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Part I

BACKGROUND



INTRODUCTION

Partial differential equations appear in many mathematical models of physical, biological
and economic phenomena, such as elasticity, electromagnetics, fluid dynamics, quantum
mechanics, pattern formation or derivative valuation. However, closed-form or analytic
solutions of these equations are only available in very specific cases (e.g., for simple geometries
or constant coefficients), and so one has to resort to numerical approximations of these
solutions.

In these notes, we will consider finite element methods, which have developed into one of the
most flexible and powerful frameworks for the numerical (approximate) solution of partial
differential equations. They were first proposed by Richard Courant [Courant 1943]; but the
method did not catch on until engineers started applying similar ideas in the early 1950s.
Their mathematical analysis began later, with the works of Milo§ Zlamal [Zlamal 1968].

Knowledge of real analysis (in particular, Lebesgue integration theory) and functional analysis
(especially Hilbert space theory) as well as some familiarity of the weak theory of partial
differential equations is assumed, although the fundamental results of the latter (Sobolev
spaces and the variational formulation of elliptic equations) are recalled in Chapter 2.

These notes are mostly based on the following works:

[1] E.Sili (2011). “Finite Element Methods for Partial Differential Equations”. Lecture notes.
URL: http://people.maths.ox.ac.uk/suli/fem.pdf

[2] R.Rannacher (2008). “Numerische Mathematik 2”. Lecture notes. URL: http: //numerik.
iwr.uni-heidelberg.de/~lehre/notes/num2/numerik2.pdf

[3] S.C.Brenner and L. R. Scott (2008). The Mathematical Theory of Finite Element Methods.
3rd ed. Vol. 15. Texts in Applied Mathematics. Springer, New York

[4] D. Braess (2007). Finite Elements. 3rd ed. Cambridge University Press, Cambridge

[5] A. Ern and J.-L. Guermond (2004). Theory and Practice of Finite Elements. Vol. 159.
Applied Mathematical Sciences. Springer-Verlag, New York

[6] V. Thomée (2006). Galerkin Finite Element Methods for Parabolic Problems. 2nd ed. Vol. 25.
Springer Series in Computational Mathematics. Springer-Verlag, Berlin


http://people.maths.ox.ac.uk/suli/fem.pdf
http://numerik.iwr.uni-heidelberg.de/~lehre/notes/num2/numerik2.pdf
http://numerik.iwr.uni-heidelberg.de/~lehre/notes/num2/numerik2.pdf

OVERVIEW OF THE FINITE ELEMENT METHOD

We begin with a “bird’s-eye view” of the finite element method by considering a simple one-
dimensional example. Since the goal here is to give the flavor of the results and techniques
used in the construction and analysis of finite element methods, not all arguments will be
completely rigorous (especially those involving derivatives and function spaces). These gaps
will be filled by the more general theory in the following chapters.

1.1 VARIATIONAL FORM OF PDES

Consider for a given function f the two-point boundary value problem

(BVP) { —u’(x) i Z(X) forx € (0,1),

w(0)=0, w(1)=0.

The idea is to pass from this differential equation to a system of linear equations, which can
be solved on a computer, by projection onto a finite-dimensional subspace. Any projection
requires a kind of inner product, which we introduce now. We begin by multiplying this
equation with any sufficiently regular function v with v(0) = 0, integrating over x € [0, 1]
and integrating by parts. Then any solution u of (BVP) satisfies

1 1
(f,v) == L f(x)v(x) dx = — L u” (x)v(x) dx

1
= J u’(x)v'(x) dx
0
= a(u,v),

where we have used that u’(1) = 0 and v(0) = 0. Let us (formally for now) define the space

V.= {v e L%(0,1) : a(v,v) < o0, v(0) = O}.
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Then we can pose the following problem: Find u € V such that
(W) a(u,v) = (f,v) forallveV

holds. This is called the weak or variational form of (BVP) (since v varies over all V). If the
solution u of (W) is twice continuously differentiable and f is continuous, one can prove
(by taking suitable test functions v) that u satisfies (BVP). On the other hand, there are
solutions of (W) even for discontinuous f € L?(0, 1). Since then the second derivative of u
is discontinuous, u cannot be a solution of (BVP). For this reason, u € V satistying (W) is
called a weak solution of (BVP).

Note that the Dirichlet boundary condition u(0) = 0 appears explicitly in the definition
of V, while the Neumann condition u’(1) = 0 is implicitly incorporated in the variational
formulation. In the context of finite element methods, Dirichlet conditions are therefore
frequently called essential conditions, while Neumann conditions are referred to as natural
conditions.

1.2 RITZ-GALERKIN APPROXIMATION

The fundamental idea is now to approximate u by considering (W) on a finite-dimensional
subspace S C V. We are thus looking for ug € S satisfying

(Ws) a(us,vs) = (f,vs) for all vs € S.

Note that this is still the same equation; only the function spaces have changed. This is a
crucial point in (conforming) finite element methods. (Nonconforming methods, for which
S ¢ Vorv ¢V, will be treated in Part III.)

Since S is finite-dimensional, there exists a basis @1, ..., ¢, of S. Due to the bilinearity of
a(-, ), it suffices to require us = > 1" ; U;; € S to satisfy

alus, @;) = (f, @;) forall1 <j < n.
If we define

U= (U,...,U,)" e R,
F=(F,....,F.)T e R™, Fi=(f, i),
K = (Kij) S Rnxn) Kij = (l((Pi, (pj))

we have that ug satisfies (W) if and only if (“iff”) KU = F. This linear system has a unique
solution iff KV = o implies V = o. To show this, we set vs := > ' | Vi@; € S. Then,

o=KV = ((1(\)5, (\01)) .. .,(1(\)5, (pn))T
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implies that

1

0= ) Vaalvs, 01) = avs,vs) = | Vi(0? d.

i=1 0

This means that v must vanish almost everywhere and thus that v is constant. (This argument
will be made rigorous in the next chapter.) Since vs(0) = 0, we deduce vs = 0, and hence, by
the linear independence of the ¢, Vi =0forall 1 <i< n.

There are two remarks to made here. First, we have argued unique solvability of the finite-
dimensional system by appealing to the properties of the variational problem to be approxi-
mated. This is a standard argument in finite element methods, and the fact that the approxi-
mation “inherits” the well-posedness of the variational problem is one of the strengths of the
Galerkin approach. Second, this argument shows that the stiffness matrix K is (symmetric
and) positive definite, since VIKV = a(vs,vs) > 0 for all V # 0.

Now that we have an approximate solution us € S, we are interested in estimating the
discretization error ||{us — u||, which of course depends on the choice of S. The fundamental
observation is that by subtracting (W) and (Ws) for the same test function vg € S, we
obtain

a(u—us,vs) =0 forallvs € S.

This key property is called Galerkin orthogonality, and expresses that the discretization error
is (in some sense) orthogonal to S. This can be exploited to derive error estimates in the
energy norm

vz = a(v,v) forveV.

It is straightforward to verify that this indeed defines a norm, which satisfies the Cauchy-
Schwarz inequality

av,w) < |v]lg wllg forallvyw e V.
We can thus show that for any vs € S,

Ju—usllz = a(u—us, 1 —vs) + alu — ug, vs — us)

=a(u—us,u—vs)

N

u—uslle lu—=vs|le

due to the Galerkin orthogonality for v¢ — us € S. Taking the infimum over all vs, we
obtain

lu—uslle < inf [[u—vslle,
vs€E€S
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and equality holds - and hence this infimum is attained - for us € S solving (Ws). The
discretization error is thus completely determined by the approximation error of the solution
u of (W) by functions in S:

(1.1) [u—us|[g = min [lu—vs||g .
vs€ES

To derive error estimates in the L2(0, 1) norm
5 1
VI = o) = | v ax
0

we apply a duality argument (also called Aubin-Nitsche trick). Let w be the solution of the
dual (or adjoint) problem

(1.2)

—w”(x) =u(x) —us(x) forxe (0,1),
w0) =0,  w'(1)=0.

Inserting this into the error and integrating by parts (using (u — ug)(0) =w’(1) = 0 and
adding the productive zero), we obtain for all vg € S the estimate
lu—us|fz = (u—us,u—1us) = (w—us,~w")
= ((u—us)',w’)
= a(u—us,w) —a(u—us,vs)
= a(u—us,w —vs)
< u—uslle [[w—vslle .

Dividing by ||lu — us||;. = [|[w"|| 2, inserting (1.2) and taking the infimum over all vg € S
yields

lu—usll2 < inf w—vs|e Ju—us|le [w”ll -
vs€ES
To continue, we require an approximation property for S: There exists ¢ > 0 such that

(1.3) inf [|g—vsllg <ellg”ll2
vs€ES

holds for sufficiently smooth g € V. If we can apply this estimate to w and u, we obtain
lu—usll2 < ellu—uslle = emin fu—vsllg
VsES
< et |l = & [l

This is another key observation: The error estimate depends on the regularity of the weak
solution u, and hence on the data f. The smoother w, the better the approximation. The finite
element method is characterized by a special class of subspaces - of piecewise polynomials —
which have these approximation properties.
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1.3 APPROXIMATION BY PIECEWISE POLYNOMIALS

Given a set of nodes
O=xo<x1 < -+ <xp=1,
set
S={veC®0,1):Vlx ,x €Prandv(0) =0},

where P; is the space of all linear polynomials. (The fact that S C V is not obvious, and will be
proved later.) This is a subspace of the space of linear splines. A basis of S, which is especially
convenient for the implementation, is formed by the linear B-splines (hat functions)

—)::’jj;‘1 ifx € [xi_1,xil,
ei(x) = § 75 ifx € [ Xl
0 else,

for 1 <1i < n, which satisfy

1 ifi=j,

i(x5) =645 1=
0i05) =0y {o ifi .

This nodal basis property immediately yields linear independence of the ¢;. To show that the
@i span S, we consider the interpolant of v € V, defined as

n

V1= ZV(Xi)(Pi(X) €S.

i=1

Forvs € S, the interpolation error vg —vy is piecewise linear as well, and since (vs —v1)(0) = 0,
this implies that v¢ —v; = 0. Any vs € S can thus be written as a linear combination of ¢;
(given by its interpolant), and hence the ¢; form a basis of S. We also note that this implies
that the interpolation operator J: V — S, v — vy is a projection.

We are now in a position to prove the approximation property of S. Let

h:= max h;y, hi = (x;{ —xi_1)
1<i<n

denote the mesh size. We wish to show that there exists a constant C > 0 such that for all
sufficiently smooth u € V,

lu—wlfe < Chfu”2.

It suffices to consider this error separately on each element [x;_1,xi], i.e., to show
Xi

J 1 (w—u)(x)?dx < Czth u’”(x)? dx.

Xi—1 Xi—1
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Furthermore, since u; is piecewise linear, the error e := u — uy satisfies (e|jx,_, x,1)” =
(W, 4,x)". Using the affine transformation é(t) := e(x(t)) with x(t) = x{_1 +t(x; —xi_1)
(a scaling argument), we just need to prove

1 1
(1.4) Jo ¢'(t)? dt < CJO 8" ()% dt.

(This is an elementary version of Poincaré’s inequality). Since u; is the nodal interpolant
of u, the error satisfies é(x;_1) = é(xi) = 0. In addition, u; is linear and u continuously
differentiable on [x;_1, x;]. By Rolle’s theorem, there hence exists a & € (0,1) with é'(&) = 0.
Thus, for ally € [0, 1] we have (with fz f(t) dt = — [, f(t) dt for a > b)

We can now use the Cauchy-Schwarz inequality to estimate

Y
J 12dt‘-
&
1

<hy-dl] ewa
0

2
<

Yy
J 8" (t)? dt‘
&

Integrating both sides with respect to y and taking the supremum over all £ € (0, 1) yields
(1.4) with

1

1

c:= sup J Iy—ildy:z.
£e(0,1)Jo

Summing over all elements and estimating h; by h shows the approximation property (1.3)
for S with ¢ := ch. For this choice of S, the solution ug of (Wy) satisfies

(1.5) Ju—usl> < c*h? [u”]| .

This is called an a priori estimate, since it only requires knowledge of the given data f = u”,
but not of the solution us. It tells us that if we can make the mesh size h arbitrarily small, we
can approximate the solution u of (W) arbitrarily well. Note that the power of h is one order
higher for the L?(0, 1) norm compared to the energy norm.

1.4 IMPLEMENTATION

As seen in section 1.2, the numerical computation of us € S boils down to solving the linear
system KU = F for the vector of coefficients U. The missing step is the computation of
the elements Ki; = a(@i, @;) of K and the entries F; = (f, @;) of F. (This procedure is



1 OVERVIEW OF THE FINITE ELEMENT METHOD

called assembly.) In principle, this can be performed by computing the integrals for each pair
(1,j) in a nested loop (node-based assembly). A more efficient approach (especially in higher
dimensions) is element-based assembly: The integrals are split into sums of contributions from
each element, e.g.,

n X

1
alos0y) = | witojxiac=Y |

k=1 "Xk

(p{(x)(p]'(x) dx =: Z ak((Pi) (pj))
k=1

and the contributions from a single element for all (i, j) are computed simultaneously. Here
we can exploit that by the definition, ¢; is non-zero only on the two elements [x;_1, x;] and
[xi, Xi4+1]. Hence, for each element [xy_1, Xi], the integrals are non-zero only for pairs (i, j)
with k—1 < i,j < k. Note that this implies that K is tridiagonal and therefore sparse (meaning
that the number of non-zero elements grows as n, not n?), which allows efficient solution of
the linear system even for large n, e.g., by the method of conjugate gradients (since K is also
symmetric and positive definite).

Another useful observation is that except for an affine transformation, the basis functions are
the same on each element. We can thus use the substitution rule to transform the integrals

over [xk_1,xk] to the reference element [0, 1]. Setting &(x) = { = and

@1(5) =1- Ev? @2(&) = (Z-v’

we have that @_1(x) = ®7(&(x)) and @ (x) = $2(&(x)) and thus that

Xk 1
J ©!(x)@!(x) dx = (31 — x4_1)”" J B (£)0Ly) (£) dE,

Xk—1 0

where

. 1 ifi=k—1
(i) =
2 ifi=k,

is the so-called global-to-local index. (Correspondingly, the inverse mapping T is called
the local-to-global index.) The contribution from the element [xy_1, xi] to Ky; = a(@s, @;) is

thus
h! ifi=j,
a i i) =
(@i, @5) {—hﬁ i1 4],

The right-hand side (f, ¢;) can be computed in a similar way, using numerical quadrature if
necessary. Alternatively, one can replace f by its nodal interpolant f; = Y 1", f(xi)¢@; and
use

n

(f, @) ~ (f1, ¢;) = Zf(xi) (@i, @j) = Mf.
i—0
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The elements My; := (@1, @;) of the mass matrix M are again computed elementwise using
transformation to the reference element:

* B N M ifi =,
J @i(x)@j(x) dx:hkj Px)(E)Pp(8)dE =9, .. .
Xk-1 0 = ifi#j.

This can be done at the same time as assembling K.

Finally, the Dirichlet condition u(0) = 0 can be enforced by replacing the first equation
in the linear system by U, = 0, i.e., replacing the first row of K by (1,0,...) and the first
element of Mf by 0. The main advantage of this approach is that it can easily be extended
to non-homogeneous Dirichlet conditions u(0) = g (by replacing the first element with g).
The full algorithm (in MATL A B-like notation) for our boundary value problem is given in
Algorithm 1.1.

Algorithm 1.1 Finite element method in 1d

Input: 0 =x0 < -+ <xp =1, F:=(f(x0)y..0, Fxn))T

1: Set Kij = Mi]’ =0
2: fork=1,...,ndo
3: Set hk = Xx — Xk—1

1T -1
4: Set Ky 1, k1% ¢ Kt k—1:x + hlk <_] 1 >

2 1
5 Set My 1, k-1 ¢ M1 k—1x + % (] 2)

6: Ko,im =0,Ko0=1,Mpomn =0
7. Solve KU = MF
Output: U

1.5 A POSTERIORI ERROR ESTIMATES AND ADAPTIVITY

The a priori estimate (1.5) is important for proving convergence as the mesh size h — 0, but
often pessimistic in practice since it depends on the global regularity of u”. If u”(x) is large
only in some parts of the domain, it would be preferable to reduce the mesh size locally. For
this, a posteriori estimates are useful, which involve the computed solution us but are able to
give information on which elements should be refined (i.e., replaced by a larger number of
smaller elements).

We consider again the space S of piecewise linear finite elements on the nodes xo, ..., XN
with mesh size h, as defined in section 1.3. We once more apply a duality trick: Let w be the
solution of

—w”(x) =u(x) —us(x) forxe (0,1),
w(0) =0, w'(1) =0,

10
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and proceed as before, yielding
2
u—usl{z = a(u—us,w —vs)
for all vs € S. We now choose vs = w; € S, the interpolant of w. Then we have

2
u—usllf. = alu —us,w —wi) = alu,w —wi) — a(us,w —wy)

= (f,w—wi) — alus,w —wy).

Note that the unknown solution u of (W) no longer appears on the right-hand side. We now
use the specific choice of vs to localize the error inside each element [x;_1,x;]: Writing the
integrals over [0, 1] as sums of integrals over the elements, we can integrate by parts on each
element and use the fact that (w — wy)(x;) = 0 to obtain

nooax; o oxg

sl = 3 [ b0t —wid dx— 3 [ uglx)w— ) (x) dx

i=1 x4 i=1 vXi

ZJ i (f + ug) (x) (W —wy)(x) dx

Xi—1

r (f + 1) (x)? dx) : <Jx (w —wi)(x)2 dx) ’

Xi_1 Xi_1

<

i=1

X

by the Cauchy-Schwarz inequality. The first term contains the finite element residual

1

Rh =f+ ‘U.g,

which we can evaluate after computing us. For the second term, one can show (similarly as
in the proof of the inequality (1.5)) that

Xi % hZ
(| ov-womzax)” < 5w
Xi-1
holds, from which we deduce
.] n
2
e —uslfs < 5 1wl D0 IRn gy, )

i=1

] n
= g lhe=uslliz > R IRulliz i, 0,

i=1

by the definition of w. This yields the a posteriori estimate
.] n
Ju—usl;2 < 4 Z h? HRhHLZ(xi,hxi] .
i=1

This estimate can be used for an adaptive procedure: Given a tolerance T > 0,

11
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1: Choose initial mesh 0 < xéo) <.. -X](\?()m =

evaluate R, (o), set m = 0
while 377 (™) Ry [ om
(m+1) (m+1) _

Choose new mesh 0 < x, < Xy man) =
compute corresponding solution tgm+1)
evaluate R} (mn)

setm < m+1

1, compute corresponding solution o),

N

)HLZ(XEm) x(™) <tdo

AN A R

There are different strategies to choose the new mesh. They should be reliable, meaning that the
error on the new mesh in a certain norm can be guaranteed to be less than a given tolerance,
and efficient, meaning that the number of new nodes should not be larger than necessary.
One (simple) possibility is to refine those elements where ||Ry, || is largest (or larger than a
given threshold) by replacing them with two elements of half size.

12



VARIATIONAL THEORY OF ELLIPTIC PDES

In this chapter, we collect — for the most part without proof - some necessary results from
functional analysis and the weak theory of (elliptic) partial differential equations. Details and
proofs can be found in, e.g., [Adams and Fournier 2003], [Evans 2010] and [Zeidler 1995a].

2.1 FUNCTION SPACES

As we have seen, the regularity of the solution of partial differential equations plays a crucial
role in how well it can be approximated numerically. This regularity can be described by the
two properties of (Lebesgue-)integrability and differentiability.

LEBESGUE SPACES Let () be an open subset of R™,n € N. We recall thatfor 1 < p < oo,
LP(Q):= {f measurable : |[f[|;, o) < oo}

with

1

1flltr0) = (J If(x)[P dx) for T < p < oo,
Q

HfHLOO(Q) = ess sup [f(x)|
xeQ

are Banach spaces of (equivalence classes up to equality apart from a set of zero measure of)
Lebesgue-integrable functions. The corresponding norms satisty Holder’s inequality

||f9HL1(Q) < HfHLv(Q) ||fHLq(Q)

ifp~' 4+ q' = 1 (with co™! := 0). For bounded Q, this implies (by using g = 1) that
LP(Q) < L9(Q) for p > q. We will also use the space

L}.(Q) == {f: flx € L'(K) for all compact K C Q}.

13
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For p = 2, LP(Q) is a Hilbert space with inner product

(£,9) = {f, Q)20 = L f(x)g(x) dx,

and Holder’s inequality for p = q = 2 reduces to the Cauchy-Schwarz inequality.
HOLDER SPACES We now consider functions which are continuously differentiable. It will
be convenient to use a multi-index
= (0t1y...,0n) € N
for which we define its length |«] := " ; o, to describe the (partial) derivative of order ||

1% (%7, ...y xn)
Df(X1y.0vyXn) i= X -?-ax’fﬁ‘

For brevity, we will often write 9; := aixi- We denote by C*(Q) the set of all continuous
functions f for which D*f is continuous for all |«| < k. If Q is bounded, C*(Q) is the set of
all functions in C*(Q) for which all D*f can be extended to a continous function on Q, the
closure of Q). These spaces are Banach spaces if equipped with the norm

Ifllcx) = Y _ sup [DF(x)].

<k XEQ

Finally, we define C§(Q) as the space of all f € C*(Q) whose support (the closure of
{x € Q: f(x) # 0}) is a bounded subset of Q, as well as

Cr(Q) =) Cs(Q)

k>0

(and similarly C*(Q)).

SOBOLEV SPACES If we are interested in weak solutions, it is clear that the Holder spaces
entail a too strong notion of (pointwise) differentiability. All we required is that the derivative
is integrable, and that an integration by parts is meaningful. This motivates the following
definition: A function f € L] (Q) has a weak derivative if there exists g € L] (Q) such that

loc loc

(2) L g(x)e(x) dx = (—1)* Lf(x)D“«o(x) dx

for all @ € C¥(Q). In this case, the weak derivative is (uniquely) defined as D*f := g. For
f € C*(Q), the weak derivative coincides with the usual (pointwise) derivative (justifying
the abuse of notation), but the weak derivative exists for a larger class of functions such as

14
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continuous and piecewise smooth functions. For example, f(x) = |x|, x € Q = (—1,1), has
the weak derivative Df(x) = sign(x), while Df(x) itself does not have any weak derivative.

