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Motivation: coefficient inverse problem
Wave equation

Yee = V- (uVy)=f onQx][0,T]
dyy =0 onoQx|[0,T]
y(0)=yo, y:(0)=0 onQ

Goal: recover u from (partial) measurement of y
Assumption: u piecewise constant (with known values?)

Approach:

1 add total variation regularization ||Vu||4
(~ sparse gradient ~» piecewise constant)

2 add pointwise penalty promoting known values

~» nonsmooth regularization: non-differentiable but convex
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Convex analysis approach

F(KW) +G ) =minF(K(u)) + G ()

1 Fermat principle: 0¢€ 3 (F(K(u)) + G(u))

2 sum, chainrule: 0 € K’ (u)*aF (K(u)) + 3G (u)
under a regularity condition ~» there is a p with

p € 0F (K(u))
—K'(u)'p € 0G(u)
3 Fenchel duality:

p € oF (K())
u €3G (=K'(u)"p)



Convex analysis approach

F(KW) +G ) =minF(K(u)) + G ()

1 Fermat principle: 0¢€ 3 (F(K(u)) + G(u))

2 sum, chainrule: 0 € K’ (u)*aF (K(u)) + 3G (u)
under a regularity condition ~» there is a p with

p € oF (K(u))
—K'(u)*p € 9G(u)
4 equivalent reformulation (for any g, > 0):
{,5 = prox,4(p + 0K(u))

u = prox;g(u —tk’(u)*p)

Overview



Primal-dual proximal splitting

u**! = prox.g (uk - tK’(uk)*pk)

L_Ik+1 — 2uk+1 _ uk

p**" = prox, e (pk + oK(Uk”))

nonlinear variant of Chambolle-Pock (for K linear)
[Valkonen "14, C./Mazurenko/Valkonen "18]
7,0 > 0 step sizes

local convergence in Hilbert space under
1 second-order type condition on K
2 1,0 sufficiently small

can be accelerated if ¥ and/or G strongly convex



Convex analysis approach

For min, F(K(u)) + G(u), G(u) = A) g (u(x)) dx convex, Ls.c.
Approach: pointwise

1 compute subdifferential dg (or Fenchel conjugate g*)
2 compute conjugate subdifferential ag*
3 compute proximal mapping prox, o

optimality conditions, proximal splitting methods

Overview



2 Pointwise regularization



Motivation: hybrid discrete optimization

, a,
min 7 (K(u)) + 5 |l

F discrepancy term, K forward operator (involving PDE solution)
U discrete set
U= {u e LP(Q):u(x) e {uq,...,ugq} a.e.}

uq,...,Uq given voltages, velocities, materials, ...
(assumed here: ranking by magnitude possible!)

motivation: topology optimization, medical imaging

Pointwise regularization



Motivation: penalty

convex relaxation: replace U by convex hull u(x) € [u1, uq]

works only for d = 2, cf. bang-bang control (a = 0)

~» promote u(x) € {u,...,Uq} by convex pointwise penalty
6) = [ 9wt ox

generalize L" norm: polyhedral epigraph with vertices uq, ..., uqg

not exact relaxation/penalization (in general)!
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Motivation: penalty

eneralize L' norm: polyhedral epigraph with vertices uq, ..., uq

g

motivation: convex envelope of
slull? + 8y

multibang (generalized
bang-bang) control

~» non-smooth optimization in
function spaces

Pointwise regularization



Multibang penalty

= 1 ((Uj + Uj1)V = Ujljz1) V€ [Uj,Ujsq]
vis {2

0o else

piecewise differentiable ~» subdifferential convex hull of derivatives

(=00, 3(ur +u2)] v =u

{3(ui +uin)} ve(upuip) 1<i<d
99(v) =1 r; ] )

[3uic +up), Jui+ui)] v=u; 1<i<d

[3(Ud—1 + ug), ) V=ug
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Multibang penalty

(=00, 3(u1 +u2)] v =u

{3(ui+ui)} ve(u,up) 1<5i<d
ag(v) = ; . .

[5(“/—1 +up), 5 (U + uir)] v=u; 1<i<d

[ (Ug-1 +uqg), =) v =ug

Fenchel duality:

{uq} q € (—o0, I (U1 +uz))
ag*(q) c [Ui:ui+1] q= %(Ui+ui+»])’ 1 < i<d
{ui} IS (%(Ui—1 +U,‘),%(Ui+ui+1)) 1<i<d

{ug} g € (3 (ug—1 +uq), )

Pointwise regularization



Proximal point mapping

Proximal point mapping  prox,q (v) =w iff ve{w}+yog(w)

case-wise inspection of subdifferential:

uj vePp!

