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Part I

BACKGROUND



INTRODUCTION

Partial di�erential equations appear in many mathematical models of physical, biological
and economic phenomena, such as elasticity, electromagnetics, �uid dynamics, quantum
mechanics, pattern formation or derivative valuation. However, closed-form or analytic
solutions of these equations are only available in very speci�c cases (e.g., for simple geometries
or constant coe�cients), and so one has to resort to numerical approximations of these
solutions.

In these notes, we will consider �nite element methods, which have developed into one of the
most �exible and powerful frameworks for the numerical (approximate) solution of partial
di�erential equations.�ey were �rst proposed by Richard Courant [Courant 1943]; but the
method did not catch on until engineers started applying similar ideas in the early 1950s.
�eir mathematical analysis began later, with the works of Miloš Zlámal [Zlámal 1968].

Knowledge of real analysis (in particular, Lebesgue integration theory) and functional analysis
(especially Hilbert space theory) as well as some familiarity of the weak theory of partial
di�erential equations is assumed, although the fundamental results of the latter (Sobolev
spaces and the variational formulation of elliptic equations) are recalled in Chapter 2.

�ese notes are mostly based on the following works:

[1] E. Süli (2011). “Finite Element Methods for Partial Di�erential Equations”. Lecture notes.
url: http://people.maths.ox.ac.uk/suli/fem.pdf

[2] R. Rannacher (2008). “NumerischeMathematik 2”. Lecture notes. url: http://numerik.
iwr.uni-heidelberg.de/~lehre/notes/num2/numerik2.pdf

[3] S. C. Brenner and L. R. Scott (2008).�e Mathematical�eory of Finite Element Methods.
3rd ed. Vol. 15. Texts in Applied Mathematics. Springer, New York

[4] D. Braess (2007). Finite Elements. 3rd ed. Cambridge University Press, Cambridge

[5] A. Ern and J.-L. Guermond (2004). �eory and Practice of Finite Elements. Vol. 159.
Applied Mathematical Sciences. Springer-Verlag, New York

[6] V.�omée (2006).Galerkin Finite ElementMethods for Parabolic Problems. 2nd ed. Vol. 25.
Springer Series in Computational Mathematics. Springer-Verlag, Berlin
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1

OVERVIEW OF THE FINITE ELEMENT METHOD

We begin with a “bird’s-eye view” of the �nite element method by considering a simple one-
dimensional example. Since the goal here is to give the �avor of the results and techniques
used in the construction and analysis of �nite element methods, not all arguments will be
completely rigorous (especially those involving derivatives and function spaces).�ese gaps
will be �lled by the more general theory in the following chapters.

1.1 variational form of pdes

Consider for a given function f the two-point boundary value problem

(BVP)

{
−u ′′(x) = f(x) for x ∈ (0, 1),

u(0) = 0, u ′(1) = 1.

Similar to Krylov methods, the idea is to pass from this di�erential equation to a system of
linear equations which can be solved on a computer by projection onto a �nite-dimensional
subspace. Any projection requires a kind of inner product, which we introduce now. We
begin by multiplying this equation with any su�ciently regular function v with v(0) = 0,
integrating over x ∈ [0, 1] and integrating by parts.�en any solution u of (BVP) satis�es

(f, v) :=

∫1
0

f(x)v(x)dx = −

∫1
0

u ′′(x)v(x)dx

=

∫1
0

u ′(x)v ′(x)dx

=: a(u, v),

where we have used that u ′(1) = 0 and v(0) = 0. Let us (formally for now) de�ne the space

V :=
{
v ∈ L2(0, 1) : a(v, v) <∞, v(0) = 0} .
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1 overview of the finite element method

�en we can pose the following problem: Find u ∈ V such that

(W) a(u, v) = (f, v) for all v ∈ V

holds.�is is called the weak or variational form of (BVP) (since v varies over all V). If the
solution u of (W) is twice continuously di�erentiable and f is continuous, one can prove
(by taking suitable test functions v) that u satis�es (BVP). On the other hand, there are
solutions of (W) even for discontinuous f ∈ L2(0, 1). Since then the second derivative of u
is discontinuous, u cannot be a solution of (BVP). For this reason, u ∈ V satisfying (W) is
called a weak solution of (BVP).

Note that the Dirichlet boundary condition u(0) = 0 appears explicitly in the de�nition
of V , while the Neumann condition u ′(1) = 0 is implicitly incorporated in the variational
formulation. In the context of �nite element methods, Dirichlet conditions are therefore
frequently called essential conditions, while Neumann conditions are referred to as natural
conditions.

1.2 ritz–galerkin approximation

�e fundamental idea is now to approximate u by considering (W) on a �nite-dimensional
subspace S ⊂ V . We are thus looking for uS ∈ S satisfying

(WS) a(uS, v) = (f, v) for all v ∈ S.

Note that this is still the same equation; only the function spaces have changed.�is is a
crucial point in (conforming) �nite element methods. (Nonconforming methods, for which
S * V or v /∈ V , will be treated in Part C.)

Since S is �nite-dimensional, there exists a basis ϕ1, . . . , ϕn of S. Due to the bilinearity of
a(·, ·), it su�ces to require uS =

∑n
i=1Uiϕi ∈ S to satisfy

a(uS, ϕj) = (f, ϕj) for all 1 6 j 6 n.

If we de�ne

U = (U1, . . . , Un)
T ∈ Rn,

F = (F1, . . . , Fn)
T ∈ Rn, Fi = (f, ϕi) ,

K = (Kij) ∈ Rn×n, Kij = a(ϕi, ϕj),

we have that uS satis�es (WS) if and only if (“i�”) KU = F.�is linear system has a unique
solution i� KV = 0 implies V = 0. To show this, we set v :=

∑n
i=1 Viϕi ∈ S.�en,

0 = KV = (a(v,ϕ1), . . . , a(v,ϕn))
T
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1 overview of the finite element method

implies that

0 =

n∑
i=1

Via(v,ϕi) = a(v, v) =

∫1
0

v ′(x)2 dx.

�is means that v ′ must vanish almost everywhere and thus v is constant. (�is argument
will be made rigorous in the next chapter.) Since v(0) = 0, we deduce v ≡ 0, and hence, by
the linear independence of the ϕ, Vi = 0 for all 1 6 i 6 n.

�ere are two remarks to made here. First, we have argued unique solvability of the �nite-
dimensional system by appealing to the properties of the variational problem to be approxi-
mated.�is is a standard argument in �nite element methods, and the fact that the approxi-
mation “inherits” the well-posedness of the variational problem is one of the strengths of the
Galerkin approach. Second, this argument shows that the sti�ness matrix K is (symmetric
and) positive de�nite, since VTKV = a(v, v) > 0 for all V 6= 0.

Now that we have an approximate solution uS ∈ S, we are interested in estimating the
discretization error ‖uS − u‖, which of course depends on the choice of S.�e fundamental
observation is that by subtracting (W) and (WS) for the same test functionw ∈ S, we obtain

a(u− uS, w) = 0 for allw ∈ S.

�is key property is called Galerkin orthogonality, and expresses that the discretization error
is (in some sense) orthogonal to S. �is can be exploited to derive error estimates in the
energy norm

‖v‖2E = a(v, v) for v ∈ V.

It is straightforward to verify that this indeed de�nes a norm, which satis�es the Cauchy–
Schwarz inequality

a(v,w) 6 ‖v‖E ‖w‖E for all v,w ∈ V.

We can thus show that for any v ∈ S,

‖u− uS‖2E = a(u− uS, u− v) + a(u− uS, v− uS)

= a(u− uS, u− v)

6 ‖u− uS‖E ‖u− v‖E
due to the Galerkin orthogonality for v−uS ∈ S. Taking the in�mum over all v, we obtain

‖u− uS‖E 6 inf
v∈S
‖u− v‖E ,

and equality holds – and hence this in�mum is attained – for uS ∈ S solving (WS). �e
discretization error is thus completely determined by the approximation error of the solution
u of (W) by functions in S:

(1.1) ‖u− uS‖E = min
v∈S
‖u− v‖E .
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1 overview of the finite element method

To derive error estimates in the L2(0, 1) norm

‖v‖2L2 = (v, v) =

∫1
0

v(x)2 dx,

we apply a duality argument (also called Aubin–Nitsche trick). Letw be the solution of the
dual (or adjoint) problem

(1.2)

{
−w ′′(x) = u(x) − uS(x) for x ∈ (0, 1),

w(0) = 0, w ′(1) = 1.

Inserting this into the error and integrating by parts (using (u − uS)(0) = w
′(1) = 0), we

obtain for all v ∈ S the estimate

‖u− uS‖2L2 = (u− uS, u− uS) = (u− uS,−w
′′)

= (u ′, w ′) − (u ′S, w
′)

= a(u− uS, w) − a(u− uS, v)

= a(u− uS, w− v)

6 ‖u− uS‖E ‖w− v‖E .

Dividing by ‖u− uS‖L2 = ‖w ′′‖L2 , inserting (1.2) and taking the in�mum over all v ∈ S
yields

‖u− uS‖L2 6 inf
v∈S
‖w− v‖E ‖u− uS‖E ‖w

′′‖−1L2 .

To continue, we require an approximation property for S:�ere exists ε > 0 such that

(1.3) inf
v∈S
‖f− v‖E 6 ε ‖f ′′‖L2

holds for su�ciently smooth f ∈ V . If we can apply this estimate tow and u, we obtain

‖u− uS‖L2 6 ε ‖u− uS‖E = εmin
v∈S
‖u− v‖E

6 ε2 ‖u ′′‖L2 = ε
2 ‖f‖L2 .

�is is another key observation:�e error estimate depends on the regularity of the weak
solution u, and hence on the data f.�e smoother u, the better the approximation.�e �nite
element method is characterized by a special class of subspaces – of piecewise polynomials –
which have these approximation properties.

1.3 approximation by piecewise polynomials

Given a set of nodes

0 = x0 < x1 < · · · < xn = 1,
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1 overview of the finite element method

set

S =
{
v ∈ C0(0, 1) : v|[xi−1,xi] ∈ P1 and v(0) = 0

}
,

where P1 is the space of all linear polynomials. (�e fact that S ⊂ V is not obvious, and will be
proved later.)�is is a subspace of the space of linear splines. A basis of S, which is especially
convenient for the implementation, is formed by the linear B-splines (hat functions)

ϕi(x) =


x−xi−1
xi−xi−1

if x ∈ [xi−1, xi],
xi+1−x
xi+1−xi

if x ∈ [xi, xi+1],

0 else,

for 1 6 i 6 n, which satisfy

ϕi(xj) = δij :=

{
1 if i = j,
0 if i 6= j.

�is nodal basis property immediately yields linear independence of the ϕi. To show that the
ϕi span S, we consider the interpolant of v ∈ V , de�ned as

vI :=

n∑
i=1

v(xi)ϕi(x) ∈ S.

For v ∈ S, the interpolation error v− vI is piecewise linear as well, and since (v− vI)(0) = 0,
this implies that v − vI ≡ 0. Any v ∈ S can thus be written as a linear combination of ϕi
(given by its interpolant), and hence the ϕi form a basis of S. We also note that this implies
that the interpolation operator I : V → S, v 7→ vI is a projection.

We are now in a position to prove the approximation property of S. Let

h := max
16i6n

hi, hi := (xi − xi−1)

denote the mesh size. We wish to show that there exists a constant C > 0 such that for all
su�ciently smooth u ∈ V ,

‖u− uI‖E 6 Ch ‖u ′′‖L2 .

It su�ces to consider this error separately on each element [xi−1, xi], i.e., to show∫xi
xi−1

(u− uI)
′(x)2 dx 6 C2h2i

∫xi
xi−1

u ′′(x)2 dx.

Furthermore, since uI is piecewise linear, the error e := u − uI satis�es (e|[xi−1,xi]) ′′ =
(u|[xi−1,xi])

′′. Using the a�ne transformation ẽ(t) := e(x(t)) with x(t) = xi−1+ t(xi−xi−1)
(a scaling argument), we just need to prove

(1.4)
∫1
0

ẽ ′(t)2 dt 6 c
∫1
0

ẽ ′′(t)2 dt.
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1 overview of the finite element method

(�is is an elementary version of Poincaré’s inequality). Since uI is the nodal interpolant
of u, the error satis�es ẽ(xi−1) = ẽ(xi) = 0. In addition, uI is linear and u continuously
di�erentiable on [xi−1, xi]. By Rolle’s theorem, there hence exists a ξ ∈ (0, 1) with ẽ ′(ξ) = 0.
�us, for all y ∈ [0, 1] we have (with

∫b
a
f(t)dt = −

∫a
b
f(t)dt for a > b)

ẽ ′(y) =

∫y
ξ

w ′′(t)dt.

We can now use the Cauchy–Schwarz inequality to estimate

|ẽ ′(y)|2 =

∣∣∣∣∫y
ξ

ẽ ′′(t)

∣∣∣∣2 6 ∣∣∣∣∫y
ξ

1 dt

∣∣∣∣ · ∣∣∣∣∫y
ξ

ẽ ′′(t)2 dt

∣∣∣∣
6 |y− ξ|

∫1
0

ẽ ′′(t)2 dt.

Integrating both sides with respect to y and taking the supremum over all ξ ∈ (0, 1) yields
(1.4) with

c := sup
ξ∈(0,1)

∫1
0

|y− ξ|dy =
1

2
.

Summing over all elements and estimating hi by h shows the approximation property (1.3)
for S with ε := ch. For this choice of S, the solution uS of (WS) satis�es

(1.5) ‖u− uS‖L2 6 c
2h2 ‖u ′′‖L2 .

�is is called an a priori estimate, since it only requires knowledge of the given data f = u ′′,
but not of the solution uS. It tells us that if we can make the mesh size h arbitrarily small, we
can approximate the solution u of (W) arbitrarily well. Note that the power of h is one order
higher for the L2(0, 1) norm compared to the energy norm.

1.4 implementation

As seen in section 1.2, the numerical computation of uS ∈ S boils down to solving the linear
system KU = F for the vector of coe�cients U, e.g., by the method of conjugate gradients
(since K is symmetric and positive de�nite). �e missing step is the computation of the
elements Kij = a(ϕi, ϕj) of K and the entries Fj = (f, ϕj) of F. (�is procedure is called
assembly.) In principle, this can be performed by computing the integrals for each pair (i, j)
in a nested loop (node-based assembly). A more e�cient approach (especially in higher
dimensions) is element-based assembly:�e integrals are split into sums of contributions from
each element, e.g.,

a(ϕi, ϕj) =

∫1
0

ϕ ′i(x)ϕ
′
j(x)dx =

n∑
k=1

∫xk
xk−1

ϕ ′i(x)ϕ
′
j(x)dx,
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1 overview of the finite element method

and the contributions from a single element for all (i, j) are computed simultaneously. Here
we can exploit that by the de�nition, ϕi is non-zero only on the two elements [xi−1, xi] and
[xi, xi+1]. Hence, for each element [xk−1, xk], the integrals are non-zero only for pairs (i, j)
with k−1 6 i, j 6 k. Note that this implies thatK is tridiagonal and therefore sparse (meaning
that the number of non-zero elements grows as n, not n2), which allows e�cient solution of
the linear system even for large n.

Another useful observation is that except for an a�ne transformation, the basis functions are
the same on each element. We can thus use the substitution rule to transform the integrals
over [xk−1, xk] to the reference element [0, 1]. Setting ξ(x) = x−xk−1

xk−xk−1
and

ϕ̂1(ξ) = 1− ξ, ϕ̂2(ξ) = ξ,

we have that ϕk−1(x) = ϕ̂1(ξ(x)) and ϕk(x) = ϕ̂2(ξ(x)) and thus that∫xk
xk−1

ϕ ′i(x)ϕ
′
j(x)dx = (xk − xk−1)

−1

∫1
0

ϕ̂ ′τ(i)(ξ)ϕ̂
′
τ(j)(ξ)dξ,

where

τ(i) =

{
1 if i = k− 1
2 if i = k,

is the so-called global-to-local index. (Correspondingly, the inverse mapping τ−1 is called the
local-to-global index.)�e contribution from the element [xk−1, xk] to a(ϕi, ϕj) is thus

ak(ϕi, ϕj) =

{
h−1
k if i = j,

−h−1
k if i 6= j.

�e right-hand side (f, ϕj) can be computed in a similar way, using numerical quadrature if
necessary. Alternatively, one can replace f by its nodal interpolant fI =

∑n
i=0 f(xi)ϕi and

use

(f, ϕj) ≈ (fI, ϕj) =

n∑
i=0

f(xi) (ϕi, ϕj) =: Mf.

�e elementsMij := (ϕi, ϕj) of themass matrixM are again computed elementwise using
transformation to the reference element:∫xk

xk−1

ϕi(x)ϕj(x)dx = hk

∫1
0

ϕ̂τ(i)(ξ)ϕ̂τ(j)(ξ)dξ =

{
hk
3

if i = j,
hk
6

if i 6= j.

�is can be done at the same time as assembling K.

Finally, theDirichlet conditionu(0) = 0 is enforced by replacing the �rst equation in the linear
system by U0 = 0, i.e., replacing the �rst row of K by (1, 0, . . . )T and the �rst element ofMf
by 0.�e main advantage is that this procedure can easily be extended to non-homogeneous
Dirichlet conditions.�e full algorithm (in matlab-like notation) for our boundary value
problem is given in Algorithm 1.1.
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1 overview of the finite element method

Algorithmus 1.1 Finite element method in 1d
Input: 0 = x0 < · · · < xn = 1, F := (f(x0), . . . , f(xn))

T

1: Set Kij =Mij = 0

2: for k = 1, . . . , n do
3: Set hk = xk − xk−1

4: Set Kk−1:k,k−1:k ← Kk−1:k,k−1:k +
1
hk

(
1 −1

−1 1

)
5: SetMk−1:k,k−1:k ←Mk−1:k,k−1:k +

hk
6

(
2 1

1 2

)
6: end for
7: K0,1:n = 0, K0,0 = 1,M0,0:n = 0

8: Solve KU =MF

Output: U

1.5 a posteriori error estimates and adaptivity

�e a priori estimate (1.5) is important for proving convergence as the mesh size h→ 0, but
o�en pessimistic in practice since it depends on the global regularity of u ′′. If u ′′(x) is large
only in some parts of the domain, it would be preferable to reduce the mesh size locally. For
this, a posteriori estimates are useful, which involve the computed solution uS but are able to
give information on which elements should be re�ned (i.e., replaced by a larger number of
smaller elements).

We consider again the space S of piecewise linear �nite elements on the nodes x0, . . . , xN
with mesh size h, as de�ned in section 1.3. We once more apply a duality trick: Letw be the
solution of {

−w ′′(x) = u(x) − uS(x) for x ∈ (0, 1),

w(0) = 0, w ′(1) = 1,

and proceed as before, yielding

‖u− uS‖2L2 = a(u− uS, w− v)

for all v ∈ S. We now choose v = wI ∈ S, the interpolant ofw.�en we have

‖u− uS‖2L2 = a(u− uS, w−wI) = a(u,w−wI) − a(uS, w−wI)

= (f,w−wI) − a(uS, w−wI).

Note that the unknown solution u of (W) no longer appears on the right hand side. We now
use the speci�c choice of v to localize the error inside each element [xi−1, xi]: Writing the
integrals over [0, 1] as sums of integrals over the elements, we can integrate by parts on each

10



1 overview of the finite element method

element and use the fact that (w−wI)(xi) = 0 to obtain

‖u− uS‖2L2 =
n∑
i=1

∫xi
xi−1

f(x)(w−wI)(x)dx−

n∑
i=1

∫xi
xi−1

u ′S(x)(w−wI)
′(x)dx

=

n∑
i=1

∫xi
xi−1

(f+ u ′′S)(x)(w−wI)(x)dx

6
n∑
i=1

(∫xi
xi−1

(f+ u ′′S)(x)
2 dx

) 1
2
(∫xi
xi−1

(w−wI)(x)
2 dx

) 1
2

by the Cauchy–Schwarz inequality.�e �rst term contains the �nite element residual

Rh := f+ u ′′S ,

which we can evaluate a�er computing uS. For the second term, one can show (similarly as
in the proof of the inequality (1.5)) that(∫xi

xi−1

(w−wI)(x)
2 dx

) 1
2

6 ‖w−wI‖L2 6
h2i
4
‖w ′′‖L2

holds, from which we deduce

‖u− uS‖2L2 6
1

4
‖w ′′‖L2

n∑
i=1

h2i ‖Rh‖L2(xi−1,xi)

=
1

4
‖u− uS‖L2

n∑
i=1

h2i ‖Rh‖L2(xi−1,xi)

by the de�nition ofw.�is yields the a posteriori estimate

‖u− uS‖L2 6
1

4

n∑
i=1

h2i ‖Rh‖L2(xi−1,xi) .

�is estimate can be used for an adaptive procedure: Given a tolerance τ > 0,
1: Choose initial mesh 0 < x(0)0 < . . . x

(0)

N(0) = 1, compute corresponding solution uS(0) ,
evaluate Rh(0) , setm = 0

2: while
∑n
i=1(h

(m)
i )2 ‖Rh(m)‖

L2(x
(m)
i−1 ,x

(m)
i )

< τ do

3: Choose new mesh 0 < x(m+1)
0 < . . . x

(m+1)

N(m+1) = 1

4: compute corresponding solution uS(m+1)

5: evaluate Rh(m+1)

6: setm← m+ 1

7: end while

11



1 overview of the finite element method

�ere are di�erent strategies to choose the newmesh.�ey should be reliable,meaning that the
error on the new mesh in a certain norm can be guaranteed to be less than a given tolerance,
and e�cient, meaning that the number of new nodes should not be larger than necessary.
One (simple) possibility is to re�ne those elements where ‖Rh‖ is largest (or larger than a
given threshold) by replacing them with two elements of half size.
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2

VARIATIONAL THEORY OF PDES

In this chapter, we collect – for the most part without proof – some necessary results from
functional analysis and the weak theory of (elliptic) partial di�erential equations. Details and
proofs can be found in, e.g., [Adams and Fournier 2003], [Evans 2010] and [Zeidler 1995a].