We can now define the Sobolev spaces W*P(Q) fork € Nyand 1 < p < oo:

WEP(Q) ={f e LP(Q): D% € LP(Q) for all |«| < k},

which are Banach spaces when endowed with the norm

1

1fllwxe ) = Z HD‘XfHEp(Q) for 1 < p < oo,
[ox|<k
[fllwie () = Z ID*f[| i (q) -
lo|<k

We shall also use the corresponding semi-norms

[flwer ) = Z ID*F(|Ts () for T <p < oo,
l|=k
[flwke () = Z Dl ) -
lox|=k

We are now concerned with the relation between the different norms introduced so far. For
many of these results to hold, we require that the boundary 9Q of Q is sufficiently smooth.
We shall henceforth assume that QO C R™ has a Lipschitz boundary, meaning that 0Q can be
parametrized by a finite set of functions which are uniformly Lipschitz continuous. (This
condition is satisfied, for example, by polygons for n = 2 and polyhedra forn = 3.) A
fundamental result is then the following approximation property (which does not hold for
arbitrary domains).

Theorem 2.1 (Density'). For 1 < p < oo and any k € Ny, C®(Q) is dense in WP (Q).

This theorem allows us to prove results for Sobolev spaces - such as chain rules - by showing
them for smooth functions (in effect, transferring results for usual derivatives to their weak
counterparts). This is called a density argument.

The next theorem states that, within limits determined by the spatial dimension, we can trade
differentiability for integrability for Sobolev space functions.

'Originally shown in a paper by Meyers and Serrin rightfully celebrated both for its content and the brevity
of its title, “H = W”. For the proof, see, e.g., [Evans 2010, § 5.3.3, Theorem 3], [Adams and Fournier 2003,
Theorem 3.17]
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

Theorem 2.2 (Sobolev?, Rellich-Kondrachov® embedding). Let 1 < p,q < co and Q C R™
be a bounded open set with Lipschitz boundary. Then, the following embeddings are continuous:

LI(Q)  ifp < Pandp <q< 32,
WEP(Q) «— { L9(Q) ifp=%andp < q< oo,
C°(Q) ifp> 1.

Moreover, the following embeddings are compact:

L9(Q)  ifp <

rand1<q< npk
C°(Q) ifp>1.

np

WEP(Q) {

In particular, the embedding W*P (Q) — W¥*=1P(Q) is compact for all k and 1 < p < oo.

We can also ask if conversely, continuous functions are weakly differentiable. Intuitively, this
is the case if the points of (classical) non-differentiability form a set of Lebesgue measure
zero. Indeed, continuous and piecewise differentiable functions are weakly differentiable.

Theorem 2.3. Let O C R™ be a bounded Lipschitz domain which can be partitioned into N € N
Lipschitz subdomains Q; (i.e., Q = U;\; Q; and Q; N Q; = 0 for all i # j). Then, for every
k>1land1 <p < oo,

{ve C* Q) v, € CHQ)),1 <j <N} c WhP(Q).

Proof. Tt suffices to show the inclusion for k = 1. Let v € C°(Q) such that v| Q; € C'(Q;) for
all T <j < N. We need to show that 9;v exists as a weak derivative for all 1 <1 < n and that
0;v € L?(Q). An obvious candidate is

- 0Vl (x) ifx € Qjforaje{l,...,N}
e else

forarbitrary ¢ € R. By the embedding C°(Q;) — L*°(Q;) and the boundedness of O, we have
that w; € LP(Q) for any 1 < p < oo. It remains to verify (2.1). By splitting the integration
into a sum over the (; and integrating by parts on each subdomain (where v is continuously

differentiable), we obtain for any ¢ € CF(Q)

wi@ dx = 0i(Vla, )@ dx
Jjwoa=3 |, ot
N . N
=3 | voem)idx=Y | vodiwdx
j=1700; j=1 70
N .
= Z V|Q]— [ (Vj)i dx — J;) vo; @ dx,

Joao;

*e.g., [Evans 2010, § 5.6], [Adams and Fournier 2003, Theorem 4.12]
*e.g., [Evans 2010, § 5.7], [Adams and Fournier 2003, Theorem 6.3]
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

where v; = ((vj)1,..., (vj)n) is the outer normal vector on Q;, which exists almost every-
where since Q); is a Lipschitz domain. Now the sum over the boundary integrals vanishes
since either @(x) = 0if x € 0Q; C 0Q or v|g, (x) @ (x)(vj)i(x) = —vlq, (x)@(x)(vi)i(x) if
x € 005 N 0Qy due to the continuity of v. This implies ;v = w; by definition. l

Next, we would like to see how Dirichlet boundary conditions make sense for weak solutions.
For this, we define a trace operator T (via limits of continous functions) which maps a function
f on a bounded domain O C R™ to a function Tf on 0Q).

Theorem 2.4 (Trace theorem®). Letkp < nand q < (n— 1)p/(n —kp), and Q C R™ be
a bounded open set with Lipschitz boundary. Then, T : W*P(Q) — L9(3Q) is a bounded
linear operator, and there exists a constant C > 0 depending only on p and Q such that for all
f e WhP(Q),

1Tt La00) < Clifllwirq) -

If kp = n, this holds for any p < q < 0.

This implies (although it is not obvious®) that
W5P(Q) = {f € W*P(Q) : T(D*f) =0 € LP(3Q) for all o] < k}

is well-defined, and that W*P(Q) N CP(Q) is dense in Wg’p (Q).

For functions in W(]) P (Q), the semi-norm |-|yy1,» () is equivalent to the full norm [|-[|yy 1,5 (-

Theorem 2.5 (Poincaré’s inequality®). Let 1 < p < oo and let Q) be a bounded open set. Then,
there exists a constant cq > 0 depending only on Q and p such that for all f € WP (Q),

HfHWLP(Q) < CQ|f|W1,p(Q)
holds.

The proof is very similar to the argumentation in Chapter 1, using the density of C3(Q) in
WP (Q); in particular, it is sufficient that Tf is zero on a part of the boundary dQ of non-zero
measure. In general, we have that any f € WP(Q), 1 < p < oo, for which D*f = 0 almost
everywhere in Q for all |x| = T must be constant.

Again, W*P(Q) is a Hilbert space for p = 2, with inner product

<f) 9>Wk>2(Q) = Z (D(Xf)Dtxg) .
lx|<k

*e.g., [Evans 2010, § 5.5], [Adams and Fournier 2003, Theorem 5.36]
*e.g., [Evans 2010, § 5.5, Theorem 2], [Adams and Fournier 2003, Theorem 5.37]
%e.g, [Adams and Fournier 2003, Corollary 6.31]
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

For this reason, one usually writes H*(Q) := W*2(Q). In particular, we will often consider
H'(Q) :=W"2(Q) and H}(Q) := W}>?(Q). With the usual notation Vf := (3:f,...,0,f)
for the gradient of f, we can write

Il @) = VFlli2q)

for the semi-norm on H'(Q) (which, by the Poincaré inequality 2.5, is a full norm on H}(Q))
and

(£, 9) () = (f,9) +(Vf,Vg)

for the inner product on H'(Q). Finally, we denote the topological dual of H}(Q) (i.e., the
space of all continuous linear functionals on H}(Q)) by H™'(Q) := (H}(Q))*, which is
endowed with the operator norm

(f, (p>H—‘(Q),H(‘)(Q)

”fHH4(Q) = sup )

PEH)(Q), 90 lellnyia

where (f, @)y« v := f(@) denotes the duality pairing between a Banach space V and its dual
V*

We can now tie together some loose ends from Chapter 1. The space V can now be rigorously
defined as

V:={veH'(0,1):v(0) =0},

which makes sense due to the embedding (forn = 1) of H' (0, 1) in C([0, 1]). Due to Poincaré’s
inequality, [v|},(Q)* = a(v,v) = 0 implies [[v[|;;1 o) = 0 and hence v = 0. Similarly, the
existence of a unique weak solution u € V follows from the Riesz representation theorem.
Finally, Theorem 2.3 guarantees that S C V.

2.2 WEAK SOLUTION OF ELLIPTIC PDES

In most of these notes, we consider boundary value problems of the form

n n

(2.2) — > d(a(x)dcw) + Y b(x)du+c(xu =f

j k=1 j=1

on a bounded open set O C R™, where ajy, bj, ¢ and f are given functions on Q. We do not
fix boundary conditions at this time. This problem is called elliptic if there exists a constant
o > 0 such that

(2.3) > apX)EEc>a) & forall e R x € Q.

j k=1 j=1
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

Assuming all functions and the domain are sufficiently smooth, we can multiply by a smooth
function v, integrate over x € Q) and integrate by parts to obtain

n n

(2.4) Z (ajk05u, 0xVv) + Z (b;0;u,v) + (cu,v) + Z (ajx0xuvy, vl o = (f,Vv),
j=1

jrk=1 j k=1

where v := (vq,...,vn)" is the outward unit normal on 9Q and

(f,9)o0 = | flxigix) dx.

Note that this formulation only requires ajx, bj,c € L*(Q) and f € L?(Q) in order to be
well-defined. We then search for u € V satistying (2.4) for all v € V including boundary
conditions which we will discuss next. We will consider the following three conditions:

DIRICHLET CONDITIONS We require u = g on 9Q) (in the sense of traces) for given
g € L?(0Q). If g = 0 (homogeneous Dirichlet conditions), we take V = H}(Q), in which
case the boundary integrals in (2.4) vanish since v = 0 on 9Q). The weak formulation is thus:
Find u € H}(Q) satisfying

)= Z (aj05u, 0k V) —I—Z (bj05u, v) + (cu,v) = (f, V)
j k=1 j=1

forallv € HY(Q).

If g # 0,and g and dQ are sufficiently smooth (e.g., g € H'(0Q) with 0Q of class C')’,
we can find a function uy € H'(Q) such that Tu, = g. We then set u = 1 + ug, where
it € H)(Q) satisfies

a(u,v) = (f,v) — a(ug,v)
forallv € H)(Q).
NEUMANN CONDITIONS We require 3", _; ajdxuv; = g on dQ for given g € L[2(2Q)).

In this case, we can substitute this equality in the boundary integral in (2.4) and take V =
H'(Q). We then look for u € H' (Q) satisfying

a(u>v) = (fav) + (Q)V)BQ

for all v € H'(Q), where v in the last inner product should be understood in the sense of
traces, i.e., as Tv.

’[Renardy and Rogers 2004, Theorem 7.40]
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

ROBIN CONDITIONS ~Werequire du+) ', _; ajdxuv; = gondQ forgiven g € L?(3Q)
and d € L*(0Q). Again we can substitute this in the boundary integral and take V = H' (Q).
The weak form is then: Find u € H' (Q) satisfying

ar(w,v) := a(w,v) + (du,v)yo = (f,v) + (9,V) 50
forallv e H'(Q).
These problems have a common form: For a given Hilbert space V, abilinear forma : VxV —

R and a linear functional F: V — R (e.g., F : v — (f,V) in the case of Dirichlet conditions),
find u € V such that

(2.5) a(u,v) = F(v), forallv e V.

The existence and uniqueness of a solution can be guaranteed by the Lax-Milgram theorem,
which is a generalization of the Riesz representation theorem (note that a is in general not
symmetric).

Theorem 2.6 (Lax-Milgram theorem). Let a Hilbert space V, a bilinear forma :V x V — R
and a linear functional F : V — R be given satisfying the following conditions:

(i) Coercivity: There exists a ¢; > 0 such that
2
a(v,v) = c1 |vlly,
forallve V.

(ii) Continuity: There exists c2,c3 > 0 such that

a(v,w) < ez [vlly [wllv,

<c
Fv) <cs vilv

forallviw e V.

Then, there exists a unique solution uw € V to problem (2.5) satisfying

1
(6) el < 2= Il

Proof. For every fixed u € V, the mapping v — a(u, V) is a linear functional on V, which is
continuous by assumption (ii), and so is F. By the Riesz-Fréchet representation theorem,®
there exist unique @,,, @r € V such that

(ou,v)y = a(w,v) and (@f,V), =FV)

%e.g., [Zeidler 1995a, Theorem 2.E]
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

forall v € V. We recall that w — @,, is a continuous linear mapping from V* to V with
operator norm 1. Thus,

0 =alu,v) —Fv) = <(pu - (pF>V>V =0

for all v € V, which holds if and only if ¢, = @rin V.

We now wish to solve this equation using the Banach fixed point theorem.” For § > 0, consider
the mapping Ts : V — V,

Ts(v) =v—0(@y — @F).

If Ts is a contraction, then there exists a unique fixed point u such that Ts(u) = u and hence
@ — @f = 0. It remains to show that there exists a & > 0 such that T; is a contraction, i.e.,
there exists 0 < L < 1 with || Tsvy — Tsval|y < L|jvi —v2]|y. Let vi,v, € V be arbitrary and
setv = v; — v,. Then we have

ITsvi = Tov2 I = (v —v2 = 8@y, — 03,3
= v -0,y
= [VI[y — 28 (v, @u)y + 8% (@v, @u )y
= ||v||%/ —26a(v,v) + éza(v, ©y)
< VI — 28 [Vl + 822 [Vlly l@vlly
< (1=26¢y +8%¢,) [vi —va I3

We can thus choose § > 0 such that [? := (1 —25c; + 8%¢c;) < 1, and the Banach fixed point
theorem yields existence and uniqueness of the solution u € V.

To show the estimate (2.6), assume u # O (otherwise the inequality holds trivially). Note that
F is a bounded linear functional by assumption (ii), hence F € V*. We can then apply the
coercivity of a and divide by |[u||,, # 0 to obtain

< S0 aluy) | FY)
v X =

= [|F|

v 0

Iy ~vev vy vev Ivily

We can now give sufficient conditions on the coefficients ajy, bj, ¢ and d such that the
boundary value problems defined above have a unique solution.

Theorem 2.7 (Well-posedness). Let aj. € L*(Q) satisfying the ellipticity condition (2.3)
with constant o« > 0, bj,c € L*(Q) and f € L*(Q) and g € L*(3Q) be given. Set B =

_ 2
x 12?:1 ||biHLoo(Q)'

%e.g., [Zeidler 1995a, Theorem 1.A]
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

a) The homogeneous Dirichlet problem has a unique solution u € H}(Q) if

c(x) — B >0 foralmostallx € Q.

2
In this case, there exists a C > 0 such that

||u||H‘(Q) <C HfHLZ(Q)

Consequently, the inhomogeneous Dirichlet problem for g € H'(3Q) has a unique solution
satisfying

[ullo o) < CUlIfllza) + 19l 00))-

b) The Neumann problem for g € L*(3Q) has a unique solution u € H'(Q) if
P

c(x) — 5 >0 foralmostallx € Q.

In this case, there exists a C > 0 such that
Wi q) < CUTllzq) T 119ll200))-

¢) The Robin problem for g € 12(0Q) and d € L>(3Q) has a unique solution if
B

c(x) — 5 >0 foralmostallx € Q,

d(x) >0 foralmostall x € 9Q),

and at least one inequality is strict. In this case, there exists a C > 0 such that
1wy < CUfllzq) +19llz00))-

Proof. We wish to apply the Lax-Milgram theorem. Continuity of a and F follow by the
Holder inequality and the boundedness of the coefficients. It thus remains to verify the
coercivity of a, which we only do for the case of homogeneous Dirichlet conditions (the
others being similar). Let v € H}(Q) be given. First, the ellipticity of a;, implies that

mn
J Y apdndwix J Za vi2de=a S v = dvEi o)
j=1

k=1

We then have by Young’s inequality ab < $a? + 5-b? for a,b € Rand any « > 0 and

repeated application of Holder’s 1nequal1ty
]f

mn
a(v,v) > a0, — (Z ||bj|\im(m) Wity V)2 o +Lcmv(x)2 dx
j_

= E|V|H‘(Q) +JQ ( - Z_Z ‘ijLOO(Q)> V™ dx.
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2 VARIATIONAL THEORY OF ELLIPTIC PDES

Under the assumption that ¢ — £ > 0, the second term is non-negative and we deduce using
Poincaré’s inequality that

08

MlE20) = CIVI
acz, W) 2 H(Q)

X2 X2
a(v,v) 2 E|V|H1 Q) 2 Z|V|Hl Q) +
holds for C := o/(4 + 4cZ)), where cq is the constant from Poincarés inequality. O]
Note that these conditions are not sharp; different ways of estimating the first-order terms in a

give different conditions. For example,ifb; € W (Q),wecantake p = 3" [|0;b;]| oy -

Naturally, if the data has higher regularity, we can expect more regularity of the solution as
well. The corresponding theory is quite involved, and we give only two useful results.

Theorem 2.8 (Higher regularity’®). Let Q C R™ be bounded domain with C**' boundary,
k > 0, ajx € C*(Q) and bj,c € Wo>(Q). Then for any f € H*(Q), the solution of the
homogeneous Dirichlet problem is in H**2(Q) N H}(Q), and there exists a C > 0 such that

ez 0y < ClIF k) + Il o))

Theorem 2.9 (Higher regularity'"). Let Q be a convex polygon in R? or a parallelepiped in R3,
ajx € C'(Q) and b;,c € C°(Q). Then the solution of the homogeneous Dirichlet problem is in
H2(Q), and there exists a C > 0 such that

||u||H2(Q) <C HfHLZ(Q) .

For non-convex polygons, u € H?(Q) is not possible. This is due to the presence of so-called
corner singularities at reentrant corners, which severely limits the accuracy of finite element
approximations. This requires special treatment, and is a topic of extensive current research.

[ Troianiello 1987, Theorem 2.24]

"'[Grisvard 1985, Theorem 5.2.2], [Ladyzhenskaya and Ural’tseva 1968, pp. 169-189]
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Part II

CONFORMING FINITE ELEMENT
APPROXIMATION OF ELLIPTIC PDES



GALERKIN APPROACH FOR ELLIPTIC
PROBLEMS

We have seen that elliptic partial differential equations can be cast into the following form:
Given a Hilbert space V, a bilinear form a : V x V — R and a continuous linear functional
F:V = R, find u € V satistying

(W) a(u,v) =F(v) forallveV.

According to the Lax-Milgram theorem, this problem has a unique solution if there exist
c1,¢2 > 0 such that

(3.1) a(v,v) =1 VI3,
<c

Vv
(3.2) a(u,v) < czffully [Ivlly

hold for all u,v € V (which we will assume from here on).

The conforming Galerkin approach consists in choosing a (finite-dimensional) closed subspace
Vi, C V and looking for uy, € V;, satisfying’

(Wy) a(un,vn) = F(vy,) forall vy, € V;..

Since we have chosen a closed V}, C V, the subspace V}, is a Hilbert space with inner product
(+y )y - Furthermore, the conditions (3.1) and (3.2) are satisfied for all un, vy, € V, as well. The
Lax-Milgram theorem thus immediately yields the well-posedness of (Wy,).

Theorem 3.1. Under the assumptions of Theorem 2.6, for any closed subspace Vy, C V, there
exists a unique solution uy, € Vi, of (Wy,) satisfying

1
lnlly < = Fly-
1

"The subscript h stands for a discretization parameter, and indicates that we expect convergence of uy, to the
solution of (W) ash — 0.

25



3 GALERKIN APPROACH FOR ELLIPTIC PROBLEMS

The following result is essential for all error estimates of Galerkin approximations.

Lemma 3.2 (Céa’s lemma). Let uy, be the solution of (Wy,) for given Vi, C V and u be the
solution of (W). Then,

Cz2 .
[ —unlly < o inf [u—vufy,
where ¢y and c, are the constants from (3.1) and (3.2).

Proof. Since Vy, C V, we deduce (by subtracting (W) and (W},) with the same v € V) the
Galerkin orthogonality

a(u—up,vp) =0 forallvy, € Vy.

Hence, for arbitrary vy, € Vy,, we have vy, —uy € V;, and therefore a(u —up, vy —up) =0.
Using (3.1) and (3.2), we obtain

cr flu—unlly < alt—wn,u—uy)

a
alu—up,u—vy) +alu—up, v —up)

< ez lu—uplly [[lu—=vuly .

Dividing by ||u — uy ||y, rearranging, and taking the infimum over all v, € V,, yields the
desired estimate. [

This implies that the error of any (conforming) Galerkin approach is determined by the
approximation error of the exact solution in V},. The derivation of such error estimates will
be the topic of the next chapters.

THE SYMMETRIC CASE The estimate in Céa’s lemma is weaker than the corresponding
estimate (1.1) for the model problem in Chapter 1. This is due to the symmetry of the bilinear
form in the latter case, which allows characterizing solutions of (W) as minimizers of a
functional.

Theorem 3.3. If a is symmetric, u € V satisfies (W) if and only if u is the minimizer of

Jv) =

a(v,v) —F(v)

=

overallv e V.

Proof. Foranyu,v € Vandt e R,

12
> a(v,v)

Ju+tv) =Ju) + tla(w,v) = Fv) + 5
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3 GALERKIN APPROACH FOR ELLIPTIC PROBLEMS

due to the symmetry of a. Assume that u satisfies a(u,v) — F(v) = 0 for all v € V. Then,
setting t = 1, we deduce that for all v # 0,

Jw+v) =T+ 3av,v) > J(w

holds. Hence, u is the unique minimizer of J. Conversely, if u is the (unique) minimizer of J,
every directional derivative of | at u must vanish, which implies

0= STt tvlleco = alwv) ~ F(v)

forallv e V. O]

Together with coercivity and continuity, the symmetry of a implies that a(u,v) is an inner
product on V that induces an energy norm ||u||, := a(u,u)z. (In fact, in many applications,
the functional | represents an energy which is minimized in a physical system. For example
in continuum mechanics, 3 Jull2 = Ja(u,u) represents the elastic deformation energy of a
body, and —F(v) its potential energy under external load.)

Arguing as in Chapter 1.2, we see that the solution u, € Vy of (W},) — which is called
Ritz-Galerkin approximation in this context — satisfies

= wnlly = min vl

i.e., uy, is the best approximation of u in V4, in the energy norm. Equivalently, one can say
that the error u — uy, is orthogonal to V;, in the inner product defined by a.

