ghost propagator.

13Here we have assumed that the gauge-fixing condition is unique, i.e., that the equation f(ε) = 0
admits only one solution ε0. This is usually not the case due to Gribov copies: the gauge-fixing
condition can intersect the gauge orbits more than once and is therefore not complete. In this case
both f [A] = 0 and f [AU ] = 0 are realized on the same gauge orbit, which means that the FP operator
has zero eigenvalues. The problem does not appear in QED where the residual gauge freedom can be
removed by imposing appropriate boundary conditions on the fields.

14In QED (at least with linear gauges), the ghosts are not dynamical because the Faddeev-Popov
determinant is A−independent and can be pulled out of the path integral.
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The remaining goal is to shuffle the Faddeev-Popov determinant and the δ−function
in (13.6) into the action, at the price of introducing new, unphysical fields which are
merely a consequence of fixing the gauge. We can take care of the δ−function by chang-
ing the gauge fixing condition to f [A] + ξ

2 B = 0, where B(x) lives in the Lie algebra
but does not depend on A. This does not affect the Faddeev-Popov determinant, but
the functional integral ZB depends now implicitly on B. Since any B leads to the same
gauge-invariant physics, we can work with ZB, ZB′ or

∫
DB F (B)ZB; these are all

equivalent. If we integrate over the functions B(x) with some Gaussian weight, we can
remove the δ−function in favor of a new term in the action:

Z =

∫
DB e− iξ8

∫
d4xB2(x)DA detM [A] δ

(
f [A] + ξ

2 B
)
eiS[A]

=

∫
DA detM [A] e

i

(
S[A]−

∫
d4x

f [A]2

2ξ

)
.

(13.8)

For example, with a linear covariant gauge this provides a welcome modification to the
propagator term in Eq. (??), as it is no longer transverse in momentum space but has
instead the form

−1
4F

a
µν F

µν
a −

(∂µA
µ
a)2

2ξ
∼= 1

2
Aaµ

(
2 gµν − ∂µ∂ν + 1

ξ
∂µ∂ν

)
Aaν + . . . (13.9)

and can be inverted. ξ is the gauge parameter: ξ = 0 defines the Landau gauge, ξ = 1
the Feynman gauge, and there are many other possible choices which differ not only
by the gauge parameter but also by the gauge fixing condition (Coulomb gauge, axial
gauge, light-cone gauge, maximal Abelian gauge etc.).

Reinserting the quarks and including all source terms, the final partition function
for QCD assumes the form

Z[J, η, η, σ, σ ] =

∫
D[A,ψ, ψ, c, c̄ ] ei(S[A,ψ, ψ ]+SGF[A, c, c ]+SC), (13.10)

where the gauge-fixing part of the action is

SGF = −
∫
x

f [A]2

2ξ
+

∫
x

∫
y

icaM [A]ab cb =

∫
x

(
−(∂µA

µ
a)2

2ξ
+
i

g
ca∂µD

µ
ab cb

)
. (13.11)

The second equality holds for a linear covariant gauge; the factor i/g can be absorbed
in the ghost fields. The source term reads

SC = −
∫
x

(JµA
µ + ψ η + η ψ + σ c+ c σ) , (13.12)

where η, η̄ are the quark sources and σ, σ̄ the ghost sources.

An equivalent way to arrive at Eq. (13.11) is to impose BRST invariance of the action (Becchi, Rouet,
Stora, Tyutin). Consider an infinitesimal gauge transformation (??) where the gauge parameter is a
ghost field c(x) = ca(x) ta, i.e., a scalar anticommuting Grassmann field:

δψ = ic ψ , δψ = −iψ c , δAµ =
1

g
Dµc , δFµν = i [c, Fµν ] . (13.13)
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If we further demand that this transformation be nilpotent (δ2 = 0), it is straightforward to prove
that any of the relations above fixes the transformation behavior of the ghost itself: δc = i

2
[c, c]

or, in components: δca = − 1
2
fabc cb cc. (Nilpotency of this last relation can be shown using the

Jacobi identity; note that δ also anticommutes with c). Applying δ increases the ghost number (the
charge corresponding to a U(1) symmetry of the ghost fields) by one unit; hence, when applied to the
antighost, it must produce a scalar field with ghost number zero, the so-called Nakanishi-Lautrup field:
δc̄ =: −iB. Nilpotency of the antighost transformation then fixes δB = 0. The different treatment of
c and c̄ implies that they are not conjugates of each other but truly independent fields.