2.1 function spaces

As we have seen, the regularity of the solution of partial di�erential equations plays a crucial
role in how well it can be approximated numerically.�is regularity can be described by the
two properties of (Lebesgue-)integrability and di�erentiability.

lebesgue spaces LetΩ be an open subset of Rn, n ∈ N0. We recall that for 1 6 p 6∞,

Lp(Ω) :=
{
fmeasurable : ‖f‖Lp(Ω) <∞}

with

‖f‖Lp(Ω) =

(∫
Ω

|f(x)|p dx

) 1
p

for 1 6 p <∞,
‖f‖L∞(Ω) = ess sup

x∈Ω
|f(x)|

are Banach spaces of (equivalence classes up to equality apart from a set of zero measure of)
Lebesgue-integrable functions.�e corresponding norms satisfy Hölder’s inequality

‖fg‖L1(Ω) 6 ‖f‖Lp(Ω) ‖f‖Lq(Ω)

if p−1 + q−1 = 1 (with ∞−1 := 0). For bounded Ω, this implies (by using g ≡ 1) that
Lp(Ω) ⊂ Lq(Ω) for p > q. We will also use the space

L1loc(Ω) :=
{
f : f|K ∈ L1(K) for all compact K ⊂ Ω

}
.
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2 variational theory of pdes

For p = 2, Lp(Ω) is a Hilbert space with inner product

(f, g) := 〈f, g〉L2(Ω) =

∫
Ω

f(x)g(x)dx,

and Hölder’s inequality for p = q = 2 reduces to the Cauchy–Schwarz inequality.

hölder spaces We now consider functions which are continuously di�erentiable. It will
be convenient to use amulti-index

α := (α1, . . . , αn) ∈ Nn,

for which we de�ne its length |α| :=
∑n
i=1 αi, to describe the (partial) derivative of order |α|

Dαf(x1, . . . , xn) :=
∂|α|f(x1, . . . , xn)

∂xα11 · · ·∂x
αn
n

For brevity, we will o�en write ∂i := ∂
∂xi

. We denote by Ck(Ω) the set of all continuous
functions f for whichDαf is continuous for all |α| 6 k. IfΩ is bounded, Ck(Ω) is the set of
all functions in Ck(Ω) for which allDαf can be extended to a continous function onΩ, the
closure ofΩ.�ese spaces are Banach spaces if equipped with the norm

‖f‖Ck(Ω) =
∑
|α|6k

sup
x∈Ω

|Dαf(x)|.

Finally, we de�ne Ck0(Ω) as the space of all f ∈ Ck(Ω) whose support (the closure of
{x ∈ Ω : f(x) 6= 0}) is a bounded subset ofΩ, as well as

C∞0 (Ω) =
⋂
k>0

Ck0(Ω)

(and similarly C∞(Ω)).

sobolev spaces If we are interested in weak solutions, it is clear that the Hölder spaces
entail a too strong notion of (pointwise) di�erentiability. All we required is that the derivative
is integrable, and that an integration by parts is meaningful.�is motivates the following
de�nition: A function f ∈ L1loc(Ω) has aweak derivative if there exists g ∈ L1loc(Ω) such that

(2.1)
∫
Ω

g(x)ϕ(x)dx = (−1)|α|
∫
Ω

f(x)Dαϕ(x)dx

for all ϕ ∈ C∞0 (Ω). In this case, the weak derivative is (uniquely) de�ned asDαf := g. For
f ∈ Ck(Ω), the weak derivative coincides with the usual (pointwise) derivative (justifying
the abuse of notation), but the weak derivative exists for a larger class of functions such as

14



2 variational theory of pdes

continuous and piecewise smooth functions. For example, f(x) = |x|, x ∈ Ω = (−1, 1), has
the weak derivativeDf(x) = sign(x), whileDf(x) itself does not have any weak derivative.

We can now de�ne the Sobolev spacesWk,p(Ω) for k ∈ N0 and 1 6 p 6∞:

Wk,p(Ω) = {f ∈ Lp(Ω) : Dαf ∈ Lp(Ω) for all |α| 6 k} ,

which are Banach spaces when endowed with the norm

‖f‖Wk,p(Ω) =

∑
|α|6k

‖Dαf‖pLp(Ω)

 1
p

for 1 6 p <∞,
‖f‖Wk,∞(Ω) =

∑
|α|6k

‖Dαf‖L∞(Ω) .

We shall also use the corresponding semi-norms

|f|Wk,p(Ω) =

∑
|α|=k

‖Dαf‖pLp(Ω)

 1
p

for 1 6 p <∞,
|f|Wk,∞(Ω) =

∑
|α|=k

‖Dαf‖L∞(Ω) .

We are now concerned with the relation between the di�erent norms introduced so far. For
many of these results to hold, we require that the boundary ∂Ω ofΩ is su�ciently smooth.
We shall henceforth assume thatΩ ⊂ Rn has a Lipschitz boundary, meaning that ∂Ω can be
parametrized by a �nite set of functions which are uniformly Lipschitz continuous. (�is
condition is satis�ed, for example, by polygons for n = 2 and polyhedra for n = 3.) A
fundamental result is then the following approximation property (which does not hold for
arbitrary domains).

�eorem 2.1 (Density1). For 1 6 p <∞ and any k ∈ N0, C∞(Ω) is dense inWk,p(Ω).

�is theorem allows us to prove results for Sobolev spaces – such as chain rules – by showing
them for smooth functions (in e�ect, transferring results for usual derivatives to their weak
counterparts).�is is called a density argument.

�e next theorem states that, within limits determined by the spatial dimension, we can trade
di�erentiability for integrability for Sobolev space functions.

1Originally shown in a paper by Meyers and Serrin rightfully celebrated both for its content and the brevity of
its title, “H =W”. For the proof, see, e.g., [Evans 2010, § 5.3.3,�. 3], [Adams and Fournier 2003,�. 3.17]
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2 variational theory of pdes

�eorem 2.2 (Sobolev2, Rellich–Kondrachov3 embedding). Let 1 6 p, q <∞ andΩ ⊂ Rn
be a bounded open set with Lipschitz boundary.�en, the following embeddings are continuous:

Wk,p(Ω) ⊂


Lq(Ω) if p < n

k
and p 6 q 6 np

n−p
,

Lq(Ω) if p = n
k
and p 6 q <∞,

C0(Ω) if p > n
k
.

Moreover, the following embeddings are compact:

Wk,p(Ω) ⊂

{
Lq(Ω) if p 6 n

k
and 1 6 q < n−pk

np
,

C0(Ω) if p > n
k
.

In particular, the embeddingWk,p(Ω) ⊂Wk−1,p(Ω) is compact for all k and 1 6 p 6∞.

We now prove a generalization of the observation that piecewise linear and continuous
functions have a weak derivative.

�eorem 2.3. LetΩ ⊂ Rn be a bounded Lipschitz domain which can be partitioned intoN ∈ N
Lipschitz subdomainsΩj, i.e.,Ω =

⋃N
j=1Ωj.�en, for every k > 1 and 1 6 p 6∞,{

v ∈ Ck−1(Ω) : v|Ωj ∈ Ck(Ωj), 1 6 j 6 N
}
⊂Wk,p(Ω).

Proof. It su�ces to show the inclusion for k = 1. Let v ∈ C0(Ω) such that v|Ωj ∈ C1(Ωj) for
all 1 6 j 6 N. We need to show that ∂iv exists as a weak derivative for all 1 6 i 6 n and that
∂iv ∈ Lp(Ω). An obvious candidate is

wi :=

{
∂iv|Ωj(x) if x ∈ Ωj, 1 6 j 6 N,
c else

for arbitrary c ∈ R. By the embedding C0(Ωj) ⊂ L∞(Ωj) and the boundedness of Ω,
wi ∈ Lp(Ω) for any 1 6 p 6∞. It remains to verify (2.1). By splitting the integration into
a sum over the Ωj and integrating by parts on each subdomain (where v is continuously
di�erentiable), we obtain for any ϕ ∈ C∞0 (Ω)∫

Ω

wiϕdx =

N∑
j=1

∫
Ωj

∂iv|Ωiϕdx

=

N∑
j=1

∫
∂Ωj

v|Ωjϕ (νj)i dx−

N∑
j=1

∫
Ωj

v|Ωj∂iϕdx

=

N∑
j=1

∫
∂Ωj

v|Ωjϕ (νj)i dx−

∫
Ω

v∂iϕdx,

2e.g., [Evans 2010, § 5.6], [Adams and Fournier 2003,�. 4.12]
3e.g., [Evans 2010, § 5.7], [Adams and Fournier 2003,�. 6.3]
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2 variational theory of pdes

where νj = ((νj)1, . . . , (νj)n) is the outer normal vector onΩj, which exists almost every-
where sinceΩj is a Lipschitz domain. Now the sum over the boundary integrals vanishes
since either ϕ(x) = 0 if x ∈ ∂Ωj ⊂ ∂Ω or v|Ωj(x)ϕ(x)(νj)i(x) = −v|Ωk(x)ϕ(x)(νk)i(x) if
x ∈ ∂Ωj ∩ ∂Ωk due to the continuity of v.�is implies ∂iv = wi by de�nition.

Next, we would like to see how Dirichlet boundary conditions make sense for weak solutions.
For this, we de�ne a trace operator T (via limits of continous functions) whichmaps a function
f on a bounded domainΩ ⊂ Rn to a function Tf on ∂Ω.

�eorem 2.4 (Trace theorem4). Let kp < n and q 6 (n − 1)p/(n − kp), andΩ ⊂ Rn be
a bounded open set with Lipschitz boundary. �en, T : Wk,p(Ω) → Lq(∂Ω) is a bounded
linear operator, and there exists a constant C > 0 depending only on p andΩ such that for all
f ∈Wk,p(Ω),

‖Tf‖Lq(∂Ω) 6 C ‖f‖Wk,p(Ω) .

If kp = n, this holds for any p 6 q <∞.

�is implies (although it is not obvious5) that

Wk,p
0 (Ω) :=

{
f ∈Wk,p(Ω) : T(Dαf) = 0 ∈ Lp(∂Ω) for all |α| < k

}
is well-de�ned, and thatWk,p(Ω) ∩ C∞0 (Ω) is dense inWk,p

0 (Ω).

For functions inW1,p
0 (Ω), the semi-norm |·|W1,p(Ω) is equivalent to the full norm ‖·‖W1,p(Ω).

�eorem 2.5 (Poincaré’s inequality6). Let 1 6 p <∞ and letΩ be a bounded open set.�en,
there exists a constant C > 0 depending only on p andΩ such that for all f ∈W1,p

0 (Ω),

‖f‖W1,p(Ω) 6 C|f|W1,p(Ω)

holds.

�e proof is very similar to the argumentation in Chapter 1, using the density of C∞0 (Ω) in
W1,p
0 (Ω); in particular, it is su�cient that Tf is zero on a part of the boundary ∂Ω of non-zero

measure. In general, we have that any f ∈W1,p(Ω), 1 6 p 6∞, for whichDαf = 0 almost
everywhere inΩ for all |α| = 1must be constant.

Again,Wk,p(Ω) is a Hilbert space for p = 2, with inner product

〈f, g〉Wk,2(Ω) =
∑
|α|6k

(Dαf,Dαg) .

4e.g., [Evans 2010, § 5.5], [Adams and Fournier 2003,�. 5.36]
5e.g., [Evans 2010, § 5.5,�. 2], [Adams and Fournier 2003,�. 5.37]
6e.g, [Adams and Fournier 2003, Cor. 6.31]
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2 variational theory of pdes

For this reason, one usually writes Hk(Ω) :=Wk,2(Ω). In particular, we will o�en consider
H1(Ω) :=W1,2(Ω) and H10(Ω) :=W1,2

0 (Ω). With the usual notation∇f := (∂1f, . . . , ∂nf)

for the gradient of f, we can write

|f|H1(Ω) = ‖∇f‖L2(Ω)

for the semi-norm onH1(Ω) (which, by the Poincaré inequality 2.5, is a full norm onH10(Ω))
and

〈f, g〉H1(Ω) = (f, g) + (∇f,∇g)

for the inner product on H1(Ω). Finally, we denote the topological dual of H10(Ω) (i.e., the
space of all continuous linear functionals on H10(Ω)) by H−1(Ω) := (H10(Ω))∗, which is
endowed with the operator norm

‖f‖H−1(Ω) = sup
ϕ∈H10(Ω),ϕ6=0

〈f, ϕ〉H−1(Ω),H10(Ω)

‖ϕ‖H10(Ω)

,

where 〈f, ϕ〉V∗,V := f(ϕ) denotes the duality pairing between a Banach space V and its dual
V∗.

We can now tie together some loose ends from Chapter 1.�e space V can now be rigorously
de�ned as

V :=
{
v ∈ H1(0, 1) : v(0) = 0

}
,

whichmakes sense due to the embedding (forn = 1) ofH1(0, 1) inC([0, 1]). Due to Poincaré’s
inequality, |v|2

H1(Ω)
= a(v, v) = 0 implies ‖v‖H1(Ω) = 0 and hence v = 0. Similarly, the

existence of a unique weak solution u ∈ V follows from the Riesz representation theorem.
Finally,�eorem 2.3 guarantees that S ⊂ V .

2.2 weak solutions of elliptic pdes

In most of these notes, we consider boundary value problems of the form

(2.2) −

n∑
j,k=1

∂j(ajk(x)∂ku) +

n∑
j=1

bj(x)∂ju+ c(x)u = f

on a bounded open setΩ ⊂ Rn, where ajk, bj, c and f are given functions onΩ. We do not
�x boundary conditions at this time.�is problem is called elliptic if there exists a constant
α > 0 such that

(2.3)
n∑

j,k=1

ajk(x)ξjξk > α
n∑
j=1

ξ2j for all ξ ∈ Rn, x ∈ Ω.
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2 variational theory of pdes

Assuming all functions and the domain are su�ciently smooth, we can multiply by a smooth
function v, integrate over x ∈ Ω and integrate by parts to obtain

(2.4)
n∑

j,k=1

(ajk∂ju, ∂kv) +

n∑
j=1

(bj∂ju, v) + (cu, v) +

n∑
j,k=1

(ajk∂kuνj, v)∂Ω = (f, v) ,

where ν := (ν1, . . . , νn)
T is the outward unit normal on ∂Ω and

(f, g)∂Ω :=

∫
∂Ω

f(x)g(x)dx.

Note that this formulation only requires ajk, bj, c ∈ L∞(Ω) and f ∈ L2(Ω) in order to be
well-de�ned. We then search for u ∈ V satisfying (2.4) for all v ∈ V including boundary
conditions which we will discuss next. We will consider the following three conditions:

dirichlet conditions We require u = g on ∂Ω (in the sense of traces) for given
g ∈ L2(∂Ω). If g = 0 (homogeneous Dirichlet conditions), we take V = H10(Ω), in which
case the boundary integrals in (2.4) vanish since v = 0 on ∂Ω.�e weak formulation is thus:
Find u ∈ H10(Ω) satisfying

a(u, v) :=

n∑
j,k=1

(ajk∂ju, ∂kv) +

n∑
j=1

(bj∂ju, v) + (cu, v) = (f, v)

for all v ∈ H10(Ω).

If g 6= 0, and g and ∂Ω are su�ciently smooth (e.g., g ∈ H1(∂Ω) with ∂Ω of class C1)7,
we can �nd a function ug ∈ H1(Ω) such that Tug = g. We then set u = ũ + ug, where
ũ ∈ H10(Ω) satis�es

a(u, v) = (f, v) − a(ug, v)

for all v ∈ H10(Ω).

neumann conditions We require
∑n
j,k=1 ajk∂kuνj = g on ∂Ω for given g ∈ L2(∂Ω).

In this case, we can substitute this equality in the boundary integral in (2.4) and take V =

H1(Ω). We then look for u ∈ H1(Ω) satisfying

a(u, v) = (f, v) + (g, v)∂Ω

for all v ∈ H1(Ω), where v in the last inner product should be understood in the sense of
traces, i.e., as Tv.

7[Renardy and Rogers 2004,�. 7.40]
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robin conditions We require du+
∑n
j,k=1 ajk∂kuνj = g on ∂Ω for given g ∈ L2(∂Ω)

and d ∈ L∞(∂Ω). Again we can substitute this in the boundary integral and take V = H1(Ω).
�e weak form is then: Find u ∈ H1(Ω) satisfying

aR(u, v) := a(u, v) + (du, v)∂Ω = (f, v) + (g, v)∂Ω

for all v ∈ H1(Ω).

�ese problems have a common form: For a givenHilbert spaceV , a bilinear forma : V×V →
R and a linear functional F : V → R (e.g., F : v 7→ (f, v) in the case of Dirichlet conditions),
�nd u ∈ V such that

(2.5) a(u, v) = F(v), for all v ∈ V.

�e existence and uniqueness of a solution can be guaranteed by the Lax–Milgram theorem,
which is a generalization of the Riesz representation theorem (note that a is in general not
symmetric).

�eorem 2.6 (Lax–Milgram theorem). Let a Hilbert space V , a bilinear form a : V × V → R
and a linear functional F : V → R be given satisfying the following conditions:

(i) Coercivity:�ere exists a c1 > 0 such that

a(v, v) > c1 ‖v‖2V

for all v ∈ V .

(ii) Continuity:�ere exists c2, c3 > 0 such that

a(v,w) 6 c2 ‖v‖V ‖w‖V ,
F(v) 6 c3 ‖v‖V

for all v,w ∈ V .

�en, there exists a unique solution u ∈ V to problem (2.5) satisfying

(2.6) ‖u‖V 6
1

c1
‖F‖V∗ .

Proof. For every �xed u ∈ V , the mapping v 7→ a(u, v) is a linear functional on V , which is
continuous by assumption (ii), and so is F. By the Riesz–Fréchet representation theorem,8
there exist unique ϕu, ϕF ∈ V such that

〈ϕu, v〉V = a(u, v) and 〈ϕF, v〉V = F(v)

8e.g., [Zeidler 1995a,�. 2.E]
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for all v ∈ V . We recall that w 7→ ϕw is a continuous linear mapping from V∗ to V with
operator norm 1.�us,

0 = a(u, v) − F(v) = 〈ϕu −ϕF, v〉V = 0

for all v ∈ V , which holds if and only if ϕu = ϕF in V .

We nowwish to solve this equation using the Banach �xed point theorem.9 For δ > 0, consider
the mapping T : V → V ,

T(v) = v− δ(ϕv −ϕF).

If T is a contraction, then there exists a unique �xed point u such that T(u) = u and hence
ϕu − ϕF = 0. It remains to show that there exists a δ > 0 such that T is a contraction, i.e.,
there exists 0 < L < 1 with ‖Tv1 − Tv2‖V 6 L ‖v1 − v2‖V . Let v1, v2 ∈ V be arbitrary and
set v = v1 − v2.�en we have

‖Tv1 − Tv2‖2V = ‖v1 − v2 − δ(ϕv1 −ϕv2)‖
2
V

= ‖v−ϕv‖2V
= ‖v‖2V − 2δ 〈v,ϕv〉V + δ2 ‖ϕv‖2V
= ‖v‖2V − 2δa(v, v) + δ2a(v,ϕv)

6 ‖v‖2V − 2δc1 ‖v‖2V + δ2c2 ‖v‖V ‖ϕv‖V
6 (1− 2δc1 + δ

2c2) ‖v1 − v2‖2V .

We can thus choose δ > 0 such that L2 := (1− 2δc1 + δ
2c2) < 1, and the Banach �xed point

theorem yields existence and uniqueness of the solution u ∈ V .

To show the estimate (2.6), assume u 6= 0 (otherwise the inequality holds trivially). Note that
F is a bounded linear functional by assumption (ii), hence F ∈ V∗. We can then apply the
coercivity of a and divide by ‖u‖V 6= 0 to obtain

c1 ‖u‖V 6
a(u, u)

‖u‖V
6 sup
v∈V

a(u, v)

‖v‖V
= sup
v∈V

F(v)

‖v‖V
= ‖F‖V∗ .

We can now give su�cient conditions on the coe�cients ajk, bj, c and d such that the
boundary value problems de�ned above have a unique solution.

�eorem 2.7 (Well-posedness). Let ajk ∈ L∞(Ω) satisfying the ellipticity condition (2.3)
with constant α > 0, bj, c ∈ L∞(Ω) and f ∈ L2(Ω) and g ∈ L2(∂Ω) be given. Set β =

α−1
∑n
j=1 ‖bj‖

2

L∞(Ω).

9e.g., [Zeidler 1995a,�. 1.A]
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a) �e homogeneous Dirichlet problem has a unique solution u ∈ H10(Ω) if

c(x) −
β

2
> 0 for almost all x ∈ Ω.

In this case, there exists a C > 0 such that

‖u‖H1(Ω) 6 C ‖f‖L2(Ω) .

Consequently, the inhomogeneous Dirichlet problem for g ∈ H1(∂Ω) has a unique solution
satisfying

‖u‖H1(Ω) 6 C(‖f‖L2(Ω) + ‖g‖H1(∂Ω)).

b) �e Neumann problem for g ∈ L2(∂Ω) has a unique solution u ∈ H1(Ω) if

c(x) −
β

2
> 0 for almost all x ∈ Ω.

In this case, there exists a C > 0 such that

‖u‖H1(Ω) 6 C(‖f‖L2(Ω) + ‖g‖L2(∂Ω)).

c) �e Robin problem for g ∈ L2(∂Ω) and d ∈ L∞(∂Ω) has a unique solution if

c(x) −
β

2
> 0 for almost all x ∈ Ω.d(x) > 0 for almost all x ∈ ∂Ω,

and at least one inequality is strict. In this case, there exists a C > 0 such that

‖u‖H1(Ω) 6 C(‖f‖L2(Ω) + ‖g‖L2(∂Ω)).

Proof. We wish to apply the Lax–Milgram theorem. Continuity of a and F follow by the
Hölder inequality and the boundedness of the coe�cients. It thus remains to verify the
coercivity of a, which we only do for the case of homogeneous Dirichlet conditions (the
others being similar). Let v ∈ H10(Ω) be given. First, the ellipticity of ajk implies that∫

Ω

n∑
j,k=1

ajk∂jv(x)∂kv(x)dx > α
∫
Ω

n∑
j=1

∂jv(x)
2 dx = α

n∑
j=1

‖∂jv‖2L2(Ω) = α|v|
2
H1(Ω).