Often it is more useful to estimate the error in a weaker norm. This requires a duality argu-
ment. Let H be a Hilbert space with inner product (-, -) and V a closed subspace satistying
the conditions of the Lax-Milgram theorem theorem such that the embedding V — H is
continuous (e.g., V = H' < L? = H). Then we have the following estimate.

Lemma 3.4 (Aubin-Nitsche lemma). Let uy, be the solution of (Wy,) for given V,, C V and u
be the solution of (W). Then, there exists a C > 0 such that

T
lu—unlly < Cllu—unfly sup { 7—— inf [log—vnly
gert \ g/l vnevi

holds, where for given g € H, @4 is the unique solution of the adjoint problem

a(w,@q) = (g,w) forallweV.

Since a is symmetric, the existence of a unique solution of the adjoint problem is guaranteed
by the Lax-Milgram theorem.
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3 GALERKIN APPROACH FOR ELLIPTIC PROBLEMS

Proof. We make use of the dual representation of the norm in any Hilbert space,

w
(3.3) [wll}, = sup 9, ),
geH HQHH

where the supremum is taken over all g # 0.
Now, inserting w = u — uy, in the adjoint problem, we obtain for any v, € V}, using the

Galerkin orthogonality and continuity of a that

(g)u_u-h) = a(u_uh)(pg)
= a(u—1up, g — V)

S Cllu—unlly log =vanlly -

Inserting w = u — uy, into (3.3), we thus obtain

_ (g) u— uh)
e = unly = sup =———
geH lg ||H
Pg —Vh
< C =yl sup 12— nlv
geH | QHH
for arbitrary v, € Vj,, and taking the infimum over all v}, yields the desired estimate. [

The Aubin-Nitsche lemma also holds for nonsymmetric a, provided both the original and
the adjoint problem satisfy the conditions of the Lax-Milgram theorem (e.g., for constant
coeflicients b;).
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FINITE ELEMENT SPACES

Finite element methods are a special case of Galerkin methods, where the finite-dimensional
subspace consists of piecewise polynomials. To construct these subspaces, we proceed in two
steps:

1. We define a reference element and study polynomial interpolation on this element.

2. We use suitably modified copies of the reference element to partition the given domain
and discuss how to construct a global interpolant using local interpolants on each
element.

We then follow the same steps in proving interpolation error estimates for functions in Sobolev
spaces.

4.1 CONSTRUCTION OF FINITE ELEMENT SPACES

To allow a unified study of the zoo of finite elements proposed in the literature," we define a
finite element in an abstract way.

Definition 4.1. Let

(i) K C R™ beasimply connected bounded open set with piecewise smooth boundary (the
element domain, or simply element if there is no possibility of confusion),

(ii) P be a finite-dimensional space of functions defined on K (the space of shape functions),
(iii) N ={Nj,...,Ng} be a basis of P* (the set of nodal variables or degrees of freedom).
Then (K, P, N) is a finite element.

'For a - far from complete - list of elements, see, e.g., [Brenner and Scott 2008, Chapter 3], [Ciarlet 2002,
Section 2.2]
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As we will see, condition (iii) guarantees that the interpolation problem on K using functions
in P - and hence the Galerkin approximation - is well-posed. The nodal variables will play
the role of interpolation conditions. This is a somewhat backwards definition compared to our
introduction in Chapter 1 (where we have directly specified a basis for the shape functions).
However, it leads to an equivalent characterization that allows much greater freedom in
defining finite elements. The connection is given in the next definition.

Definition 4.2. Let (K, P, N) be a finite element. The basis {11, ..., 4} of P dual to N, i.e.,
satisfying N (\;) = 8yj, is called nodal basis of P.

For example, for the linear finite elements in one dimension, K = (0, 1), P is the space of
linear polynomials, and N = {N, N} are the point evaluations N1 (v) = v(0), N2 (v) = v(1)
for every v € P. The nodal basis is given by 4 (x) = 1 —x and P, (x) = x

Condition (iii) is the only one that is difficult to verify. The following Lemma simplifies this
task.

Lemma 4.3. Let P be a d-dimensional vector space and let {N,...,Ng} be a subset of P*.
Then, the following statements are equivalent:

a) {N1,...,Nga}is a basis of P*,
b) Ifv € P satisfies Ni(v) =0 forall 1 <i< d, thenv =0.

Proof. Let{\1,...,q}be abasis of P. Then, {N;,...,Ng4}is a basis of P* if and only if for
any L € P*, there exist (unique) o, 1 < 1 < d such that

d
L= Z O(jN]'.
j=1

Using the basis of P, this is equivalent to L({;) = Z)f; o N;(;) forall T <1< d. Letus

define the matrix B = (N;(11)){;_; and the vectors

L= (L($1),...,L{a))T, a=(x1,...,0q)".
Then, (a) is equivalent to Ba = L being uniquely solvable, i.e., B being invertible.

On the other hand, given any v € P, we can write v = ZJd _1 BjW;. The condition (b) can be
expressed as

Z B;Ni(;) =Ni(v) =0 forall1 <i<d
=1

implies v = 0, or, in matrix form, that B'b = 0 implies 0 = b := (f1,...,34)". But this too
is equivalent to the fact that B is invertible. O]
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4 FINITE ELEMENT SPACES

Note that (b) in particular implies that the interpolation problem using functions in P with
interpolation conditions N is uniquely solvable. To construct a finite element, one usually
proceeds in the following way:

1. choose an element domain K (e.g., a triangle),
2. choose a polynomial space P of a given degree k (e.g., linear functions),

3. choose d degrees of freedom N = {Ny,..., N4}, where d is the dimension of P, such
that the corresponding interpolation problem has a unique solution,

4. compute the nodal basis of P with respect to N.

The last step amounts to solving for 1 < j < d the concrete interpolation problems N; ({;) =
dij, e.g., using the Vandermonde matrix. A useful tool to verify the unique solvability of the
interpolation problem for polynomials is the following lemma, which is a multidimensional
form of polynomial division.

Lemma 4.4. Let L # 0 be a linear functional on R™ and P be a polynomial of degree d > 1
with P(x) = 0 for all x with L(x) = 0. Then, there exists a polynomial Q of degree d — 1 such
that P = LQ.

Proof. First, we note that affine transformations map the space of polynomials of degree d
to itself. Thus, we can assume without loss of generality that P vanishes on the hyperplane
orthogonal to the x,, axis, i.e. L(x) = x, and P(X,0) = 0, where X = (x1,...,%n_1). Since
the degree of P is d, we can write

d

P(Q)XHJZZ Z ch,jsz(xxil

j=0 |x|<d—j

Xn—1

for a multi-index o« € N™ ! and 8% = x{" - - - x";

. For x,, = 0, this implies

0= P(Q>O) = Z ch,OQa)

lx|<d
and therefore ¢ o = 0 for all [x| < d. Hence,
d
P(X,xn) = Z Co,j XX,
j=1 lo|<d—j
d
Y Y et
=1 |x|<d—j
=:x,Q = LQ,
where Q is of degree d — 1. [
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(a) Linear Lagrange element (b) Quadratic Lagrange element (c) Cubic Hermite element

Figure 4.1: Triangular finite elements. Filled circles denote point evaluation, open circles
gradient evaluations.

4.2 EXAMPLES OF FINITE ELEMENTS

We restrict ourselves to the case n = 2 (higher dimensions being similar) and the most
common examples.

TRIANGULAR ELEMENTS Let K be a triangle and

Pk = {Z\cx\gk CO(XLX 1Cx € R}

denote the space of all bivariate polynomials of total degree less than or equal k, e.g., P, =
span{l,x1,%2,x%, x5, x1x2}. It is straightforward to verify that Py (and hence P;) is a vector
space of dimension %(k + 1)(k + 2). We consider two types of interpolation conditions: func-
tion values (Lagrange interpolation) and gradient values (Hermite interpolation). The following
examples define valid finite elements. Note that the argumentation is essentially the same
as for the well-posedness of the corresponding one-dimensional polynomial interpolation
problems.

o Linear Lagrange elements. Let k = 1 and take P = P; (hence the dimension of P and
P*is3)and N = {Ny, Ny, N3} with N;(v) = v(z;), where z1, z,, z3 are the vertices of
K (see Figure 4.1a). We need to show that condition (iii) holds, which we will do by
way of Lemma 4.3. Suppose that v € P; satisfies v(z;) = v(z,) = v(z3) = 0. Since v is
linear, it must also vanish on each line connecting the vertices, which can be defined
as the zero-sets of the linear functions L, L,, L5. Hence, by Lemma 4.4, there exists a
constant (i.e., polynomial of degree 0) c such that v = cL;. Now let z; be the vertex
not on the edge defined by L;. Then,

0 =v(z1) = cLy(z1),

and therefore ¢ = 0 and so v = 0 (since L;(z7) # 0).
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4 FINITE ELEMENT SPACES

o Quadratic Lagrange elements: Let k = 2 and take P = P, (hence the dimension of P
and P* is 6) Set N = {N] s Nz, N3, N4, N5, Ng} with Ni(\)) = V(Zi), where Z1yZ2423
are again the vertices of K and z4, z5, z¢ are the midpoints of the edges described by
the linear functions L;, L,, L3, respectively (see Figure 4.1b). To show that condition
(iii) holds, we argue as above. Let v € P, vanish at z;, 1 < i < 6. On each edge, v
is a quadratic function that vanishes at three points (say, z,, z3, z4) and thus must be
identically zero. If L; is the function vanishing on the edge containing z,, z3, z4, then by
Lemma 4.4, there exists a linear polynomial Q; such that P = L; Q;. By an analogous
argument, P = L; Q; vanishes on the remaining edges as well. By definition, L; =0
only on the first edge, and thus Q; must vanish. Now consider one of the remaining
edges and let L, be the linear function which vanishes on it. Then, we can apply Lemma
4.4 to Q; to obtain a constant ¢ such thatv = [1Q; = cL;L,. Taking the midpoint of
the remaining edge, z¢, we have

0 =v(zg) =cLi(z6)La(z6),

and since neither L; nor L, vanish on zg, we deduce ¢ = 0 and hence v = 0.

o Cubic Hermite elements: Let k = 3 and take P = P3 (hence the dimension of P and
P* is 10). Instead of taking N as function evaluations at 10 suitable points, we take
Ni, T < 1 < 4 as the point evaluation at the vertices z;,z,,z3 and the barycenter
Z4 = %(21 + z, + z3) (see Figure 4.1c) and take the remaining nodal variables as
gradient evaluations:

Ni+4(V) = E)w(zi), Ni+7 = an(Zi), 1 <1< 3.

Now we again consider v € P3 with N;(v) =0forall T <1i < 10. On each edge, visa
cubic polynomial with double roots at each vertex, and hence must vanish. Arguing as
above, we can write v = cL;L,L3 which implies

0 =v(z4) = cLi(z4)L2(z4)L3(z4)

and hence ¢ = 0 since the barycenter z, lies on neither of the edges. Therefore, v = 0.

The interpolation points z; are called nodes (not to be confused with the vertices defining the
element domain). Both types of elements can be defined for arbitrary degree k. It should be
clear from the above that our definition of finite elements gives us a blueprint for constructing
elements with desired properties. This should be contrasted with, e.g., the choice of finite
difference stencils.

RECTANGULAR ELEMENTS For rectangular elements, we can follow a tensor-product
approach. We consider the vector space

Qk = {Z ijj(X1)qj(X2) i¢ € ij,qj c Pk}

)
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(a) Bilinear Lagrange element (b) Biquadratic Lagrange element

Figure 4.2: Rectangular finite elements. Filled circles denote point evaluation.

of products of univariate polynomials of degree up to k, which has dimension (k + 1)2. By
analogous arguments as in the triangular case, we can show that the following examples are
finite elements:

o Bilinear Lagrange elements: Let k = 1 and take P = Q; (hence the dimension of P
and P* is4) and N = {N7, N, N3, N4} with N;(v) = v(z;), where 21, 25, z3, z4 are the
vertices of K (see Figure 4.2a).

e Biquadratic Lagrange elements: Let k = 2 and take P = Q, (hence the dimension of

Pand P*is 9) and N = {Ny,..., No} with N;(v) = v(z;), where z1, z,, z3, z4 are the
vertices of K, zs, z¢, 27, zg are the edge midpoints and zo is the centroid of K (see Figure
4.2b).

4.3 THE INTERPOLANT

We wish to estimate the error of the best approximation of a function in a finite element
space. An upper bound for this approximation is given by stitching together interpolating
polynomials on each element.

Definition 4.5. Let (K, P, N) be a finite element and let {11, ..., 4} be the corresponding
nodal basis of P. For a given function v such that N;(v) is defined for all 1 < i < d, the local
interpolant of v is defined as

a
Jxv = Z N; (v);.
io1

The nodal interpolant can be explicitly constructed once the nodal basis is known. This can be
simplified significantly if the reference element domain is chosen as, e.g., the unit simplex.
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Useful properties of the local interpolant are given next.

Lemma 4.6. Let (K, P, N) be a finite element and I _the local interpolant. Then,
a) The mapping v — Iy is linear,

b) Ni(Jxv)) =Ni(v), 1 <i<d,

c) Jx(v) =vforallv € P, i.e., I is a projection.

Proof. The claim (a) follows directly from the linearity of the N;. For (b), we use the definition
of Jx and 1»; to obtain

d d d
Ni(Tev) =Ny (Z Nj(vm)j) =Y N;WINi(h;) = Y N;(v)8y
j=1

j=1
= N;(v)

forall 1 < 1 < d and arbitrary v. This implies that N;(v —Jxv) =0forall 1 < i< d, and
hence by Lemma 4.3 that Jyv = v. O

We now use the local interpolant on each element to define a global interpolant on a union of
elements.

Definition 4.7. A subdivision T of a bounded open set Q C R™ is a finite collection of open
sets K; such that

(i) intK; NintK; = 0 if i # j and

(ii) Ui Ki =Q
Definition 4.8. Given a subdivision T of Q such that for each K; there is a finite element
(Ki, Pi, N;) with local interpolant J,. Let m be the order of the highest partial derivative

appearing in any nodal variable. Then, the global interpolant J3v of v.€ C™(Q) on T is
defined by

(j‘TVNKi = jKiV forallK; € 7.

To obtain some regularity of the global interpolant, we need additional assumptions on the
subdivision. Roughly speaking, where two elements meet, the corresponding nodal variables
have to match as well. For triangular elements, this can be expressed concisely.

Definition 4.9. A friangulation of a bounded open set Q C R? is a subdivision T of Q such
that

(i) everyK; € T is a triangle and

(ii) no vertex of any triangle lies in the interior or on an edge of another triangle.
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(a) Argyris triangle (b) Bogner-Fox-Schmit rectangle

Figure 4.3: C' elements. Filled circles denote point evaluation, double circles evaluation of
gradients up to total order 2, and arrows evaluation of normal derivatives. The
double arrow stands for evaluation of the second mixed derivative 97,.

Similar conditions can be given for n > 3 (tetrahedra, simplices), in which case we will
also speak of triangulations. Note that this supposes that Q is polyhedral itself. For non-
polyhedral domains, it is possible to use suitable geometric transformations on the elements
at the boundary to obtain curved elements which faithfully represent it.

Definition 4.10. A global interpolant J5 has continuity order m (in short, “is C™”) if Jyv €

C™(Q) for all f € C™(Q). The space
Vg = {jj‘\/ ve Cm(ﬁ)}

is called a C™ finite element space.

To obtain global continuity of the interpolant, we need to make sure that the local interpolants
coincide where two element domains meet. This requires that the corresponding nodal
variables are compatible. For Lagrange and Hermite elements, where each nodal variable is
taken as the evaluation of a function or its derivative at a point z;, this reduces to a geometric
condition on the placement of nodes on edges.

Theorem 4.11. The triangular Lagrange and Hermite elements are all C° elements. More pre-
cisely, given a triangulation T of Q, it is possible to choose edge nodes for the corresponding
elements (Ki, Pi,Ni), Ki € T, such that Iov € C°(Q) for allv € C™(Q), where m = 0 for
Lagrange and m = 1 for Hermite elements.

Proof. Tt suffices to show that the global interpolant is continuous across each edge. Let K

and K, be two triangles sharing an edge e. Assume that the nodes on this edge are placed
symmetrically with respect to rotation (i.e., the placement of the nodes should “look the same”
from K; and K;), and that Py and P, consist of polynomials of degree k.
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Letv € C™(Q) be given and set w := Jx,v—Jx,V, where we extend both local interpolants as
polynomials outside K; and K3, respectively. Hence, w is a polynomial of degree k whose re-
striction W] to e is a one-dimensional polynomial having k+1 roots (counted by multiplicity).
This implies that w|. = 0, and thus the interpolant is continuous across e. O

A similar argument shows that the bilinear and biquadratic Lagrange elements are C° as
well. Examples of C' elements are the Argyris triangle (of degree 5 and 21 nodal variables,
including normal derivatives across edges at their midpoints, Figure 4.3a) and the Bogner—
Fox-Schmit rectangle (a bicubic Hermite element of dimension 16, Figure 4.3b). It is one
of the strengths of the abstract formulation described here that such exotic elements can be
treated by the same tools as simple Lagrange elements.

In order to obtain global interpolation error estimates, we need uniform bounds on the
local interpolation errors. For this, we need to be able to compare the local interpolation
operators on different elements. This can be done with the following notion of equivalence of
elements.

Definition 4.12. Let (K, ﬁ’, N) be a finite element and T : R™ — R™ be an affine transforma-
tion, i.e,, T : X — AX + b for A € R™*" invertible and b € R™. The finite element (K, P, N)
is called affine equivalent to (K, P, N) if

) k={AR+b:2e R},
(ii) :P:{ﬁoT” :ﬁe@},
(iii) N = {Ni :Ni(p) = ]Qli(p oT)forallp € [P}.

A triangulation T consisting of affine equivalent elements is also called affine.

Itis a straightforward exercise to show that the nodal bases of P and P are related by l/l\)i =p;oT.
Hence, if the nodal variables on edges are placed symmetrically, triangular Lagrange elements
of the same order are affine equivalent, as are triangular Hermite elements. The same holds
true for rectangular elements. Non-affine equivalent elements are useful in treating curved
boundaries, but will not be discussed here.

The advantage of this construction is that affine equivalent elements are also interpolation
equivalent:

Lemma 4.13. Let (K, P,N) and (K, P, N) be two affine equivalent finite elements related by
the transformation Tx. Then,

JQ(VOTK) = (jKV) OTK.
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Proof. Let (p; and ; be the nodal basis of P and P, respectively. By definition,

d d
TgvoTk) =Y Ni(voTa)hi =) Ni(v)(wioTk) = (Jxv) o Tx. O

Given a reference element (K, P, N), we can thus generate a triangulation T using affine
equivalent elements.
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POLYNOMIAL INTERPOLATION IN SOBOLEV
SPACES

We now come to the heart of the mathematical theory of finite element methods. As we have
seen, the error of the finite element solution uy, is determined by the best approximation of
the true solution by piecewise polynomials, which in turn is bounded by the interpolating
polynomial. It thus remains to derive estimates for the (local and global) interpolation error.

51 THE BRAMBLE—-HILBERT LEMMA

We start with the error for the local interpolant. The key for deriving error estimates is
the Bramble-Hilbert lemma [Bramble and Hilbert 1970]. The derivation here follows the
original functional-analytic arguments (by way of several results which may be of independent
interest); there are also constructive approaches which allow more explicit computation of
the constants.'

The first lemma characterizes the kernel of differentiation operators.

Lemma s5.1. Ifv € W5P(Q) satisfies D*v = 0 for all |«| = k, then v is almost everywhere
equal to a polynomial of degree k — 1.

Proof. If D*v = 0 holds for all |«| = k, then DPD*v = 0 for any multi-index (. Hence,
v € N ; WEP(Q). The Sobolev embedding theorem 2.2 thus guarantees that v € C*(Q).
The claim then follows using classical (pointwise) arguments, e.g., Taylor series expansion. [

The next result concerns projection of Sobolev functions on polynomials.

Lemmas5.2. For everyv € WP (Q) there is a unique polynomial q € Py_1 such that

(5.1) J D*(v—q)dx =0 forall || < k—1.
Q

'See, e.g., [Siili 2011, § 3.2], [Brenner and Scott 2008, Chapter 4]
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5 POLYNOMIAL INTERPOLATION IN SOBOLEV SPACES

Proof. Writing q = Y 5<_1 &pXP € Pi_1 as a linear combination of monomials, the
condition (5.1) is equivalent to the linear system

> 56J

D*xP dx:J D%v dx, lof <k —1.
Bl<k—1 79 @

It thus remains to show that the matrix

M= <J D*xP dx)
Q [l BI<k—1

is non-singular. Consider & = (&)|3/<k—1 such that M& = 0. The corresponding polynomial
q then satisfies

J D¥*qdx =0 forall |of < k—1.
Q

Inserting in turn all possible multi-indices in descending (lexicographical) order yields &g = 0
for all || < k — 1. Thus, ME = 0 implies & = 0, and therefore M is invertible. O

Using these two lemmas, we can prove a generalization of Poincaré’s inequality.

Lemma s5.3. For allv € W*P(Q) with

(5.2) J D*vdx =0 forall || < k—1,
Q

the estimate

(5-3) VIlwer (a) < colviwer ()

holds, where the constant co > 0 depends only on Q, k and p.

Proof. We argue by contradiction. Assume the claim does not hold. Then there exists a
sequence {Vy fnen C WP (Q) of functions satisfying (5.2) and

(5-4) 1= HVTLHWK»P(Q) = n|Vn|kaP(Q)> neN.

Since the embedding W*P?(Q) — W*~1.P(Q) is compact by Theorem 2.2, there exists a
subsequence (also denoted by {v,,}ncn) converging in W*=1P(Q) toav € W1 P(Q), i.e,

(55) ||V _vnuwk—],p(ﬂ) -0 asn — oo.

Since [vnlwrr (o) — O by assumption (5.4), {vn} is a Cauchy sequence in W*P (Q) as well
and thus converges in W*P (Q) to av € W*P(Q). Now, (5.5) implies that ¥ = v and hence
Vlwkr () = 0. It follows from Lemma 5.1 that v € Py, and since v satisfies

J D*vdx = limJ D%*,dx =0 forall|a] <k—1
Q Q

n—oo

by assumption (5.2), Lemma 5.2 then yields v = 0, in contradiction to

Miwiray = lim [vnllwen ) = 1- -

40
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We are now in a position to prove our central result.

