Optimal control of the principal coefficient in a scalar wave equation

Christian Clason^{1,2} Karl Kunisch¹ Philip Trautmann¹

¹Department of Mathematics and Scientific Computing, University of Graz

31st IFIP TC7 Conference on System Modeling and Optimization Hamburg, Germany, August 12, 2024

²Faculty of Mathematics, University of Duisburg-Essen

Motivation: coefficient inverse problem

Wave equation

$$\begin{cases} y_{tt} - \nabla \cdot (u \nabla y) = f & \text{on } \Omega \times [0, T] \\ \partial_{\nu} y = 0 & \text{on } \partial \Omega \times [0, T] \\ y(0) = y_0, \quad y_t(0) = 0 & \text{on } \Omega \end{cases}$$

Goal: recover u from (partial) measurement of y

Assumption: *u* piecewise constant (with known values?)

Approach:

- add total variation regularization $\|\nabla u\|_1$ (\rightarrow sparse gradient \rightarrow piecewise constant)
- add pointwise penalty promoting known values
- → nonsmooth regularization: non-differentiable but convex

1 Overview

2 Pointwise regularization

3 Wave equation and total variation

4 Numerical solution

Convex analysis approach

$$\mathcal{F}(K(\bar{u})) + \mathcal{G}(\bar{u}) = \min_{u} \mathcal{F}(K(u)) + \mathcal{G}(u)$$

- 1 Fermat principle: $0 \in \partial \left(\mathcal{F}(K(\bar{u})) + \mathcal{G}(\bar{u}) \right)$
- 2 sum, chain rule: $0 \in K'(\bar{u})^* \partial \mathcal{F}(K(\bar{u})) + \partial \mathcal{G}(\bar{u})$ under a regularity condition \rightsquigarrow there is a \bar{p} with

$$\begin{cases} \bar{p} \in \partial \mathcal{F}(K(\bar{u})) \\ -K'(\bar{u})^* \bar{p} \in \partial \mathcal{G}(\bar{u}) \end{cases}$$

Fenchel duality:

$$\begin{cases} \bar{p} \in \partial \mathcal{F}(K(\bar{u})) \\ \bar{u} \in \partial \mathcal{G}^*(-K'(\bar{u})^*\bar{p}) \end{cases}$$

Convex analysis approach

$$\mathcal{F}(K(\bar{u})) + \mathcal{G}(\bar{u}) = \min_{u} \mathcal{F}(K(u)) + \mathcal{G}(u)$$

- 1 Fermat principle: $0 \in \partial \left(\mathcal{F}(K(\bar{u})) + \mathcal{G}(\bar{u}) \right)$
- 2 sum, chain rule: $0 \in K'(\bar{u})^* \partial \mathcal{F}(K(\bar{u})) + \partial \mathcal{G}(\bar{u})$ under a regularity condition \rightsquigarrow there is a \bar{p} with

$$\begin{cases} \bar{p} \in \partial \mathcal{F}(K(\bar{u})) \\ -K'(\bar{u})^* \bar{p} \in \partial \mathcal{G}(\bar{u}) \end{cases}$$

4 equivalent reformulation (for any $\sigma, \tau > 0$):

$$\begin{cases} \overline{p} = \mathsf{prox}_{\sigma\mathcal{F}^*}(\overline{p} + \sigma K(\overline{u})) \\ \overline{u} = \mathsf{prox}_{\tau\mathcal{G}}(\overline{u} - \tau K'(\overline{u})^* \overline{p}) \end{cases}$$

Primal-dual proximal splitting

$$\begin{split} u^{k+1} &= \mathsf{prox}_{\tau \mathcal{G}} \left(u^k - \tau K'(u^k)^* \rho^k \right) \\ \overline{u}^{k+1} &= 2u^{k+1} - u^k \\ \rho^{k+1} &= \mathsf{prox}_{\sigma \mathcal{F}^*} \left(\rho^k + \sigma K(\overline{u}^{k+1}) \right) \end{split}$$