We then have by repeated application of Hölder’s inequality

a(v, v) > α|v|2H1(Ω) −

(
n∑
j=1

‖bj‖2L∞(Ω)

) 1
2

|v|H1(Ω) ‖v‖L2(Ω) +

∫
Ω

c(x)v(x)2 dx

>
α

2
|v|2H1(Ω) +

∫
Ω

(
c(x) −

1

2α

n∑
j=1

‖bj‖2L∞(Ω)

)
|v|2 dx,
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where we have used Young’s inequality ab 6 α
2
a2 + 1

2α
b2 for a, b ∈ R and any α > 0.

Under the assumption that c− β
2
> 0, the second term is non-negative and we deduce using

Poincaré’s inequality that

a(v, v) >
α

2
|v|2H1(Ω) >

α

4
|v|2H1(Ω) +

α

4c2Ω
‖v‖2L2(Ω) > C ‖v‖

2
H1(Ω)

holds for C := α/(4+ 4c2Ω).

Note that these conditions are not sharp; di�erent ways of estimating the �rst-order terms in a
give di�erent conditions. For example, ifbj ∈W1,∞(Ω),we can takeβ =

∑n
j=1 ‖∂jbj‖L∞(Ω).

Naturally, if the data has higher regularity, we can expect more regularity of the solution as
well.�e corresponding theory is quite involved, and we give only two useful results.

�eorem 2.8 (Higher regularity10). Let Ω ⊂ Rn be bounded domain with Ck+1 boundary,
k > 0, ajk ∈ Ck(Ω) and bj, c ∈ Wk,∞(Ω). �en for any f ∈ Hk(Ω), the solution of the
homogeneous Dirichlet problem is in Hk+2(Ω) ∩H10(Ω), and there exists a C > 0 such that

‖u‖Hk+2(Ω) 6 C(‖f‖Hk(Ω) + ‖u‖H1(Ω)).

�eorem 2.9 (Higher regularity11). LetΩ be a convex polygon in R2 or a parallelepiped in R3,
ajk ∈ C1(Ω) and bj, c ∈ C0(Ω).�en the solution of the homogeneous Dirichlet problem is in
H2(Ω), and there exists a C > 0 such that

‖u‖H2(Ω) 6 C ‖f‖L2(Ω) .

For non-convex polygons, u ∈ H2(Ω) is not possible.�is is due to the presence of so-called
corner singularities at reentrant corners, which severely limits the accuracy of �nite element
approximations.�is requires special treatment, and is a topic of extensive current research.

10[Troianiello 1987,�. 2.24]
11[Grisvard 1985,�. 5.2.2], [Ladyzhenskaya and Ural’tseva 1968, pp. 169–189]
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Part II

CONFORMING FINITE ELEMENT
APPROXIMATION OF ELLIPTIC PDES



3

GALERKIN APPROACH FOR VARIATIONAL
PROBLEMS

We have seen that elliptic partial di�erential equations can be cast into the following form:
Given a Hilbert space V , a bilinear form a : V × V → R and a continuous linear functional
F : V → R, �nd u ∈ V satisfying

(W) a(u, v) = F(v) for all v ∈ V.

According to the Lax–Milgram theorem, this problem has a unique solution if there exist
c1, c2 > 0 such that

a(v, v) > c1 ‖v‖2V ,(3.1)
a(u, v) 6 c2 ‖u‖V ‖v‖V(3.2)

hold for all u, v ∈ V (which we will assume from here on).

�e conforming Galerkin approach consists in choosing a (�nite-dimensional) closed subspace
Vh ⊂ V and looking for uh ∈ Vh satisfying1

(Wh) a(uh, vh) = F(vh) for all vh ∈ Vh.

Since we have chosen a closed Vh ⊂ V , the subspace Vh is a Hilbert space with inner product
〈·, ·〉V . Furthermore, the conditions (3.1) and (3.2) are satis�ed for all uh, vh ∈ Vh as well.�e
Lax–Milgram theorem thus immediately yields the well-posedness of (Wh).

�eorem 3.1. Under the assumptions of�eorem 2.6, for any closed subspace Vh ⊂ V , there
exists a unique solution uh ∈ Vh of (Wh) satisfying

‖uh‖V 6
1

c1
‖F‖V∗ .

1�e subscript h stands for a discretization parameter, and indicates that we expect convergence of uh to the
solution of (W) as h→ 0.
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3 galerkin approach for variational problems

�e following result is essential for all error estimates of Galerkin approximations.

Lemma 3.2 (Céa’s lemma). Let uh be the solution of (Wh) for given Vh ⊂ V and u be the
solution of (W).�en,

‖u− uh‖V 6
c2

c1
inf
vh∈Vh

‖u− vh‖V ,

where c1 and c2 are the constants from (3.1) and (3.2).

Proof. Since Vh ⊂ V , we deduce (by subtracting (W) and (Wh) with the same v ∈ Vh) the
Galerkin orthogonality

a(u− uh, vh) = 0 for all vh ∈ Vh.

Hence, for arbitrary vh ∈ Vh, we have vh − uh ∈ Vh and therefore a(u− uh, vh − uh) = 0.
Using (3.1) and (3.2), we obtain

c1 ‖u− uh‖2V 6 a(u− uh, u− uh)

= a(u− uh, u− vh) + a(u− uh, vh − uh)

6 c2 ‖u− uh‖V ‖u− vh‖V .

Dividing by ‖u− uh‖V , rearranging, and taking the in�mum over all vh ∈ Vh yields the
desired estimate.

�is implies that the error of any (conforming) Galerkin approach is determined by the
approximation error of the exact solution in Vh.�e derivation of such error estimates will
be the topic of the next chapters.

the symmetric case �e estimate in Céa’s lemma is weaker than the corresponding
estimate (1.1) for the model problem in Chapter 1.�is is due to the symmetry of the bilinear
form in the latter case, which allows characterizing solutions of (W) as minimizers of a
functional.

�eorem 3.3. If a is symmetric, u ∈ V satis�es (W) if and only if u is the minimizer of

J(v) := 1
2
a(v, v) − F(v)

over all v ∈ V .

Proof. For any u, v ∈ V and t ∈ R,

J(u+ tv) = J(u) + t(a(u, v) − F(v)) +
t2

2
a(v, v)
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3 galerkin approach for variational problems

due to the symmetry of a. Assume that u satis�es a(u, v) − F(v) = 0 for all v ∈ V .�en,
setting t = 1, we deduce that for all v 6= 0,

J(u+ v) = J(u) + 1
2
a(v, v) > J(u)

holds. Hence, u is the unique minimizer of J. Conversely, if u is the (unique) minimizer of J,
every directional derivative of J at umust vanish, which implies

0 =
d

dt
J(u+ tv)|t=0 = a(u, v) − F(v)

for all v ∈ V .

Together with coercivity and continuity, the symmetry of a implies that a(u, v) is an inner
product on V that induces an energy norm ‖u‖a := a(u, u)

1
2 . (In fact, in many applications,

the functional J represents an energy which is minimized in a physical system. For example
in continuum mechanics, 1

2
‖u‖2a = 1

2
a(u, u) represents the elastic deformation energy of a

body, and −F(v) its potential energy under external load.)

Arguing as in Chapter 1.2, we see that the solution uh ∈ Vh of (Wh) – which is called
Ritz–Galerkin approximation in this context – satis�es

‖u− uh‖a = min
vh∈Vh

‖u− vh‖a ,

i.e., uh is the best approximation of u in Vh in the energy norm. Equivalently, one can say
that the error u− uh is orthogonal to Vh in the inner product de�ned by a.

O�en it is more useful to estimate the error in a weaker norm.�is requires a duality argu-
ment. Let H be a Hilbert space with inner product (·, ·) and V a closed subspace satisfying
the conditions of the Lax–Milgram theorem theorem such that the embedding V ↪→ H is
continuous (e.g., V = H1 ⊂ L2 = H).�en we have the following estimate.

Lemma 3.4 (Aubin–Nitsche lemma). Let uh be the solution of (Wh) for given Vh ⊂ V and u
be the solution of (W).�en, there exists a C > 0 such that

‖u− uh‖H 6 C ‖u− uh‖V sup
g∈H

(
1

‖g‖H
inf
vh∈Vh

‖ϕg − vh‖V

)
holds, where for given g ∈ H, ϕg is the unique solution of the adjoint problem

a(w,ϕg) = (g,w) for allw ∈ V.

Since a is symmetric, the existence of a unique solution of the adjoint problem is guaranteed
by the Lax–Milgram theorem.
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3 galerkin approach for variational problems

Proof. Wemake use of the dual representation of the norm in any Hilbert space,

(3.3) ‖w‖H = sup
g∈H

(g,w)

‖g‖H
,

where the supremum is taken over all g 6= 0.

Now, inserting w = u − uh in the adjoint problem, we obtain for any vh ∈ Vh using the
Galerkin orthogonality and continuity of a that

(g, u− uh) = a(u− uh, ϕg)

= a(u− uh, ϕg − vh)

6 C ‖u− uh‖V ‖ϕg − vh‖V .

Insertingw = u− uh into (3.3), we thus obtain

‖u− uh‖H = sup
g∈H

(g, u− uh)

‖g‖H

6 C ‖u− uh‖V sup
g∈H

‖ϕg − vh‖V
‖g‖H

for arbitrary vh ∈ Vh, and taking the in�mum over all vh yields the desired estimate.

�e Aubin–Nitsche lemma also holds for nonsymmetric a, provided both the original and
the adjoint problem satisfy the conditions of the Lax–Milgram theorem (e.g., for constant
coe�cients bj).
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4

FINITE ELEMENT SPACES

Finite element methods are a special case of Galerkin methods, where the �nite-dimensional
subspace consists of piecewise polynomials. To construct these subspaces, we proceed in two
steps:

1. We de�ne a reference element and study polynomial interpolation on this element.

2. We use suitably modi�ed copies of the reference element to partition the given domain
and discuss how to construct a global interpolant using local interpolants on each
element.

We then follow the same steps in proving interpolation error estimates for functions in Sobolev
spaces.

4.1 construction of finite element spaces

To allow a uni�ed study of the zoo of �nite elements proposed in the literature,1 we de�ne a
�nite element in an abstract way.

De�nition 4.1. Let

(i) K ⊂ Rn be a simply connected bounded open set with piecewise smooth boundary (the
element domain, or simply element if there is no possibility of confusion),

(ii) P be a �nite-dimensional space of functions de�ned on K (the space of shape functions),

(iii) N = {N1, . . . , Nd} be a basis of P∗ (the set of nodal variables or degrees of freedom).

�en (K,P,N) is a �nite element.

1For a – far from complete – list of elements, see, e.g., [Brenner and Scott 2008, Chapter 3], [Ciarlet 2002,
Section 2.2]
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4 finite element spaces

As we will see, condition (iii) guarantees that the interpolation problem on K using functions
in P – and hence the Galerkin approximation – is well-posed.�e nodal variables will play
the role of interpolation conditions.�is is a somewhat backwards de�nition compared to our
introduction in Chapter 1 (where we have directly speci�ed a basis for the shape functions).
However, it leads to an equivalent characterization that allows much greater freedom in
de�ning �nite elements.�e connection is given in the next de�nition.

De�nition 4.2. Let (K,P,N) be a �nite element.�e basis {ψ1, . . . , ψd} of P dual to N, i.e.,
satisfyingNi(ψj) = δij, is called nodal basis of P.

For example, for the linear �nite elements in one dimension, K = (0, 1), P is the space of
linear polynomials, and N = {N1, N2} are the point evaluations N1(v) = v(0), N2(v) = v(1)
for every v ∈ P.�e nodal basis is given by ψ1(x) = 1− x and ψ2(x) = x.

Condition (iii) is the only one that is di�cult to verify.�e following Lemma simpli�es this
task.

Lemma 4.3. Let P be a d-dimensional vector space and let {N1, . . . , Nd} be a subset of P∗.
�en, the following statements are equivalent:

a) {N1, . . . , Nd} is a basis of P∗,

b) If v ∈ P satis�esNi(v) = 0 for all 1 6 i 6 d, then v = 0.

Proof. Let {ψ1, . . . , ψd} be a basis of P.�en, {N1, . . . , Nd} is a basis of P∗ if and only if for
any L ∈ P∗, there exist (unique) αi, 1 6 i 6 d such that

L =

d∑
j=1

αjNj.

Using the basis of P, this is equivalent to L(ψi) =
∑d
j=1 αjNj(ψi) for all 1 6 i 6 d. Let us

de�ne the matrix B = (Nj(ψi))
d
i,j=1 and the vectors

L = (L(ψ1), . . . , L(ψd))
T , a = (α1, . . . , αd)

T .

�en, (a) is equivalent to Ba = L being uniquely solvable, i.e., B being invertible.

On the other hand, given any v ∈ P, we can write v =
∑d
j=1 βjψj.�e condition (b) can be

expressed as

n∑
j=1

βjNi(ψj) = Ni(v) = 0 for all 1 6 i 6 d

implies v = 0, or, in matrix form, that BTb = 0 implies 0 = b := (β1, . . . , βd)
T . But this too

is equivalent to the fact that B is invertible.
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4 finite element spaces

Note that (b) in particular implies that the corresponding interpolation problem is uniquely
solvable.

Another useful tool is the following Lemma, which is a multidimensional form of polynomial
division.

Lemma 4.4. Let L 6= 0 be a linear function on Rn and P be a polynomial of degree d > 1 with
P(x) = 0 for all x with L(x) = 0.�en, there exists a polynomialQ of degree d− 1 such that
P = LQ.

Proof. First, we note that a�ne transformations map the space of polynomials of degree d
to itself.�us, we can assume without loss of generality that P vanishes on the hyperplane
orthogonal to the xn axis, i.e. L(x) = xn and P(x̂, 0) = 0, where x̂ = (x1, . . . , xn−1). Since
the degree of P is d, we can write

P(x̂, xn) =

d∑
j=0

∑
|α|6d−j

cα,jx̂
αxjn

for a multi-index α ∈ Nn−1 and x̂α = xα11 · · · x
αn−1
n−1 . For xn = 0, this implies

0 = P(x̂, 0) =
∑
|α|6d

cα,0x̂
α,

and therefore cα0 = 0 for all |α| 6 d. Hence,

P(x̂, xn) =

d∑
j=1

∑
|α|6d−j

cα,jx̂
αxjn

= xn

d∑
j=1

∑
|α|6d−j

cα,jx̂
αxj−1n

=: xnQ = LQ,

whereQ is of degree d− 1.

4.2 examples of finite elements

We restrict ourselves to the case n = 2 (higher dimensions being similar) and the most
common examples.
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4 finite element spaces

L3

L1L2

z1 z2

z3

(a) Linear Lagrange element

z1 z2

z3

z4z5

z6

(b) Quadratic Lagrange element

z1 z2

z3

z4

(c) Cubic Hermite element

Figure 4.1: Triangular �nite elements. Filled circles denote point evaluation, open circles
gradient evaluations.

triangular elements Let K be a triangle and

Pk =
{∑

|α|6k cαx
α : cα ∈ R

}
denote the space of all bivariate polynomials of total degree less than or equal k, e.g., P2 =
span {1, x1, x2, x21, x22, x1x2}. It is straightforward to verify that Pk (and hence P∗k) is a vector
space of dimension 1

2
(k+ 1)(k+ 2). We consider two types of interpolation conditions: func-

tion values (Lagrange interpolation) and gradient values (Hermite interpolation).�e following
examples de�ne valid �nite elements. Note that the argumentation is essentially the same
as for the well-posedness of the corresponding one-dimensional polynomial interpolation
problems.

• Linear Lagrange elements. Let k = 1 and take P = P1 (hence the dimension of P and
P∗ is 3) and N = {N1, N2, N3} withNi(v) = v(zi), where z1, z2, z3 are the vertices of
K (see Figure 4.1a). We need to show that condition (iii) holds, which we will do by
way of Lemma 4.3. Suppose that v ∈ P1 satis�es v(z1) = v(z2) = v(z3) = 0. Since v is
linear, it must also vanish on each line connecting the vertices, which can be de�ned
as the zero-sets of the linear functions L1, L2, L3. Hence, by Lemma 4.4, there exists a
constant (i.e., polynomial of degree 0) c such that v = cL1. Now let z1 be the vertex
not on the edge de�ned by L1.�en,

0 = v(z1) = cL1(z1),

and therefore c = 0 and so v = 0 (since L1(z1) 6= 0).

• Quadratic Lagrange elements: Let k = 2 and take P = P2 (hence the dimension of P
and P∗ is 6). Set N = {N1, N2, N3, N4, N5, N6} with Ni(v) = v(zi), where z1, z2, z3
are again the vertices of K and z4, z5, z6 are the midpoints of the edges described by
the linear functions L1, L2, L3, respectively (see Figure 4.1b). To show that condition
(iii) holds, we argue as above. Let v ∈ P2 vanish at zi, 1 6 i 6 6. On each edge, v
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4 finite element spaces

is a quadratic function that vanishes at three points (say, z2, z3, z4) and thus must be
identically zero. If L1 is the function vanishing on the edge containing z2, z3, z4, then by
Lemma 4.4, there exists a linear polynomialQ1 such that P = L1Q1. By an analogous
argument, P = L1Q1 vanishes on the remaining edges as well. By de�nition, L1 = 0
only on the �rst edge, and thusQ1 must vanish. Now consider one of the remaining
edges and let L2 be the linear function which vanishes on it.�en, we can apply Lemma
4.4 toQ1 to obtain a constant c such that v = L1Q1 = cL1L2. Taking the midpoint of
the remaining edge, z6, we have

0 = v(z6) = cL1(z6)L2(z6),

and since neither L1 nor L2 vanish on z6, we deduce c = 0 and hence v = 0.

• Cubic Hermite elements: Let k = 3 and take P = P3 (hence the dimension of P and
P∗ is 10). Instead of taking N as function evaluations at 10 suitable points, we take
Ni, 1 6 i 6 4 as the point evaluation at the vertices z1, z2, z3 and the barycenter
z4 = 1

3
(z1 + z2 + z3) (see Figure 4.1c) and take the remaining nodal variables as

gradient evaluations:

Ni+4(v) = ∂1v(zi), Ni+7 = ∂2v(zi), 1 6 i 6 3.

Now we again consider v ∈ P3 withNi(v) = 0 for all 1 6 i 6 10. On each edge, v is a
cubic polynomial with double roots at each vertex, and hence must vanish. Arguing as
above, we can write v = cL1L2L3 which implies

0 = v(z4) = cL1(z4)L2(z4)L3(z4)

and hence c = 0 since the barycenter z4 lies on neither of the edges.�erefore, v = 0.

Both types of elements can be de�ned for arbitrary degree k. It should be clear from this that
this de�nition of �nite elements gives us a blueprint for constructing elements with desired
properties.�is should be contrasted with, e.g., the choice of �nite di�erence stencils.

rectangular elements For rectangular elements, we can follow a tensor-product
approach. We consider the vector space

Qk =

{∑
j

cjpj(x1)qj(x2) : cj ∈ R, pj, qj ∈ Pk

}

of products of univariate polynomials of degree up to k, which has dimension (k+ 1)2. By
analogous arguments as in the triangular case, we can show that the following examples are
�nite elements:

• Bilinear Lagrange elements: Let k = 1 and take P = Q1 (hence the dimension of P
and P∗ is 4) andN = {N1, N2, N3, N4} withNi(v) = v(zi), where z1, z2, z3, z4 are the
vertices of K (see Figure 4.2a).
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L1

L2

L3

L4

z1 z2

z3z4

(a) Bilinear Lagrange element

z1 z2

z3z4

z5

z6

z7

z8
z9

(b) Biquadratic Lagrange element

Figure 4.2: Rectangular �nite elements. Filled circles denote point evaluation.

• Biquadratic Lagrange elements: Let k = 2 and take P = Q2 (hence the dimension of
P and P∗ is 9) and N = {N1, . . . , N9} withNi(v) = v(zi), where z1, z2, z3, z4 are the
vertices of K, z5, z6, z7, z8 are the edge midpoints and z9 is the centroid of K (see Figure
4.2b).

4.3 the interpolant

We wish to estimate the error of the best approximation of a function in a �nite element
space. An upper bound for this approximation is given by stitching together interpolating
polynomials on each element.

De�nition 4.5. Let (K,P,N) be a �nite element and let {ψ1, . . . , ψd} be the corresponding
nodal basis of P. For a given function v such thatNi(v) is de�ned for all 1 6 i 6 d, the local
interpolant of v is de�ned as

IKv =

d∑
i=1

Ni(v)ψi.

�e nodal interpolant can be explicitly constructed once the dual basis is known.�is can be
simpli�ed signi�cantly if the reference element domain is chosen as, e.g., the unit simplex.

Useful properties of the local interpolant are given next.

Lemma 4.6. Let (K,P,N) be a �nite element and IK the local interpolant.�en,

a) �e mapping v 7→ IK is linear,

b) Ni(IKv)) = Ni(v), 1 6 i 6 d,
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c) IK(v) = v for all v ∈ P, i.e., IK is a projection.

Proof. �e claim (a) follows directly from the linearity of theNi. For (b), we use the de�nition
of IK and ψi to obtain

Ni(IKv) = Ni

(
d∑
j=1

Nj(v)ψj

)

=

d∑
j=1

Nj(v)Ni(ψj) =

d∑
j=1

Nj(v)δij

= Ni(v)

for all 1 6 i 6 d and arbitrary v.�is implies that Ni(v − IKv) = 0 for all 1 6 i 6 d, and
hence by Lemma 4.3 that IKv = v.

We now use the local interpolant on each element to de�ne a global interpolant on a union of
elements.

De�nition 4.7. A subdivision T of a bounded open setΩ ⊂ Rn is a �nite collection of open
sets Ki such that

(i) intKi ∩ intKj = ∅ if i 6= j and

(ii)
⋃
i Ki = Ω

De�nition 4.8. Given a subdivision T of Ω such that for each Ki there is a �nite element
(Ki,Pi,Ni) with local interpolant IKi . Letm be the order of the highest partial derivative
appearing in any nodal variable.�en, the global interpolant ITf of f ∈ Cm(Ω) on T is de�ned
by

(ITf)|Ki = IKif for all Ki ∈ T.

To obtain some regularity of the global interpolant, we need additional assumptions on the
subdivision. Roughly speaking, where two elements meet, the corresponding nodal variables
have to match as well. For triangular elements, this can be expressed concisely.