Theorem 5.4 (Bramble-Hilbert lemma). Let F: WP (Q) — R satisfy
(i) [FW)| < c1 |IVllwir () (boundedness),
(i) [F(u+v)| < c2([F(w)| + [F(v)]) (sublinearity),

(iii) F(q) = O for all q € Py_; (annihilation).

Then there exists a constant ¢ > 0 such that for allv € W*P(Q),

[F(V)I < cvlwrr()-

Proof. For arbitrary v € W*P(Q) and q € Py_1, we have

F)I = [Fv — g + q)l < c2([F(v — q)l + [F(@)) < c1c2 [v — allwen(a) -

Given v, we now choose q € Pyx_; as the polynomial from Lemma 5.2 and apply Lemma 5.3
to obtain

HV — q||Wk,p(Q) < colv — q|Wk~p(Q) = COMWKP(Q))

where ¢, is the constant appearing in (5.3). This proves the claim with ¢ := cocyc,. O

5.2 INTERPOLATION ERROR ESTIMATES

We wish to apply the Bramble-Hilbert lemma to the interpolation error. We start with the
error on the reference element.

Theorem 5.5. Let (K, P, N) be a finite element with Py,_1 C P forak > 1 and all N € N being
bounded on WP (K), 1 < p < co. For anyv € W*P(K),

(5.6) v —Jxviwie (k) < cVlwrw k) forall0 <1<k
where the constant ¢ > 0 depends only on n,k,p,l and P.
Proof. Itis straightforward to verify that F : v — [v—JxV|wus (i) defines a sublinear functional

on WP (K) forall | < k. Let,...,\q be the nodal basis of PP to N. Since the N; in N are
bounded on W*P (K), we have

IFV)wie (k) < Mlwee (k) + 1Txviwee (k)

d
< Vlhwior ) + D INsW) il k)
i=1

a
< HVHWK‘P(K) + Z Ci H"Hwk‘p(K) Wilwur k)
i=1

<(1+C ]féliagxd Wilwee o) IVIwes (k)
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and hence that F is bounded. In addition, Jxq = q for all q € P and therefore F(q) = 0. We
can now apply the Bramble-Hilbert lemma to F, which proves the claim. O]

To estimate the interpolation error on an arbitrary finite element (K, P, N), we assume that it
is generated by the affine transformation

(5.7) Te: K = K, R AxX + by

from the reference element ( 1A<, UA), JQI), i.e,, ¥V :=vo Ty is the function v on K expressed in local
coordinates on K. We then need to consider how the estimate (5.6) transforms under Tx.

Lemmas.6. Letk > 0and 1 < p < oo. There exists ¢ > 0 such that for all K andv € W*P(K),
the function V = v o Ty satisfies

& k _1
(5.8) Plwer k) < c[[A|™ [det(A)[™ P Viwer k),

_1nk 1A
(5.9) Whwer o < € A Tdet( A Blyen 1)

Proof. Let « be a multi-index with || = k, and let D* denote the corresponding weak
derivative with respect to X. Recall that by the chain rule for weak derivatives,

and by the transformation rule for integrals,

s

J vdx:J (voTk)|det(Ax)ldx
Tk (R) K

for sufficiently smooth functions v. Hence we obtain with a constant ¢ depending only on n,
k and p

ID%9lp &) < c AN D [[DPvo Tl ey
IBl=k

_1
< ¢ Ak det(Ak)l ™7 Viwen k-

Summing over all |a| = k yields (5.8). Arguing similarly using T, yields (5.9). ]
We now derive a geometrical estimate of the quantities appearing in the right-hand side of
(5.8) and (5.9). For a given element domain K, we define

o the diameter hy = maxy, x,ex || X1 — X2||,

o the incircle diameter px := 2argmax,{x € K : B;(x) C K} (i.e,, the diameter of the
largest ball contained in K).
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o the condition number ox = %.

Lemma s.7. Let Tx defined in (5.7) be an affine mapping such that K = TK(IQ). Then,

vol(K h _ ho
det(Ag) = 2 A<t A <
vol(K) PR px

Proof. The first property is a simple geometrical fact. For the second property, recall that the
matrix norm of Ay is given by

1
[Ak[| = sup [[AkX]|=— sup [AxX].
I%)|=1 PR 1%l1=pg

Now for any X with ||X|| = py, there exists X1,X, € Kwith& =%, — %, (e.g., choose a suitable
X1 on the incircle and X; as its midpoint). Then,

AKQ = TKQ1 — TKQZ =X1 —X2

for some x1,x, € K, which implies ||AxX|| < hx and thus the desired inequality. The last
property is obtained by exchanging the roles of K and K. O

The local interpolation error can then be estimated as follows

Theorem 5.8 (local interpolation error). Let (12, 1?9, ﬁf) be a finite element with Py,_; C P for
ak>1landallN € N being bounded on WP (K), 1 < p < oo. For any element (K, P, N)
affine equivalent to (R, P,N) by the affine transformation Ty, there exists a constant ¢ > 0
independent of K such that for anyv € WP (K),

v — Jxviwir k) < chi tokViwer (k)

forall0 <1< k.

Proof. Let9 :=v o Tx. By Lemma 4.13, (JxVv) o Tx = J3¥ (i.e., interpolating the transformed
function is equivalent to transforming the interpolated function). Hence, we can apply Lemma
5.6 to (v — Jxv) and use Theorem 5.5 to obtain

v —Jviwie k) < € HA? Hl | det(AK)|%|{} — Jﬁﬂwl,p(ﬁ)
sc HAE] Hl | det(AK)|%|o|Wk,p(ﬁ)

¢ HAF Hl HAKHk |V|ka(l<)

c(||A [ IAKID AT Mlwir (k-

NN

Using the estimates from Lemma 5.7 and the fact that hy and py; are fixed completes the
proof. O
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To obtain an estimate for the global interpolation error, which converges to zero as h — 0, we
need to have a uniform bound (independent of K and h) of the condition number ok. This
requires a further assumption on the triangulation. A triangulation 7 is called shape regular,
if there exists a constant k independent of h := maxg 7 hx such that

ok < K forall K € 7.
(For triangular elements, e.g., this means that all interior angles are bounded from below.)

Using this upper bound and summing over all elements, we obtain the following estimate for
the global interpolation error.

Theorem 5.9 (global interpolation error). Let T be a shape regular affine triangulation of
Q C R™ with the reference element (K, P, N) satisfying the requirements of Theorem 5.8 for a
k > 1. Then, there exists a constant ¢ > 0 independent of h such that for allv € W*P(Q),
1
5 1
[V =95V 1pq) + Zhl (Z v — JKV|€\/LP(K)> < ch*Wlwkr(a), 1<p < oo,
=1 KeT
k
1 K
||V — j‘TVHLOO + ; h I]'?Ga%( |V — jKV|W1,°°(K) < ch |V|Wk,oo(Q).

Similar estimates can be obtained for elements based on the tensor product polynomial spaces

Q.?

5.3 INVERSE ESTIMATES

The above theorems estimated the interpolation error in a coarser norm (i.e., 1 < k) than
than the given function to be interpolated. In general, the converse (estimating a finer norm
by a coarser one) is not possible; however, for the discrete approximations vy, € V;,, such
so-called inverse estimates can be established.

Local estimates follow as above from a scaling argument, using the equivalence of norms on
the finite dimensional space P in place of the Bramble-Hilbert lemma.

Theorem 5.10 (local inverse estimate?®). Let (K, 3A3, N) be a finite element with P c wbp (K)
foranl > 0and 1 < p < oo. For any element (K, P, N) with hx < 1 affine equivalent to
(R, P, N) by the affine transformation Ty, there exists a constant ¢ > 0 independent of K such
that for any vy, € P,

thHWLP(K) < Ch]]zilHthwk,p(K)

forall 0 <k <L

*e.g., [Brenner and Scott 2008, Chapter 3.5]
*e.g., [Ern and Guermond 2004, Lemma 1.138]

44



5 POLYNOMIAL INTERPOLATION IN SOBOLEV SPACES

For uniform global estimates, we need a lower bound on hy'. A triangulation T is called
quasi-uniform if it is shape regular and there exists a T > 0 such that hx > thforall K € 7.
By summing over the local estimates, we obtain the following global estimate.

Theorem 5.11 (global inverse estimate*). Let T be a quasi-uniform affine triangulation of
Q C R™ with the reference element (K, P, N) satisfying the requirements of Theorem s.10 for
an 1 > 0. Then, there exists a constant ¢ > 0 independent of h such that for all vy, € Vy, :=
velP(Q):v|x € P,Ke T},

1 1
P P
(z uvhusw,w) (z uvhusm) CT<pece

KeT KeT

max |[vi e ) < ch*! (r]?g§1|vh||wk,mm> ;

forall 0 <k <L

“e.g., [Ern and Guermond 2004, Corollary 1.141]
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ERROR ESTIMATES FOR THE FINITE ELEMENT
APPROXIMATION

We can now give error estimates for the conforming finite element approximation of elliptic
boundary value problems using Lagrange elements. Let a reference element (K, P, N) and a
triangulation 7 using affine equivalent elements be given. Denoting the affine transformation
from the reference element to the element (K, P, N) by Ty : X — AgX + bk, we can define
the corresponding C° finite element space by

Vi, = {Vh €C%Q): (vpoTy)lg € P forall K € ‘.T}.

6.1 A PRIORI ERROR ESTIMATES

By Céa’s lemma, the discretization error is bounded by the best-approximation error, which
in turn can be bounded by the interpolation error. The results of the preceding chapters
therefore yield the following a priori error estimates.

Theorem 6.1. Let u € H'(Q) be the solution of the boundary value problem (2.2) together
with appropriate boundary conditions. Let T be a shape regular affine triangulation of O C R™
with the reference element (K, P, N) satisfying Py € P forak > 1, and let uy, € V,, be the
corresponding Galerkin approximation. If u € H™(Q) for 3 < m < k, there exists ¢ > 0
independent of h and u such that

lw—upl1p Q) S chm™! ulhm ().
Proof. Since m > 2, the Sobolev embedding theorem 2.2 implies that u € C°(Q) and hence

the local (pointwise) interpolant is well defined. In addition, the nodal interpolation preserves
Dirichlet boundary conditions. Hence Jyu € Vy, and Céa’s lemma yields

Hu_uhHH‘(Q) < Cvigf/h ||u—VhHH1(Q) <clu— j‘TUHHwQ) .
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6 ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION

Theorem 5.9 for p = 2 and k = m implies
[ —=TJzully Q) S ch™! Whim (),

and the claim follows by combining these estimates. O]

If the bilinear form a is symmetric, or if the adjoint problem to (2.2) is well-posed, we can
apply the Aubin-Nitsche lemma to obtain better estimates in the L? norm.

Theorem 6.2. Under the assumptions of Theorem 6.1, there exists ¢ > 0 such that

[ — UhHLZ(Q) < ch™ulym (o).

Proof. By the Sobolev embedding theorem 2.2, the embedding H' (Q) — L?(Q) is continu-
ous. Thus, the Aubin-Nitsche lemma yields

1
|lw—unll;2 < ¢ f|lu—unllyy sup ——— inf ||@q — V|
L2(Q) H'(Q) gel2(Q) HQHLZ(Q) VREVH g HI(Q) |

where @4 is the solution of the adjoint problem with right-hand side g. Estimating the best
approximation in V}, by the interpolant and using Theorem 5.9, we obtain

Jnf llog —vnllia) < 19 =I7@gllin(q) < chl@glnaia) < chligliaq)
by the well-posedness of the adjoint problem. Combining this inequality with the one from
Theorem 6.1 yields the claimed estimate. [

Using duality arguments based on different adjoint problems, one can derive estimates in
other L?(Q) spaces, including L*(Q)."!

6.2 A POSTERIORI ERROR ESTIMATES

It is often the case that the regularity of the solution varies over the domain Q (for example,
near corners or jumps in the right-hand side or coefficients). It is then advantageous to make
the element size hx small only where it is actually needed. Such information can be obtained
using a posteriori error estimates, which can be evaluated for a computed solution u;, to decide
where the mesh needs to be refined. Here, we will only sketch residual-based error estimates
and simple duality-based estimates, and refer to the literature for details.?

'e.g., [Brenner and Scott 2008, Chapter 8]
’e.g., [Brenner and Scott 2008, Chapter 9], [Ern and Guermond 2004, Chapter 10]
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6 ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION

For the sake of presentation, we consider a simplified boundary value problem. Let f € L?(Q)
and & € L*(Q) with &; > «(x) > o > 0 for almost all x € Q be given. Then we search for
u € H)(Q) satisfying

(6.1) a(u,v) = («Vu, Vv) = (f,v) for allv € H)(Q).

(The same arguments can be repeated for the general boundary value problem (2.2) with
homogeneous Dirichlet or Neumann conditions). Let Vi, C H}(Q) be a finite element space
and uy, € Vy, the corresponding Ritz-Galerkin approximation.

RESIDUAL-BASED ERROR ESTIMATES Residual-based estimates give an error estimate
in the H'! norm. We first note that the bilinear form a is coercive with constant o, and hence
we have

alu—up,u—uy)

%o [[u—unlhyi (o) < [w—unlli(a)
HT(Q

a(u —up,w)

< sup
weH} (Q) HWHH‘(Q)
a(u, w) — (aVuy, Vw)
= sup
weH} (Q) HWHH‘(Q)
~  sup (f,w) — (=V - (&VUn), W)y 1441
WwEHS(Q) ||W||H1(Q)
= sup (f+V- (O‘vuh))W>H71‘H1
weH} (Q) ||WHH‘(Q]

=[[f+ V- (eVun)|ly1(0)

using integration by parts and the definition of the dual norm. For brevity, we have written
V-w= Z?:] 0;wj for the (distributional) divergence of a vector w € L?(Q)™. Since all terms
on the right-hand side are known, this is in principle an a posteriori estimate. However, the
H~! norm cannot be localized, so we will perform the integration by parts on each element
separately and insert an interpolation error to eliminate the H' norm of w (and hence the
supremum).

This requires some notation. Let T}, be the triangulation corresponding to V;, and 07, the
set of faces of all K € T},. The set of all interior faces will be denoted by T, i.e.,

M= {F€dT,:FNaQ = 0}.

For F € T, with F = K; N K3, let v; and v, denote the unit outward normal to K; and K,
respectively. We define the jump in normal derivative for wy, € V4, across F as

[[th . V]] = th‘]ﬁ -V + VWh|K2 * V.
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6 ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION

We can then integrate by parts elementwise to obtain for w € H}(Q)
a(u—un,w) = (f,w) — a(un,w)

= (f,w) — Z J aV(iu—uy) - Vwdx

KeTh K

-y <JK(f+V-(chuh))WdX_ > J

oa(Vuy - viw ds>
F

KETy Feok
= Z J (f+ V- («Vup))wdx — Z J [oe(Vun - v)]wds
KeTh K Feln F

since w € H}(Q) is continuous almost everywhere.

Our next task is to get rid of w by canceling [[w||,;1(, in the definition of the dual norm.
We do this by inserting (via Galerkin orthogonality) the interpolant of w and applying an
interpolation error estimate. The difficulty here is that w € H}(Q) is not sufficiently smooth
to allow Lagrange interpolation, since pointwise evaluation is not well-defined. To circumvent
this, one combines interpolation with projection. Assume v € Vj, consists of piecewise
polynomials of degree k. For K € T4, let wk be the union of all elements touching K:

wi =J{K eT: K nk#£0}.
Furthermore, for every node z of K (i.e., there is N € N such that N(v) = v(z)), denote
wZ:U{K' etrh:ze?/} C wy.
The L?(w,) projection of v € H'(Q) onto Py is then defined as the unique 7, (v) satisfying
J (. (v) —v)qdx =0 forall q € Py.

For z € 0Q), we set 7, (v) = 0 to respect the homogeneous Dirichlet conditions. The local
Clément interpolant of v € H' (Q) is then given by

d
Jev = Z Ni(72, (v)) @i
i=1

Using the Bramble-Hilbert lemma and a scaling argument, one can show the following
interpolation error estimates:*

v — jCVHLZ(K) chic [Vl (wg) )

<
1/2
||V — JCVHLZ(F) < ChK HVHH](CUK) )

*e.g., [Braess 2007, Theorem 11.6.9]
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6 ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION

forallv € H}(Q),K € T, and F C OK.

Using the Galerkin orthogonality for the global Clément interpolant Jcw € V;, and the fact
that every K appears only in a finite number of wy, we thus obtain by the Cauchy-Schwarz
inequality

e = un Loy S unwdew)
—Up ] = —
HIQ) ™ weHl(Q) Wl ()
1 1
<— sup —— Z |If+ V- (“Vuh)HLZ(K) HW_jCWHLz(K)
Xo weH}(Q) HWHH](Q) KETh

+ Z [[o( Vg, - V)]]HLZ(F) lw— jCWHLZ(F))

Ferh
1
<C sup —— [ D> hlf+ V- (aVun) |2k Wi o
weHé(_O_) HWHH](Q) KeTh

1/2
+ Z 2 oV, - VIll2 e HW||H1(Q)>

Ferh

<C (Z hi If + V- (aVun) [ 2y + Z 2 | o Vs, - V”]HU(F)) .

KeTh Fely

DUALITY-BASED ERROR ESTIMATES The use of Clément interpolation can be avoided
if we are satisfied with an a posteriori error estimate in the L2 norm and assume o« € C'(Q).
We can then apply the Aubin-Nitsche trick. Let w € H}(Q) solve the adjoint problem

a(v,w) = (u—up,v) for allv € H}(Q).

Inserting u — uy, € H}(Q) and applying the Galerkin orthogonality a(u — un, wy) = 0 for
the global interpolant wy, := Jyw yields
lu— uth_z(Q) = (u—up,u—up) = a(u— U, w—wy)
= (f,w —wn) — alun, w—wnp).

Now we integrate by parts on each element again and apply the Cauchy-Schwarz inequality
to obtain

2
Hu_uhHLZ(Q) < Z If+V- ((xvuh)HLZ(K) HW_WhHLZ(K)
KE(.T}‘

+ Z 1o Vawn - VIl 2y W = Wl 2y -

Ferh
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6 ERROR ESTIMATES FOR THE FINITE ELEMENT APPROXIMATION

By the symmetry of a and the well-posedness of (6.1), we have that w € H?(Q) due to
Theorem 2.9. We can thus estimate the local interpolation error for w using Theorem 5.8 for
k=2,1=0andp = 2 to obtain

[w _WhHLZ(K) < Chi HWHHZ(Q) .
Similarly, using the Bramble-Hilbert lemma and a scaling argument yields
3/2
Iw = williar) < il W) -
Finally, we have from Theorem 2.9 the estimate
||W||H2(Q) <C Hu_uhHLZ(Q) .

Combining these inequalities, we obtain the desired a posteriori error estimate

HU—uhHLZ(Q) <C (Z hi If+V - (vauh)HLZ(K) + Z h3K/2 [ [oc( Vs, - V)]]HLZ(F]> )

KE‘T}" Feln

Such a posteriori estimates can be used to locally decrease the mesh size in order to reduce
the discretization error. This leads to adaptive finite element methods, which is a very active
area of current research. For details, we refer to, e.g., [Brenner and Scott 2008, Chapter 9].
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IMPLEMENTATION

This chapter discusses some of the issues involved in the implementation of the finite element
method on a computer. It should only serve as a guide for solving model problems and
understanding the structure of professional software packages; due to the availability of high-
quality free and open source frameworks such as deal.II' and FEniCS? there is usually no
need to write a finite element solver from scratch.

In the following, we focus on triangular Lagrange and Hermite elements on polygonal do-
mains; the extension to higher-dimensional and quadrilateral elements is fairly straightfor-
ward.

71 TRIANGULATION

The geometric information on a triangulation is described by a mesh, a cloud of connected
points in R?. This information is usually stored in a collection of two-dimensional arrays, the
most fundamental of which are

o the list of nodes, which contains the coordinates z; = (x,y;) of each node correspond-
ing to a degree of freedom:

nodes(i) = (x_i,y_i);

o the list of elements, which contains for every element in the triangulation the corre-
sponding entries in nodes of the nodal variables:

elements(i) = (nodes(i_1),nodes(i_2),nodes(i_3)).

Care must be taken that the ordering is consistent for each element. Points for which
both function and gradient evaluation are given appear twice and are discerned by
position in the list (function values first, then gradient).

'[Bangerth et al. n.d.]
*[Hake et al. n.d.]
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7 IMPLEMENTATION

The array elements serves as the local-to-global index. Depending on the boundary condi-
tions, the following are also required.

o For Dirichlet conditions, a list of boundary points bdy_nodes.

« For Neumann conditions, a list of boundary faces bdy_faces which contain the (consis-
tently ordered) entries in nodes of the nodes on each face.

The generation of a good (quasi-uniform) mesh for a given complicated domain is an active
research area in itself. For uniform meshes on simple geometries (such as rectangles), it is
possible to create the needed data structures by hand. An alternative are Delaunay triangula-
tions, which can be constructed (e.g., by the MATLAB command delaunay) given a list of
nodes. More complicated generators can create meshes from a geometric description of the
boundary; an example is the MATL AB package distmesh.?

7.2 ASSEMBLY

The main effort in implementing lies in assembling the stiffness matrix K, i.e., computing its
entries Ki; = a(@s, @;) forall basis elements @;, @;. This is most efficiently done element-wise,
where the computation is performed by transformation to a reference element.

THE REFERENCE ELEMENT We consider the reference element domain

R={(&,8) eR*:0< &, & <1, and & + &, < 1},

with the vertices z; = (0,0),z, = (1,0),z3 = (0, 1) (in this order). For any triangle K defined
by the ordered set of vertices ((x1,y1), (x2,Y2), (x3,Y3)), the affine transformation Tx from
K to K is given by Tx (&) = Ax& + bk with

X2 —X] X3—X X
AK:<2 1 3 1>) bK:<]>-
Y2 —Y1 Y3z — Yy Y1

Given a set of nodal variables N = (N, yeens N,), itis straightforward (if tedious) to compute
the corresponding nodal basis functions ; from the conditions ﬁi({l\)j) =0, 1 <1i,j <d
(For example, the nodal basis for the linear Lagrange elementis 1 — &; — &5, &5, &3.)