- nonlinear variant of Chambolle-Pock (for K linear) [Valkonen '14, C./Mazurenko/Valkonen '18]
- $\tau, \sigma > 0$ step sizes
- local convergence in Hilbert space under
 - second-order type condition on K
 - τ, σ sufficiently small
- ullet can be accelerated if ${\mathcal F}$ and/or ${\mathcal G}$ strongly convex

Convex analysis approach

For
$$\min_{u} \mathcal{F}(K(u)) + \mathcal{G}(u)$$
, $\mathcal{G}(u) = \int_{\Omega} g(u(x)) dx$ convex, l.s.c.

Approach: pointwise

- 1 compute subdifferential ∂g (or Fenchel conjugate g^*)
- $_{\mathbf{2}}$ compute conjugate subdifferential ∂g^{*}
- $_{f 3}$ compute proximal mapping prox $_{\gamma g}$
- → optimality conditions, proximal splitting methods

1 Overview

2 Pointwise regularization

3 Wave equation and total variation

4 Numerical solution

Motivation: hybrid discrete optimization

$$\min_{u \in U} \mathcal{F}(K(u)) + \frac{\alpha}{2} ||u||^2$$

- $oldsymbol{arphi}$ discrepancy term, K forward operator (involving PDE solution)
- U discrete set

$$U = \{ u \in L^p(\Omega) : u(x) \in \{u_1, \dots, u_d\} \text{ a.e.} \}$$

- $u_1, ..., u_d$ given voltages, velocities, materials, ... (assumed here: ranking by magnitude possible!)
- motivation: topology optimization, medical imaging

Motivation: penalty

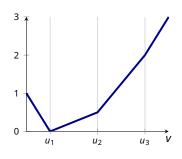
- convex relaxation: replace U by convex hull $u(x) \in [u_1, u_d]$
- works only for d=2, cf. bang-bang control ($\alpha=0$)
- \rightarrow promote $u(x) \in \{u_1, \dots, u_d\}$ by convex pointwise penalty

$$G(u) = \int_{\Omega} g(u(x)) dx$$

- generalize L^1 norm: polyhedral epigraph with vertices u_1, \ldots, u_d
- not exact relaxation/penalization (in general)!

Motivation: penalty

generalize L^1 norm: polyhedral epigraph with vertices u_1, \ldots, u_d



- motivation: convex envelope of $\frac{1}{2}||u||^2 + \delta_U$
- multibang (generalized bang-bang) control
- → non-smooth optimization in function spaces

Multibang penalty

$$g: \mathbb{R} \to \overline{\mathbb{R}}, \qquad v \mapsto egin{cases} rac{1}{2} \left((u_i + u_{i+1})v - u_i u_{i+1}
ight) & v \in [u_i, u_{i+1}] \\ \infty & \text{else} \end{cases}$$

piecewise differentiable → subdifferential convex hull of derivatives

$$\partial g(v) = \begin{cases} \left(-\infty, \frac{1}{2}(u_1 + u_2)\right] & v = u_1 \\ \left\{\frac{1}{2}(u_i + u_{i+1})\right\} & v \in (u_i, u_{i+1}) & 1 \le i < d \\ \left[\frac{1}{2}(u_{i-1} + u_i), \frac{1}{2}(u_i + u_{i+1})\right] & v = u_i & 1 < i < d \\ \left[\frac{1}{2}(u_{d-1} + u_d), \infty\right) & v = u_d \end{cases}$$

Multibang penalty

$$\partial g(v) = \begin{cases} \left(-\infty, \frac{1}{2}(u_1 + u_2)\right] & v = u_1 \\ \left\{\frac{1}{2}(u_i + u_{i+1})\right\} & v \in (u_i, u_{i+1}) & 1 \le i < d \\ \left[\frac{1}{2}(u_{i-1} + u_i), \frac{1}{2}(u_i + u_{i+1})\right] & v = u_i & 1 < i < d \\ \left[\frac{1}{2}(u_{d-1} + u_d), \infty\right) & v = u_d \end{cases}$$