Since the classical action S[A, ψ, ψ ] is gauge invariant and BRST is a gauge transformation, it is
also BRST invariant. The most general BRST-invariant action is then the sum of the classical action
plus a term SGF = δO which is a BRST variation itself, since in that case we have δSGF = δ2O = 0.
Adding this to the action means fixing a gauge; which gauge we get depends on O. To recover (13.11),
we contract the antighost with our earlier gauge-fixing condition f [A] + ξ

2
B:

SGF = δ

∫
x

ica

(
fa[A] +

ξ

2
Ba

)
=

∫
x

Ba

(
fa[A] +

ξ

2
Ba

)
+

∫
x

∫
y

ic̄aM [A]ab cb. (13.14)

Inserting the equations of motion for Ba, namely fa+ξBa = 0, yields again Eq. (13.11); the same result

follows from integrating over Ba in the path integral. Hence, imposing BRST invariance simultaneously

generates gauge-fixing and ghost terms in the action.

Quantum Chromodynamics. We can carry over the same analysis from φ4 theory
to QCD. QCD is a renormalizable quantum field theory because its coupling g is di-
mensionless. We have now several distinct fields in the Lagrangian, defined by (??)
plus the gauge-fixing part in (13.11), which we reinterpret as ’bare’ quantities. Their
relationship with the renormalized quantities introduces renormalization constants:

ψB = Z
1/2
ψ ψ , AB = Z

1/2
A A , cB = Z1/2

c c , mB = Zmm, gB = Zg g . (13.15)

From Eqs. (??), (??) and (13.11), the resulting Lagrangian would read explicitly (mod-
ulo partial integrations): 15

L = Zψ ψ (i/∂ − ZmM)ψ +
1

2
Aaµ [ZA (2 gµν − ∂µ∂ν) + λ∂µ∂ν ]Aaν + Zc ca2 ca

+ ZΓ g ψ /Aψ + Z̃Γ ig (∂µ ca) [A
µ, c ]a

− Z3g
g

2
fabc (∂

µAνa − ∂νAµa)AbµAcν − Z4g
g2

4
fabefcdeA

µ
a A

ν
b A

c
µA

d
ν .

(13.16)

The first line contains the inverse tree-level quark, gluon and ghost propagators. The
transversality condition for the gluon self-energy is the same as in QED, which entails
that the longitudinal part of the gluon propagator stays unrenormalized. The second
line contains the tree-level quark-gluon and ghost-gluon vertex and the third line the
three- and four-gluon vertex. The vertex renormalization constants are related to those
in Eq. (13.15) via

ZΓ = Zg Z
1/2
A Zψ , Z̃Γ = Zg Z

1/2
A Zc , Z3g = Zg Z

3/2
A , Z4g = Z2

g Z
2
A . (13.17)

In total, there are five independent renormalization constants (Zψ, ZA, Zc, Zm, Zg) and
we must employ five renormalization conditions to fix them and remove all divergences
from the theory.

15We have also rescaled the ghost fields to get rid of the coupling g in the denominator.
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Figure 13.2: Tree-level propagators and vertices in the QCD action.

We have now everything in place to write down the final expressions for the renor-
malized tree-level propagators and vertices in QCD. They are necessary for perturbative
calculations since the dressed n-point functions at large momenta revert to these forms,
but they also enter as inputs for nonperturbative studies. The Feynman rules for the
quark, gluon and ghost propagator are given by

iS−10 (p) = Zψ (/p−mB) ,

iG−10 (q) = −Zc q2 ,
i(D−10 )µν(q) = −q2 (ZA Tµνq + λLµνq ) , (13.18)

where m0 = Zmm and m is the renormalized quark mass. We abbreviated the longitu-
dinal and transverse projectors that appear in the gluon propagator by Lµνp = pµ pν/p2

and Tµνp = gµν − Lµνp . Notice the ‘wrong’ sign for the ghost propagator; it tells us
that . . . The tree-level quark-gluon and ghost-gluon vertices read (see Fig. 13.2 for the
kinematics)

Γµq,0 = ig ZΓ γ
µ ta , Γµgh,0 = g Z̃Γ fabc p

µ , (13.19)

and the three- and four-gluon vertices are given by

Γµνρ3g,0 = g Z3g fabc

[
(p1 − p2)ρgµν + (p2 − p3)µgνρ + (p3 − p1)νgρµ

]
,

Γµνρσ4g,0 = −ig2 Z4g

[
fabefcde (g

µρgνσ − gνρgµσ) + facefbde (g
µνgρσ − gνρgµσ)

+ fadefcbe (g
µρgνσ − gµνgρσ)

]
.

(13.20)

QCD perturbation theory.
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