If the coefhicients in the bilinear form a are constant, one can then compute the integrals
on the reference element exactly, noting that due to the affine transformation, the partial
derivatives of the basis functions change according to

Volk(x) = A TVH(E).

*http://persson.berkeley.edu/distmesh; an almost exhaustive list of mesh generators can be found at
http://www.robertschneiders.de/meshgeneration/software.html.
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7 IMPLEMENTATION

QUADRATURE If the coefficients are not given analytically, it is necessary to evaluate the
integrals using numerical quadrature, i.e., to compute

J v(x) dx ~ Zwkv(xk)
K k=1

using appropriate quadrature weights wy and quadrature nodes xy. Since this amounts to
replacing the bilinear form a by ay, (a variational crime*), care must be taken that the discrete
problem is still well-posed and that the quadrature error is negligible compared to the approx-
imation error. It is possible to show that this can be ensured if the quadrature is sufficiently
exact and the weights are positive.

Theorem 7.1 (effect of quadrature®). Let Ty, be a shape regular affine triangulation with Py C
P C Py for k > 1. If the quadrature on K is of order 2k — 2, all weights are positive, and h is
small enough, then the discrete problem is well-posed.

If in addition the surface integrals are approximated by a quadrature rule of order 2k — 1 and the
conditions of Theorem 6.1 hold, there exists a ¢ > 0 such that for f € H*~1(Q) and g € H*(2Q)
and sufficiently small h,

||u_uhHH‘(Q) < ch*! (HuHHk(Q) + HfHHH(Q) + ||9HH‘<(6Q))°

The rule of thumb is that the quadrature should be exact for the integrals involving second-
order derivatives if the coefficients were constant. For linear elements (where the gradients
are constant), order O (i.e., the midpoint rule) is therefore sufficient to obtain an error estimate
of order h.

For higher order elements, Gauf$ quadrature is usually employed. This is simplified by using
barycentric coordinates: If the vertices of K are ((x1,y1), (x2,Y2), (x3,y3)), the barycentric
coordinates ({1, (2, C3) of (x,y) € K are defined by

o (1,02, C3 €[0,1],
e L1+ G+ =1,
o (%,y) = Ci(x1,y1) + Ca(x2,Y2) + C3(x3,Y3).

Barycentric coordinates are invariant under affine transformations: If & € K has the barycen-
tric coordinates ({1, (3, (3) with respect to the vertices of K, then x = Tk & has the same
coordinates with respect to the vertices of K. The exact Gaufd nodes in barycentric coordinates
and the corresponding weights for quadrature of order up to 5 are given in Table 7.1. The
element contributions of the local basis functions can then be computed as, e.g., in

L (A(X)Vei(x), Vej(x)) dx ~ det(Ax) Z Wy <A(Xk)AETv{l;i(‘ik)) AETV1T)j(5k)> )
k=1

*[Strang 1972]
*e.g., [Ciarlet 2002, Theorems 4.1.2, 4.1.6]
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7 IMPLEMENTATION

Table 7.1: Gauf$ nodes x, (in barycentric

L n X w . .
; x k coordinates) and weights wy
1 1 (%) %) 1y % on the reference triangle. The
’ (1,1 2 1 quadrature is exact up to or-
61 ) 6]’ 3] g der 1 and uses n; nodes. For
(3y3,3) 20 starred nodes, all possible per-
. 5 ) oy .
(1,%,0)" % mu.taﬁlons appear with identical
1 weignts.
(0,0,1)* 75 8
111 9
5 7 (3)33) 30
(67\/ﬁ 6—V15 9+2\/ﬁ)* 15515
21 O 21 O 21 2400
(6+m 6+v15 972\/ﬁ)* 155415
21 0 21 o 21 2400

where A = (aj; )f,j:] is the matrix of coefficients for the second-order derivatives, n, is the
number of Gauss nodes, x, and &, are the Gauf$ nodes on the element and reference element,
respectively, and 1, \; are the basis functions on the reference element corresponding to ¢,

@;. The other integrals in a and F are calculated similarly.

The complete procedure for the assembly of the stiffness matrix K and right-hand side F is
sketched in Algorithm 7.1.

BOUNDARY CONDITIONS It remains to incorporate the boundary conditions. For Dirich-
let conditions u = g on 9Q), it is most efficient to assemble the stiffness matrices and right-
hand side as above, and replace each row in K and entry in F corresponding to a node in
bdy_nodes with the equation for the prescribed nodal value:

1 fori=1,...,1length(bdy_nodes) do

2: Set k = bdy_nodes(i)

3: Set Ky ; = 0 for all j

4 Set Ky,x = 1, Fx = g(nodes(k))

For inhomogeneous Neumann or for Robin boundary conditions, one assembles the contri-
butions to the boundary integrals from each face similarly to Algorithm 7.1, where the loop
over elements is replaced by a loop over bdy_faces (and one-dimensional Gauf8 quadrature

is used).
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7 IMPLEMENTATION

Algorithm 7.1 Finite element method for Lagrange triangles

Input: mesh nodes, elements, data ayj,bj,c,f

1:

2:

N v A ow

i

9:
10:

Compute Gaufd nodes &; and weights w; on reference element
Compute values of nodal basis elements and their gradients at Gauf8 nodes on reference
element
Set Kij = Fj =0
fork =1,...,1length(elements) do
Compute transformation T, Jacobian det(A) for element K = elements(k)
Evaluate coeflicients and right-hand side at transformed Gauf$ nodes Tx (&)
Compute a(@s, @;), (f, @;) for all nodal basis elements @, @; using transformation
rule and Gauf$ quadrature on reference element
fori,j=1,...,ddo
Set r = elements(k,1i), s = elements(k,j)
Set Kr,s < Kr,s =+ a((pi) (Pj), Fs <« Fs =+ (f> (pj)

Output: Kij) Fj
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Part 111

NONCONFORMING FINITE ELEMENTS



GENERALIZED GALERKIN APPROACH

The results of the preceding chapters depended on the conformality of the Galerkin approach:
The discrete problem is obtained by restricting the continuous problem to suitable subspaces.
This is too restrictive for many applications beyond standard second order elliptic problems,
where it would be necessary to consider

o Petrov-Galerkin approaches: The function u satisfying a(u,v) for allv € V is an
element of U # V,

« non-conformal approaches: The discrete spaces Uy, and V}, are not subspaces of U and
V, respectively,

o non-consistent approaches: The discrete problem involves a bilinear form a;, # a (and
an might not be well-defined for all u € U).

We thus need a more general framework that covers these cases as well. Let U, V be Banach
spaces, where V is reflexive, and let U*, V* denote their topological duals. Given a bilinear
form a : U x V — R and a continuous linear functional F € V*, we are looking foru € U
satisfying

(W) a(u,v) =F(v) forallveV.

The following generalization of the Lax-Milgram theorem gives sufficient (and, as can be
shown, necessary) conditions for the well-posedness of (W).

Theorem 8.1 (Banach-Necas—-Babuska). Let U and V be Banach spaces and V be reflexive.
Let a bilinear form a : U x V — R and a linear functional F : V — R be given satisfying the
following assumptions:

(i) Inf-sup-condition: There exists a c; > O such that

: a(u,v)
inf sup ————— > c;.
uelyev [[ufly [Ivlly
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8 GENERALIZED GALERKIN APPROACH

(ii) Continuity: There exist c;, c3 such that

| 2 ||u||u ||V||v>
|

|a(u> I<c
<csvily

v

[F(v)
forallue U,veV.

(iii) Injectivity: For anyv €V,

a(u,v) =0forallue U implies v=0.
Then, there exists a unique solution u € U to (W) satisfying

1
ull,, < —||F
| IIu\C1 | F|

v

Proof. The proof is essentially an application of the closed range theorem:' For a bounded
linear functional A between two Banach spaces X and Y, the range A(X) of A is closed
in Y if and only if A(X) = (ker A*)°, where A* : Y* — X* is the adjoint of A, ker A :=
{x € X: Ax = 0} is the null space of an operator A : X — Y, and for V C X,

VOi={x € X" : (x,v). x = 0forallv e V}
is the polar of V. We apply this theorem to the operator A : U — V* defined by

(A, Vv)y. v = a(w,v) forallveV

1

to show that A is an isomorphism (i.e., that A is bijective and A and A" are continuous),

which is equivalent to the claim since (W) can be expressed as Au = f.

Continuity of A easily follows from continuity of a and the definition of the norm on V*.
We next show injectivity of A. Let u;,u, € U be given with Au; = Au,. By definition,
this implies a(u;,v) = a(uz,v) and hence a(u; —u,,v) = 0 for all v € V. Hence, the
inf-sup-condition implies that

a(u1 - uZ)V)

c1 flur —uzfly < sup =0

vev HVHV
and therefore u; = u,.

Due to the injectivity of A, for any v* € A(U) C V* we have a unique u =: A~'v* € U, and
the inf-sup-condition yields

a(u,v) AU, V) VV) e
(81) C ||u||u < Sup ) — < ) >V WV — p < ) >V ,\V — ||v*| Ve -
vev IMlv o vev VIl vev Vv

'e.g., [Zeidler 1995b, Theorem 3.E]
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8 GENERALIZED GALERKIN APPROACH

Therefore, A~! is continuous on A(U). We next show that A(U) is closed. Let {v* },en C
A(U) C V* be a sequence converging to a v € V*, i.e., there exists u,, € U such that
Vi = Au,, and the v}, form a Cauchy sequence. From (8.1), we deduce for all n, m € N that

1
v = a Vi, = Vil

1
[ = tmlluy < AU =1 Ve

which implies that {u,, }Jnen is @ Cauchy sequence as well and thus converges to a u € U. The
continuity of A then yields

v* = lim v = lim Au, = Auy,
n—o0 n—oo

and we obtain v* € A(U). We can therefore apply the closed range theorem. By the reflexivity
of V, we have A* : V — U* and
kerA*={ve V:A*v =0}
={veV:(A"vu),. =0forallu e U}
={ve V:{(Auv)y., =0forallu e U}
={veV:a(u,v)=0foralue U}
={0}

due to the injectivity condition (iii). Hence the closed range theorem and the reflexivity of V
yields

ALU) = ((O1° = (0" € V" (v, O)y-y =0 = V7,
and therefore surjectivity of A. Thus, A is an isomorphism and the claimed estimate follows

from (8.1) applied to f € V* defined by (f,v),. , = F(v) forallv € V. O]

The term “injectivity condition” is due to the fact that it implies injectivity of the adjoint oper-
ator A* and hence (due to the closed range of A) surjectivity of A. Note that in the symmetric
case U =V, coercivity of a implies both the inf-sup-condition and (via contraposition) the
injectivity condition, and we recover the Lax-Milgram lemma.

For the non-conforming Galerkin approach, we replace U by Uy, and V by Vy,, where U;, and
Vj, are finite-dimensional spaces, and introduce a bilinear form ay, : U, x V};, — Rand a
linear functional F, : V;, — R. We then search for u;, € Uy, satisfying

(W) an(Un, Vi) = Fp(vn)  forall vy, € V;,.

Although we do not require Uy, C Uand V}, C V, we need to have some way of comparing
elements of U and U}, in order to obtain error estimates for the solution uy. We therefore
assume that there exists a subspace U, C U containing the exact solution such that

U(h) = U, + Uy :{w—f—wh:w € U*,wh € Uh}

can be endowed with a norm [[u[[,;, satisfying
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8 GENERALIZED GALERKIN APPROACH

@ lunllum = llunlly, foralluy € Uy,
(i) [y < clfulfly forallu € U,.

In contrast to the conformal setting, the well-posedness of (Wy,) cannot be deduced from the
well-posedness of (W), but needs to be proved independently. This is somewhat simpler due
to the finite-dimensionality of the spaces.

Theorem 8.2. Let Uy, and Vy, be finite-dimensional with dim U;, = dim V4. Let a bilinear
form ay, : Up X Vi, — R and a linear functional Fy, : Vi, — R be given satisfying the following
assumptions:

(i) Inf-sup-condition: There exists a ¢ > O such that

an (Un, v
inf sup n(Un, Vi) > .
up€Uyn VhEVH HuhHuh ||vhHVh

(ii) Continuity: There exist c3, c3 such that

< 2 funlly, [vallv, »

< ¢3 [[vally,
foralluy, € Uy, v € V.

Then, there exists a unique solution uy, € Uy to (Wy,) satisfying

1

— ||Fn|
Cq

[unlly, < Vi

Proof. Consider a basis {¢@1,...,@n} of Uy and {1py,...,P,} of Vy, and define the matrix
K € R™*™, Kyj = a(@i, ;). Then, the claim is equivalent to the invertibility of K. From the
inf-sup-condition, we obtain injectivity of K by arguing as in the continuous case. By the
rank theorem and the condition dim Uy, = dim V},, this implies surjectivity of K and hence
invertibility. The estimate follows again from the inf-sup-condition. O]

Note the difference between Theorem 8.2 and the Lax-Milgram theorem in the discrete case:
In the latter, the coercivity condition amounts to the assumption that the matrix K is positive
definite, while the inf-sup-condition only requires invertibility.

The error estimates for non-conforming methods are based on the following two generaliza-
tion of Céa’s lemma. The first results concerns non-consistent but conformal approaches, and
can be used to prove estimates for the error arising from numerical integration; see Theorem
7.1. In the following, we assume that the conditions of Theorem 8.2 hold.

Theorem 8.3 (first Strang lemma). Assume that
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8 GENERALIZED GALERKIN APPROACH

(l) U, cu= U(h) and Vy, C V.
(ii) There exists a constant c4 > 0 independent of h such that
la(uw, vi)l < ca [[wllym vally,
holds for allu € U and vy, € V..

Then, the solutions w and uy, to (W) and (Wy,) satisfy

[F(vh) — Fr(vh)|

1
Hu_uhHu(h) S - osup

T Vi€Vh HVhHVh
~ ¢ 1 a(wn,vn) — an(wp,v
+ inf (]+_4> I —whllu(m + — sup la(Wh, Vi) r(Wh, Vi)l
whelly Cq C1 vpevy thHVh

Proof. Let wy, € Uy, be given. By the discrete inf-sup-condition, we have

an(Un —wn,v)
C Huh_WhHu(h) < osup
VhEVh th—HVh

Using (W) and (W},), we can write
an(un — Wi, Vi) = a(u —wn, Vi) + a(Wn, Vi) — an(Wn, vi) + Fr(vi) — F(vn).
Inserting this into the last estimate and applying the assumption on a yields

la(Wh, Vi) — an(wn, vi)l

1 lun = willym) < ca lu—wnllym) + sup

VhE VR thHVh
F(vh) — Fr(v
o sap TP =Fulun)]
VhEVH th—HVh

The claim follows after using the triangle inequality

uw—unllym) < v =wnllym) + llun —=willym)
and taking the infimum over all wy, € U,,. ]
If the bilinear form a;, can be extended to U(h) x V;, (such that ay, (u, vy,) makes sense), we
can dispense with the assumption of conformality.

Theorem 8.4 (second Strang lemma). Assume that there exists a constant ¢4 > 0 independent
of h such that

lan (w,vi)l < eq [[ully ) [Vrlly,

holds for all u € U(h) and vy, € Vy,. Then, the solutions u and uy, to (W) and (Wy,) satisfy

Cq ) 1 [Fr(vi) — an(u, v
u—u < 1—|——> inf [Jlu—w + — su
H hHu(h) = < ¢ ) wheu, H hHu(h) Ct th\Rh HVhHVh
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8 GENERALIZED GALERKIN APPROACH

Proof. Let wy € Uy be given. Then,

an(Up —wn,vi) = ap(un — U, vi) + an(u—wn, vi)

= Fr(vn) — an(u,vi) + an(u —wn, vi).
The discrete inf-sup-condition and the assumption on ay, imply

[Fr(vi) — an(uw—wp, )|
C1 Huh_WhHu(h) S sup H
VLEVh vhHVh

+ cafju _WhHu(h) )

and we conclude using the triangle inequality as above. ]

To illustrate the application of the first Strang lemma, we consider the effect of quadrature on
the Galerkin approximation. For simplicity, we consider for u,v € H}(Q) the continuous
bilinear form

a(u,v) = (aVu, Vv)

with « € WH®(Q) — C°(Q), a1 > a(x) = o > 0. Let V}, C H}(Q) be constructed
from triangular Lagrange elements of degree m on an affine-equivalent triangulation Ty,. The
discrete bilinear form is then

m

an(Un, Vi) = Z ZWk(X(Xk)VUh(Xk) - Vvn(xxk)

KeTh k=1

where wy and xy are the Gauf§ quadrature weights and nodes on each element. We recall that
this formula is exact for polynomials of degree up to 2m — 1, and that all weights are positive.
Since Vuy, is a vector of polynomials of degree m — 1, this implies

m 2 m m
(Z wiea(xy ) Vi (xi ) - VVh(Xk)> < of (Z Wk|Vuh(Xk)|z> (Z Wk|VVh(Xk)|2>
k=1

k=1 k=1
2 2 2
== 0(1 \VLL}JH] (K)|VVh|H1 (K)

since the quadrature is exact for [Vup|?, |[Vup|* € P2, 2. Hence, ay, is continuous on V;, x
Vhl

lan (wn, Vi)l < Cllunllyi o) Valliq) -

Similarly, ay, is coercive:

m
an (Un, un) = xo Z ZWkWuh(Xsz = oo[unlfii (o)
KeTh k=1

2
> Cllunliiiq)
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8 GENERALIZED GALERKIN APPROACH

by Poincaré’s inequality (Theorem 2.5). Thus, the discrete problem is well-posed by Theorem
8.2.

We next derive error estimates for m = 1 (linear Lagrange elements). Using the first Strang
lemma, we find that the discretization error is bounded by the approximation error and the
quadrature error. Theorem 5.9 yields

Wihrg/h [w—=wnllia) < Chiulz(q).

For the quadrature error in the bilinear form, we use that for wy, vy, € Vy,, the gradients
Vwy, and Vvy, are constant on each element to write

a(Wh,Vh) — an(Wh,vn) = Z (J aVwy - Vv dx — ZWkOC(Xk)VWh(Xk) : VVh(Xk)>

KeTh k=1
= Z Vwy - Vv (J odx — Zwkoc(xk)> .
KeTh K k=1

Since
m
Ex(v) := J v(x) dx — ) wiv(xi)
K k=1
is a bounded, sublinear functional on W™>(K) which vanishes for allv € P,,,_1 C Poin_1,
we can apply the Bramble-Hilbert lemma on the reference element K to obtain
A scaling argument then yields
[Ex (V)| < Chyt vol(K) [vlwmes (k).
Inserting this and using that Vuy,, Vv, are constant on each element, we obtain

(Wi, Vi) = an(Why Vi)l < ) [V - Von] [Ex (o)
KeTh

<C Z hK|OC|WI,oo(K)J Vwy - Vv dx
K

KeTh
< Chlodwie ) Wnlli o) Vel q) -

For the quadrature error on the right-hand side Fy, (vy,), we proceed similarly (applying the
Bramble-Hilbert lemma to fv}, and using the product rule and equivalence of norms on Vy,)
to obtain

[F(vi) — Fn(vi)l < Ch[fllwie(q) HVh||H1(Q) :
Combining these estimates with the first Strang lemma yields
w—nlly o) < Ch(Ifwie@) + k)

where we have used that inf,, v, [Xlw1.<(q) [Whlly, = 0.
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DISCONTINUOUS GALERKIN METHODS

Discontinuous Galerkin methods are based on nonconforming finite element spaces consist-
ing of piecewise polynomials that are not continuous across elements. This allows them to
handle irregular meshes with hanging nodes and different degrees of polynomials on each
element. They also provide a natural framework for first order partial differential equations
and for imposing Dirichlet boundary conditions in a weak form, on which we will focus here.
We consider a simple advection-reaction equation

B-Vu+pu="f

which models the transport of a solute concentration u along the vector field 3. The reaction
coefficient p determines the rate with which the solute is destroyed or created due to interac-
tion with its environment, and f is a source term. This is complemented by (for simplicity)
homogeneous Dirichlet conditions which will be specified below.

9.1 WEAK FORMULATION OF ADVECTION-REACTION EQUATIONS

We consider QO C R™ (polyhedral) with unit outer normal v and assume
peL®(@Q), peWH @),  fel*Q).
Our first task is to define the space in which we look for our solution. Let
00~ ={s€0Q:B(s) v(s) <0}
denote the inflow boundary and
00" ={s € 0Q:B(s) v(s) >0}
the outflow boundary, and assume that they are well-separated:
min Is —t| > 0.

s€0Q~,tecoQ*
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9 DISCONTINUOUS GALERKIN METHODS

Then we define the so-called graph space
w={vel’Q):B-Vvel*(Q)},

which is a Hilbert space if endowed with the inner product
VWi = (W) + (B - Vv, p- Vw).

The latter induces the graph norm

VIl = (v, v)w)?.

One can show' that functions in W have traces in the space

Lé(aQ) = {v measurable on 0Q) : J
20

IB - v[vids < oo},
and that the following integration by parts formula holds:

(9.1) J'Q([S Vviw+ (B-Vw)v+ (V- Blvwdx = J (B-v)vwds

20

for allv,w e W.

We can now define our weak formulation: Set
U:={veW:vgn- =0}

and find u € U satisfying

(W) a(u,v) = (B - Vu,v) + (pu,v) = (f,v)

forallv € V = L?(Q). Note that the test space is now different from the solution space.

Since U is a closed subspace of the Hilbert space W, it is a Banach space. Moreover, L%(Q) is
a reflexive Banach space and the right-hand side defines a continuous linear functional on
L2(Q). We can thus apply the Banach-Necas-Babuska Theorem to show well-posedness.

Theorem 9.1. If
w(x) — %V “B(x) = o >0 foralmostallx € Q
holds, there exists a unique u € U satisfying (W). Furthermore, there exists a ¢ > 0 such that
ullw < elifllizea)

holds.