Fenchel duality:

$$\partial g^{*}(q) \in \begin{cases} \{u_{1}\} & q \in \left(-\infty, \frac{1}{2}(u_{1} + u_{2})\right) \\ [u_{i}, u_{i+1}] & q = \frac{1}{2}(u_{i} + u_{i+1}), & 1 \leq i < d \\ \{u_{i}\} & q \in \left(\frac{1}{2}(u_{i-1} + u_{i}), \frac{1}{2}(u_{i} + u_{i+1})\right) & 1 < i < d \\ \{u_{d}\} & q \in \left(\frac{1}{2}(u_{d-1} + u_{d}), \infty\right) \end{cases}$$

Proximal point mapping

Proximal point mapping $\operatorname{prox}_{\gamma q}(v) = w \text{ iff } v \in \{w\} + \gamma \partial g(w)$

case-wise inspection of subdifferential:

$$\operatorname{prox}_{\gamma g}(v) = \begin{cases} u_i & v \in P_i^{\gamma} \\ v - \frac{\gamma}{2}(u_i + u_{i+1}) & v \in P_{i,i+1}^{\gamma} \end{cases}$$

$$P_{i}^{\gamma} = \left[\left(1 + \frac{\gamma}{2} \right) u_{i} + \frac{\gamma}{2} u_{i-1}, \left(1 + \frac{\gamma}{2} \right) u_{i-1} + \frac{\gamma}{2} u_{i} \right]$$

$$P_{i,i+1}^{\gamma} = \left(\left(1 + \frac{\gamma}{2} \right) u_{i} + \frac{\gamma}{2} u_{i+1}, \left(1 + \frac{\gamma}{2} \right) u_{i+1} + \frac{\gamma}{2} u_{i} \right)$$

→ generalized soft thresholding

1 Overview

2 Pointwise regularization

3 Wave equation and total variation

4 Numerical solution

Wave equation

Goal: application to coefficient inverse problem for wave equation

 $K: u \mapsto y \text{ solving}$

$$\begin{cases} y_{tt} - \nabla \cdot (u\nabla y) = f & \text{on } \Omega \times [0, T] \\ \partial_{\nu} y = 0 & \text{on } \partial\Omega \times [0, T] \\ y(0) = y_0, & y_t(0) = 0 & \text{on } \Omega \end{cases}$$

- difficulty: $\bar{u} \in L^{\infty}(\Omega) \longrightarrow K$ not weakly-* closed
 - \rightarrow lack of existence of minimizer $(\bar{y} \neq K(\bar{u}), \text{ cf. homogenization})$
- \rightarrow total variation regularization: add $TV(u) := ||Du||_{\mathcal{M}}$

TV regularization

Difficulty:

■ existence requires box constraints ~ use penalty

$$\left(G(u)+\delta_{[u_1,u_d]}(u)\right)+TV(u)$$

(here: G multibang penalty with dom $G = L^1(\Omega)$)

- but: $TV(u) + \delta_{[u_1,u_d]}(u)$ not continuous on $L^p(\Omega)$, $p < \infty$
- but: multipliers $\xi \in \partial TV(u)$, $q \in \partial G(u)$ not pointwise on BV, L^{∞}
- \rightarrow replace box constraints by $(C^{1,1})$ projection of $u \in L^1(\Omega)$

$$[\Phi_{\varepsilon}(u)](x) = \operatorname{proj}_{[u_1, u_d]}^{\varepsilon}(u(x))$$
 a.e. $x \in \Omega$

 \rightarrow use higher regularity of solution to wave equation

Wave equation

$$\begin{cases} \int_0^T -(\partial_t y, \partial_t v) + (u \nabla y(t), \nabla v(t)) dt = \int_0^T (f(t), v(t)) dt \\ y(0) = y_0 \end{cases}$$

for all $v \in W := L^2(0,T;H^1) \cap H^1(0,T;L^2)$ with v(T) = 0 [Lions/Magenes '72]