De�nition 4.9. A triangulation of a bounded open setΩ ⊂ R2 is a subdivision T ofΩ such
that

(i) every Ki ∈ T is a triangle and

(ii) no vertex of any triangle lies in the interior or on an edge of another triangle.

Similar conditions can be given for n > 3 (tetrahedra, simplices), in which case we will
also speak of triangulations. Note that this supposes that Ω is polyhedral itself. For non-
polyhedral domains, it is possible to use suitable geometric transformations on the elements
at the boundary to obtain curved elements which faithfully represent it.
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z1 z2

z3

z4z5

z6

(a) Argyris triangle

z1 z2

z3z4

(b) Bogner–Fox–Schmit rectangle

Figure 4.3: C1 elements. Filled circles denote point evaluation, double circles evaluation of
gradients up to total order 2, and arrows evaluation of normal derivatives.�e
double arrow stands for evaluation of the second mixed derivative ∂212.

De�nition 4.10. A global interpolant IT has continuity orderm (in short, “is Cm”) if ITf ∈
Cm(Ω) for all f ∈ Cm(Ω).�e space

VT =
{
ITf : f ∈ Cm(Ω)

}
is called a Cm �nite element space.

To obtain global continuity of the interpolant, we need to make sure that the local interpolants
coincide where two element domains meet. �is requires that the corresponding nodal
variables are compatible. For Lagrange and Hermite elements, where each nodal variable is
taken as the evaluation of a function or its derivative at a point zi, this reduces to a geometric
condition on the placement of nodes on edges.�e zi are called nodes (not to be confused
with the vertices de�ning the element domain).

�eorem 4.11. �e triangular Lagrange and Hermite elements are all C0 elements. More pre-
cisely, given a triangulation T of Ω, it is possible to choose edge nodes for the corresponding
elements (Ki,Pi,Ni), Ki ∈ T, such that ITv ∈ C0(Ω) for all v ∈ Cm(Ω), wherem = 0 for
Lagrange andm = 1 for Hermite elements.

Proof. It su�ces to show that the global interpolant is continuous across each edge. Let K1
and K2 be two triangles sharing an edge e. Assume that the nodes on this edge are placed
symmetrically with respect to rotation (i.e., the placement of the nodes should “look the same”
from K1 and K2), and that P1 and P2 consist of polynomials of degree k.

Let v ∈ Cm(Ω) be given and setw := IK1v− IK2v, where we extend both local interpolants
as polynomials outside K1 and K2, respectively. Hence,w is a polyomial of degree k whose re-
strictionw|e to e is a one-dimensional polynomial having k+1 roots (counted bymultiplicity).
�is implies thatw|e = 0, and thus the interpolant is continuous across e.
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A similar argument shows that the bilinear and biquadratic Lagrange elements are C0 as
well. Examples of C1 elements are the Argyris triangle (of degree 5 and 21 nodal variables,
including normal derivatives across edges at their midpoints, Figure 4.3a) and the Bogner–
Fox–Schmit rectangle (a bicubic Hermite element of dimension 16, Figure 4.3b). It is one
of the strengths of the abstract formulation described here that such exotic elements can be
treated by the same tools as simple Lagrange elements.

In order to obtain global interpolation error estimates, we need uniform bounds on the
local interpolation errors. For this, we need to be able to compare the local interpolation
operators on di�erent elements.�is can be done with the following notion of equivalence of
elements.

De�nition 4.12. Let (K̂, P̂, N̂) be a �nite element and T : Rn → Rn be an a�ne transforma-
tion, i.e., T : v(x) 7→ v(Ax + b) for A ∈ Rn×n invertible and b ∈ Rn.�e �nite element
(K,P,N) is called a�ne equivalent to (K̂, P̂, N̂) if

(i) K =
{
Ax+ b : x ∈ K̂

}
,

(ii) P =
{
T−1(p̂) : p̂ ∈ P̂

}
,

(iii) N =
{
{Ni} : Ni(p) = N̂i(T(p)) for all p ∈ P

}
.

A triangulation T consisting of a�ne equivalent elements is also called a�ne.

It is a straightforward exercise to show that the dual bases of P̂ and P are related by ψi =
T−1(ψ̂i). Hence, if the nodal variables on edges are placed symmetrically, triangular Lagrange
elements of the same order are a�ne equivalent, as are triangular Hermite elements.�e
same holds true for quadratic elements. Non-a�ne equivalent elements are useful in treating
curved boundaries, but will not be discussed here.

�e advantage of this construction is that a�ne equivalent elements are also interpolation
equivalent:

Lemma 4.13. Let (K̂, P̂, N̂) and (K,P,N) be two a�ne equivalent �nite elements related by
the transformation T .�en,

IK̂(Tv) = T(IKv).

Proof. Let ψ̂i and ψi be the dual basis of P̂ and P, respectively. By de�nition,

IK̂(Tv) =

d∑
i=1

N̂i(Tv)ψ̂i =

d∑
i=1

Ni(v)T(ψi) = T(IKv).

Given a reference element (K̂, P̂, N̂), we can thus generate a triangulation T using a�ne
equivalent elements.
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5

POLYNOMIAL INTERPOLATION IN SOBOLEV
SPACES

We now come to the heart of the mathematical theory of �nite element methods. As we have
seen, the error of the �nite element solution uh is determined by the best approximation of
the true solution by piecewise polynomials, which in turn is bounded by the interpolating
polynomial.It thus remains to derive estimates for the (local and global) interpolation error.

5.1 the bramble–hilbert lemma

We start with the error for the local interpolant. �e key for deriving error estimates is
the Bramble–Hilbert lemma [Bramble and Hilbert 1970]. �e derivation here follows the
original functional-analytic arguments (by way of several results whichmay be of independent
interest); there are also constructive approaches which allow more explicit computation of
the constants.1

Our �rst lemma characterizes the kernel of di�erentiation operators

Lemma 5.1. If v ∈ Wk,p(Ω) satis�es Dαv = 0 for all |α| = k, then v is almost everywhere
equal to a polynomial of degree k− 1.

Proof. If Dαv = 0 holds for all |α| = k, then so does DβDαv = 0 for any multi-index
β. Hence, v ∈

⋂∞
k=1W

k,p(Ω). �e Sobolev embedding theorem 2.2 thus guarantees that
v ∈ Ck(Ω).�e claim then follows using classical (pointwise) arguments.

�e next result concerns projection of Sobolev functions on polynomials.

Lemma 5.2. For every v ∈Wk,p(Ω) there is a unique polynomial q ∈ Pk−1 such that

(5.1)
∫
Ω

Dα(v− q)dx = 0 for all |α| 6 k− 1.

1See, e.g., [Süli 2011, § 3.2], [Brenner and Scott 2008, Chap. 4]
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5 polynomial interpolation in sobolev spaces

Proof. Writing q =
∑

|β|6k−1 ξβx
β ∈ Pk−1 as a linear combination of monomials, the

condition (5.1) is equivalent to the linear system∑
|β|6k−1

ξβ

∫
Ω

Dαxβ dx =

∫
Ω

Dαv dx, |α| 6 k− 1.

It thus remains to show that the matrix

M =

(∫
Ω

Dαxβ dx

)
|α|,|β|6k−1

is non-singular. Consider ξ = (ξβ)|β|6k−1 such thatMξ = 0.�e corresponding polynomial
q then satis�es ∫

Ω

Dαqdx = 0 for all |α| 6 k− 1,

and hence ξβ = 0 for all |β| 6 k − 1. �us, Mξ = 0 implies ξ = 0, and therefore M is
invertible.

Using these two lemmas, we can prove a generalization of Poincaré’s inequality.

Lemma 5.3. For all v ∈Wk,p(Ω) with

(5.2)
∫
Ω

Dαv dx = 0 for all |α| 6 k− 1,

the estimate

(5.3) ‖v‖Wk,p(Ω) 6 c0|v|Wk,p(Ω)

holds, where the constant c0 > 0 depends only onΩ, k and p.

Proof. We argue by contradiction. Assume the claim does not hold. �en there exists a
sequence {vn} ⊂Wk,p(Ω) of vn satisfying (5.2) and

1 = ‖vn‖Wk,p(Ω) > n|vn|Wk,p(Ω), n ∈ N.

Since the embedding Wk,p(Ω) ⊂ Wk−1,p(Ω) is compact by �eorem 2.2, there exists a
subsequence (also denoted by {vn}) converging inWk−1,p(Ω) to a v ∈Wk−1,p(Ω), i.e.,

(5.4) ‖v− vn‖Wk−1,p(Ω) → 0 as n→∞.
Since |vn|Wk,p(Ω) → 0 by assumption, {vn} is a Cauchy sequence inWk,p(Ω) as well and
thus converges in Wk,p(Ω) to a ṽ ∈ Wk,p(Ω). Now, (5.4) implies that ṽ = v and hence
|v|Wk,p(Ω) = 0. It follows from Lemma 5.1 that v ∈ Pk−1, and since v satis�es∫

Ω

Dαv dx = lim
n→∞

∫
Ω

Dαvn dx = 0 for all |α| 6 k− 1,
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5 polynomial interpolation in sobolev spaces

Lemma 5.2 then yields v = 0, in contradiction to

‖v‖Wk,p(Ω) = lim
n→∞ ‖vn‖Wk,p(Ω) = 1.

We are now in a position to prove our central result.

�eorem 5.4 (Bramble–Hilbert lemma). Let F :Wk,p(Ω)→ R satisfy

(i) |F(v)| 6 c1 ‖v‖Wk,p(Ω) (boundedness),

(ii) |F(u+ v)| 6 c2(|F(u)|+ |F(v)|) (sublinearity),

(iii) F(q) = 0 for all q ∈ Pk−1 (annihilation).

�en there exists a constant c > 0 such that for all v ∈Wk,p(Ω),

|F(v)| 6 c|v|Wk,p(Ω).

Proof. For arbitrary v ∈Wk,p(Ω) and q ∈ Pk−1, we have

|F(v)| = |F(v− q+ q)| 6 c2(|F(v− q)|+ |F(q)|) 6 c1c2 ‖v− q‖Wk,p(Ω) .

Given v, we now choose q ∈ Pk−1 as the polynomial from Lemma 5.2 and apply Lemma 5.3
to obtain

‖v− q‖Wk,p(Ω) 6 c0|v− q|Wk,p(Ω) = c0|v|Wk,p(Ω),

where c0 is the constant appearing in (5.3).�is proves the claim with c := c0c1c2.

5.2 interpolation error estimates

We wish to apply the Bramble–Hilbert lemma to the interpolation error. We start with the
error on the reference element.

�eorem 5.5. Let (K,P,N) be a �nite element, Pk−1 ⊂ P for a k > 1 and 1 6 p 6 ∞. For
any v ∈Wk,p(K),

(5.5) |v− IKv|Wl,p(K) 6 c|v|Wk,p(K) for all 0 6 l 6 k

where the constant c > 0 depends only on n, k, p, l and P.
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5 polynomial interpolation in sobolev spaces

Proof. It is straightforward to verify that v 7→ |v− IKv|Wl,p(K) de�nes a sublinear functional
onWk,p(K) for all l 6 k. Let ψ1, . . . , ψd be the dual basis P to N. Since the Ni in N are
bounded onWk,p(K), we have

|F(v)|Wl,p(K) 6 |v|Wl,p(K) + |IKv|Wl,p(K)

6 ‖v‖Wk,p(K) +

d∑
i=1

|Ni(v)||ψi|Wl,p(K)

6 ‖v‖Wk,p(K) +

d∑
i=1

Ci ‖v‖Wk,p(K) |ψi|Wl,p(K)

6 (1+ C max
16i6d

|ψi|Wl,p(K)) ‖v‖Wk,p(K)

and hence that F is bounded. In addition, IKq = q for all q ∈ P and therefore F(q) = 0. We
can now apply the Bramble–Hilbert lemma to F, which proves the claim.

To estimate the interpolation error on an arbitrary �nite element (K,P,N), we assume that it
is generated by the a�ne transformation

(5.6) TK : x̂ 7→ AKx̂+ bK

from the reference element (K̂, P̂, N̂), i.e., v̂ := v ◦ TK is the function v on K expressed in local
coordinates on K̂. We then need to consider how (5.5) transforms under TK.

Lemma 5.6. Letk > 0 and 1 6 p 6∞.�ere exists c > 0 such that for allK andw ∈Wk,p(K),
the function ŵ = w ◦ TK satis�es

|ŵ|Wk,p(K̂) 6 c ‖AK‖
k
|det(AK)|−

1
p |w|Wk,p(K),(5.7)

|w|Wk,p(K) 6 c
∥∥A−1

K

∥∥k |det(AK)| 1p |ŵ|Wk,p(K̂).(5.8)

Proof. Let α be a multi-index with |α| = k. Using the chain rule and the fact that TK is a�ne,
we obtain with a constant c depending only on n, k and p

‖Dαŵ‖Lp(K̂) 6 c ‖AK‖
k
∑
|β|=k

∥∥Dβw ◦ TK∥∥Lp(K̂)
6 c ‖AK‖k |det(AK)|−

1
p |w|Wk,p(K)

by transformation of variables. Summing over all |α| = k yields (5.7). Arguing similarly using
T−1K yields (5.8).

We now derive a geometrical estimate of the quantities appearing in the right hand side of
(5.7) and (5.8). For a given element domain K, we de�ne

• the diameter hK := maxx1,x2∈K ‖x1 − x2‖,
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5 polynomial interpolation in sobolev spaces

• the incircle diameter ρK := 2 argmaxr{x ∈ K : Br(x) ⊂ K} (i.e., the diameter of the
largest ball contained in K).

• the condition number σK := hK
ρK
.

Lemma 5.7. Let TK de�ned in (5.6) be an a�ne mapping such that K = TK(K̂).�en,

|det(AK)| =
vol(K)

vol(K̂)
, ‖AK‖ 6

hK

ρK̂
,

∥∥A−1
K

∥∥ 6
hK̂
ρK
.

Proof. �e �rst property is a simple geometrical fact. For the second property, recall that the
matrix norm of AK is given by

‖AK‖ = sup
‖x̂‖=1

‖AKx̂‖ =
1

ρK̂
sup
‖x̂‖=ρ

K̂

‖AKx̂‖ .

Now for any x̂ with ‖x̂‖ = ρK̂, there exists x̂1, x̂2 ∈ K̂ with x̂ = x̂1 − x̂2 (e.g., choose x̂2 as the
midpoint of the incircle).�en,

AKx̂ = TKx̂1 − TKx̂2 = x1 − x2,

which implies ‖AKx̂‖ 6 hK and thus the desired inequality.�e last property is obtained by
exchanging the roles of K and K̂.

�e local interpolation error can then be estimated as follows

�eorem 5.8 (local interpolation error). Let (K̂, P̂, N̂) be a �nite element with Pk−1 ⊂ P̂ for a
k > 1. For any element (K,P,N) a�ne equivalent to (K̂, P̂, N̂) by the a�ne transformation TK
and any v ∈Wk,p(K), 1 6 p 6∞, there exists c independent of hK such that

|v− IKv|Wl,p(K) 6 ch
k−l
K σlK|v|Wk,p(K)

for all 0 6 l 6 k.

Proof. Let v̂ := v ◦ TK. By Lemma 4.13, (IKv) ◦ TK = IK̂v̂ (i.e., interpolating the transformed
function is equivalent to transforming the interpolated function). Hence,we can apply Lemma
5.6 to (v− IKv) and use�eorem 5.5 to obtain

|v− IKv|Wl,p(K) 6 c
∥∥A−1

K

∥∥l |det(AK)| 1p |v̂− IK̂v̂|Wl,p(K̂)

6 c
∥∥A−1

K

∥∥l |det(AK)| 1p |v̂|Wk,p(K̂)

6 c
∥∥A−1

K

∥∥l ‖AK‖k |v|Wk,p(K)

6 c(
∥∥A−1

K

∥∥ ‖AK‖)l ‖AK‖k−l |v|Wk,p(K).

Using the estimates from Lemma 5.7 and the fact that hK̂ is �xed completes the proof.
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5 polynomial interpolation in sobolev spaces

To obtain an estimate for the global interpolation error, which converges to zero as h→ 0, we
need to have a uniform bound (independent of K and h) of the condition number σK.�is
requires a further assumption on the triangulation. A triangulation T is called shape regular,
if there exists a constant κ independent of h := maxK∈T hK such that

σK 6 κ for all K ∈ T.

(For triangular elements, e.g., this means that all interior angles are bounded from below.)

Using this upper bound and summing over all elements, we obtain the following estimate for
the global interpolation error.

�eorem 5.9 (global interpolation error). Let T be a shape regular a�ne triangulation of
Ω ⊂ Rn with Pk−1 ⊂ P̂ for a k > 1.�en, there exists a constant c > 0 independent of h such
that for all v ∈Wk,p(Ω),

‖v− ITv‖Lp(Ω) +

k∑
l=1

hl

(∑
K∈T

|v− IKv|
p

Wl,p(K)

) 1
p

6 chk|v|Wk,p(Ω), 1 6 p <∞,
‖v− ITv‖L∞ +

k∑
l=1

hlmax
K∈T

|v− IKv|Wl,∞(K) 6 ch
k|v|Wk,∞(Ω).

Similar estimates can be obtained for elements based on tensor product polynomial spaces
Qk.2

2e.g., [Brenner and Scott 2008, Chap. 3.5]
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6

IMPLEMENTATION

�is chapter discusses some of the issues involved in the implementation of the �nite element
method on a computer. It should only serve as a guide for solving model problems and
understanding the structure of professional so�ware packages; due to the availability of high-
quality free and open source frameworks such as deal.II1 and FEniCS2 there is usually no
need to write a �nite element solver from scratch.

In the following, we focus on triangular Lagrange and Hermite elements on polygonal do-
mains; the extension to higher-dimensional and quadrilateral elements is fairly straightfor-
ward.

6.1 triangulation

�e geometric information on a triangulation is described by amesh, a cloud of connected
points in Rn.�is information is stored in a collection of two-dimensional arrays, the most
fundamental of which are

• the list of nodes, which contains the coordinates zi = (xi, yi) for every degree of
freedom:

nodes(i) = (x_i,y_i);

• the list of elements, which contains for every element in the triangulation the corre-
sponding entries in nodes of the nodal variables:

elements(i) = (nodes(i_1),nodes(i_2),nodes(i_3)).

Care must be taken that the ordering is consistent for each element. Points for which
both function and gradient evaluation are given appear twice and are discerned by
position in the list (function values �rst, then gradient).

1[deal.II Di�erential Equations Analysis Library, Technical Reference]
2[DOLFIN: A C++/Python �nite element library]
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6 implementation

�e array elements serves as the local-to-global index. Depending on the boundary condi-
tions, the following are also required.

• For Dirichlet conditions, a list of boundary points bdy_nodes.

• For Neumann conditions, a list of boundary faces bdy_faces which contain the (consis-
tently ordered) entries in nodes of the nodes on each face.

�e generation of a good (quasi-uniform) mesh for a given complicated domain is an active
research area in itself. For uniform meshes on simple geometries (such as rectangles), it is
possible to create the needed data structures by hand. An alternative are Delaunay triangula-
tions, which can be constructed (e.g., by the matlab command delaunay) given a list of
nodes. More complicated generators can create meshes from a geometric description of the
boundary; an example is the matlab package distmesh.3

6.2 assembly

�e main e�ort in implementing lies in assembling the sti�ness matrix K, i.e., computing its
entriesKij = a(ϕi, ϕj) for all nodal basis elementϕi,ϕj.�is ismost e�ciently done element-
wise, where the computation is performed by transformation to a reference element.

the reference element We consider the reference element domain

K̂ =
{
(ξ1, ξ2) ∈ R2 : 0 6 ξ1, ξ2 6 1, and ξ1 + ξ2 6 1

}
,

with the vertices z1 = (0, 0), z2 = (1, 0), z3 = (0, 1) (in this order). For any triangle K de�ned
by the ordered set of vertices ((x1, y1), (x2, y2), (x3, y3)), the a�ne transformation TK from
K̂ to K is given by

TK(ξ) = AKξ+ bK, AK =

(
x2 − x1 x3 − x1
y2 − y1 y3 − y1

)
, bK =

(
x1
y1

)
.

Given a set of nodal variables N̂ = (N̂1, . . . , N̂d), it is straightforward (if tedious) to compute
the corresponding nodal basis functions ψ̂i from the conditions N̂i(ψ̂j) = δij, 1 6 i, j 6 d.
(For example, the nodal basis for the linear Lagrange element is 1− ξ1 − ξ2, ξ1, ξ2.)

If the coe�cients in the bilinear form a are constant, one can then compute the integrals
on the reference element exactly, noting that due to the a�ne transformation, the partial
derivatives of the basis functions change according to

∇ϕ|K(x) = A−T
K ∇ψ̂(ξ).

3http://persson.berkeley.edu/distmesh; an almost exhaustive list of mesh generators can be found at
http://www.robertschneiders.de/meshgeneration/software.html.
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6 implementation

quadrature If the coe�cients are not given analytically, it is necessary to evaluate the
integrals using numerical quadrature, i.e., to compute∫

K

v(x)dx ≈
r∑
k=1

wkv(xk)

using appropriate quadrature weights wk and quadrature nodes xk. Since this amounts to
replacing the bilinear form a by ah (a variational crime), care must be taken that the discrete
problem is still well-posed and that the quadrature error is negligible compared to the approx-
imation error. It is possible to show that this can be ensured if the quadrature is su�ciently
exact and the weights are positive.

�eorem 6.1 (e�ect of quadrature4). Let Th be a shape regular a�ne triangulation with
P1 ⊂ P̂ ⊂ Pk for k > 1. If the quadrature on K̂ is of order 2k − 2 and h is small enough,
the discrete problem is well-posed. If the surface integrals are approximated by a quadrature
rule of order 2k− 1 and the conditions of�eorem 7.1 hold, there exists a c > 0 such that for
f ∈ Hk−1(Ω) and g ∈ Hk(∂Ω) and su�ciently small h,

‖u− uh‖H1(Ω) 6 ch
k−1(‖u‖Hk(Ω) + ‖f‖Hk−1(Ω) + ‖g‖Hk(∂Ω)).

�e rule of thumb is that the quadrature should be exact for the integrals involving second-
order derivatives if the coe�cients were constant. For linear elements (where the gradients
are constant), order 0 (i.e., the midpoint rule) is therefore su�cient to obtain an error estimate
of order h.