'e.g., [Di Pietro and Ern 2012, Lemma 2.5]
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9 DISCONTINUOUS GALERKIN METHODS

Proof. We begin by showing the continuity of a on U x L?(Q). For arbitrary u € U and
v € L?(Q), the Cauchy-Schwarz inequality yields
lalw, VI < [IB - Vulliz ) Vi) + Iz 0) V2o

< (T [l ) el VI2 q) -

To verify the inf-sup-condition, we first prove coercivity with respect to the L?(Q) part of
the graph norm. For any u € U, we integrate by parts using (9.1) for v =w = u to obtain

a(u,u) = JQ([S - Vu)u + pu? dx

:J (L—1V-Blu? dx+J (B - v)uds
Q [eJO)

2
Z Ho Hu”LZ(Q) )

where we have used that u vanishes on 90~ due to the boundary conditions and that 3-v > 0
on 0Q*. This implies
7 alu,u) 1 alu,v)
[ull2i0) S BT < sup py ! ———.
HUHLZ(Q) vel2(Q) ||V||L2(Q)
For the other term in the graph norm, we use the duality trick

(B - Vu,v)

1B - VuHLZ(Q) = sup
verz(a) [Vlliz(o)
a(u,v) — (m,v)

= sup
vel2(Q) HVHLZ(Q)
a(u,v)
< sup —— + [l ) 2 (a

vel2(Q) ”VHLZ(Q)
_ a(u,v)
< (1 +ug'! Il (o)) sup 7————.
veL2(Q) ||VHL2(Q)
Summing the last two inequalities and taking the infimum over all u € U verifies the inf-sup-
condition.

For the injectivity condition, we assume that v € L?(Q) is such that a(u,v) = 0 forallu € U
and show that v = 0. Since C¥(Q) C U, we deduce from a(u,v) = 0 that V - (V) exists
as a weak derivative and that V - (fv) = pv. By the product rule, we furthermore have
B-Vv=(u—V-B)veLl*Q),whichimpliesv € W. Inserting this into the integration by

parts formula (9.1) and adding the productive zero yields for allu € U

(9.2) JaQ(B -vjuvdx = J;(B -Vvju+ (B-Vulv+ (V- Bvudx
=au,v) = ((L=V-B)v—P3-Vvu)
=0.
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9 DISCONTINUOUS GALERKIN METHODS

Since 00" and 0Q~ are well separated, there exists a smooth cut-off function x € C*(Q)
with x(s) =0fors € 0Q~ and x(s) = 1fors € 9Q*. Applying (9.2) to u = xv € U yields
J50 (B - v)v? dx = 0. Using again that uv = V - ($v) and integrating by parts, we deduce
that

O:J w? — V- (Bv)vdx
Q

:J (p—%V-[:’,)vzdx—J (B -v)v*ds
0 20
2 Ho [Vl 2a)

since the remaining boundary integral over 0Q~ is non-negative. This shows thatv = 0, from
which the injectivity condition follows. O

Note that the graph norm is the strongest norm in which we could have shown coercivity,
and that a would not have been bounded on U x U.

9.2 GALERKIN APPROACH

The discontinuous Galerkin approach now consists in choosing our discrete spaces as
Vi = {veL*(Q):vlx € P, K€ Tr}

for k > 0 and a given triangulation Ty, of Q (no continuity across elements is assumed, hence
the name). We then search for uy, € V;, satisfying

(Wh) ah(uh,vh) = (f, Vh) for all v, € Vi,

for a bilinear form ay, to be specified. Here, we consider the simplest choice that leads to a
convergent scheme. Recall that the set of interior faces of T, is denoted by I'y. Let F € T}, be
the face common to the elements K;, K, € T}, with exterior normal v; and v,, respectively.
For a function v € L?(Q), we denote the jump across F as

VI = vik, Vi + VI, v2
and the average as
v = %(V|K1 +Vlk, ).

We will omit the subscript F if it is clear which face is meant. It is also convenient to introduce
for vi, € Vy, the broken gradient V,vy, via

(thh)lK = V(th() forallK € ‘.Th.
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9 DISCONTINUOUS GALERKIN METHODS

We then define the bilinear form

(9.3) an(Un,vi) = (Hun + B - Viup, Vi) + LQ(B - V)upvy ds
— Z J B - [un] {vnlds.
Feln F

The second term enforces the homogeneous Dirichlet conditions in a weak sense. The last
term can be thought of as weakly enforcing continuity by penalizing the jump across each
face; the reason for its specific form will become apparent during the following. Continuity of
aon Vy, x Vy, will be shown later (Lemma 9.2). To prove well-posedness of (W,), it remains to
verify the discrete inf-sup-condition, which we can do by showing coercivity in an appropriate
norm. We choose

fanlI? = o Iunliqo + | 418+ i ds,

which is clearly a norm on V;, C L?(Q). We begin by integrating by parts on each element
the first term of (9.3) for vy, = uy:

(un + B - Vi, un) = Y J b 4 (B - Vun )y dx
KeT, 'K

:ZJ

i~ LV B x| LB v ds.
Ke{-Th K

oK

The last term can be reformulated as a sum over faces. Since B € W">(Q) is continuous, we

have
S [ seond=3 [ 1 pil X[ deovd

KeTy, VoK Femh FEOTh\Th

Using that v; = —v; and therefore

3 W], = Sk, —wik,)v = S (Wi, +wlk,) Wik, —wik,)v = {whe [w];

and combining the terms involving integrals over 00}, we obtain

> JaK%(B-v)uﬁds—i—J (B-v)uﬁds:ZJ

KETH 00~ Ferp °F

B [un] {unltds +J 2B - vIuf ds.
00

Note that we have no control over the sign of the first term on the right-hand side, which
is why we had to introduce the penalty term in ay, to cancel it. Combining these equations
yields

an(un,un) = Z J

) (b—3(V-B))up dx—i—J'a 1B - vIuf ds
KeTh

Q

> Wo HuhHiz(Q) +J e viuZ ds
20

2
= [lwn ™
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9 DISCONTINUOUS GALERKIN METHODS

Hence, a, is coercive on V;,, and by Theorem 8.2, there exists a unique solution u;, € Vj, to
(Wh).

9.3 ERROR ESTIMATES

To derive error estimates for the discontinuous Galerkin approximation u,, € Vi tou € U,
we wish to apply the second Strang lemma. Our first task is to show boundedness of a;, on
a sufficiently large space containing the exact solution. Since the corresponding norm will
involve traces, we make the additional assumption that the exact solution satisfies

uel,:=UunH'(Q).

By the trace theorem (Theorem 2.4), u|r is then well-defined in the sense of L*(F) traces. We
now define on U(h) := U, + V;, the norm

2 2 2 — 2
IwliZ = [l + 3 (18 - Vwlifz + i 1wliEzqox ) -
KeTh

We can then show boundedness of ay:

Lemma 9.2. There exists a constant C > 0 independent of h such that for allu € U(h) and
Vi € Vy,

an(u,vi) < Clul, lva]l-

Proof. Using the Cauchy-Schwarz inequality and some generous upper bounds, we immedi-
ately obtain

(9.4) (1 + BV, Vi) +j (B - v)wvn ds < C[ull, [lvall,
00—

with a constant C > 0 depending only on p. For the last term of ay, (u, vy ), we also apply the
Cauchy-Schwarz inequality:

>

Feln F

1 1

B-[ul{vntds <C (Z F{hy H[[M]Hilm) (Z 2{h} H{vh}}’ﬁZ(F)) y

Fel Fel

where C > 0 depends only on 3. Now we use that
SIWDE < W, +wik,), 20D < (Wi, +wik,)

holds, and that for a shape-regular mesh, the element size hx cannot change arbitrarily between
neighboring elements, i.e., there exists a ¢ > 0 such that

¢! max(h,, hx,) < {h} < e min(hy,, hg,).
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9 DISCONTINUOUS GALERKIN METHODS

This implies
} }
(9.5) Z J - [[U]] fvnlds < C (Z hE] Hu|%2(al<)> (Z hx ||Vh||%2(a1<)>
Ferh KE"I}L KE‘I}L

< Cllefl flvnll

where we have combined the terms arising from the faces of each element and applied a
discrete trace theorem (which can be deduced from the fact that v}, is a polynomial, together
with a scaling argument):*

1/2
hy ||VhHL2(aK) < HVhHLZ(K)-

Adding (9.4) and (9.5) yields the claim. O

Since ||| and [|-||, are equivalent norms on the (finite-dimensional) space Vi, Lemma 9.2
fills the remaining gap in the well-posedness of (Wy,).

We now argue consistency of our discontinuous Galerkin approximation.

Lemma 9.3. A solution u € U, to (W) satisfies
ah(u)vh) = (fyvh)

for all vy, € Vy.

Proof. By definition, u € U, satisfies a(u,vy) = (f,vy) for all vy, € V4. Furthermore, due to
the boundary conditions,

J (B -v)uvy, ds = 0.
20~

It remains to show that the penalty term (f - v) [un ]+ {vn}r vanishes on each face F € I,. Let
@ € CP(Q) have support contained in S € K; UK, C Q and intersecting F = 9K; N 9Ko.
Then the integration by parts formula (9.1) yields

0= (B-Tuo+ (B Volut (V- Blupdx
- L (B-Vwe+ (B Vohut (V- Blue dx
+LQKZ(B VW + (B Ve)u+ (V- Blug dx
— Lms(ﬁ -v)ue ds + Lms(ﬁ V)ue ds

:L[:’,-[[u]](pds.

The claim then follows from a density argument. ]

’e.g., [Di Pietro and Ern 2012, Lemma 1.46]
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9 DISCONTINUOUS GALERKIN METHODS

This implies that the consistency error is zero, and we thus obtain the following error esti-
mate.

Theorem 9.4. Assume that the solution u € U(h) to (W) satisfies w € H**1(Q). Then there
exists a ¢ > 0 independent of h such that

‘H'LL — uhm < Chk|'LL|Hk+1 (Q)-

Proof. Since ay, : U(h) x Vi, — R is consistent, continuous with respect to the ||-||, norm
and coercive with respect to the ||-|| norm, we deduce as in the second Strang lemma that

e~ < ¢ inf [lu— v,
h

Assuming that u is sufficiently smooth that the local interpolant Jxu is well-defined, we can
show by the usual arguments that

[ JKuHLZ(K) < Chﬁ” W (k)
<

IV (= Txw) |2y < chighulypen k),

Il — Ikl 2ok < chis™ 2 e (k) -

Applying these bounds in turn to each term in [|u — Jgul|, yields the desired estimate. [

Note that since we could only show coercivity with respect to ||-|| (and w — uy, isnotin a
finite-dimensional space), we only get an error estimate in this (weaker) norm of L? type,
while the approximation error needs to be estimated in the (stronger) H'-type norm || -] ,.
On the other hand, we would expect a convergence order h**1/2 for the discretization error
in an L2-type norm (involving interface terms). This discrepancy is due to the simple penalty
we added, which is insufficient to control oscillations. (The penalty only canceled the interface
terms arising in the integration by parts, but did not contribute further in the coercivity). A
more stable alternative is upwinding: Take

i (uny ) = anlatnyv) + 3 | 1B+ VI - [on] s
Fem F

for a sufficiently large penalty parameter n > 0. It can be shown® that this bilinear form is
consistent as well, and is coercive in the norm

2 2 n 2 2
Il = Il + 3 | S8 vibT? ds+ 3 B+ Vil
Fer, *F KETh

and continuous in

2 2 — 2 2
il = lwlls + 3 (e Witz + 1wl )

KeTh

which can be used to obtain the expected convergence order of h**'/2 (which is useful in
the case k = 0 as well).

*e.g., [Di Pietro and Ern 2012, Chapter 2.3]
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9 DISCONTINUOUS GALERKIN METHODS

9.4 IMPLEMENTATION

As in the standard Galerkin approach, the assembly of the stiffness matrix is carried out
by choosing a suitable nodal basis ¢1, ..., @n of Vi, and computing the entries an (@i, @;)
element-wise by transformation to a reference element. For discontinous Galerkin methods,
there are two important differences:

1. Since the functions in V}, can be discontinuous across elements, the degrees of freedom
of each element decouple from the remaining elements.

2. There are terms arising from integration over interior as well as boundary faces.
These require some modifications to the assembly procedure described in section 7.2.

Due to the first point, we can take each basis function ¢; to have support on only one element.
Our set of global basis functions is thus just the union of the sets of local basis functions
on each element K € T}, (extended to zero outside K), which are constructed as in chapter
4. Note that this implies that nodes (the interpolation points for each degree of freedom)
common to multiple element domains have to be treated as distinct (e.g., a node on a vertex
where m elements meet corresponds to m degrees of freedom, one for each element). The
dimension of Vj, is thus equal to the sum of the local degrees of freedom over all elements,
and thus greater than for standard finite elements.

In particular, if the global basis functions are enumerated such that the local basis functions in
each element are numbered contiguously, the mass matrix M with elements My; = (o4, @;)
is then block diagonal, where each block corresponds to one element. For the stiffness matrix
K, the terms arising from volume integrals are similarly block diagonal, but they are coupled
via the terms arising from the integrals over interior faces. It is thus convenient to separately
assemble the contributions to the bilinear form a;, from volume integrals, interior face
integrals and boundary face integrals:

o The volume terms are assembled as described in section 7.2, making use of the simple
form of the local-to-global index.

o For the interior face terms, one needs a list interfaces of interior faces, which contains
for each face F the two elements K, K, sharing it, as well as the location of the face rel-
ative to each element. For each pair of basis functions from the two elements (obtained
via the list elements), one can then (by transformation to the reference element and, if
necessary, numerical quadrature) compute the corresponding integrals, recalling for
the computation of jumps and averages that each local basis function is zero outside its
element, and that the unit normals can be obtained from the reference element (where
they are known) by transformation.

o The boundary terms are similarly assembled using the list bdy_faces, checking on each
face the sign of 3(x) - v¢ to decide whether it is part of the inflow boundary 9Q~ where
the boundary conditions have to be prescribed.
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MIXED METHODS

We now consider variational problems with constraints. Such problems arise, e.g., in the
variational formulation of incompressible flow problems (where incompressibility of the
solution u can be expressed as the condition V - u = 0) or when explicitly enforcing boundary
conditions in the weak formulation. To motivate the general problem we will study in this
chapter, consider two reflexive Banach spaces V and M and the symmetric and coercive
bilinear form a : V x V — R. We know (cf. Theorem 3.3) that the solution u € V to
a(u,v) =0forallv € V is the unique minimizer of J(v) = %a(v, v). If we want u to satisfy
the additional condition b(u, ) = 0 for all p € M and a bilinear formb: V x M — R (e.g.,
b(u, n) = (V- u, n)), we can introduce the Lagrangian

L{u,A) =J(u) +b(u,A)
and consider the saddle point problem

inf L .
inf sgﬁ (v, )

Taking the derivative with respect to v and p, we obtain the (formal) first order optimality
conditions for the saddle point (u,A) € V x M:

a(u,v) +b(v,A) =0 forallveV,
b(u,u) =0 forallpe M

This can be made rigorous; the existence of a Lagrange multiplier A however requires some
assumptions on b. In the next section, we will see that these can be expressed in the form of
an inf-sup condition.

10.1 ABSTRACT SADDLE POINT PROBLEMS

Let V and M be two reflexive Banach spaces,

a:VxV-oR, b:VxM—=R
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10 MIXED METHODS

be two continuous (not necessarily symmetric) bilinear forms, and f € V* and g € M* be
given. Then we search for (u,A) € V x M satistying the saddle point conditions

©) { a(w,v) + b(v,A) = (f,v)y. v forallv eV,

b(u, ) = (g, W)m-m forallpe M.

In principle, we can obtain existence and uniqueness of (u, A) by considering (8) as a vari-
ational problem for a bilinear form ¢ : (V x M) x (V x M) — R and verifying a suitable
inf-sup condition. It is, however, more convenient to express this condition in terms of the
original bilinear forms a and b. For this purpose, we first reformulate (8) as an operator
equation by introducing the operators

A:V =V (A, Vv)y. vy = a(u,v) forallveV,
B:V— M, (Bu, i) ppe g = blu, ) forallp e M,
B*: M — V¥ (B*A,v)y-y =b(v,A) forallve V.

Then, (8) is equivalent to

Au+ B*A =1,
(10.1)

Bu =g.

From this, we can see the following: If B were invertible, the existence and uniqueness first of
u and then of A would follow immediately. In the (more realistic) case that B has a nontrivial
null space

kerB ={x € V:b(x,u) =0 forall n € M},

we have to require that A is injective on it to obtain a unique u. Existence of A then follows
from surjectivity of B*. To verify these conditions, we follow the general approach of the
Banach-Necas-Babuska theorem.

Theorem 10.1 (Brezzi splitting theorem). Assume that
(i) a:V xV — R satisfies the conditions of Theorem 8.1 for U =V = ker B and
(ii)) b:V x M — R satisfies for 3 > 0 condition

b
(10.2) inf sup _bv > B.
neMyey [V [[lim

Then, there exists a unique solution (u,A) € V x M to (10.1) satisfying

[ully + Al < CUIf]

ve +11gllme)-
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Condition (ii) is an inf-sup-condition for B* (since the infimum is taken over the test functions
) and is known as the Ladyzhenskaya-Babuska-Brezzi (LBB) condition. Note that a only
has to satisfy an inf-sup condition on the null space of B, not on all of V, which is crucial in
many applications.

Proof. First, by following the proof of Theorem 8.1, we deduce that the LBB condition implies
that B* has closed range, is injective on M, and is surjective on

(kerB)® = {v* € V*: (v'yV)y-y = 0forallv € ker B}.

In addition,

B llkellp < 1B w|

V*

holds for all © € M. By reflexivity of V and M and the closed range theorem, B = (B*)*
has closed range as well and hence is surjective on (ker B*)° = ({0})° = M*. Thus for any
g € M* there exists a Tiy € V satisfying Bliy = g. Since B is not injective, {i4 is not unique,
nor can it necessarily be bounded by g (since one can add any element in ker B). However,
among the possible solutions, we can find one that is bounded by applying the Hahn-Banach
extension theorem.

Let v* € (ker B)® C V* be given. Then there exists a unique A € M such that B*A = v* and
A < ]E |lv|ly/-- Since V is reflexive, we can write

1
AMlm < 5 :
I < 5 llglln

V|

(g, V) (veyeve = (B"A Tg) v v = (95 A e m < 19l Ve

This implies that 14 is bounded as a linear functional on (ker B)° C V*, and in particular
that [[Tg|[ (erp)o)e < % |g]lap-- The Hahn-Banach extension theorem thus yields existence
ofauy € (V*)* =V withuy =14 on (ker B)® and

5 1
(10.3) uglly = ||ugH((kerB)0)* < E gl -
In addition, Bug = g as well, since for all p € M,
(Bug, FL>M*,M = (B, ug>v*’v = (B, 11g>v*,v = (9, H>M*,M .

Due to condition (i), A is an isomorphism on ker B. Considering f — A4 as a bounded linear
form on ker B C V, we thus obtain a unique us € ker B satistying Au¢ = f — Aug and

(IIf]

v+ Cliuglly),

1
(10.4) el < -

where « > 0 and C > 0 are the constants in the inf-sup and continuity conditions for a,
respectively.
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Now set u = us + ugy € V and consider f — Au € V*, which by construction satisfies for all
v € ker B

(f— Au>V>v*,v = <B*7\>V>v*,v = (Bv, 7‘>M*,M =0,

ie., f—Au € (ker B)°. Since B* is surjective on (ker B)?, we obtain existence ofa A € M
satisfying B*A = f — Auand

(05) e < 5l + C )
We have thus found (u,A) € V x M satistying
Au+BA=f
and
Bu =Buy =g.

The claimed estimate follows by combining (10.3), (10.4) and (10.5).

To show uniqueness of the solution, consider the difference (1, A) of two solutions (u,A;)
and (u, A ), which solves the homogeneous problem (10.1) with f = 0and g = 0,i.e., Bu =0
and AT + B*A = 0. Then, U € ker B and the bijectivity of A on ker B implies Tt = 0, since

o« ||} < a(T, @) = a(w, @) + b(T,A) = 0.

Hence B*A = 0. Similarly, from the injectivity of B* it follows that A = 0. O

10.2 GALERKIN APPROXIMATION OF SADDLE POINT PROBLEMS

For the Galerkin approximation of (8), we again choose subspaces V}, C Vand M, C M
and look for (un,An) € Vi, x My, satisfying

80) { a(un,vi) + b(vh,An) = (fyvh)y.y  forallvy € Vi,
h

b(un, tn) = (g kn)m-m forall pn € M.

This approach is called a mixed finite element method. 1t is clear that the choice of V}, and of
M, cannot be independent of each other but must satisty a compatibility condition similar to
Theorem 10.1. For its statement, we define the operator By, : Vi, — M;, analogously to B.

Theorem 10.2. Assume there exist constants xy, B, > 0 such that

a(up,v
(10.6) inf sup _alun,vi) > o,
up€ker By, vy Eker By, HuhHV thHV
b(v
(10.7) inf sup (h—’uh) > Bh.

=
My evi, [Vally [l

Then, there exists a unique solution (un,An) € Vi, X My, to (8y) satisfying

[unllvi, + 1Anllm, < CUIf]

ve T 19llme)-
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Proof. The claim follows immediately from Theorem 10.1 and the fact that in finite dimensions,
the inf-sup condition for a is sufficient to apply Theorem 8.1. O

Note that in general, this is a non-conforming approach since even for V}, C Vand My, C M,
we do not have that By, is the restriction of B to V}, (i.e., B(Vi) ¢ M;,) and that ker By, is a
subspace of ker B. Hence, the discrete inf-sup conditions do not follow from their continuous
counterparts. However, if the subspace V}, is chosen suitably, it is possible to deduce the
discrete LBB condition from the continuous one.

Theorem 10.3 (Fortin criterion). Assume the LBB condition (10.2) is satisfied. Then the discrete
LBB condition (10.7) is satisfied if and only if there exists a linear operator TTy, : V. — Vy, such
that

b(TThv, wn) =b(v,un)  forall p, € My,
and there exists a yy, > 0 such that
Mwvlly <vnlvlly  forallveV

holds.