4
i,i+1

Prox,q (v) = {

v—-Lui+ui) veP

4
Pi

[(1+

P)'/,i+1 = ((1 +

) uj + %u/_1, (1 + Z) Uj—q + %Ui]

2
)ui + %Um, (1+ %) Ujp + %Ui)

NI NI

~» generalized soft thresholding
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3 Wave equation and total variation



Wave equation

Goal: application to coefficient inverse problem for wave equation
K :u— y solving
Yee—V-(WVy)=f onQx][0,T]
oyy=0 onadQx|[0,T]
y(0) =yo, y:(0)=0 onQ
difficulty: u € L*(Q) ~» K not weakly-* closed

~> lack of existence of minimizer (y # K(u), cf. homogenization)

~ total variation regularization: add TV (u) := ||Du|| m

~ U € BV(Q) NL¥(Q) ¢ LP(Q)
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TV regularization

Difficulty:

existence requires box constraints ~» use penalty
(G(U) + 81y ugy (W) + TV (U)
(here: G multibang penalty with dom G = L' (Q))
but: TV(u) + 6{u, uy) (U) not continuous on LP(Q), p < o
but: multipliers & € aTV(u), g € dG(u) not pointwise on BV, L™
~> replace box constraints by (C") projection of u € L'(Q)

[®e(u)](x) = projf,, ,,(u(x)) ae xeQ

~» use higher regularity of solution to wave equation
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Wave equation

T T
/ —(3ey,0v) + (UVy(8), V(D)) dt = / (F(O),v(0)) dt
0 0

y(0) = yo

forallv e W := L?(0,T; H') n H'(0,T; L?) with v(T) = O [Lions/Magenes '72]
~» solution mappingS:u+ yonU :={u e L™(Q):u; <u <ugae.}
S(u) uniformly bounded in W N H?(0,T; H™ ") :=Z
S Lipschitz continuous from L*(Q) to L%(0,T; L?)

S(up) = S(w)inZifu, - uinl"(Q),r € [1,00]
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Wave equation

T T
/ —(3ey,0v) + (UVy(8), V(D)) dt = / (F(O),v(0)) dt
0 0

y(0) = yo

forallv e W := L?(0,T; H') n H'(0,T; L?) with v(T) = O [Lions/Magenes '72]

Assumption:

fel?(0,T;H"), yo€H*(Q),d,y0=0, y1€H(Q)

there is w, C Q with u constant on Q \ w¢, ¥p constant on w.
Then:

S(u) uniformly bounded in L*(0, T; W"*) for some s > 2
(proof: combination of higher hyperbolic and maximal elliptic
regularity [Wloka '87, Gréger '89])
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TV regularization: existence

1 5112
o §||y = Yl aG(u) + BTV (u)

st. Yu—V-(P(u)Vy)=Ff
y(0) =yo, y:(0) =y

existence of optimal u € BV(Q) NU fore > 0

tracking term Fréchet differentiable in ®.(u) € L™ fore > 0

improved regularity of state ~» derivative in L' (Q), r > 1
(instead of L*(Q)*)

~> sum rule applicable, subgradients in L"(Q), r > 1
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TV regularization: optimality conditions

0 = F/ (D (i)) DL(T) + 0 + BE
U € 9G*(q)
§ e aTv(u)

F/(®(@) = [ Vy-Vpdt e Ll"(Q),r > 1
(y optimal state, p adjoint state)

g € L"(Q),r > 1~ pointwise multibang

ge L"(Q), r > 1 ~» characterization via full trace

[Bredies/Holler '12]

~» pointwise optimality conditions

Wave equation and total variation 17123



4 Numerical solution



Numerical solution

Approach: discretize before optimize

consider finite element discretization of problem

piecewise linear in space
stabilized piecewise linear in time [Zlotnik '94]
discrete adjoint

include projection in multi-bang penalty, eliminate ®,
apply sum rule, chain rule for TV (up) = =divpa(|| - ||1)(Vhun)

~» apply nonlinear primal-dual proximal splitting

Numerical solution 19/23



Primal-dual proximal splitting

u** = prox.g (uk - rK’(uk)*pk)

Jk+1 — 2uk+1 _ uk

p**! = proxg g (pk + oK(U"”))

nonlinear variant of Chambolle-Pock
[Valkonen "14, C./Mazurenko/Valkonen 18]

7,0 > 0 step sizes

local convergence in Hilbert space under

1 second-order type condition on K
2 1,0 sufficiently small

apply to 7 (y,q) = Ily = y°l5 + lllglalls,  K(u) = (S(u), Vhu)

Numerical solution



Primal-dual proximal splitting algorithm

Ukt = proxgg (uk —T8; (UA)*(rk) - rV,’;(,er)

Jk+1 — 2uk+1 _ uk

1 _

rk+1 — 1+_£ (rf +U(Sh(uk+1) _ yd))
V1

qk+1 — (,[}k + ovhakﬂ

qu+1

¢k+1 —
max{B, |g¥*"|2}

Sy (u) solution of wave equation
Sy (u)*r solution of wave, adjoint equation (with RHS r), integration

proximal mappings pointwise (G includes projection)

Numerical solution



Numerical example

05 10 -10 10 05 00 05 1.0

Figure: exact coefficient (front: sources; back: observation)
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Numerical example
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Figure: o = 107>, B = 0, 3680 iterations
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Numerical example
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Figure: o = 0, 8 = 1074, 1100 iterations
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Numerical example
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Figure: o = 107>, B = 107%, 600 iterations
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Numerical example
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Figure: u; overestimated, o = 107>, 8 = 1074, 820 iterations
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Conclusion

Multibang regularization for discrete-valued inverse problem
well-posed convex relaxation
combination with total variation

applicable to wave equation

Outlook:

(block) acceleration of proximal splitting
boundary observation
total generalized variation

vector-valued coefficient

Preprints, codes:
https://homepage.uni-graz.at/en/c.clason/publications/

Numerical solution
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