For higher order elements, Gauß quadrature is usually employed.�is is simpli�ed by using
barycentric coordinates: If the vertices of K are ((x1, y1), (x2, y2), (x3, y3)), the barycentric
coordinates (ζ1, ζ2, ζ3) of (x, y) ∈ K are de�ned by

• ζ1, ζ2, ζ3 ∈ [0, 1],

• ζ1 + ζ2 + ζ3 = 1,

• (x, y) = ζ1(x1, y1) + ζ2(x2, y2) + ζ3(x3, y3).

Barycentric coordinates are invariant under a�ne transformations: If ξ ∈ K̂ has the barycen-
tric coordinates (ζ1, ζ2, ζ3) with respect to the vertices of K̂, then x = TKξ has the same
coordinates with respect to the vertices ofK.�e exact Gauß nodes in barycentric coordinates
and the corresponding weights for quadrature of order up to 5 are given in Table 6.1.�e
element contributions of the local basis functions can then be computed as, e.g., in∫

K

〈A(x)∇ϕi(x),∇ϕj(x)〉 dx ≈ det(AK)
nl∑
k=1

wk

〈
A(xk)A

−T
K ∇ψ̂i(ξk), A−T

K ∇ψ̂j(ξk)
〉
,

4e.g., [Ciarlet 2002,�s. 4.1.2, 4.1.6]
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l nl xk wk

1 1 (1
3
, 1
3
, 1
3
) 1

2

2 3 (1
6
, 1
6
, 2
3
)? 1

6

3 7 (1
3
, 1
3
, 1
3
) 9

40

(1
2
, 1
2
, 0)? 2

30

(0, 0, 1)? 1
40

5 7 (1
3
, 1
3
, 1
3
) 9

80

(6−
√
15

21
, 6−

√
15

21
, 9+2

√
15

21
)? 155−

√
15

2400

(6+
√
15

21
, 6+

√
15

21
, 9−2

√
15

21
)? 155+

√
15

2400

Table 6.1: Gauß nodes xk (in barycentric
coordinates) and weights wk
on the reference triangle.�e
quadrature is exact up to or-
der l and uses nl nodes. For
starred nodes, all possible per-
mutations appear with identi-
cal weights.

where A = (aij)
n
i,j=1, nl is the number of Gauss nodes, xk and ξk are the Gauß nodes on

the element and reference element, respectively, and ψ̂i, ψ̂j are the basis functions on the
reference element corresponding to ϕi, ϕj. �e other integrals in a and F are calculated
similarly.

�e complete procedure for the assembly of the sti�ness matrix K and right hand side F is
sketched in Algorithm 6.1.

boundary conditions It remains to incorporate the boundary conditions. For Dirich-
let conditions u = g on ∂Ω, it is most e�cient to assemble the sti�ness and mass matrices as
above, and replace each row in K and entry in F corresponding to a node in bdy_nodes with
the equation for the prescribed nodal value:
1: for k = 1, . . . ,Nbdynodes do
2: Set Kk,i = 0 for all i
3: Set Kk,k = 1, Fk = g(nodes(k))

4: end for

For inhomogeneous Neumann or for Robin boundary conditions, one assembles the contri-
butions to the boundary integrals from each face similarly to Algorithm 6.1, where the loop
over elements is replaced by a loop over bdy_faces (and one-dimensional Gauß quadrature
is used).
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Algorithmus 6.1 Finite element method for Lagrange triangles
Input: mesh nodes, elements, data aij,bj,c,f
1: Compute Gauß nodes ξl and weightswl on reference element
2: Compute values of nodal basis and gradients at Gauß nodes on reference element
3: Set Kij =Mij = 0

4: for k = 1, . . . ,Nelements do
5: Compute transformation TK, Jacobian det(AK) for element K = elements(k)

6: Evaluate coe�cients and right hand side at transformed Gauß nodes TK(ξl),
7: Compute a(ψi, ψj), (f, ψj) for all nodal basis elementsψi, ψj using Gauß quadrature

on reference element
8: for i, j = 1, . . . , d do
9: Set r = elements(k, i), s = elements(k, j)

10: Set Kr,s ← Kr,s + a(ψi, ψj), Fs ← Fs + (f, ψj)

11: end for
12: end for
Output: Kij, Fj
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7

ERROR ESTIMATES FOR THE FINITE ELEMENT
APPROXIMATION

We can now give error estimates for the conforming �nite element approximation of elliptic
boundary value problems for Lagrange elements. Let a reference element (K̂, P̂, N̂) and a
triangulation T using a�ne equivalent elements be given. Denoting the a�ne transformation
from the reference element to the element (K,P,N) by TK : x̂ 7→ AKx̂ + bK, we can de�ne
the corresponding C0 �nite element space by

Vh :=
{
vh ∈ C0(Ω) : (vh ◦ TK)|K̂ ∈ P̂ for all K ∈ T

}
.

7.1 a priori error estimates

By Céa’s lemma, the discretization error is bounded by the best-approximation error, which
in turn can be bounded by the interpolation error. �e results of the preceding chapters
therefore yield the following a priori error estimates.

�eorem 7.1. Let u ∈ H1(Ω) be the solution of the boundary value problem (2.2) together with
appropriate boundary conditions. Let T be a shape regular a�ne triangulation of Ω ⊂ Rn
with Pk ⊂ P̂ for a k > 1, and let uh ∈ Vh be the corresponding Galerkin approximation. If
u ∈ Hm(Ω) for n

2
< m < k, there exists c > 0 such that

‖u− uh‖H1(Ω) 6 ch
m−1|u|Hm(Ω).

Proof. Sincem > n
2
, the Sobolev embedding theorem 2.2 implies that u ∈ C0(Ω) and hence

the local (pointwise) interpolant is well de�ned. In addition, the nodal interpolation preserves
Dirichlet boundary conditions. Hence ITu ∈ Vh, and Céa’s lemma yields

‖u− uh‖H1(Ω) 6 c inf
vh∈Vh

‖u− vh‖H1(Ω) 6 c ‖u− ITu‖H1(Ω) .
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7 error estimates for the finite element approximation

�eorem 5.9 for p = 2 and k = m implies

‖u− ITu‖H1(Ω) 6 ch
m−1|u|Hm(Ω),

and the claim follows by combining these estimates.

If the bilinear form a is symmetric, or if the adjoint problem to (2.2) is well-posed, we can
apply the Aubin–Nitsche lemma to obtain better estimates in the L2 norm.

�eorem 7.2. Under the assumptions of�eorem 7.1, there exists c > 0 such that

‖u− uh‖L2(Ω) 6 ch
m|u|Hm(Ω).

Proof. By the Sobolev embedding theorem 2.2, the embedding L2(Ω) ⊂ H1(Ω) is continuous.
�us, the Aubin–Nitsche lemma yields

‖u− uh‖L2(Ω) 6 c ‖u− uh‖H1(Ω) sup
g∈L2(Ω)

(
1

‖g‖L2(Ω)

inf
vh∈Vh

‖ϕg − vh‖H1(Ω)

)

where ϕg is the solution of the adjoint problem with right hand side g. Estimating the best
approximation in Vh by the interpolant and using�eorem 5.9, we obtain

inf
vh∈Vh

‖ϕg − vh‖H1(Ω) 6 ‖ϕg − ITϕg‖H1(Ω) 6 ch|ϕg|H2(Ω) 6 ch ‖g‖L2(Ω)

by the well-posedness of the adjoint problem. Combining this inequality with the one from
�eorem 7.1 yields the claimed estimate.

Using duality arguments based on di�erent adjoint problems, one can derive estimates in
other Lp(Ω) spaces, including L∞(Ω).1

7.2 a posteriori error estimates

It is o�en the case that the regularity of the solution varies over the domainΩ (for example,
near corners or jumps in the right hand side or coe�cients). It is then advantageous to make
the element size hK small only where it is actually needed. Such information can be obtained
using a posteriori error estimates, which can be evaluated for a computed solution uh to decide
where the mesh needs to be re�ned. Here, we will only sketch residual-based error estimates
and simple duality-based estimates, and refer to the literature for details.2

1e.g., [Brenner and Scott 2008, Chap. 8]
2[Brenner and Scott 2008, Chap. 9], [Ern and Guermond 2004, Chap. 10]
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7 error estimates for the finite element approximation

For the sake of presentation, we consider a simpli�ed boundary value problem. Let f ∈ L2(Ω)

and α ∈ L∞(Ω) with α1 > α(x) > α0 > 0 for almost all x ∈ Ω be given.�en we search for
u ∈ H10(Ω) satisfying

(7.1) a(u, v) := (α∇u,∇v) = (f, v) for all v ∈ H10(Ω).

(�e same arguments can be repeated for the general boundary value problem (2.2) with
homogeneous Dirichlet or Neumann conditions). Let Vh ⊂ H10(Ω) be a �nite element space
and uh ∈ Vh the corresponding Ritz–Galerkin approximation.

residual-based error estimates Residual-based estimates give an error estimate
in theH1 norm. We �rst note that the bilinear form a is coercive with constant α0, and hence
we have

α0 ‖u− uh‖H1(Ω) 6
a(u− uh, u− uh)

‖u− uh‖H1(Ω)

6 sup
w∈H10(Ω)

a(u− uh, w)

‖w‖H1(Ω)

= sup
w∈H10(Ω)

a(u,w) − (α∇uh,∇w)
‖w‖H1(Ω)

= sup
w∈H10(Ω)

(f,w) − 〈−∇ · (α∇uh), w〉H−1,H1

‖w‖H1(Ω)

= sup
w∈H10(Ω)

〈f+∇ · (α∇uh), w〉H−1,H1

‖w‖H1(Ω)

= ‖f+∇ · (α∇uh)‖H−1(Ω)

using integration by parts and the de�nition of the dual norm. For brevity, we have written
∇ ·w =

∑n
j=1 ∂jwj for the divergence of a vectorw ∈ C1(Ω)n. Since all terms on the right

hand side are known, this is in principle an a posteriori estimate. However, the H−1 norm
cannot be localized, so we will perform the integration by parts on each element separately
and insert an interpolation error to eliminate theH1 norm ofw (and hence the supremum).

�is requires some notation. Let Th be the triangulation corresponding to Vh and ∂Th the
set of faces of all K ∈ Th.�e set of all interior faces will be denoted by Γh, i.e.,

Γh = {F ∈ ∂Th : F ∩ ∂Ω = ∅} .

For F ∈ Γh with F = K1 ∩ K2, let ν1 and ν2 denote the unit outward normal to K1 and K2,
respectively. We de�ne the jump in normal derivative forwh ∈ Vh across F as

J∇wh · νK := ∇wh|K1 · ν1 −∇wh|K2 · ν2.
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7 error estimates for the finite element approximation

We can then integrate by parts elementwise to obtain forw ∈ H10(Ω)

a(u− uh, w) = (f,w) − a(uh, w)

= (f,w) −
∑
K∈Th

∫
K

α∇(u− uh) · ∇wdx

=
∑
K∈Th

(∫
(f+∇ · (α∇uh))wdx−

∑
F∈∂K

α(∇uh · ν)wdx

)

=
∑
K∈Th

∫
(f+∇ · (α∇uh))wdx+

∑
F∈Γh

∫
F

Jα(∇uh · ν)Kwdx

sincew ∈ H10(Ω) is continuous.

Our next task is to get rid ofw by canceling ‖w‖H1(Ω) in the de�nition of the dual norm. We
do this by applying an interpolation error estimate.�e di�culty here is that w ∈ H10(Ω)

is not su�ciently smooth to allow Lagrange interpolation, since pointwise evaluation is not
de�ned. To circumvent this, one combines interpolation with projection. Assume v ∈ Vh
consists of piecewise polynomials of degree k. For K ∈ Th, letωK be the set of all elements
touching K:

ωK =
⋃{

K
′ ∈ Th : K

′ ∩ K 6= 0
}
.

Furthermore, for every node z of K (i.e., there isN ∈ N such thatN(v) = v(z)), denote

ωz =
⋃{

K ′ ∈ Th : z ∈ K ′
}
⊂ ωK.

�e L2(ωz) projection of v ∈ H1(Ω) onto Pk is then de�ned as the unique πz(v) satisfying∫
ωz

(πz(v) − v)qdx = 0 for all q ∈ Pk.

For z ∈ ∂Ω, we set πz(v) = 0 to respect the homogeneous Dirichlet conditions.�e local
Clément interpolant of v ∈ H1(Ω) is then given by

ICv =

d∑
i=1

Ni(πzi(v))ϕi.

Using a variant of the Bramble–Hilbert lemma and a scaling argument, one can show the
following interpolation error estimates:3

‖v− ICv‖L2(K) 6 chK ‖v‖H1(ωK) ,

‖v− ICv‖L2(F) 6 ch
1/2
K ‖v‖H1(ωK) ,

3e.g., [Braess 2007,�eorem II.6.9]
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7 error estimates for the finite element approximation

for all v ∈ H10(Ω), K ∈ Th and F ⊂ ∂K.

Using the Galerkin orthogonality for the global Clément interpolant ICw ∈ Vh and the fact
that every K appears only in a �nite number ofωK, we thus obtain by the Cauchy–Schwarz
inequality

‖u− uh‖H1(Ω) =
1

α0
sup

w∈H10(Ω)

a(u− uh, w− ICw)

‖w‖H1(Ω)

6
1

α0
sup

w∈H10(Ω)

1

‖w‖H1(Ω)

(∑
K∈Th

‖f+∇ · (α∇uh)‖L2(K) ‖w− ICw‖L2(K)

+
∑
F∈Γh

‖Jα(∇uh · ν)K‖L2(F) ‖w− ICw‖L2(F)

)

6 C sup
w∈H10(Ω)

1

‖w‖H1(Ω)

(∑
K∈Th

hK ‖f+∇ · (α∇uh)‖L2(K) ‖w‖H1(Ω)

+
∑
F∈Γh

h
1/2
K ‖Jα(∇uh · ν)K‖L2(F) ‖w‖H1(Ω)

)

6 C

(∑
K∈Th

hK ‖f+∇ · (α∇uh)‖L2(K) +
∑
F∈Γh

h
1/2
K ‖Jα(∇uh · ν)K‖L2(F)

)
.

duality-based error estimates �e use of Clément interpolation can be avoided
if we are satis�ed with an a posteriori error estimate in the L2 norm and α ∈ C1(Ω). We can
then apply the Aubin–Nitsche trick. Letw ∈ H10(Ω) solve the adjoint problem

a(v,w) = (u− uh, v) for all v ∈ H10(Ω).

Inserting u− uh ∈ H10(Ω) and applying the Galerkin orthogonality a(u− uh, wh) = 0 for
the global interpolantwh := ITw yields

‖u− uh‖2L2(Ω) = (u− uh, u− uh) = a(u− uh, w−wh)

= (f,w−wh) − a(uh, w−wh).

Now we integrate by parts on each element again and apply the Cauchy–Schwarz inequality
to obtain

‖u− uh‖2L2(Ω) 6
∑
K∈Th

‖f+∇ · (α∇uh)‖L2(K) ‖w−wh‖L2(K)

+
∑
F∈Γh

‖Jα(∇uh · ν)K‖L2(F) ‖w−wh‖L2(F) .

53



7 error estimates for the finite element approximation

By the symmetry ofa and thewell-posedness of (7.1),we have thatw ∈ H2(Ω) due to�eorem
2.9. We can thus estimate the local interpolation error for w using�eorem 5.8 for k = 2,
l = 0 and p = 2 to obtain

‖w−wh‖L2(K) 6 ch
2
K ‖w‖H2(Ω) .

Similarly, using the Bramble–Hilbert lemma and a scaling argument yields

‖w−wh‖L2(F) 6 ch
3/2
K ‖w‖H2(Ω) .

Finally, we have from�eorem 2.9 the estimate

‖w‖H2(Ω) 6 C ‖u− uh‖L2(Ω) .

Combining these inequalities, we obtain the desired a posteriori error estimate

‖u− uh‖L2(Ω) 6 C

(∑
K∈Th

h2K ‖f+∇ · (α∇uh)‖L2(K) +
∑
F∈Γh

h
3/2
K ‖Jα(∇uh · ν)K‖L2(F)

)
.

Such a posteriori estimates can be used to locally decrease the mesh size in order to reduce
the discretization error.�is leads to adaptive �nite element methods, which is a very active
area of current research. For details, we refer to, e.g., [Brenner and Scott 2008, Chap. 9].
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Part III

NONCONFORMING FINITE ELEMENTS



8

GENERALIZED GALERKIN APPROACH

�e results of the preceding chapter depended on the conformality of the Galerkin approach:
�e discrete problem is obtained by restricting the continuous problem to suitable subspaces.
�is is too restrictive for many applications beyond standard second order elliptic problems,
where it would be necessary to consider

• Petrov–Galerkin approaches: �e function u satisfying a(u, v) for all v ∈ V is an
element of U 6= V ,

• non-conformal approaches:�e discrete spaces Uh and Vh are not subspaces of U and
V , respectively,

• non-consistent approaches:�e discrete problem involves a bilinear form ah 6= a (and
ah might not be well-de�ned for all u ∈ U).

We thus need a more general framework which covers these cases as well. Let U, V be
Banach spaces, where V is re�exive, and let U∗, V∗ denote their duals. Given a bilinear form
a : U × V → R and a continuous linear functional F ∈ V∗, we are looking for u ∈ U
satisfying

(8.1) a(u, v) = F(v) for all v ∈ V.

�e following generalization of the Lax–Milgram theorem gives su�cient (and, as can be
shown, necessary) conditions for the well-posedness of (8.1).

�eorem 8.1 (Banach–Nečas–Babuška). Let U and V be Banach spaces and V be re�exive.
Let a bilinear form a : U× V → R and a linear functional F : V → R be given satisfying the
following de�nitions:

(i) Inf-sup-condition:�ere exists a c1 > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

‖u‖U ‖v‖V
> c1.
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8 generalized galerkin approach

(ii) Continuity:�ere exist c2, c3 such that

|a(u, v)| 6 c2 ‖u‖U ‖v‖V ,
|F(v)| 6 c3 ‖v‖V

for all u ∈ U, v ∈ V .

(iii) Injectivity: For every v ∈ V , v 6= 0, there is a u ∈ U such that

a(u, v) 6= 0.

�en, there exists a unique solution u ∈ U to (8.1) satisfying

‖u‖U 6
1

c1
‖F‖V∗ .

Proof. �e proof is essentially an application of the closed range theorem:1 For a bounded
linear functional A between two Banach spaces X and Y, the range A(X) of A is closed
in Y if and only if A(X) = (kerA∗)0, where A∗ : Y∗ → X∗ is the adjoint of A, kerA :=

{x ∈ X : Ax = 0} is the null space of an operator A : X→ Y, and for V ⊂ X,

V0 := {x ∈ X∗ : 〈x, v〉X∗,X = 0 for all v ∈ V}

is the polar of V . We apply this theorem to the operator A : U→ V∗ de�ned by

〈Au, v〉V∗,V = a(u, v) for all v ∈ V

to show that A is an isomorphism (i.e., that A is bijective and A and A−1 are continuous),
which is equivalent to the claim since (8.1) can be expressed as Au = f.

Continuity of A easily follows from continuity of a and the de�nition of the norm on V∗.
We next show injectivity of A. Let u1, u2 ∈ U be given with Au1 = Au2. By de�nition,
this implies a(u1, v) = a(u2, v) and hence a(u1 − u2, v) = 0 for all v ∈ V . Hence, the
inf-sup-condition implies that

c1 ‖u1 − u2‖U 6 sup
v∈V

a(u1 − u2, v)

‖v‖V
= 0

and therefore u1 = u2.

Due to the injectivity of A, for any f ∈ A(U) ⊂ V∗ we have a unique u := A−1f ∈ U, and
the inf-sup-condition yields

(8.2) c1 ‖u‖U 6 sup
v∈V

a(u, v)

‖v‖V
= sup
v∈V

〈Au, v〉V∗,V
‖v‖V

= sup
v∈V

〈f, v〉V∗,V
‖v‖V

= ‖f‖V∗ .

1e.g., [Zeidler 1995b,�eorem 3.E]
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8 generalized galerkin approach

�erefore, A−1 is continuous on A(U). Let {vn}n∈N ⊂ A(U) be a sequence converging to
v ∈ V∗. Hence, there exists un ∈ U such that vn = Aun, and the vn form a Cauchy sequence.
From (8.2), we deduce for all n,m ∈ N that

‖un − um‖U 6
1

c1
‖Aun −Aum‖V∗ ,

which implies that {un}n∈N is a Cauchy sequence as well and thus converges to a u ∈ U.�e
continuity of A then yields

v = lim
n→∞ vn = lim

n→∞Aun = Au,

and we obtain v ∈ A(U). We can therefore apply the closed range theorem. By the re�exivity
of V , we have A∗ : V → U∗ and

nullA∗ = {v ∈ V : A∗v = 0}

= {v ∈ V : 〈A∗v, u〉U∗,U = 0 for all u ∈ U}
= {v ∈ V : 〈Au, v〉V∗,V = 0 for all u ∈ U}
= {v ∈ V : a(u, v) = 0 for all u ∈ U} .

Due to the injectivity condition (iii), a(u, v) = 0 for all u ∈ U implies v = 0. Hence the
closed range theorem and re�exivity of V yields

A(U) = ({0})0 = {x ∈ V∗ : 〈x, 0〉V∗,V = 0} = V∗,

and therefore surjectivity of A.�us, A is an isomorphism and the claimed estimate follows
from (8.2) applied to f ∈ V∗ de�ned by 〈f, v〉V∗,V = F(v) for all v ∈ V .

�e term “injectivity conditions” is due to the fact that it implies injectivity of the adjoint
operator A∗ and hence (due to the closed range of A) surjectivity of A. Note that in the
symmetric case U = V , coercivity of a implies both the inf-sup-condition and the injectivity
condition, and we recover the Lax–Milgram lemma.

For the non-conforming Galerkin approach, we replace U by Uh and V by Vh, where Uh and
Vh are �nite-dimensional spaces, and introduce a bilinear form ah : Uh × Vh → R and a
linear functional Fh : Vh → R. We then search for uh ∈ Uh satisfying

(8.3) ah(uh, vh) = Fh(vh) for all vh ∈ Vh.