Proof. Assume that such a IT}, exists. Since T, (V) C Vj, we have for all u, € My,

b b(TT b
Sup (V, p’h) > Sup ( hv) P—‘n) > Sup (V) p’h) 2 E Hu]—LHM ,
VhEVR HVHV vev ||ﬂh"Hv veV Yh ||V||v Yh

which implies the discrete LBB condition. Conversely, if the discrete LBB condition holds,
the operator By, : Vi, — M, as defined above is surjective and has continuous right inverse,
hence for any v € V, there exists a IT,v € V4, such that By, (TTpv) = By,v € M} and

BrlTMwvlly < [[Brvllym- < Clivily H

The operator TTy, is called Fortin projector. From the proof, we can see that the discrete
LBB condition holds with a constant independent of h if and only if the Fortin projector is
uniformly bounded in h.

A priori error estimates can be obtained using the following variant of Céa’s lemma.

Theorem 10.4. Assume the conditions of Theorem 10.2 are satisfied. Let (u,A\) € V x M and
(Un, An) € Vi X My, be the solutions to (8) and (Sv,), respectively. Then there exists a constant
C > 0 such that

) ot el Y
=l + 1A =Ml <€ (i u=vally+ inf, 1A=l )
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Proof. Due to the discrete LBB condition, the operator By, : V;, — M, is surjective and has
continuous right inverse. For arbitrary vi, € Vy,, consider B(u — vy, ) as a linear form on My,.
Hence, there exists 1, € V), satisfying B, = B(u —wvy,), i.e.,

b(rn, ph) =b(w—vn,pun)  forall pp € My,
and
Brlirnlly < Cllu—vnlly.
Furthermore, wy, := 1, + vy, satisfies
bW, un) = b(u, un) = (g, P-h>M*,M for all u, € My,
hence u, —wy, € ker By,. The discrete inf-sup condition (10.6) thus implies

a(up —Wp,Xn)

(10.8) oh |[un —Whlly < sup
xn €ker By, ||Xh||V
—  sup a(un —u,xn) + alu —wp,xn)
xn Eker By, HXhHV
~ aup b(xn, A —An) + alu —Wh,Xh),
xn Eker By, ||Xh||V

by taking the difference of the first equations of (8) and (8y,). For any x,, € ker B, and
Un € My, we have

b(xn, An) = 0 = b(xn, un)
and hence from the continuity of a and b that
o [[un —wally < Cllu—wally + A = prlly)
for arbitrary u, € My. Using the triangle inequality, we thus obtain
(10.9) uw—unlly <lu=wnlly + [lwn —unlly
< (14 5 ) = wally + o A= bl

and

C
(10.10) lu=wnlly <lw=vully +lrally < T+ o= ) [[lu=vally.

Pn

To estimate ||A — An||,,, we again use that for all vi, € V}, and pp, € My,

a(w—up,vh) = b(Viy A = An) = b(Vvi, A — pn) + b(vr, th — An).
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The discrete LBB condition thus implies
Br[An — tnlly < Cl = unlly + 1A = prliwm)-

Applying the triangle inequality again, we obtain
(10.1) A= Anlne < IA =t + [An = sl

C C

< (14 ) M=l + o el

Pn Pn

Combining (10.9), (10.10), and (10.11) yields the claimed estimate. O

This estimate is optimal if the constants o, 1 can be chosen independently of h.

If ker By, C kerB (i.e., b(vy, un) = 0 for all uy, € My, implies b(vy,, n) = 0 for all p € M),
we can obtain an independent estimate for u.

Corollary 10.5. Ifker By, C ker B,

— < C inf — .
w=nlly <€ inf fu—vily

Proof. The assumption implies b(vi, A —A) = 0 for all v, € ker By, and hence (10.8) yields
on [[un —willy < Cllu—wnly -

Continuing as above, we obtain the claimed estimate. O

10.3 MIXED METHODS FOR THE POISSON EQUATION

The classical application of mixed finite element methods is the Stokes equation,' which
describes the flow of an incompressible fluid. Here, we want to illustrate the theory using a
very simple example. Consider the Poisson equation —Au = f on Q C R™ with homogeneous
Dirichlet conditions. If we introduce 0 = Vu € L?(Q)™, we can write it as

Vu—o=0,
(10.12)
—V.o="f.

This system can be formulated in variational form in two different ways, called primal and
dual approach, respectively.

'see, e.g., [Braess 2007, Chapter I11.6], [Ern and Guermond 2004, Chapter 4]
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PRIMAL MIXED METHOD The primal approach consists in (formally) integrating by parts
in the second equation of (10.12) and looking for (o, 1) € L?(Q)™ x H}(Q) satisfying

{ (0,7) — (T, Vu) =0 forall T € L2(Q)™,
(10.13)

—(o, Vv) = —(f,v) for allv € H}(Q).
This fits into the abstract framework of § 10.1 by setting V := L*(Q)", M := H} (Q),
CL(U,T) = (O—)T)) b(G)V) :—(G,V\)).

Clearly, a is coercive on the whole space V with constant o« = 1. To verify the LBB condition,
we insert T = —Vv € L2(Q)™ = V for given v € H}(Q) = M in

b(T,Vv) —(T,v) (Vv, Vv) 1
sup = = M) 2 ca [Vl
wev |ITllv HTHLZ(Q)n - HVVHLZ(Q)“ @y = e )

using the Poincaré inequality (Theorem 2.5). Theorem 10.1 thus yields the existence and
uniqueness of the solution (o, u) to (10.13).

To obtain a stable mixed finite element method, we take a shape-regular affine triangulation
Thn of QO and set for k > 1

Vi = {’th e L?(Q)™: thlk € Pr_1(K)™ forallK Th}s
My, = {Vh S CO(Q) :nlk € Pr(K) forall K € Th} .

Since V;, C V, the coercivity of a on V;, follows as above with constant &, = . Furthermore,
it is easy to verify that VM, C Vj, e.g., the gradient of any piecewise linear continuous
function is piecewise constant. Hence, the [?(Q)™ projection from V on Vj, verifies the
Fortin criterion: If TT, o € Vj, satisfies (TT,0 — o,T,) = 0 forall T, € V}, and given o € V,
then

b(TTyo,v,) = — (T, 0,Vvy) = —(0,Vv,) = b(o,vn) forallvy, € My,

since Vvy, € Vy,. Theorem 10.3 therefore yields the discrete LBB condition and we obtain exis-
tence of and (from Theorem 10.4) a priori estimates for the mixed finite element discretization
of (10.13).

DUAL MIXED METHOD Instead of integrating by parts in the second equation, we can
formally integrate by parts in the first equation of (10.12). To make this well-defined, we set

HY(Q) == {te L*(Q)" :divT € L*(Q)},
endowed with the graph norm

2 2 2
Itllvan @) = T2 (@ + vtz q) -
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Since C*®(Q)™ is dense in LZ(Q)™ D HY(Q), one can show that T € HY¥(Q) has a well-
defined normal trace (tloq - v) € H7'/%(9Q), and that for any T € H¥(Q) and w € H'(Q)
the integration by parts formula

Jﬂ(diV'r)w dx + J

T-VWdX:J (t-v)wdx
o

00

holds.? Similarly to Theorem 2.3, one can show that for a partition {Q;} of Q,
{te2(Q)": 1o, € H'(Q) and T, - v = Tlo, - vonallQ; N Q; # 0} € H¥(Q)

holds, i.e., piecewise differentiable functions with continuous normal traces across elements
arein H"(Q). This will be important for constructing conforming approximations of H" (Q).

After integrating by parts in (10.12) and using that ul;o = 0, we are therefore looking for
(o,1) € HV(Q) x [2(Q) satisfying

(o,7) + (divt,u) =0 for all T € H¥(Q),
(10.14)

(divo,v) = —(f,v) forallv e L?(Q).

(Note that in contrast to the standard - and primal - formulation, the Dirichlet condition
appears here as the natural boundary condition.) This formulation fits into the abstract
framework of § 10.1 by setting V := H¥(Q), M := [?(Q),

a(o, 1) = (0, 7), b(o,v) = (divo,v).

Boundedness of a and b follows directly from the Cauchy-Schwarz inequality. Now we note
that

kerB = {t € L*(Q)" : (divt,v) =0 forallv € L*(Q)}.

Since divt € [?(Q) and thus ||diVT||%z(_Q) =0 for all T € ker B C H¥(Q), this implies

2 2
a(t, 1) = HTHLZ(Q)n = HT”H‘“V(Q) )

yielding both the inf-sup- and injectivity conditions for a. For verification of the LBB condition,
we make use of the following lemma showing surjectivity of B on M. For simplicity, we assume
from here on that Q either has a C' boundary or is convex.

Lemma 10.6. For any f € L?(Q), there exists a function T € H'(Q)™ with divt = f and
Il (ape < Cllfll2(q)-

%e.g., [Brezzi and Fortin 1991, Lemma I11.1.1]
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Proof. Due to the regularity of Q, we can apply Theorem 2.8 or 2.9 to obtain for given
f € L?(Q) a solution u € H?(Q) N HJ(Q) to the Poisson equation

(Vu, Vv) = (f,v) forallv € H}(Q)
satisfying [[ull ;2 (o) < Cl|fll2(q)- Now set T:= —Vu € H' (Q)™ and observe that
(f,v) = —(1, VV) forallv € H}(Q),

and thus f = div 7 by definition of the weak derivative. The a priori bound on T then follows
from the fact that [[Vul| 1 gy < [[Uly2(0)- ]

Using this lemma and the inclusion H'(Q)™ ¢ H%(Q), we immediately obtain for any
v € M and corresponding T, with div T, = v that

b(T,v) (divT,v) (divT,, V) (v,v) 1

)

VIl 2
|Tv||Hdiv(Q) - C||V||L2(Q) C Fer

wev |ITlly rev HTHHdiv(Q

which verifies the LBB condition. From Theorem 10.1 we thus obtain existence of a unique
solution (o,u) € V x M to (10.14) as well as the estimate

1ol e (o) + [ulliz(0) < Clifllz (o -

Although this initially yields only a solution u € L?(Q), one can then use the first equation
of (10.14) to show that u has a weak derivative and (using integration by parts) satisfies the
boundary conditions; i.e., w € H}(Q) as expected.

We now construct conforming finite element discretizations of V and M. Let T}, be a shape-
regular affine triangulation of Q. For M = L?(Q), we again take piecewise (discontinuous)
polynomials of degree k > 0, i.e.,

My, = {vn € L*(Q) : vulk € Px(K) forallK € Ty, } .

For V = HY¥(Q), we construct a space V;, of piecewise polynomials that satisfy the two key
properties of V: Functions 1, € V}, have continuous normal traces across elements, and div
is surjective from V}, to My. One possible choice is

Vi = {tnh € H¥(Q) : Thlk € RTi(K) forall K € Ty, },
where
RTi (K) = P (K)™ +x - Pe(K) :={p1 + p2x:p1 € P(K)™, p2 € Px(K)}.

It is straightforward to verify that for T, € RTi(K), we have divty, € P (K) and tp|r - vF €
Py (K) for every face F C 9K (recall that x - v¢ is constant for every x € F).
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For the sake of presentation, we restrict ourselves k = 0 except where the arguments can
be made independent of k.? In this case, dim RTy(K) = n + 1, so we choose - in order to
achieve a HdiV(Q)—conforming discretization - as our degrees of freedom Ny,..., N, ; the
integral of the normal trace on each face F of the simplex K (or equivalently, since functions
in RTy(K) are constant on each edge, the value of the normal trace at the face midpoints).
To verify that this is a basis of RTo(K)*, let T € RTo(K) satisfy Ni(t) := [ T-vds =0 for
i=1,...,n+ 1. This implies by the Gauf3 divergence theorem that l

O:J T-vds:J div T dx.
o K

As div T is constant, this yields 0 = divt = p,. Hence, T = p; for a constant p; € R™, which

by assumption is orthogonal to n linearly independent vectors vy, ..., v, € R™ (otherwise
K would be degenerate). This implies p; = 0 and thus T = 0. The Raviart-Thomas element
(K, RTo(K),{N1,...,Np,1}) therefore is a valid finite element.

Our next task is to construct interpolants in V}, for functions in V. This is complicated by the
fact that functions in H%(K) have normal traces on H~'/2(9K), which cannot be localized
to single faces F C 0K. We therefore proceed as follows. For T € H'(K)™ - which does
have well-defined normal traces in L?(F) — we define the local Raviart-Thomas projection
Mgt € RTk(K) bY

J (Mgt-v—1-v)qrds =0 for all g, € Py (F),F C 0K,

F

J (HKT—T) “qk dx =0 for all qx € Py (K)n ifk > 1.
K

For k = 0, we have already shown that the projection conditions imply the uniqueness (and
hence existence) of Tk T. The next lemma shows that these conditions are chosen precisely
in order to use the Raviart-Thomas projector Iy in the construction of a Fortin projector.
(Since Ty is not continuous on HYV(Q), it cannot be used directly.)

Lemma 10.7. Foranyt € H'(K)™,

J' div(TTxT)qr dx = J (divT)qy dx for all gy € Py(K).
K K

Proof. Using integration by parts and the definition of the Raviart-Thomas projector, we
have for any qy € Py (K) that

J diV(nKT — T)qk dx = J
K

(HKT-V—T-V)qde—J (Mgt —1) - Vgr dx =0,
oK

K

since Vqy =0fork =0and Vqy € P,_1(K)™ fork > 1. O

*For the case k > 0, see, e.g., [Brezzi and Fortin 1991, § I11.3]. The additional degrees of freedom are analogous
to the projection conditions of the Raviart-Thomas projector below.
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This also yields local projection error estimates.

Lemma 10.8. Foranyt € H'(K)™,

H”KT — THLZ(K) < Ch»K|T|H1 (K)™y
<

HdiV(ﬂKT—T)HLz(K) C|T|H‘(K)“-

In addition, if t € H*(K)"™,

HdiV(ﬂKT — T) HLZ(K) < ChK|T|H2(K)n.

Proof. We consider again k = 0. Since the projection conditions define a basis of RTy(K)*,
we can write

n+1

Mkt = Z <L T-V ds) Py,

i=1

where {1, ..., {1} is the corresponding nodal basis of RT(K). The trace theorem and
Holder’s inequality thus imply that the mapping T — [ T- v ds is continuous on H' (K)™.
From Lemma 10.7 and the fact that div(TTxT) € Py, we obtain

HdiV(ﬂKT)Hiz(K] = J div(TTx ) div(TTkT) dx = J (div 1) div(TTkT) dx
K K

< [ div |2 iy ([divTTRT) [ 12 k) -

The left hand sides thus define bounded functionals on H' (K)™. The estimates then follow
from the Bramble-Hilbert lemma and suitable scaling arguments.* ]

We can now define the global Raviart-Thomas projector TTy for T € H'(Q)™ via (TT3T)x =
Mkl for all K € Ty, which is bounded in the H¥(Q) norm by Lemma 10.8. Similarly, from
Lemma 10.7 we obtain (div(ITyT), qx) = (div T, qi) for all qi € Py. It remains to argue that
Tyt € Vi, which we again do for k = 0 only. Since Iy is a piecewise polynomial, it suffices
to show that the normal trace is continuous across elements. Let K; and K, be two elements
sharing a face F. Then, T € H'(Q)™ has a well-defined normal trace T - v € L?(F) and thus
by construction,

J(HKJ)-Vds:J T-VdS:J (Mx,T) - vds.
F F F

Since (TTxT) - v is constant, this implies (ITx, T)[r - v = (TTx, T)l¢ - V.

*Since the local coordinate x appears explicitly in the definition of RT, (K), Raviart-Thomas elements are
not affine-equivalent. One thus has to use the Piola transform: If K is generated from K by the affine
transformation X — AxX + bx and p € RTi (K), then p = det(Ax) AP € RT(K); see [Raviart and
Thomas 1977].
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We are now in a position to verify the conditions of the Brezzi splitting theorem. First, for
Th € Vi we have div T, € My, and thus the coercivity of a on ker B, C V;, follows exactly
as in the continuous case. For the discrete LBB condition, we proceed as in the proof of the
Fortin criterion. For given vi, € My, C L?(Q), lett,, € H'(Q)™ be the function given by
Lemma 10.6. Then, M1, € Vy and thus

b(Th)vh) (diV(”‘j’T\,h),Vh) (diVth,Vh) (vh)vh) o l ||V H
- C hilL2(Q)

sup
meve iy - ||”7th||Hdiv(Q) - CHTVh||H1(Q)" - CHVhHLz(Q)

by the properties of the Raviart-Thomas projector and Lemma 10.6. Theorem 10.2 therefore
yields existence of a unique solution (on,un) € Vi x M, to the mixed finite element
discretization of (10.14). For sufficiently regular solutions (o, 1) of (10.14), we also obtain a
priori error estimates using Theorem 10.4 and Lemma 10.8.
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Part IV

TIME-DEPENDENT PROBLEMS



VARIATIONAL THEORY OF PARABOLIC PDES

In this chapter, we study evolution equations. For example, if —Au = f (together with
appropriate boundary conditions) describes the temperature distribution at equilibrium wu in
a body due to the heat source f, the heat equation

{ deu(t, x) — Au(t,x) = f(t,x),

u(0,x) = uo(x)

describes the evolution in time of u starting from the given initial temperature distribution u,
(called initial condition in this context). This is a parabolic equation, since the spatial partial
differential operator —A is elliptic and only the first time derivative of u appears.

11.1 FUNCTION SPACES

To specify the weak formulation of parabolic problems, we first need to fix the proper
functional-analytic framework. Let T > 0 be a fixed time and QO C R™ be a domain, and set
Q :=(0,T) x Q. To respect the special role of the time variable, we consider a real-valued
function u(t,x) on Q as a function of t with values in a Banach space V that consists of
functions depending on x only:

u: (0, T) =V, t—u(t)e .

Similarly to the real-valued case, we define the following function spaces:

» Holder spaces: For k > 0, define C*(0, T; V) as the space of all V-valued functions on
[0, T] which are k times continuously differentiable with respect to t. Denote by dju
the jth derivative of u. Then, C*(0, T; V) is a Banach space when equipped with the
norm

K
[l cro, vy = Z sup ] ‘ d]tu(t)Hv

j—1 telo,T
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11 VARIATIONAL THEORY OF PARABOLIC PDES

o Lebesgue spaces (also called Bochner spaces):' For T < p < oo, define L? (0, T; V) as the
space of all V-valued functions on (0, T) for which t — [ju(t)]],, is in L (0, T). This is
a Banach space if equipped with the norm

(eIl at)”ifp <o,

HU’HLP(O,T;V) - ]
esssupco.r) UVl ifp = oo.

o Sobolev spaces: If u € LP(0,T; V) has a weak derivative diu (defined in the usual
fashion) in LP (0, T; V), we say thatu € WP (0, T; V). This is a Banach space if equipped
with the norm

”uHW1>P(O,T;V) = Hu”LP(O,T;V) + HdtuHLp(o,T;V) .

More generally, for 1 < p < oo and two reflexive Banach spaces Vj, V; with continuous
embedding Vy — Vi,wesetq =p/(p—1) (e, 1/p+1/q=1) and

W]’p(VQ,V]) = {V € LP(O,T;V()) : dt\) c L4 (O,T,V])}

This is a Banach space if equipped with the norm

HuHW(vo,w) . HuHLP(O,T;Vo] + HdtuHLq(O,T;W) .

Now let V be a reflexive Banach space with continuous and dense embedding into a Hilbert
space H. Identifying H* with H using the Riesz representation theorem, we have

Ve H=H* — V*

with dense embeddings. We call (V, H, V*) Gelfand or evolution triple. We can then transfer
(via mollifiers)” the usual calculus rules to WP (V, V*). Similarly to the Rellich-Kondrachov
theorem, the following embedding tells us that sufficiently smooth functions are continuous
in time.

Theorem 11.1. Let 1 <p < oo, q =p/(p—1), and (V,H, V*) be a Gelfand triple. Then, the
embedding

WPV, V*) < C(0, T; H)

is continuous.

This result guarantees that functions in WP (V, V*) have well-defined traces u(0), u(T) € H,
which is important to make sense of the initial condition 1(0) = uy.

We also need the following integration by parts formula.

'For a rigorous definition, see [Wloka 1987, § 24]
*For proofs of this and the following result, see, e.g., [Showalter 1997, Proposition II.1.2, Corollary ITL.1.1],
[Wloka 1987, Theorem 25.5 (with obvious modifications)]
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11 VARIATIONAL THEORY OF PARABOLIC PDES

Lemma 11.2. Let (V, H, V*) be a Gelfand triple. For every u,v € WHP(V, V*),

d

5 (0, V() = (deut),V(O)y. v + ([@dv(th u()y

for almost every t € (0, T) and hence
N

N
L (deuft),v(t))y- v dt = (u(T),v(T))y — (u(0),v(0)) — Jo (dev(t),u(t))y- v dt.

In the following, we need only the case p = q = 2, for which we set W(V, V*) := WT2(V, V).

11.2 WEAK SOLUTION OF PARABOLIC PDES

We can now formulate our parabolic evolution problem. Given for almost every t € (0, T)
a bilinear form a(t;-,-) : V x V — R, a linear form f € L%(0,T;V*) and uy € H, find
u e W(V, V*) such that

(11.1)

(deu(t),v)y. v +altult),v) = (f(t),v)y. forae. t € (0,T), allve V
u(0) =ug

(For, e.g., the heat equation, we have V = H}(Q) — 1?(Q) = Hand a(t; u,v) = (Vu, Vv).)
Just as in the stationary case, this can be expressed equivalently in weak form (using the
fact that functions in W(V, V*) are continuous in time). For simplicity, assume uy = 0
(the inhomogeneous case can be treated in the same fashion as inhomogeneous Dirichlet
conditions) and consider the Banach spaces

X ={weW(,V*):w(0) =0}, Y =1%(0,T; V).

Setting
]
biXxY SR bluy) = | (dault)y(O)y. v +altiut)ylt) dt

and

T
<f»U>Y*,Y = J (f(t),y(t)y. v dt,

we look for u € X such that

(11.2) b(u,y) = <f>y>Y*,Y forally €Y.

Well-posedness of (11.1) can then be shown using the Banach-Neéas-Babuska theorem.’

*Equivalence of (11.1) and (11.2) follows, e.g., from [Showalter 1997, Proposition I1L.2.1].
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11 VARIATIONAL THEORY OF PARABOLIC PDES

Theorem 11.3. Assume that the bilinear form a(t;-,-) : V x V. — R satisfies the following
properties:

(i) The mapping t — a(t;u,Vv) is measurable for allu,v € V.