- \rightarrow solution mapping $S: u \mapsto y$ on $U := \{u \in L^{\infty}(\Omega) : u_1 \le u \le u_d \text{ a.e.}\}$
 - S(u) uniformly bounded in $W \cap H^2(0,T;H^{-1}) := Z$
 - S Lipschitz continuous from $L^{\infty}(\Omega)$ to $L^{2}(0,T;L^{2})$
 - $S(u_n) \rightarrow S(u) \text{ in } Z \text{ if } u_n \rightarrow u \text{ in } L^r(\Omega), r \in [1, \infty]$

Wave equation

$$\begin{cases}
\int_0^T -(\partial_t y, \partial_t v) + (u \nabla y(t), \nabla v(t)) dt = \int_0^T (f(t), v(t)) dt \\
y(0) = y_0
\end{cases}$$

for all $v \in W := L^2(0,T;H^1) \cap H^1(0,T;L^2)$ with v(T) = 0 [Lions/Magenes '72]

Assumption:

- $f \in L^2(0,T; H^1), \quad y_0 \in H^2(\Omega), \, \partial_{\nu} y_0 = 0, \quad y_1 \in H^1(\Omega)$
- there is $ω_c \subset Ω$ with u constant on $Ω \setminus ω_c$, y_0 constant on $ω_c$

Then:

■ S(u) uniformly bounded in $L^{\infty}(0,T;W^{1,s})$ for some s>2 (proof: combination of higher hyperbolic and maximal elliptic regularity [Wloka '87, Gröger '89])

TV regularization: existence

$$\begin{cases} \min_{u \in BV(\Omega)} \frac{1}{2} \|y - y^{\delta}\|_{L^{2}(\Omega)}^{2} + \alpha G(u) + \beta TV(u) \\ \text{s.t.} \quad y_{tt} - \nabla \cdot (\Phi_{\varepsilon}(u)\nabla y) = f \\ y(0) = y_{0}, \quad y_{t}(0) = y_{1} \end{cases}$$

- existence of optimal $\overline{u} \in BV(\Omega) \cap U$ for $\varepsilon \geq 0$
- tracking term Fréchet differentiable in $\Phi_{\varepsilon}(u) \in L^{\infty}$ for $\varepsilon > 0$
- improved regularity of state \rightsquigarrow derivative in $L^r(\Omega), r > 1$ (instead of $L^{\infty}(\Omega)^*$)
- \longrightarrow sum rule applicable, subgradients in $L^r(\Omega)$, r > 1

TV regularization: optimality conditions

$$\begin{cases} 0 = F'(\Phi_{\varepsilon}(\overline{u}))\Phi'_{\varepsilon}(\overline{u}) + \alpha \overline{q} + \beta \overline{\xi} \\ \overline{u} \in \partial G^{*}(\overline{q}) \\ \overline{\xi} \in \partial TV(\overline{u}) \end{cases}$$

- $F'(\Phi_{\varepsilon}(\overline{u})) = \int_0^T \nabla \overline{y} \cdot \nabla \overline{p} \, dt \in L^r(\Omega), r > 1$ (\overline{y} optimal state, \overline{p} adjoint state)
- $\overline{q} \in L^r(\Omega), r > 1 \rightarrow \text{pointwise multibang}$
- $\bar{\xi} \in L^r(\Omega), r > 1 \rightarrow$ characterization via full trace [Bredies/Holler'12]
- pointwise optimality conditions

1 Overview

2 Pointwise regularization

3 Wave equation and total variation

4 Numerical solution

Numerical solution

Approach: discretize before optimize

- consider finite element discretization of problem
 - piecewise linear in space
 - stabilized piecewise linear in time [Zlotnik '94]
 - discrete adjoint
- include projection in multi-bang penalty, eliminate Φ_{ε}
- apply sum rule, chain rule for $\partial TV(u_h) = -\text{div}_h \partial(\|\cdot\|_1)(\nabla_h u_h)$
- ~ apply nonlinear primal-dual proximal splitting