Although we do not require Uh ⊂ U and Vh ⊂ V , we need to have some way of comparing
elements of U and Uh in order to obtain error estimates for the solution uh. We therefore
assume that there exists a subspace Ũ ⊂ U containing the exact solution such that

U(h) := Ũ+Uh =
{
w+wh : w ∈ Ũ,wh ∈ Uh

}
can be endowed with a norm ‖u‖U(h) satisfying
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8 generalized galerkin approach

(i) ‖uh‖U(h) = ‖uh‖Uh for all uh ∈ Uh,

(ii) ‖u‖U(h) 6 c ‖u‖U for all u ∈ Ũ.

In contrast to the conformal setting, the well-posedness of (8.3) cannot be deduced from the
well-posedness of (8.1), but needs to be proved independently.�is is somewhat simpler due
to the �nite-dimensionality of the spaces.

�eorem 8.2. Let Uh and Vh be �nite-dimensional with dimUh = dimVh. Let a bilinear
form ah : Uh × Vh → R and a linear functional Fh : Vh → R be given satisfying the following
de�nitions:

(i) Inf-sup-condition:�ere exists a c1 > 0 such that

inf
uh∈Uh

sup
vh∈Vh

ah(uh, vh)

‖uh‖Uh ‖vh‖Vh
> c1.

(ii) Continuity:�ere exist c2, c3 such that

|ah(uh, vh)| 6 c2 ‖uh‖Uh ‖vh‖Vh ,
|Fh(vh)| 6 c3 ‖vh‖Vh

for all uh ∈ Uh, vh ∈ Vh.

�en, there exists a unique solution uh ∈ Uh to (8.3) satisfying

‖uh‖Uh 6
1

c1
‖Fh‖V∗h .

Proof. Consider a basis {ϕ1, . . . , ϕn} of Uh and {ψ1, . . . , ψn} of Vh and de�ne the matrix
K ∈ Rn×n, Kij = a(ϕi, ψj).�en, the claim is equivalent to the invertibility of K. From the
inf-sup-condition, we obtain injectivity of K by arguing as in the continuous case. By the
rank theorem and the condition dimUh = dimVh, this implies surjectivity of K and hence
invertibility.

Note the di�erence between�eorem 8.2 and the Lax–Milgram theorem in the discrete case:
In the latter, the coercivity condition amounts to the assumption that the matrix K is positive
de�nite, while the inf-sup-condition only requires invertibility.

�e error estimates for non-conforming methods are based on the following two generaliza-
tion of Céa’s lemma.�e �rst results concerns non-consistent but conformal approaches, and
can be used to prove estimates for the error arising from numerical integration, see�eorem
6.1. In the following, we assume that the conditions of�eorem 8.2 hold.

�eorem 8.3 (�rst Strang lemma). Assume that
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8 generalized galerkin approach

(i) Uh ⊂ U = U(h) and Vh ⊂ V .

(ii) �ere exists a constant c4 > 0 independent of h such that

|a(u, vh)| 6 c4 ‖u‖U(h) ‖vh‖Vh
holds for all u ∈ U and vh ∈ Vh.

�en, the solutions u and uh to (8.1) and (8.3) satisfy

‖u− uh‖U(h) 6
1

c1
sup
vh∈Vh

|F(vh) − Fh(vh)|

‖vh‖Vh

+ inf
wh∈Uh

[(
1+

c4

c1

)
‖u−wh‖U(h) +

1

c1
sup
vh∈Vh

|a(wh, vh) − ah(wh, vh)|

‖vh‖Vh

]
.

Proof. Letwh ∈ Uh be given. By the discrete inf-sup-condition, we have

c1 ‖uh −wh‖U(h) 6 sup
vh∈Vh

ah(uh −wh, vh)

‖vh‖Vh
.

Using (8.1) and (8.3), we can write

ah(uh −wh, vh) = a(u−wh, vh) + a(wh, vh) − ah(wh, vh) + Fh(vh) − F(v)

Inserting this into the last estimate and applying the assumption on a yields

c1 ‖uh −wh‖U(h) 6 c4 ‖u−wh‖U(h) + sup
vh∈Vh

|a(wh, vh) − ah(wh, vh)|

‖vh‖Vh

+ sup
vh∈Vh

|F(vh) − Fh(vh)|

‖vh‖Vh
.

�e claim follows a�er using the triangle inequality

‖u− uh‖U(h) 6 ‖u−wh‖U(h) + ‖uh −wh‖U(h)

and taking the in�mum over allwh ∈ Uh.

If the bilinear form ah can be extended to U(h)× Vh (such that ah(u, vh)makes sense), we
can dispense with the assumption of conformality.

�eorem 8.4 (second Strang lemma). Assume that there exists a constant c4 > 0 independent
of h such that

|ah(u, vh)| 6 c4 ‖u‖U(h) ‖vh‖Vh
holds for all u ∈ U(h) and vh ∈ Vh.�en, the solutions u and uh to (8.1) and (8.3) satisfy

‖u− uh‖U(h) 6

(
1+

c4

c1

)
inf

wh∈Uh
‖u−wh‖U(h) +

1

c1
sup
vh∈Vh

|Fh(vh) − ah(u, vh)|

‖vh‖Vh
.
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Proof. Letwh ∈ Uh be given.�en,

ah(uh −wh, vh) = ah(uh − u, vh) + ah(u−wh, vh)

= Fh(vh) − ah(u, vh) + ah(u−wh, vh).

�e discrete inf-sup-condition and the assumption on ah imply

c1 ‖uh −wh‖U(h) 6 sup
vh∈Vh

|Fh(vh) − ah(u−wh, vh)

‖vh‖Vh
+ c4 ‖u−wh‖U(h) ,

and we conclude using the triangle inequality as above.

To illustrate the application of the �rst Strang lemma, we consider the e�ect of quadrature on
the Galerkin approximation. For simplicity, we consider for u, v ∈ H10(Ω) the continuous
bilinear form

a(u, v) = (α∇u,∇v)

with α ∈W1,∞(Ω) ⊂ C0(Ω), α1 > α(x) > α0 > 0. Let Vh ⊂ H10(Ω) be constructed from
Lagrange elements of degreem on an a�ne-equivalent triangulation Th.�e discrete bilinear
form is then

ah(uh, vh) =
∑
K∈Th

m∑
k=1

wkα(xk)∇uh(xk) · ∇vh(xk)

wherewk and xk are the Gauß quadrature weights and nodes on each element. We recall that
this formula is exact for polynomials of degree up to 2m− 1, and that all weights are positive.
Since∇uh is a polynomial of degreem− 1, this implies(

m∑
k=1

wkα(xk)∇uh(xk) · ∇vh(xk)

)2
6 α21

(
m∑
k=1

wk|∇uh(xk)|2
)(

m∑
k=1

wk|∇vh(xk)|2
)

= α21|∇uh|2H1(K)|∇vh|
2
H1(K)

since the quadrature is exact for |∇uh|2, |∇uh|2 ∈ P2m−2. Hence, ah is continuous on Vh ×
Vh:

|ah(uh, vh)| 6 C ‖uh‖H1(Ω) ‖vh‖H1(Ω) .

Similarly, ah is coercive:

ah(uh, uh) > α0
∑
K∈Th

m∑
k=1

wk|∇uh(xk)|2 = α0|uh|2H1(Ω)

> C ‖uh‖2H1(Ω)
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by Poincaré’s inequality (�eorem 2.5).�us, the discrete problem is well-posed by�eorem
8.2.

We next derive error estimates. Using the �rst Strang lemma, we �nd that the discretization
error is bounded by the approximation error and the quadrature error. Form = 1 (linear
Lagrange elements),�eorem 5.9 yields

inf
wh∈Vh

‖u−wh‖H1(Ω) 6 Ch|u|H2(Ω).

For the quadrature error in the bilinear form, we use that for wh, vh ∈ Vh,∇wh and∇vh
are constant on each element to write

|a(wh, vh) − ah(wh, vh)| =
∑
K∈Th

(∫
K

α∇wh · ∇vh dx−
m∑
k=1

wkα(xk)∇wh(xk) · ∇vh(xk)

)

=
∑
K∈Th

∇wh · ∇vh

(∫
K

αdx−

m∑
k=1

wkα(xk)

)
.

Since

EK(v) :=

∫
K

v(x)dx−

m∑
k=1

wkv(xk)

is a bounded, sublinear functional onWm,∞(K) which vanishes for all v ∈ Pm−1 ⊂ P2m−1,
we can apply the Bramble–Hilbert lemma on the reference element K̂ to obtain

|EK̂(v̂)| 6 C|v̂|Wm,∞(K̂).

A scaling argument then yields

|EK(v)| 6 Ch
m
K vol(K) |v|Wm,∞(K).

Inserting this and using that∇uh,∇vh are constant on each element, we obtain

|a(wh, vh) − ah(wh, vh)| =
∑
K∈Th

∇wh · ∇vhEK(α)

6 C
∑
K∈Th

hK|α|W1,∞(K)

∫
K

∇wh · ∇vh dx

6 Ch|α|W1,∞(Ω) ‖wh‖H1(Ω) ‖vh‖H1(Ω) .

For the quadrature error on the right hand side Fh(vh), we proceed similarly (applying the
Bramble–Hilbert lemma to fvh and using the product rule and equivalence of norms on Vh)
to obtain

|F(vh) − Fh(vh)| 6 Ch |f|W1,∞(Ω) ‖vh‖H1(Ω) .

Combining these estimates with the �rst Strang lemma yields

‖u− uh‖H1(Ω) 6 Ch
(
|f|W1,∞(Ω) + |u|H2(Ω)

)
,

where we have used that infwh∈Vh |α|W1,∞(Ω) ‖wh‖Vh = 0.
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DISCONTINUOUS GALERKIN METHODS

Discontinuous Galerkin methods are based on nonconforming �nite element spaces consist-
ing of piecewise polynomials that are not continuous across elements.�is allows them to
handle irregular meshes with hanging nodes and di�erent degrees of polynomials on each
element.�ey also provide a natural framework for �rst order partial di�erential equations
and for imposing Dirichlet boundary conditions in a weak form, on which we will focus here.
We consider a simple advection-reaction equation

β · ∇u+ µu = f

which models the transport of a solute concentration u along the vector �eld β.�e reaction
coe�cient µ determines the rate with which the solute is destroyed or created due to interac-
tion with its environment, and f is a source term.�is is complemented by (for simplicity)
homogeneous Dirichlet conditions which will be speci�ed below.

9.1 weak formulation of advection-reaction equations

We considerΩ ⊂ Rn (polyhedral) with unit outer normal ν and assume

µ ∈ L∞(Ω), β ∈ (W1,∞(Ω))n, f ∈ L2(Ω).

Our �rst task is to de�ne the space in which we look for our solution. Let

∂Ω− = {x ∈ ∂Ω : β(x) · ν(x) < 0}

denote the in�ow boundary and

∂Ω+ = {x ∈ ∂Ω : β(x) · ν(x) > 0}

the out�ow boundary, and assume that they are well-separated:

min
x∈∂Ω−,y∈∂Ω+

|x− y| > 0.
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9 discontinuous galerkin methods

�en we de�ne the so-called graph space

W =
{
v ∈ L2(Ω) : β · ∇v ∈ L2(Ω)

}
⊂ L2(Ω),

which is a Hilbert space if endowed with the inner product

〈v,w〉W = (v,w) + (β · ∇v, β · ∇w).

�e latter induces the graph norm

‖v‖W = (〈v, v〉W)
1
2 .

One can show1 that functions inW have traces in the space

L2β(∂Ω) =

{
vmeasurable on ∂Ω :

∫
∂Ω

|β · ν| v2 dx <∞} ,
and that the following integration by parts formula holds:

(9.1)
∫
Ω

(β · ∇v)w+ (β · ∇w)v+ (∇ · β)vwdx =
∫
∂Ω

(β · ν)vwdx

for all v,w ∈W.

We can now de�ne our weak formulation: Set

U := {v ∈W : v|∂Ω− = 0}

and �nd u ∈ V satisfying

(9.2) a(u, v) := (β · ∇u, v) + (µu, v) = (f, v)

for all v ∈ L2(Ω). Note that the test space is now di�erent from the solution space.

Since U is a closed subspace of the Hilbert spaceW, it is a Banach space. Moreover, L2(Ω) is
a re�exive Banach space and the right hand side de�nes a continuous linear functional on
L2(Ω). We can thus apply the Banach–Nečas–Babuška�eorem to show well-posedness.

�eorem 9.1. If

µ(x) − 1
2
∇ · β(x) > µ0 > 0 for almost all x ∈ Ω

holds, there exists a unique u ∈ U satisfying (9.2). Furthermore, there exists a c > 0 such that

‖u‖W 6 c ‖f‖L2(Ω)

holds.
1e.g., [Di Pietro and Ern 2012, Lemma 2.5]
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9 discontinuous galerkin methods

Proof. We begin by showing the continuity of a on U × L2(Ω). For arbitrary u ∈ U and
v ∈ L2(Ω), the Cauchy–Schwarz inequality yields

|a(u, v)| 6 ‖β · ∇u‖L2(Ω) ‖v‖L2(Ω) + ‖µv‖L2(Ω) ‖v‖L2(Ω)

6 (1+ ‖µ‖L∞(Ω)) ‖u‖W ‖v‖L2(Ω) .

To verify the inf-sup-condition,we �rst prove coercivity in L2(Ω). For anyu ∈ U, we integrate
by parts using (9.1) for v = w = u to obtain

a(u, u) =

∫
Ω

(β · ∇u)u+ µu2 dx

=

∫
Ω

(µ− 1
2
∇ · β)u2 dx+

∫
∂Ω

1
2
(β · ν)u2 dx

> µ0 ‖u‖2L2(Ω) ,

where we have used thatu vanishes on ∂Ω− due to the boundary conditions and thatβ ·ν > 0
on ∂Ω+.�is implies

‖u‖L2(Ω) 6 µ
−1
0

a(u, u)

‖u‖L2(Ω)

6 sup
w∈L2(Ω)

µ−1
0

a(u,w)

‖w‖L2(Ω)

.

For the other term in the graph norm, we use the duality trick

‖β · ∇u‖L2(Ω) = sup
w∈L2(Ω)

(β · ∇u,w)
‖w‖L2(Ω)

= sup
w∈L2(Ω)

a(u,w) − (µu,w)

‖w‖L2(Ω)

6 sup
w∈L2(Ω)

a(u,w)

‖w‖L2(Ω)

+ ‖µ‖L∞(Ω) ‖u‖L2(Ω)

6 (1+ µ−1
0 ‖µ‖L∞(Ω)) sup

w∈L2(Ω)

a(u,w)

‖w‖L2(Ω)

.

Summing the last two inequalities and taking the in�mum over all u ∈ V veri�es the inf-sup-
condition.

For the injectivity condition, we assume that v ∈ L2(Ω) is such that a(u, v) = 0 for all u ∈ U
and show that v = 0. Since C∞0 (Ω) ⊂ U, we deduce that∇ · (βv) exists as a weak derivative
and µv−∇· (βv) = 0. By the chain rule, we furthermore have β ·∇v = (µ−∇·β)v ∈ L2(Ω),
which implies v ∈W. Inserting this into the integration by parts formula (9.1) and adding
the productive zero yields for all u ∈ U

(9.3)
∫
∂Ω

(β · ν)uvdx =
∫
Ω

(β · ∇v)u+ (β · ∇u)v+ (∇ · β)vudx

= a(u, v) − ((µ−∇ · β)v, u) + (β · ∇v, u)
= 0.
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9 discontinuous galerkin methods

Since ∂Ω+ and ∂Ω− are well separated, there exists a smooth cut-o� function χwith χ(x) = 0
for x ∈ ∂Ω−. Applying (9.3) to u = χv ∈ U yields

∫
∂Ω+(β · ν)v2 dx = 0. Using again

µv−∇ · (βv) = 0 and integrating by parts, we deduce that

0 =

∫
Ω

µv2 −∇ · (βv)v dx

=

∫
Ω

(µ− 1
2
∇ · β)v2 dx−

∫
∂Ω

1
2
(β · ν)v2

> µ0 ‖v‖L2(Ω)

since the remaining boundary integral over ∂Ω− is non-negative.�is shows that v = 0, from
which the injectivity condition follows by contraposition.

Note that the graph norm is the strongest norm in which we could have shown coercivity,
and that a would not have been bounded on U×U.

9.2 galerkin approach

�e discontinuous Galerkin approach now consists in choosing our discrete spaces as

Vh =
{
v ∈ L2(Ω) : v|K ∈ Pk, K ∈ Th

}
for k > 0 and a given triangulation Th ofΩ (no continuity across elements is assumed, hence
the name). We then search for uh ∈ Vh satisfying

(9.4) ah(uh, vh) = (f, vh) for all vh ∈ Vh

for a bilinear form ah to be speci�ed. Here, we consider the simplest choice that leads to a
convergent scheme. Recall that the set of interior faces of Th is denoted by Γh. Let F ∈ Γh be
the face common to the elements K1, K2 ∈ Th with exterior normal ν1 and ν2, respectively.
For a function u ∈ L2(Ω), we denote the jump across F as

JuKF = u|K1ν1 + u|K2ν2

and the average as

{{u}}F =
1
2
(u|K1 + u|K2).

We will omit the subscript F if it is clear which face is meant. It is also convenient to introduce
for vh ∈ Vh the broken gradient ∇hvh via

(∇hvh)|K = ∇(vh|K) for all K ∈ Th.
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9 discontinuous galerkin methods

We then de�ne the bilinear form

(9.5) ah(uh, vh) = (µuh + β · ∇huh, vh) +
∫
∂Ω−

(β · ν)uhvh dx

−
∑
F∈Γh

∫
F

β · JuhK {{vh}}.

�e second term enforces the homogeneous Dirichlet conditions in a weak sense.�e last
term can be thought of as weakly enforcing continuity by penalizing the jump across each
face; the reason for its speci�c form will become apparent during the following. Continuity
of a on Vh×Vh will be shown later. To prove well-posedness of (9.4), it remains to verify the
discrete inf-sup-condition, which we can do by showing coercitivity in an appropriate norm.
We choose

~uh~
2
= µ0 ‖uh‖2L2(Ω) +

∫
∂Ω

1
2
|β · ν|u2h dx,

which is clearly a norm on Vh ⊂ L2(Ω). We begin by integrating by parts on each element
the �rst term of (9.5) for vh = uh:

(µuh + β · ∇huh, uh) =
∑
K∈Th

∫
K

µu2h + (β · ∇uh)uh dx

=
∑
K∈Th

∫
K

µu2h −
1
2
(∇ · β)u2h dx+

∫
∂K

1
2
(β · ν)u2h dx.

�e last term can be reformulated as a sum over faces. Since β ∈W1,∞(Ω) is continuous, we
have ∑

K∈Th

∫
∂K

1
2
(β · ν)u2h =

∑
F∈Γh

∫
F

1
2
β ·

q
u2h

y
+

∑
F∈∂Th\Γh

∫
F

1
2
(β · ν)u2h.

Using
1
2

q
w2

y
F
= 1
2
(w|2K1 −w|

2
K2
)ν = 1

2
(w|K1 +w|K2)(w|K1 −w|K2)ν = {{w}}F JwKF ,

and combining the terms involving integrals over ∂Ω, we obtain∑
K∈Th

∫
∂K

1
2
(β · ν)u2h dx+

∫
∂Ω−

(β · ν)u2h dx =
∑
F∈Γh

∫
F

β · JuhK {{uh}}+
∫
∂Ω

1
2
|β · ν|u2h dx.

Note that we have no control over the sign of the �rst term on the right hand side, which
is why we had to introduce the penalty term in ah to cancel it. Combining these equations
yields

ah(uh, uh) =
∑
K∈Th

∫
K

(
µ− 1

2
(∇ · β)

)
u2h dx+

∫
∂Ω

1
2
|β · ν|u2h dx

> µ0 ‖uh‖2L2(Ω) +

∫
∂Ω

1
2
|β · ν|u2h dx

= ~uh~
2
.
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9 discontinuous galerkin methods

Hence, ah is coercive on Vh, and by�eorem 8.2, there exists a unique solution uh ∈ Vh to
(9.4).

9.3 error estimates

To derive error estimates for the discontinuous Galerkin approximation uh ∈ Vh to u ∈ U,
we wish to apply the second Strang lemma. Our �rst task is to show boundedness of ah on
a su�ciently large space containing the exact solution. Since the corresponding norm will
involve traces on edges, we make the additional assumption that the exact solution satis�es

u ∈ U∗ := U ∩H1(Ω).

By the trace theorem 2.4, u|F is well-de�ned in the sense of L2(F) traces. We then de�ne on
U(h) := U∗ + Vh the norm

~w~
2

∗ := ~w~
2
+
∑
K∈Th

(
‖β · ∇w‖2L2(K) + h

−1
K ‖w‖

2
L2(∂K)

)
.

We can then show boundedness of ah:

Lemma 9.2. �ere exists a constant C > 0 independent of h such that for all u ∈ U(h) and
vh ∈ Vh,

ah(u, vh) 6 C~u~∗ ~vh~

holds.

Proof. Using the Cauchy–Schwarz inequality and some generous upper bounds, we immedi-
ately obtain

(9.6) (µu+ β∇u, vh) +
∫
∂Ω−

(β · ν)uvh dx 6 C~u~∗ ~vh~ ,

with a constant C > 0 depending only on µ. For the last term of ah(u, vh), we also apply the
Cauchy–Schwarz inequality:

∑
F∈Γh

∫
F

β · JuK {{vh}} 6 C

(∑
F∈Γh

1
2
{{h}}−1 ‖JuK‖2L2(F)

) 1
2
(∑
F∈Γh

2{{h}} ‖{{vh}}‖2L2(F)

) 1
2

,

where C > 0 depends only on β. Now we use that

1
2
JwK2F 6 (w|2K1 +w|

2
K2
), 2{{w}}2 6 (w|2K1 +w|

2
K2
)
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9 discontinuous galerkin methods

holds, and that for a shape-regularmesh, the element sizehK cannot change arbitrarily between
neighboring elements, i.e., there exists a c > 0 such that

c−1max(hK1 , hK2) 6 {{h}} 6 cmin(hK1 , hK2).