(ii) There exists M > 0 such that |a(t;u,v)| < M ||u||y, [[v||\, for almost every t € (0, T) and
allu,v e V.

(iii) There exists o« > O such that a(t;u,u) > « ||u||%,for almost every t € (0,T) and all
ueV.

Then, (11.2) has a unique solution uw € W(V, V*) satisfying
1
HuHW(V,V*) < & flly- -

Proof. Continuity of bandy ~ (f,y)y. y follows from their definition and the continuity
of a. To verity the inf-sup condition, we define for almost every t € (0, T) the operator
At) 1V = V* by (A(t)u,v)y. v = a(t;u,v) for allu,v € V. Continuity of a implies that
for almost every t € (0, T), A(t) is a bounded operator with constant M. Similarly, coercivity
of a and the Lax-Milgram theorem yields that A(t) is an isomorphism, hence A(t)~' is
bounded as well with constant cc~'. Therefore, for almost every t € (0, T) and all v* € V*,

2
\%

v = ocHA(t)_W*

(11.3) VATV = (AAR) VATV,

x 2
= M2 V¥l -

For arbitrary u € X and u > 0, set z = A(t)'diu + pu. By the triangle inequality, the
uniform continuity of A(t)~" and the definition of the norms in X and Y, we have that

T T
l2ll? < 202 J ldaw(t)[3. dt + 242 J a2 dt < e ull

and thus in particular that z € Y. Moreover, using (11.3), integration by parts, and continuity
of A(t) and A(t)~', respectively, we can estimate term by term

.
b(u,z) = J (deu(t) + A(Du(t), A(t) " deu(t) + pu(t)),. ,, dt
O )
[0 6
v

)
+uocj ()] dt
0

i 2 2% 2 M (T
|, Nl ae+ S i =2 | ol ol d

L&
~2M2

T 5 . T 5
|, Nacute. de+ (o= 25) | ol at

using the generalized Young’s inequality with e = oc/M?.
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11 VARIATIONAL THEORY OF PARABOLIC PDES

Taking 1 = M*a4, the term in parenthesis is positive, which yields
2
b(u,z) = clufx = clluflx ]y -
This implies the inf-sup-condition:

b b
inf sup (w,y) > inf _blw,z) >
ueX yey flullx lylly = wex [luflx [Izlly

It remains to show that the injectivity condition holds. Assumey € Y is such that b(u,y) =0
for allu € X. For any ¢ € C3(0,T) and v € V, we have due to the definition of the weak
time derivative and b(@v,y) = 0 that

T T

(e, y(t)y.y dt :J alt o (thv, y(t)) dt

.
J' (dey(t),v)y. v @(t) dt = —J
0

0 0
T

- L (ALY (1), v}y v @(t) dt,

and hence (by density of C3(0, T) in L#(0, T)) that —d;y = A(t)*y in Y*. In particular, we
deduce that dyy € L?(0, T; V*) and thusy € W(V, V*).

Since tv € X for any v € V, we can apply Lemma 11.2 to obtain
T
0= (~dy (0 )y v + AW Y0, ),

0
T

== T+ [ ()0 + el o) a
0
=—T <y(T)’V>H .
By density of V in H, this implies that y(T) = 0. Similary, y € W(V, V*) and the first part of

Lemma 11.2 yields

.
= JO —(dey(t),y(t))y- v + (AL Y(t), tv)y. , dt

>—fﬂi D@ + ey at

1
= 2 Iyl + eyl

and hence y = 0. We can thus apply the Banach-Necas-Babuska theorem, and the claim
follows. N
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GALERKIN APPROACH FOR PARABOLIC
PROBLEMS

To obtain a finite-dimensional approximation of (11.1), we need to discretize in time and
space.

12.1 TIME STEPPING METHODS

Based on the order of operations, we can discern three popular approaches:

METHOD OF LINES This method starts with a discretization in space to obtain a system
of ordinary differential equations, which are then solved with one of the vast number of
available methods. In the context of finite element methods, we use a discrete space V;, of
piecewise polynomials defined on the triangulation Ty, of the domain Q. leen a nodal
basis {(pJ} of Vi, we approximate the unknown solution as uy (t, x) ZN“ U; (1) @j(x).
Letting Py, denote the L? projection on V}, and using the mass matrix M;; = ((pl, (p)) and the
(time-dependent) stiffness matrix K(t);; = a(t; @1, @;) yields the following linear system of
ordinary differential equations for the coefficient vector U(t) = (U;(t),... Uy, (t))":

M%U(t) + K(t)U(t) = MF(t),
U(O) = Uy,
where U, and F(t) are the coefficients vectors of Pr,uo and Py, f(t), respectively. The choice of
integration method for this system depends on the properties of K (such as its stiffness, which

can lead to numerical instability). Some details can be found, e.g., in [Ern and Guermond
2004, Chapter 6.1].
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12 GALERKIN APPROACH FOR PARABOLIC PROBLEMS

ROTHE’S METHOD This method consists in treating (11.1) as an ordinary differential
equation in the Banach space V, which is discretized in time by replacing the time derivative
d¢u by a difference quotient:

o 'The implicit Euler scheme uses the backward difference quotient

u(t+h) —u(t)
h

diu(t+h) =

for h > 0 at time t + h to obtain for given u(t) and unknown u(t + h) € V the
stationary partial differential equation

(u(t+h),v)yy +halt+hu(t+h),v) = ut),v), +h{ft+h),v)y.\
forallv e V.
o The Crank-Nicolson scheme uses the central difference quotient

u(t+h) —u(t)
h

for h > 0 at time t + % to obtain

(W(t+h),v), + % a(t+ %;u(t +h),v) = (u(t),v), — % a(t+ %;u(t),v)

+h{f(t+3),v)y.y

forallv e V.

Starting with t = 0, these are then approximated and solved in turn for u(t,), t,, := mh,
using a finite element discretization in space. This approach is discussed in detail in [Thomée
2006, Chapters 7-9]. The advantage of Rothe’s method is that at each time step, a different
spatial discretization can be used.

SPACE-TIME GALERKIN SCHEMES Finally, we can proceed as in the stationary case and
apply a Galerkin approximation to (11.2): Choose finite-dimensional subspaces X;, C X and
Yh C Y and find uy, € X;, such that

T T
(12.1) J (deun(t)yyn(t)ye y + altwn (£, yn(t)) dt = J (F(E), Y (E)ye.y dt

0 0
for all yn, € Yy. This approach is closely related to Rothe’s method, if we choose the discrete
spaces as tensor products in space and time: Let

O=to<ti < ---<tn=T
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12 GALERKIN APPROACH FOR PARABOLIC PROBLEMS

and choose for each t,,, 1 < m < N, a (possibly different) finite-dimensional subspace
Vi C V. Let P (tim—_1, tm; Vin) denote the space of polynomials on the interval [t,,_1,t]
with degree up to r with values in V;;,. Then we define

Xh - {yh S C(O)T) V) th|[tm,1,th S Pr(tmfhtm;\/m)) 1

<m <N, Yn (O):O}>
Yh = {yh € LZ(())T; V) :yh|[tm,1,tm] € Pr71 (tmfhtm;vm)’ 1 < m

<N}

Since this is a conforming approximation, we can deduce well-posedness of the corresponding
discrete problem in the usual fashion (noting that d,uy, € Yy for u, € Xy).

To see the relation to Rothe’s method, consider the case r = 1 (i.e., piecewise linear in time)
and, for simplicity, a time-independent bilinear form. Since functions in X}, are continuous
att =t forall 0 < m < N and linear on each intervall [t,, 1, t,,], we can write

t, —t t—1t.,_
m Un (tmo1) + m]

Unlt) = —" —_—
tm - tmfl tm - tmfl

Up (tm), te [tmo1,tml.
Similarly, functions in Y}, are constant and thus

yh(t) = yh(tmfl) =!Vh € Vm
Inserting this into (12.1) and setting k., := t;;, — t;n_1 yields
tm

alun(tmot ) un(tndyv) = [ (T8l dt

tm—1

(Un(tm) = un(tm—1 )»Vh>v*,v+7m

which is a modified Crank-Nicolson scheme (which, in fact, can be obtained by approximating

the integral on the right-hand side using the midpoint rule, which is exact for y,, € Yy,). For
this method, one can show error estimates of the form'

[ (tm) = w(tm)ll2 () < R ol @) + K olla(a))s

for f = 0 and up # O, where s depends on the accuracy of the spatial discretization, and
k = maxk,,

12.2 DISCONTINUOUS GALERKIN METHODS FOR PARABOLIC PROB-
LEMS

Just as for stationary first order equations, however, the discontinuous Galerkin method has
proved to be very successful for parabolic problems, so we shall focus our analysis on these
methods. Let J,, := (t,_1,tm] denote the half-open interval between two time steps of
length k., = ty, — tyn—1. Then we set for v > 0

Xn =Yy = {yh € I—Z(O>T:V) :yhhm € Pr(tmfhtm;\/m)) T<mcg N} cy,

'[Thomée 2006, Theorem 7.8]
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12 GALERKIN APPROACH FOR PARABOLIC PROBLEMS

where V;;, is again a finite-dimensional subspace of V. Note that functions in Xy, can be
discontinuous at the points t,,, but are continuous from the left with limits from the right,
and so we will write for u;, € Xp

Uy = uh(tm) = PLI(I) uh(tm - 8)) u; = l% uh(tm + 8)

and
[un],, = uih — um.

As in the stationary case, we now define the bilinear form

br (1t Y1) ZJ (At (£), Yn(6) -y + alts wn (t), yn () dt
=1

+ Z <[[u]]m—1 >‘J:1—1>H

(which can be derived by integration by parts on each interval J,,, and rearranging the jump
terms). Note that as 0 ¢ J;, we will need to specify u, (0) = u, separately, which we do
by setting [un], := uj — uo. Since the exact solution u € X is continuous and satisfies
u(0) = ug, we have

br(wyn) = (f,yn)y- v for allyn € Xy,
and hence this is a consistent approximation.
Although wellposedness of the discrete problem can be shown using the Banach-Necas-

Babuska theorem, here we will do so using classical energy estimates. We first show existence
and uniqueness of the discrete solution uy,.

Theorem 12.1. Under the assumptions of Theorem 11.3, there exists a unique solution un € Xy
satisfying
(12.2) bh(uh,yh) = <f)yh>Y*‘Y fOT’ allyh € Xh.

Proof. We show injectivity, which implies surjectivity in finite dimensions. Let u;, € X}, satisfy
b (un,yn) = 0 for all y;, € Xy, with uy = 0. Since functions in X;, can be discontinuous at
the time points t,,, we can insert y, = xj, un € Xy, for each 1 <m < N, where x;, (t) =1
if t € J., and zero else. We start with J; = (to, t1]. Since Xy, is constant on J; and zero outside
J1, we have using up = O that

0 = br(un, Xy, un)
- L (dttn (6, wn (). + altn (£), wn (1) dt + (ug — 1o, ud),,

1 2 ‘

2 2
> 5wl =5 Il I} + ‘XJ un (D[ dt + [ug Il

Ja

]
> 5 il + ocj a0 at.

1
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12 GALERKIN APPROACH FOR PARABOLIC PROBLEMS

Hence, un|j, = 0 and u; = 0, and we can proceed in a similar way for ], J3, ..., Jn to deduce
that uy, = 0. O

We next show a stability result for the discontinuous Galerkin approximation. For simplicity,
we assume from now on that the bilinear form a is time-independent and symmetric, and
that Vi = .- = Vy = Vj,. Let A : V — V* again denote the operator corresponding to
the bilinear form a, i.e., (Au,v),; = a(u,v) for all u,v € V. We also assume for the sake of
presentation that the discrete solution uy, is sufficiently regular that Au, (t) € H.

Theorem 12.2. For given f € L%(0, T; H) and uo € H, the solution uy, of (12.2) satisfies

N

.
_ 2
> J ldeun ()7 + [ Aun (O dttk [ [und [l < € (J IF()15, dt + IIuollﬁ> :
0

m=1"Jm

Proof. We estimate in turn each term on the left-hand side by inserting suitable test functions
yp, in (12.2).

Step 1. To estimate ||Aun (t)]],,, we set yn = Xj,, Aun for 1 < m < N to obtain
J (deun(t), Aup(t)), + HAuh(t)Hi[ dt + ([un],, 5, (Aun)f_; >H

:j (F(8), Aun (1), dt.

Due to the bilinearity and symmetry of a, we have

J (dewn (1), Aun (), dt :J a(un(t), diun(t)) dt :J % (%a(uh(t)’uh(t))> @
1 1
= za(um,um) - Ea(u;,hu;,] )-

Similarly, since A is time-independent,

1
za([[uh]]m,1 ) [[uh]]mq ).

<[[Uh]]mf1 y (Aun)l >H = a([[uh]]mq U q)
1
= za([[uh]]mq »anq tUn1+ [[uh]]mq)
1 1
= Ea(u;q,u;q) — Ea(umq,umq)
+

Inserting these into the bilinear form by, (un, yn) yields
a([un] 1 Tunl ) + altmy wm) — altm—1, Um—1) + ZJ ||Auh(t)||2H dt

Jm

- zj (f, Aup (1)), dt.
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Summing over all 1 < m < N yields

N N
> allunl o Tunl )+ Y | 20Awn 0] at
m=1 m=1Y/m

N
<y J 2(F(1), Aun(8),, dt + aluio, uo).

m=1 m

For 2 < m < N, we can simply use coercivity of a to eliminate the jump terms and apply
Young’s inequality to (f(t), Aun(t)),, to absorb the norm of Auy, on J,, in the left-hand side.
For m = 1, we use that

afur]o, [un]o) — aluo,uo) = alug,ug) —2a(uo, ug)

and for ¢ > 0 the generalized Young’s inequality

2 1 2
AU ([} + 5= ol -

a(uO»u(J)r) = <u0)Au(J)r>H < 2¢

N[ ™

Since t — ||Auy(t) Hﬁl is a polynomial in t of degree up to 2r on J;, we have the estimate

tq
K Aug[)? < cj IAw ()] dt.

to

Choosing ¢ > 0 small enough such that eCk;' < 1 yields

N T
(129 S| il avs e ([ 1 at+ fuoli )

0

m=1"Jm

Step 2. For the bound on du;, we use the inverse estimate

J lyn(®)]13 dt < Cky J (t— tm1) [yn(D] dt

Jim Jm

forallyyn € Pr(tm—1,tm; Vi), which follows from a scaling argument in time and equivalence
of norms on the finite-dimensional space P..(0, 1; V},). Now choose yn = Xj,,. (t —tm—1)d¢un
for 1 < m < N.Since y/ _; = 0, we have using the Cauchy-Schwarz inequality that

j (t—tm ) [deun (O] dt = j (= tm 1) (F(t) — At (), deun (1), dt

Jm m

< <J (t—tm—1) (1) — Aun ()}, dt>

m

1

(J (t — tm1) |dewn (t)]|7, dt)z.

m
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Applying the inverse estimate for y,, = diun, the Cauchy-Schwarz inequality for the first
integral and estimating the norm there using (12.3) yields

N T
(12.4) > | tal ar<c ([ e av+ ol )
m=1 m

Step 3. It remains to estimate the jump terms. For this, we set yn = xj,, [un],, ; for 1 <
m < N. This yields

H [[uh]]m_] H,i = J <f(t) - Auh(ﬂ) [[uh]]m_1 >H - <dtuh(t)) [[uh]]m_1 >H dt
Km

1
TJ [£(t) — Aun(t) — deun(t)][7, dt + Tk L [[wn] H}i dt,

N

m m

where we have used the generalized Young’s inequality. Since Juy],, ; is constant in time,
we have

J, M I @t = e d -

From (12.3) and (12.4), we thus obtain

N T
S ! ok 3 < € (] 0, @+ ol )
m=1

which completes the proof. [

Before we address a priori error estimates, we discuss how to formulate discontinuous Galerkin
methods as time stepping methods. First consider the case r = 0, i.e., piecewise constant
functions in time. Then, d¢(unl;,,) = 0 and unlj,, = um = ul_; € V4. Using as test
functions yn, = x;j,, v for arbitrary v, € Vy and m =1,..., N, we obtain

(Wmy Vi) + Km @(Wmy Vi) = (W1, Vi) + ka (f(t), vi)y- v dt

for all vy, € V4, which is a variant of the implicit Euler scheme.?

For r = 1 (piecewise linear functions), we make the ansatz

t— tim—1 1
—Fu

nly,, (1) =ul, + - T
m

*If the discrete spaces are different for each time interval, we need to use the H-projection of uy, 7 on Vyy,.
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12 GALERKIN APPROACH FOR PARABOLIC PROBLEMS

for u® ,u! € V4. Again, we choose for each |, test functions which are zero outside J,;

specifically, we take Xy, (t)vn and xj, (1) t*]::” wy, for arbitrary vi,, wy, € Vi,. Inserting these

in turn into the bilinear form and computing the integrals yields the coupled system

<u(r)n)vh>H + km a(u?nyvh) + <uln)vh>H + — a(uln,vh)

2
= <um,1 )Vh>|—[ + ka <f(t),\1h>v*)v dt,
Jm
Km 1 Km
> alug, wn) + 5 <uln>Wh>H + 3 alup,, wn)
1

m

for all vi,, wi, € Vi,. By solving this system successively at each time step and setting u,,, =
u® +u! , we obtain the approximate solution uy,.?

12.3 A PRIORI ERROR ESTIMATES

As before, we will estimate the error u — uy, using the approximation properties of the space
Xn. Due to the discontinuity of the functions in X},, we can use a local projection on each
time intervall J,,, to bound the approximation error. It will be convenient to split this error
into two parts: one due to the temporal and one due to the spatial discretization.

We first consider the temporal discretization error. Let
X, ={y, € L*(0, ;V) : yslj,, € Prltmo1,tms V), 1 <M < N}
and consider the local projection 7t,u € X, of u € X defined by 7,u(to) = u(to) and

7Tru(tm) = u(tm))

j(mw—nquMU&zm forall @ € Py_1 (s V),

for all 1 < m < N. (For r = 0, the second condition is void.) This projection is well-defined
since u € X is continuous in time, and hence the interpolation conditions make sense. Using
the Bramble-Hilbert lemma and a scaling argument, we obtain for sufficiently smooth u the
following error estimate for every t € J;,,, 1 <m < N:

)~ o)l < O | e o

*Similarly, discontinuous Galerkin methods for r > 2 lead to (r + 1)-stage implicit Runge-Kutta time-stepping
schemes.
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Similarly, we assume that for each t € [0, T] the spatial interpolation error in Vy, satisfies the
estimate

Jaa(t) = T+ faaft) = Tw(O)]ly < Ch= ()]s -

(This is the case, e.g., if H = L?(Q), V = H}(Q), and V, consists of continuous piecewise
polynomials of degree s > 1; see Theorem 5.9.)

Finally, we will make use of a duality argument, which requires considering for given ¢ € H
the solution of the adjoint equation

bh(yhazh) =0 with N = Q.

Integrating by parts on each interval J,, and rearranging the jump terms, we can express the
adjoint equation as

N

(25) 3 |~ (un(t) dizn 0}y + alynlt) (1) dt

+ Z Ymy 20l )+ Unozn) i = (Yn, @)

This can be interpreted as a backwards in time equation with “initial value” z;, (tn) = .
Making the substitution T = tn — t, we can apply Theorem 12.2 to obtain

N
2e) Y J [den O + 1Az (O de+ 3 [nly | < Cllols
m=1 m=1

where A is again the operator corresponding to the bilinear form a.

Now everything is in place to show the following a priori estimate for the discrete solution at
each time step.*

Theorem 12.3. For r = 0, the solutions u € X to (11.2) and uy, € Xy, to (12.2) satisfy

[w(tm) — um|y < C max <hs+1 sup [[w(t)[lyse1(q) -l-knJ ldeu|l,y dt)
Jn

1<n<m tefn

foralll <m < N.

Proof. We write the error e(t) at each time t as

e(t) =u(t) —un(t) = (u(t) = Inmu(t)) + (Tnmu(t) — un(t))
—er(t) + ea(t).

“It is possible - though more involved - to show error estimates for arbitrary t € [0, T]; see, e.g., [Thomée
2006, Theorem 12.2].
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For t = t,,, we have m,u(t,) = u(ty) by construction, and hence
(12.7) ller (tm) [y = [Tnultm) — w(tm)lly < CR™TT fu(t m) ks () -
To bound e;(t,, ), we use the duality trick. For arbitrary ¢ € H, let z;, denote the solution

to (12.5) with N = m. Since we have a consistent approximation, we can use the Galerkin
orthogonality to deduce

0 =bn(e,yn) = bnler,yn) +brlez,yn) forallyy € Xy.
From this and d¢(znl}, ) = 0 we obtain with y,, = e, € Xj, that

(e2(tm), @)y = bnlez,zn) = —bnler, zn)

:_ZJ] a(e] (t dt_ Z <€1 ’[[Zh]]n>H_<61 (tm))(p>H
n=1v/n

Introducing (Aey, zn(t)),, = a(er,zn) as above and estimating e; by its pointwise in time
maximum yields

m—1

[ (e2(tm), @) | < <Sup ||e1(t)||H> (ZJ Az (Ol dt+ Y [[Tznla ]l + H(pHH) :

<t n=1 n n=1
From the dual definition of the norm in H and estimate (12.6), we obtain

(12.8) Jea(tm)ly < € max sup fles (V)]
teln

It remains to bound e; (t) for arbitrary t € J,,, which we do by estimating
(12.9) ler (V) = [u(t) = Inmreu (bl

< Jhelt) — (), + [r(t) — I,

<G | (ol de+ R ult)fer g
Combining (12.7), (12.8) and (12.9) yields the claim. l

For v = 1, one can proceed similarly (using that d¢zn|j,, € Pr—1(Jm, Vn), and hence that
Iln (dezn (1), u(t) — mu(t)),, dt vanishes by definition of 7t,) to obtain®

Theorem 12.4. For r = 1, the solutions u € X to (11.2) and u, € Xy, to (12.2) satisfy

utto) = sty < € max (1 sup )]+ | 70 28

Isn te)n

forall1 <m < N.

The general case (including time-dependent bilinear form a and different discrete spaces V;;,)
can be found in [Chrysafinos and Walkington 2006].

*e.g., [Thomée 2006, Theorem 12.7]
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