Primal-dual proximal splitting

$$\begin{split} u^{k+1} &= \mathsf{prox}_{\tau \mathcal{G}} \left(u^k - \tau K'(u^k)^* \rho^k \right) \\ \overline{u}^{k+1} &= 2u^{k+1} - u^k \\ \rho^{k+1} &= \mathsf{prox}_{\sigma \mathcal{F}^*} \left(\rho^k + \sigma K(\overline{u}^{k+1}) \right) \end{split}$$

- nonlinear variant of Chambolle-Pock
 [Valkonen '14, C./Mazurenko/Valkonen '18]
- $\tau, \sigma > 0$ step sizes
- local convergence in Hilbert space under
 - second-order type condition on K
 - τ, σ sufficiently small
- apply to $\mathcal{F}(y,q) = \|y y^{\delta}\|_{2}^{2} + \||q|_{2}\|_{1}$, $K(u) = (S(u), \nabla_{h}u)$

Primal-dual proximal splitting algorithm

$$\begin{split} u^{k+1} &= \operatorname{prox}_{\tau\alpha\mathcal{G}} \left(u^k - \tau S_h'(u^k)^* (r^k) - \tau \nabla_h^* \psi^k \right) \\ \overline{u}^{k+1} &= 2u^{k+1} - u^k \\ r^{k+1} &= \frac{1}{1 + \frac{\sigma}{\nu_1}} \left(r_1^k + \sigma (S_h(\overline{u}^{k+1}) - y^d) \right) \\ q^{k+1} &= \psi^k + \sigma \nabla_h \overline{u}^{k+1} \\ \psi^{k+1} &= \frac{\beta q^{k+1}}{\max\{\beta, |q^{k+1}|_2\}} \end{split}$$

- $S_h(u)$ solution of wave equation
- $S'_h(u)^*r$ solution of wave, adjoint equation (with RHS r), integration
- ullet proximal mappings pointwise (${\cal G}$ includes projection)

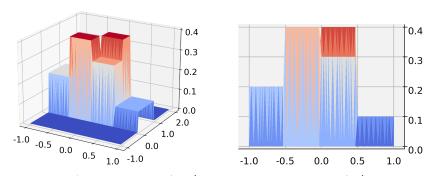
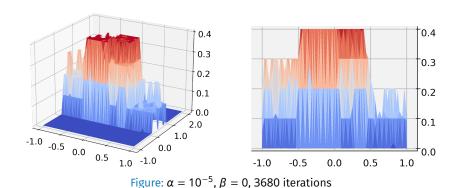


Figure: exact coefficient (front: sources; back: observation)



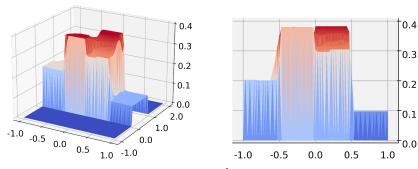


Figure: $\alpha = 0$, $\beta = 10^{-4}$, 1100 iterations

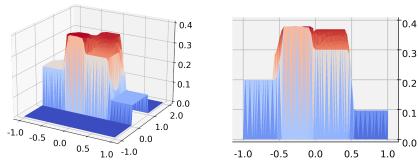


Figure: $\alpha = 10^{-5}$, $\beta = 10^{-4}$, 600 iterations

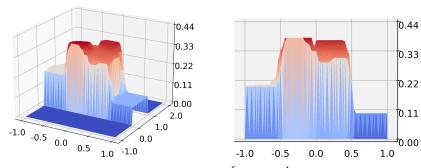


Figure: u_i overestimated, $\alpha = 10^{-5}$, $\beta = 10^{-4}$, 820 iterations

Conclusion

Multibang regularization for discrete-valued inverse problem

- well-posed convex relaxation
- combination with total variation
- applicable to wave equation

Outlook:

- (block) acceleration of proximal splitting
- boundary observation
- total generalized variation
- vector-valued coefficient

Preprints, codes:

https://homepage.uni-graz.at/en/c.clason/publications/