�is implies

(9.7)
∑
F∈Γh

∫
F

β · JuK {{vh}} 6 C

(∑
K∈Th

h−1
K ‖u‖

2
L2(∂K)

) 1
2
(∑
K∈Th

hK ‖vh‖2L2(∂K)

) 1
2

6 C~u~∗ ~vh~

where we have combined the terms arising from the faces of each element and applied the
trace theorem with a scaling argument:

h
1/2
K ‖vh‖L2(∂K) 6 ‖vh‖L2(K) .

Adding (9.6) and (9.7) yields the claim.

Since ~·~ and ~·~∗ are equivalent norms on the (�nite-dimensional) space Vh, Lemma 9.2
�lls the remaining gap in the well-posedness of (9.4).

We now argue consistency of our discontinuous Galerkin approximation.
Lemma 9.3. �e solution u ∈ U∗ to (9.2) satis�es

ah(u, vh) = (f, vh)

for all vh ∈ Vh.

Proof. By de�nition, u ∈ U∗ satis�es a(u, vh) = (f, vh) for all vh ∈ Vh. Furthermore, due to
the boundary conditions, ∫

∂Ω−

(β · ν)uvh dx = 0.

It remains to show that the penalty term (β ·ν) JuhKF {{vh}}F vanishes on each face F ∈ Γh. Let
ϕ ∈ C∞0 (Ω) have support contained in S ⊂ K1 ∪ K2 ⊂ Ω and intersecting F = ∂K1 ∩ ∂K2.
�en the integration by parts formula (9.1) gives

0 =

∫
Ω

(β · ∇v)ϕ+ (β · ∇ϕ)v+ (∇ · β)vϕdx

=

∫
S∩K1

(β · ∇v)ϕ+ (β · ∇ϕ)v+ (∇ · β)vϕdx

+

∫
S∩K2

(β · ∇v)ϕ+ (β · ∇ϕ)v+ (∇ · β)vϕdx

=

∫
∂K1∩S

(β · ν)vϕdx+
∫
∂K2∩S

(β · ν)vϕdx

=

∫
F

β · JvKϕdx.

�e claim then follows from a density argument.
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9 discontinuous galerkin methods

�is implies that the consistency error is zero, and we are le� with the approximation error
in the U(h) norm, which can be estimated using the local interpolant if the exact solution
is smooth enough. From the second Strang lemma, we thus obtain the following error esti-
mate.

�eorem 9.4. Assume that the solution u ∈ U(h) to (9.2) satis�es u ∈ Hk+1(Ω).�en there
exists a c > 0 independent of h such that

~u− uh~ 6 chk ‖u‖Hk+1(Ω)

holds.

Note that since we could only show coercivity with respect to ~·~ (and u − uh is not in a
�nite-dimensional space), we only get an error estimate in this (weaker) norm of L2 type,
while the approximation error needs to be estimated in the (stronger) H1-type norm ~·~∗.
On the other hand, we would expect a convergence order hk+1/2 for the discretization error
in an L2-type norm (involving interface terms).�is discrepancy is due to the simple penalty
we added, which is insu�cient to control oscillations (it cancelled the interface terms arising
in the integration by parts, but did not contribute further in the coercivity). A more stable
alternative is upwinding: Take

a+
h (uh, vh) = ah(uh, vh) +

∑
F∈Γh

∫
F

η

2
|β · ν| JuhK · JvhK

for a su�ciently large penalty parameter η > 0. It can be shown2 that this bilinear form is
consistent as well, and is coercive in the norm

~w~
2

+ = ~w~
2
+
∑
F∈Γh

∫
F

η

2
|β · ν| JuhK2 +

∑
K∈Th

hK ‖β · ∇w‖2L2(K)

and continuous in

~w~
2

+,∗ = ~w~
2

+ +
∑
K∈Th

(
h−1
K ‖w‖

2
L2(K) + ‖w‖

2
L2(∂K)

)
,

which can be used to obtain the expected convergence order of hk+1/2.

2e.g., [Di Pietro and Ern 2012, Chapter 2.3]
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MIXED METHODS

We now consider variational problems with constraints. Such problems arise, e.g., in the
variational formulation of incompressible �ow problems (where incompressibility of the
solution u can be expressed as the condition∇·u = 0) or when explicitly enforcing boundary
conditions in the weak formulation. To motivate the general problem we will study in this
chapter, consider two re�exive Banach spaces V andM and the symmetric and coercive
bilinear form a : V × V → R. We know (cf. �eorem 3.3) that the solution u ∈ V to
a(u, v) = 0 for all v ∈ V is the unique minimizer of J(v) = 1

2
a(v, v). If we want u to satisfy

the additional condition b(u, µ) = 0 for all µ ∈M and a bilinear form b : V ×M→ R (e.g.,
b(u, µ) = (∇ · u, µ)), we can introduce the Lagrangian

L(u, λ) = J(u) + b(u, λ)

and consider the saddle point problem

inf
v∈V

sup
µ∈M

L(v, µ).

Taking the derivative with respect to v and µ, we obtain the (formal) �rst order optimality
conditions for the saddle point (u, λ) ∈ V ×M:{

a(u, v) + b(v, λ) = 0 for all v ∈ V,
b(u, µ) = 0 for all µ ∈M

�is can be made rigorous; the existence of a Lagrange multiplier λ however requires some
assumptions on b. In the next section, we will see that these can be expressed in the form of
an inf-sup condition.

10.1 abstract saddle point problems

Let V andM be two re�exive Banach spaces,

a : V × V → R, b : V ×M→ R
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10 mixed methods

be two continuous (not necessarily symmetric) bilinear forms, and f ∈ V∗ and g ∈M∗ be
given.�en we search for (u, λ) ∈ V ×M satisfying the saddle point problem

(S)

{
a(u, v) + b(v, λ) = 〈f, v〉V∗,V for all v ∈ V,

b(u, µ) = 〈g, µ〉M∗,M for all µ ∈M.

In principle, we can obtain existence and uniqueness of (u, λ) by considering (S) as a bilinear
form on V ×M and verifying a suitable inf-sup condition. It is, however, more convenient to
express this condition in terms of the original bilinear forms a and b. For this purpose, we
�rst reformulate (S) as an operator equation by introducing the operators

A : V → V∗, 〈Au, v〉V∗,V = a(u, v) for all v ∈ V,
B : V →M∗, 〈Bu, µ〉M∗,M = b(u, µ) for all µ ∈M,
B∗ :M→ V∗, 〈B∗λ, v〉V∗,V = b(v, λ) for all v ∈ V.

�en, (S) is equivalent to

(10.1)

{
Au+ B∗λ = f,

Bu = g.

From this, we can see the following: If B were invertible, the existence and uniqueness of
(u, λ) would follow immediately. In the (more realistic case) that B has a nontrivial null
space

kerB = {x ∈ V : b(x, µ) = 0 for all µ ∈M} ,

we have to require that A is injective on it to obtain a unique u. Existence of λ then follows
from surjectivity of B∗. To verify these conditions, we follow the general approach of the
Banach–Nečas–Babuška theorem.

�eorem 10.1 (Brezzi splitting theorem). Assume

(i) a : V × V → R satis�es the conditions of�eorem 8.1 for U = V = kerB,

(ii) b : V ×M→ R satis�es for β > 0 the inf-sup condition

(10.2) inf
µ∈M

sup
v∈V

b(v, µ)

‖v‖V ‖µ‖M
> β.

�en, there exists a unique solution (u, λ) ∈ V ×M to (10.1) satisfying

‖u‖V + ‖λ‖M 6 C(‖f‖V∗ + ‖g‖M∗).

Condition (ii) is known as the Ladyžhenskaya–Babuška–Brezzi (LBB) condition. Note that a
only has to satisfy an inf-sup condition on the null space of B, not on all of V , which is crucial
in many applications.
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Proof. First, by inspecting the proof of�eorem 8.1, we note that the LBB condition implies
that B∗ has closed range, is injective onM, and is surjective on

(kerB)0 = {x ∈ V∗ : 〈x, v〉V∗,V = 0 for all v ∈ kerB} .

In addition,

β ‖µ‖M 6 ‖B∗µ‖V∗

holds for all µ ∈ M. By re�exivity of V,M and the closed range theorem, B = (B∗)∗ has
closed range as well and hence is surjective on (kerB∗)0 = ({0})0 =M∗. For all x ∈ V , we
have

‖Bx‖M∗ = sup
µ∈M

〈Bx, µ〉M∗,M
‖µ‖M

= sup
µ∈M

b(x, µ)

‖µ‖M

> inf
µ∈M

b(x, µ)

‖µ‖M
> β ‖x‖V

by the LBB condition. Hence, for g ∈M∗, there exists a ug ∈ V satisfying Bug = g and

(10.3) ‖ug‖V 6
1

β
‖g‖M∗ .

Due to condition (i),A is an isomorphism on kerB. Considering f−Aug as a bounded linear
form on kerB ⊂ V , we thus obtain a unique uf ∈ kerB satisfying Auf = f−Aug and

(10.4) ‖uf‖V 6
1

α
(‖f‖V∗ + C ‖ug‖V),

where α > 0 and C > 0 are the constants in the inf-sup and continuity conditions for a,
respectively.

Now set u = uf + ug ∈ V and consider f−Au ∈ V∗, which by construction satis�es

〈f−Au, v〉V∗,V = 0 for all v ∈ kerB,

i.e., f − Au ∈ (kerB)0. Since B∗ is surjective on (kerB)0, we obtain existence of a λ ∈ M
satisfying B∗λ = f−Au and

(10.5) ‖λ‖M 6
1

β
(‖f‖V∗ + C ‖u‖V).

We have thus found (u, λ) ∈ V ×M satisfying

Au+ B∗λ = f

and

Bu = Bug = g.
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�e claimed estimate follows by combining (10.3), (10.4) and (10.5).

To show uniqueness of the solution, consider the di�erence (u, λ) of two solutions (u1, λ1)
and (u2, λ2), which solves the homogeneous problem (10.1) with f = 0 and g = 0, i.e.,Bu = 0

and Au+ B∗λ = 0.�en, u ∈ kerB and the bijectivity of A on kerB implies u = 0, since

α ‖u‖2V 6 a(u, u) = a(u, u) + b(u, λ) = 0.

Hence B∗λ = 0. Similarly, from the injectivity of B∗ it follows that λ = 0.

10.2 galerkin approximation of saddle point problems

To simplify matters, we consider a conforming Galerkin approximation of (S): Choose �nite-
dimensional subspaces Vh ⊂ V andMh ⊂M and look for (uh, λh) ∈ Vh×Mh satisfying

(Sh)

{
a(uh, vh) + b(vh, λh) = 〈f, vh〉V∗,V for all vh ∈ Vh,

b(uh, µh) = 〈g, µh〉M∗,M for all µh ∈Mh.

�is approach is called amixed �nite element method. It is clear that the choice of Vh and of
Mh cannot be independent of each other but must satisfy a compatibility condition similar
to�eorem 10.1. De�ne the operator Bh : Vh →M∗h analogously to B.

�eorem 10.2. Assume there exist constants αh, βh > 0 such that

inf
uh∈kerBh

sup
vh∈kerBh

a(uh, vh)

‖uh‖V ‖vh‖V
> αh,(10.6)

inf
µh∈Mh

sup
vh∈Vh

b(vh, µh)

‖vh‖V ‖µh‖M
> βh.(10.7)

�en, there exists a unique solution (uh, λh) ∈ Vh ×Mh to (Sh) satisfying

‖uh‖Vh + ‖λh‖Mh
6 C(‖fh‖V∗ + ‖gh‖M∗).

Proof. �e claim follows immediately from�eorem 10.1 and the fact that in �nite dimensions,
the inf-sup condition for a is su�cient to apply�eorem 8.1.

Note that in general, this is a non-conforming approach since even for Vh ⊂ V andMh ⊂M,
we do not have that Bh is the restriction of B to Vh, i.e., B(Vh) 6⊂M∗h and that kerBh need
not be a subspace of kerB. Hence, the discrete inf-sup conditions do not follow from the
continuous conditions. However, if the subspace Vh is chosen suitably, it is possible to deduce
the discrete LBB condition from the continuous one.
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10 mixed methods

�eorem 10.3 (Fortin criterion). Assume the LBB condition (10.2) is satis�ed.�en the discrete
LBB condition (10.7) is satis�ed if and only if there exists a linear operator Πh : V → Vh such
that

b(Πhv, µh) = b(v, µh) for all µh ∈Mh

and there exists a γh > 0 such that

‖Πhv‖V 6 γh ‖v‖V for all v ∈ V

holds.

Proof. Assume that such a projector exists. Since Πh(V) ⊂ Vh, we have for all µh ∈Mh

sup
vh∈Vh

b(v, µh)

‖v‖V
> sup
v∈V

b(Πhv, µh)

‖Πhv‖V
> sup
v∈V

b(v, µh)

γh ‖v‖V
>
β

γh
‖µh‖M ,

which implies the discrete LBB condition. Conversely, if the discrete LBB condition holds,
the operator Bh : Vh →M∗h as de�ned above is surjective and has continuous right inverse,
hence for any v ∈ V , there exists a Πhv ∈ Vh such that Bh(Πhv) = Bhv ∈M∗h and

βh ‖Πhv‖V 6 ‖Bhv‖M∗ 6 C ‖v‖V .

A priori error estimates can be obtained using the following variant of Céa’s lemma.

�eorem 10.4. Assume the conditions of�eorem 10.2 are satis�ed. Let (u, λ) ∈ V ×M and
(uh, λh) ∈ Vh ×Mh be the solutions to (S) and (Sh), respectively.�en there exists a constant
C > 0 such that

‖u− uh‖V + ‖λ− λh‖M 6 C

(
inf
vh∈Vh

‖u− vh‖V + inf
µh∈Mh

‖λ− µh‖M
)
.

Proof. Due to the discrete LBB condition, the operator Bh : Vh →M∗h is surjective and has
continuous right inverse. For arbitrary vh ∈ Vh, consider B(u− vh) as a linear form onMh.
Hence, there exists rh ∈ Vh satisfying Bhrh = B(u− vh), i.e.,

b(rh, µh) = b(u− vh, µh) for all µh ∈Mh,

and

βh ‖rh‖V 6 C ‖u− vh‖V .

Furthermore,wh = rh + vh satis�es

b(wh, µh) = b(u, µh) = 〈g, µh〉M∗,M for all µh ∈Mh,
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10 mixed methods

hence uh −wh ∈ kerBh.�e discrete inf-sup condition (10.6) thus implies

(10.8) αh ‖uh −wh‖V 6 sup
xh∈kerBh

a(uh −wh, xh)

‖xh‖V

6 sup
xh∈kerBh

a(uh − u, xh) + a(u−wh, xh)

‖xh‖V

6 sup
xh∈kerBh

b(xh, λ− λh) + a(u−wh, xh)

‖xh‖V
,

by taking the di�erence of the �rst equations of (S) and (Sh). For any xh ∈ kerBh and
µh ∈Mh, we have

b(xh, λh) = 0 = b(xh, µh)

and hence

αh ‖uh −wh‖V 6 C(‖u−wh‖V + ‖λ− µh‖M)

for arbitrary µh ∈Mh. Using the triangle inequality, we thus obtain

(10.9) ‖u− uh‖V 6 ‖u−wh‖V + ‖wh − uh‖V

6 (1+
C

αh
) ‖u−wh‖V +

C

αh
‖λ− µh‖M

and

(10.10) ‖u−wh‖V 6 ‖u− vh‖V + ‖rh‖V 6 (1+
C

βh
) ‖u− vh‖V .

To estimate ‖λ− λh‖M, we again use that

a(u− uh, vh) = b(vh, λ− λh) = b(vh, λ− µh) + b(vh, µh − λh)

holds for all vh ∈ Vh and µh ∈Mh.�e discrete LBB condition thus implies

βh ‖λh − µh‖M 6 C(‖u− uh‖V + ‖λ− µh‖M).

Applying the triangle inequality again, we obtain

(10.11) ‖λ− λh‖M 6 ‖λ− µh‖M + ‖λh − µh‖M

6 (1+
C

βh
) ‖λ− µh‖M +

C

βh
‖u− uh‖V .

Combining (10.9), (10.10), and (10.11) yields the claimed estimate.
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10 mixed methods

�is estimate is optimal if the constants αh, βh can be chosen independently of h.

If kerBh ⊂ kerB (i.e., b(vh, µh) = 0 for all µh ∈ Mh implies b(vh, µ) = 0 for all µ ∈ M),
we can improve the estimate for u.

Corollary 10.5. If kerBh ⊂ kerB,

‖u− uh‖V 6 C inf
vh∈Vh

‖u− vh‖V

holds.

Proof. If kerBh ⊂ kerB, we have b(vh, λ − λh) = 0 for all vh ∈ kerBh, and hence (10.8)
implies

αh ‖uh −wh‖V 6 C ‖u−wh‖V .

Continuing as above, we obtain the claimed estimate.

10.3 a mixed method for the poisson equation

�e classical application of mixed �nite element methods is the Stokes equation,1 which
describes the �ow of an incompressible �uid. Here, we want to illustrate the theory using a
very simple example. Consider the Poisson equation−∆u = f onΩ ⊂ Rn with homogeneous
Dirichlet conditions. If we introduce σ = ∇u ∈ L2(Ω)n, we can write it as{

∇u− σ = 0,

−∇ · σ = f.

�e weak solution (σ, u) ∈ L2(Ω)n ×H10(Ω) of this system satis�es

(10.12)

{
(σ, τ) − (τ,∇u) = 0 for all τ ∈ L2(Ω)n,

−(σ,∇v) = −(f, v) for all v ∈ H10(Ω).

�is �ts into the abstract framework of § 10.1 by setting V := L2(Ω)n,M := H10(Ω),

a(σ, τ) = (σ, τ), b(σ, v) = −(σ,∇v).

Clearly, a is coercive on the whole space V with constant α = 1. To verify the LBB condition,
we insert τ = −∇v ∈ L2(Ω)n = V for given v ∈ H10(Ω) =M in

sup
τ∈V

b(τ, v)

‖τ‖V
>
b(−∇v, v)
‖∇v‖V

=
(∇v,∇v)
‖∇v‖L2(Ω)

= |v|H1(Ω) > C
−1 ‖v‖H1(Ω)

1see, e.g., [Braess 2007, Chapter III.6], [Ern and Guermond 2004, Chapter 4]
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10 mixed methods

using the Poincaré inequality 2.5.�eorem 10.1 thus yields the existence and uniqueness of
the solution (σ, u) to (10.12).

To obtain a stable mixed �nite element method, we take a shape-regular a�ne triangulation
Th ofΩ and set for k > 1

Vh :=
{
τh ∈ L2(Ω)n : τh|K ∈ Pk−1(K) for all K ∈ Th

}
,

Mh :=
{
vh ∈ C0(Ω) : vh|K ∈ Pk(K) for all K ∈ Th

}
.

Since Vh ⊂ V , the coercivity of a on Vh follows as above with constant αh = α. Furthermore,
it is easy to verify that ∇Mh ⊂ Vh, i.e., the gradient of any piecewise linear continuous
function is piecewise constant. (We are thus in the special situation of a conforming Galerkin
approximation.) Hence, the L2(Ω)n projection from V on Vh veri�es the Fortin criterion: If
Πhσ ∈ Vh satis�es (Πhσ− σ, τh) = 0 for all τh ∈ Vh and given σ ∈ V , then

b(Πhσ, vh) = −(Πhσ,∇vh) = −(σ,∇vh) = b(σ, vh) for all vh ∈Mh

since∇vh ∈ Vh.�eorem 10.3 therefore yields the discrete LBB condition and we obtain exis-
tence of and (fromCorollary 10.5) a priori estimates for themixed �nite element discretization
(Sh).
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Part IV

TIME-DEPENDENT PROBLEMS



11

VARIATIONAL THEORY OF PARABOLIC PDES

In this chapter, we study evolution equations. For example, if −∆u = f (together with
appropriate boundary conditions) describes the temperature distribution u in a body due to
the heat source f, the heat equation{

∂tu(t, x) − ∆u(t, x) = f(t, x),

u(0, x) = u0(x)

describes the evolution in time of the temperature distribution u starting from the given
initial condition u0.�is is a parabolic equation, since the spatial partial di�erential operator
−∆ is elliptic and only the �rst time derivative of u appears.

11.1 function spaces

To specify the weak formulation of parabolic problems, we �rst need to �x the proper func-
tional analytic framework. Let T > 0 be a �xed time and Ω ⊂ Rn be a domain, and set
Q := (0, T)×Ω. To respect the special role of the time variable, we consider a real-valued
function u(t, x) on Q as a function of t with values in a Banach space V that consists of
functions depending on x only:

u : (0, T)→ V, t 7→ u(t, ·) ∈ V.

Similarly to the real-valued case, we can de�ne the following function spaces:

• Hölder spaces: For k > 0, de�ne Ck(0, T ;V) as the space of all V-valued functions on
[0, T ] which are k times continuously di�erentiable with respect to t. Denote by djtu
the jth derivative of u.�en Ck(0, T ;V) is a Banach space when equipped with the
norm

‖u‖Ck(0,T ;V) :=

k∑
j=1

sup
t∈[0,T ]

∥∥∥djtu(t)∥∥∥
V
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11 variational theory of parabolic pdes

• Lebesgue spaces (also called Bochner spaces):1 For 1 6 p 6∞, de�ne Lp(0, T ;V) as the
space of all V-valued functions on (0, T) for which t 7→ ‖u(t)‖V is in Lp(0, T), which
is a Banach space if equipped with the norm

‖u‖Lp(0,T ;V) =


(∫T
0
‖u(t)‖pV dt

) 1
p if p <∞,

ess supt∈(0,T) ‖u(t)‖V if p =∞.
• Sobolev spaces: If u ∈ Lp(0, T ;V) has a weak derivative dtu (de�ned in the usual
fashion) in Lp(0, T ;V), we say that u ∈ W1,p(0, T ;V), which is a Banach space if
equipped with the norm

‖u‖W1,p(0,T ;V) := ‖u‖Lp(0,T ;V) + ‖dtu‖Lp(0,T ;V) .

More generally, for 1 < p <∞ and two re�exive Banach spaces V0, V1 with continuous
embedding V0 ↪→ V1, we set q = p/(p− 1) and

W1,p(V0, V1) := {vmeasurable : v ∈ Lp(0, T ;V0) and dtv ∈ Lq(0, T ;V1)} .

�is is a Banach space if equipped with the norm

‖u‖W(V0,V1)
:= ‖u‖Lp(0,T ;V0) + ‖dtu‖Lq(0,T ;V1) .

Let V be a re�exive Banach space with continuous and dense embedding into a Hilbert space
H. Identifying H∗ with H using the Riesz representation theorem, we have

V ⊂ H ≡ H∗ ⊂ V∗

with dense embeddings. We call (V,H, V∗) Gelfand or evolution triple. We can then transfer
(via molli�ers)2 the usual calculus rules toW1,p(V, V∗). Similarly to the Rellich–Kondrachov
theorem, the following embedding tells us that su�ciently smooth functions are continuous
in time.

�eorem 11.1. Let 1 < p < ∞, q = p/(p − 1), and (V,H, V∗) a Gelfand triple. �en, the
embedding

W1,p(V, V∗) ↪→ C(0, T ;H)

is continuous.

�is result guarantees that functions inW1,p(V, V∗) have well-de�ned traces u(0), u(T) in
V . We also need the following integration by parts equalities.
1For a rigorous de�nition, see [Wloka 1987, § 24]
2For proofs of this and the following result, see, e.g., [Showalter 1997, Proposition III.1.2, Corollary III.1.1],
[Wloka 1987,�eorem 25.5 (with obvious modi�cations)]
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11 variational theory of parabolic pdes

Lemma 11.2. Let (V,H, V∗) be a Gelfand triple. For every u, v ∈W1,p(V, V∗),

d

dt
〈u, v〉H = 〈dtu, v〉V∗,V + 〈dtv, u〉V∗,V

and∫T
0

〈dtu(t), v(t)〉V∗,V dt = 〈u(T), v(T)〉H − 〈u(0), v(0)〉H −

∫T
0

〈dtv(t), u(t)〉V∗,V dt.

In the following, we restrict ourselves to the case p = q = 2, for which W(V, V∗) :=

W1,2(V, V∗) is a Hilbert space.

11.2 weak solution of parabolic pdes

We can now formulate our parabolic evolution problem. Given a : (0, T) × V × V → R
such that a(t, ·, ·) is bilinear for almost all t ∈ (0, T), f ∈ L2(0, T ;V∗), and u0 ∈ H, �nd
u ∈W(V, V∗) such that

(11.1)

{
〈dtu, v〉V∗,V + a(t, u, v) = 〈f, v〉V∗,V for a.e. t ∈ (0, T), all v ∈ V

u(0) = u0

(For the heat equation, e.g., V = H10(Ω) ⊂ L2(Ω) = H and a(t, u, v) = (∇u,∇v).) Just as
in the stationary case, this can be expressed equivalently in weak form (using the fact that
functions inW(V, V∗) are continuous in time). For simplicity, assume u0 = 0 (the inhomo-
geneous case can be treated in the same fashion as inhomogeneous Dirichlet conditions) and
consider the Hilbert spaces

Y = L2(0, T ;V), X = {v ∈W(V, V∗) : v(0) = 0} .

Setting

b : X× Y → R, b(u, y) =

∫T
0

〈dtu, y〉V∗,V + a(t, u, y)dt

and

〈f, y〉Y∗,Y =

∫T
0

〈f, y〉V∗,V dt,

we look for u ∈ X such that

(11.2) b(u, y) = 〈f, y〉Y∗,Y for all y ∈ Y.

Well-posedness of (11.1) can thus be shown using the Banach–Nečas–Babuška theorem.
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11 variational theory of parabolic pdes

�eorem 11.3. Assume that a : (0, T)× V × V satis�es the following properties:

(i) t 7→ a(t, u, v) is measurable for all u, v ∈ V .

(ii) �ere existsM > 0 such that |a(t, u, v)| 6M ‖u‖V ‖v‖V for almost all 0 < t < T and
all u, v ∈ V .

(iii) �ere exists α > 0 such that a(t, u, u) > α ‖u‖2V for almost all 0 < t < T and all u ∈ V .

�en, (11.2) has a unique solution u ∈W(V, V∗) satisfying

‖u‖W(V,V∗) 6
1

α
‖f‖Y .

Proof. Continuity of b and y 7→ 〈f, y〉Y∗,Y follows from their de�nition and the continuity
of a. To verify the inf-sup condition, we de�ne for almost every t ∈ (0, T) the operator
A(t) : V → V∗ by 〈A(t)u, v〉V∗,V = a(t, u, v) for all u, v ∈ V . Continuity of a implies
that A(t) is a bounded operator with constantM. Furthermore, coercivity of a and the Lax–
Milgram theorem yields that A(t) is an isomorphism, hence A(t)−1 is bounded as well with
constant α−1.�erefore, for all x ∈ V∗,

(11.3)
〈
x,A(t)−1x

〉
V∗,V

=
〈
A(t)A(t)−1x,A(t)−1x

〉
V∗,V

> α
∥∥A(t)−1x∥∥2

V

>
α

M2
‖x‖2V∗ .

For arbitraryu ∈ X and µ > 0, setw = A(t)−1dtu+µu ∈ Y. By (11.3), the triangle inequality,
and the de�nition of X and Y we have that

‖w‖Y 6 α−1 ‖dtu‖Y + µ ‖u‖Y 6 c ‖u‖X .

Moreover, using (11.3), integration by parts, continuity of A(t) and A(t)−1 and coercivity of
a, respectively, we can estimate

b(u,w) =

∫T
0

〈
dtu+A(t)u,A(t)−1dtu+ µu

〉
V∗,V

dt

>
α

M2

∫T
0

‖dtu‖2V∗ dt+
µ

2
‖u(T)‖2H −

M

α

∫T
0

‖u‖V ‖dtu‖V∗ dt+ µα
∫T
0

‖u‖2V dt

>
α

2M2

∫T
0

‖dtu‖2V∗ dt+
(
µα− M4

2α3

) ∫T
0

‖u‖2V dt

by Young’s inequality. Taking µ =M4α−4 yields

b(u,w) > c ‖u‖2X > c ‖u‖X ‖w‖Y

and hence

inf
u∈X

sup
v∈Y

b(u, v)

‖u‖X ‖v‖Y
> inf
u∈X

b(u,w)

‖u‖X ‖w‖Y
> c.

83



11 variational theory of parabolic pdes

It remains to show that the injectivity condition holds. Assume v ∈ Y is such that b(u, v) = 0
for all u ∈ X. Inserting ϕ ∈ C∞0 (0, T ;V) ⊂ X into (11.2) and integrating by parts, we see that∣∣∣∣∫T

0

〈dtv,ϕ〉V∗,V dt
∣∣∣∣ = ∣∣∣∣∫T

0

〈dtϕ, v〉V∗,V dt
∣∣∣∣ = ∣∣∣∣∫T

0

a(t, ϕ, v)dt

∣∣∣∣ 6 C ‖ϕ‖X ‖v‖Y ,
hence dtv ∈ L2(0, T ;V∗) and

(11.4)
∫T
0

〈−dtv, u〉V∗,V + a(t, u, v)dt = 0 for all u ∈ C∞0 (0, T ;V).
By density of C∞0 (0, T ;V) in Y, this holds for all u ∈ Y. Inserting u = tϕ ∈ Y for arbitrary
ϕ ∈ V and integrating by parts yields

0 =

∫T
0

〈−dtv, tϕ〉V∗,V + a(t, tϕ, v)dt

= − 〈v(T), Tϕ〉H +

∫T
0

〈dt(tϕ), v〉V∗,V + a(t, tϕ, v)dt

= −T 〈v(T), ϕ〉H

by noting that tϕ ∈ X and hence b(tϕ, v) = 0. Since V is dense in H, this implies that
v(T) = 0. Finally, we can insert v ∈ Y into (11.4) and use Lemma 11.2 to obtain

0 =

∫T
0

− 〈dtv, v〉V∗,V + a(t, v, v)dt

> −

∫T
0

d

dt

(
1

2
‖v(t)‖2V

)
+ α ‖v(t)‖2V dt

=
1

2
‖v(0)‖2V + α ‖v‖2Y

and hence v = 0. We can thus apply the Banach–Nečas–Babuška theorem, and the claim
follows.
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12

GALERKIN APPROACH FOR PARABOLIC
PROBLEMS

To obtain a �nite-dimensional approximation of (11.1), we need to discretize in time and
space.

12.1 time stepping methods

Based on the order of operations, we can discern three popular approaches:

method of lines . �is method starts with a discretization in space to obtain a system of
ordinary di�erential equations, which are then solved with one of the vast number of available
methods. In the context of �nite element methods, we use a discrete space Vh of piecewise
polynomials de�ned on the triangulation Th of the domainΩ. Given a nodal basis {ϕj} of
Vh, we approximate the unknown solution as uh(t, x) =

∑
jUj(t)ϕj(x). Letting Ph denote

the L2 projection on Vh and using the mass matrixMij = (ϕi, ϕj) and the (time-dependent)
sti�nessmatrixK(t)ij = a(t;ϕi, ϕj) yields the following linear system of ordinary di�erential
equations for the coe�cient vector U(t) = (U1(t), . . . )

T :M d

dt
U(t) +KU(t) = MF(t),

U(0) = U0,

whereU0 and F(t) are the vectors of coe�cients of Phu0 and Phf(t), respectively.�e choice
of integration method for this system depends on the properties of K, such as its sti�ness,
which can lead to numerical instability. Some details can be found, e.g., in [Ern andGuermond
2004, Chapter 6.1].
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12 galerkin approach for parabolic problems

rothe ’s method. �is method consists in treating (11.1) as an ordinary di�erential
equation in the Banach space V , which is discretized in time by replacing the time derivative
dtu by a di�erence quotient:

• �e implicit Euler scheme uses the backward di�erence quotient

dtu(t+ h) ≈
u(t+ h) − u(t)

h

for h > 0 at time t + h to obtain for given u(t) and unknown u(t + h) ∈ V the
stationary partial di�erential equation

〈u(t+ h), v〉H + ha(t+ h;u(t+ h), v) = 〈u(t), v〉H + h 〈f(t+ h), v〉V∗,V

for all v ∈ V .

• �e Crank–Nicolson scheme uses the central di�erence quotient

dtu(t+
h
2
) ≈ u(t+ h) − u(t)

h

for h > 0 at time t+ h
2
to obtain

〈u(t+ h), v〉H +
h

2
a(t+

h

2
;u(t+ h), v) = 〈u(t), v〉H −

h

2
a(t+

h

2
;u(t), v)

+ h
〈
f(t+ h

2
), v
〉
V∗,V

for all v ∈ V .

Starting with t = 0, these are then approximated and solved in turn using a �nite element
discretization in space.�is approach is discussed in detail in [�omée 2006, Chapters 7–9].
�e advantage of this approach is that at each time step tm := t +mh, a di�erent spatial
discretization can be used.

space-time galerkin schemes . Finally, we can proceed as in the stationary case and
apply a Galerkin approximation to (11.2): Choose �nite-dimensional subspaces Xh ⊂ X and
Yh ⊂ Y and �nd uh ∈ Xh such that

(12.1)
∫T
0

〈dtuh(t), yh(t)〉V∗,V + a(t;uh(t), yh(t))dt =
∫T
0

〈f(t), yh(t)〉V∗,V dt

for all yh ∈ Yh.�is approach is closely related to Rothe’s method, if we choose the discrete
spaces as tensor products in space and time: Let

0 = t0 < t1 < · · · < tN = T
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12 galerkin approach for parabolic problems

and choose for each tm, 1 6 m 6 N, a (possibly di�erent) �nite-dimensional subspace
Vm ⊂ V . Let Pr(tm−1, tm;Vm) denote the space of polynomials on the interval [tm−1, tm]

with degree up to r with values in Vm.�en we de�ne

Xh =
{
yh ∈ C(0, T ;V) : yh|[tm,tm+1] ∈ Pr(tm−1, tm;Vm), 1 6 m 6 N, vh(0) = 0

}
,

Yh =
{
yh ∈ L2(0, T ;V) : yh|[tm,tm+1] ∈ Pr−1(tm−1, tm;Vm), 1 6 m 6 N

}
.

Since this is a conformal approximation, we can deduce well-posedness of the corresponding
discrete problem in the usual fashion (noting that dtuh ∈ Yh).

To see the relation to Rothe’s method, consider the case r = 1 (i.e., piecewise linear in time)
and, for simplicity, a time-independent bilinear form. Since functions in Xh are continuous
at t = tm for all 0 6 m 6 N and linear on each intervall [tm−1, tm], we can write

uh(t) =
tm − t

tm − tm−1

uh(tm−1) +
t− tm−1

tm − tm−1

uh(tm), t ∈ [tm−1, tm].

Similarly, functions in Yh are constant and thus

yh(t) = yh(tm−1) =: vh ∈ Vm.

Inserting this into (12.1) and setting km := tm − tm−1 yields

〈uh(tm) − uh(tm−1), vh〉V∗,V+
km

2
a(uh(tm−1)+uh(tm), vh) =

∫ tm
tm−1

〈f(t), vh〉V∗,V dt,

which is amodi�edCrank–Nicolson scheme (which, in fact, can be obtained by approximating
the integral on the right hand side using the midpoint rule which is exact for yh ∈ Yh). For
this method, one can show error estimates of the form1

‖uh(tm) − u(tm)‖L2(Ω) 6 C(h
r ‖u0‖Hr(Ω) + k

2 ‖u0‖H4(Ω)),

for f = 0 and u0 6= 0, where r depends on the accuracy of the spatial discretization, and
k = max km.

12.2 discontinuous galerkin methods for parabolic prob-
lems

Just as for stationary �rst order equations, however, the discontinuous Galerkinmethod has
proved to be very successful for parabolic problems, so we shall focus our analysis on these
methods. Let Jm := (tm−1, tm] denote the half-open interval between two time steps of
length km = tm − tm−1.�en we set for r > 0

Xh = Yh =
{
yh ∈ L2(0, T ;V) : yh|Jm ∈ Pr(tm−1, tm;Vm), 1 6 m 6 N

}
⊂ Y,

1[�omée 2006,�eorem 7.8]

87



12 galerkin approach for parabolic problems

where Vm is again a �nite-dimensional subspace of V . Note that functions in Xh can be
discontinuous at the points tm, but are continuous from the le� with limits from the right,
and so we will write

um := uh(tm) = lim
ε→0

uh(tm − ε), u+
m := lim

ε→0
uh(tm + ε)

and

JuhKm = u+
m − um.

As in the stationary case, we now de�ne (by integration by parts on each interval Jm and
rearranging the jump terms) the bilinear form

bh(u, y) =

N∑
m=1

∫
Jm

〈dtu, y〉V∗,V + a(t;u, y)dt+
N∑
m=1

〈
JuKm−1 , y

+
m−1

〉
H
.

Note that as 0 /∈ J1, we will need to specify u0 = uh(0) separately, which we do by setting
JuhK0 := u

+
0 − u0. Since the exact solution u ∈ X is continuous and satis�es u(0) = u0, we

have

bh(u, yh) = 〈f, yh〉Y∗,Y for all yh ∈ Xh,

and hence this is a consistent approximation. We next show existence and uniqueness of the
discrete solution uh.

�eorem 12.1. Under the assumptions of�eorem 11.3, there exists a unique solution uh ∈ Xh
satisfying

(12.2) bh(uh, yh) = 〈f, yh〉Y∗,Y for all yh ∈ Xh.

Proof. Continuity ofbh is clear. To apply the Banach–Nečas–Babuška theorem, it thus remains
to verify either the inf-sup or the injectivity condition (since Xh is �nite-dimensional). We
choose the latter. Let yh ∈ Xh satisfy bh(uh, yh) = 0 for all uh ∈ Xh. Since functions in
Xh can be discontinuous at the time points tm, we can insert uh = χJm(t)vh ∈ Xh for each
1 6 m 6 N, where χJm(t) = 1 if t ∈ Jm and zero else. We start with JN = (tN−1, tN]. Since
χJN is constant on JN and zero outside JN, we have uN−1 = 0 and thus

0 = bh(yhχJN , yh)

=

∫
JN

〈dtyh, yh〉V∗,V + a(t;yh, yh)dt+
〈
y+N−1 − yN−1, y

+
N−1

〉
H

>
1

2
‖yN‖2H −

1

2

∥∥y+N−1

∥∥2
H
+ α

∫
JN

‖yh‖2V dt+
∥∥y+N−1

∥∥2
H

>
1

2

∥∥y+N−1

∥∥2
H
+ α

∫
JN

‖yh‖2V dt.

Hence, yh|JN = 0 and y+N−1 = 0, and we can proceed in the same way for JN−1, JN−2, . . . , J1
to deduce that yh = 0.
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We next show a stability result for the discontinuous Galerkin approximation. For simplicity,
we assume from now on that the bilinear form a is time-independent and symmetric, and
that V1 = · · · = VN = Vh. Let A : V → V∗ again denote the operator corresponding to
the bilinear form a, i.e., 〈Au, v〉H = a(u, v) for all u, v ∈ V , where we assume that Au ∈ H
due to the higher regularity (e.g., from�eorem 2.8 or�eorem 2.9) of the corresponding
stationary equation.

�eorem 12.2. For given f ∈ L2(0, T ;H) and u0 ∈ H, the solution uh ∈ Xh of (12.2) satis�es

N∑
m=1

∫
Jm

‖dtuh‖2H + ‖Auh‖2H dt+
N∑
m=1

∥∥JuhKm−1

∥∥2
H
6 C

(∫T
0

‖f‖2H dt+ ‖u0‖
2
H

)
.

Proof. We estimate in turn each term on the le� hand side by inserting suitable test functions
yh in (12.2).

Step 1. To estimate ‖Auh‖H, we set yh = χJm(t)Auh for 1 6 m 6 N to obtain∫
Jm

〈dtuh, Auh〉H + ‖Auh‖2H dt+
〈
JuhKm−1 , (Auh)

+
m−1

〉
H
=

∫
Jm

〈f,Auh〉H dt.

Due to the bilinearity and symmetry of a, we have∫
Jm

〈dtuh, Auh〉H dt =
∫
Jm

a(uh, dtuh)dt =

∫
Jm

d

dt

(
1

2
a(uh, uh)

)
dt

=
1

2
a(um, um) −

1

2
a(u+

m−1, u
+
m−1).

Similarly, since A is time-independent,〈
JuhKm−1 , (Auh)

+
m−1

〉
H
= a(JuhKm−1 , u

+
m−1)

=
1

2
a(JuhKm−1 , u

+
m−1 + um−1 + JuhKm−1)

=
1

2
a(u+

m−1, u
+
m−1) −

1

2
a(um−1, um−1)

+
1

2
a(JuhKm−1 , JuhKm−1).

Inserting these into the bilinear form bh(uh, yh) yields

a(JuhKm−1 , JuhKm−1) + a(um, um) − a(um−1, um−1) + 2

∫
Jm

‖Auh‖2H dt

= 2

∫
Jm

〈f,Auh〉H dt.
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Summing over all 1 6 m 6 N yields

N∑
m=1

a(JuhKm−1 , JuhKm−1) +

N∑
m=1

∫
Jm

2 ‖Auh‖2H dt

6
N∑
m=1

∫
Jm

2 〈f,Auh〉H dt+ a(u0, u0).

For 2 6 m 6 N, we can simply use coercivity of a to eliminate the jump terms and apply
Young’s inequality to 〈f,Auh〉H to absorb the norm of Auh on Jm in the le� hand side. For
m = 1, we use that

a(JuhK0 , JuhK0) − a(u0, u0) = a(u
+
0 , u

+
0 ) − 2a(u0, u

+
0 )

and for ε > 0 the generalized Young’s inequality

a(u0, u
+
0 ) = 〈u0, Au+

0 〉H 6
ε

2
‖Au+

0 ‖
2

H +
1

2ε
‖u0‖2H .

Since ‖Auh‖2H is a polynomial in t of degree up to 2r on J1, we have the estimate

k1 ‖Au+
0 ‖
2

H 6 C
∫ t1
t0

‖Auh‖2H dt.

Choosing ε > 0 small enough such that εCk−11 < 1 yields

(12.3)
N∑
m=1

∫
Jm

‖Auh‖2H dt 6 C
(∫T
0

‖f‖2H dt+ ‖u0‖
2
H

)
.

Step 2. For the bound on dtuh, we use the inverse estimate∫
Jm

‖yh‖2H dt 6 Ck
−1
m

∫
Jm

(t− tm−1) ‖yh‖2H dt

for all yh ∈ Pr(tm−1, tm;Vh), which follows from a scaling argument in time and equiva-
lence of norms on the �nite-dimensional space Pr(0, 1;Vh). Now choose yh = χJm(t)(t−

tm−1)dtuh for 1 6 m 6 N. Since y+m−1 = 0, we have using the Cauchy–Schwarz inequality
that ∫

Jm

(t− tm−1) ‖dtuh‖2H dt =
∫
Jm

(t− tm−1) 〈f−Auh, dtuh〉H dt

6

(∫
Jm

(t− tm−1) ‖f−Auh‖2H dt
) 1
2

(∫
Jm

(t− tm−1) ‖dtuh‖2H dt
) 1
2

.
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Applying the inverse estimate for yh = dtuh, the Cauchy–Schwarz inequality for the �rst
integral and estimating the norm there using (12.3) yields

(12.4)
N∑
m=1

∫
Jm

‖dtuh‖2H dt 6 C
(∫T
0

‖f‖2H dt+ ‖u0‖
2
H

)
.

Step 3. It remains to estimate the jump terms. For this, we set yh = χJm(t) JuhKm−1 for
1 6 m 6 N.�is yields

∥∥JuhKm−1

∥∥2
H
=

∫
Jm

〈
f−Auh, JuhKm−1

〉
H
−
〈
dtuh, JuhKm−1

〉
H
dt

6
km

2

∫
Jm

‖f−Auh − dtuh‖2H dt+
1

2km

∫
Jm

∥∥JuhKm−1

∥∥2
H
dt,

where we have used the generalized Young’s inequality. Since JuhKm−1 is constant in time,
we have ∫

Jm

∥∥JuhKm−1

∥∥2
H
dt = km

∥∥JuhKm−1

∥∥2
H
.

From (12.3) and (12.4), we thus obtain

N∑
m=1

k−1m
∥∥JuhKm−1

∥∥2
H
6 C

(∫T
0

‖f‖2H dt+ ‖u0‖
2
H

)
,

which completes the proof.

Before we address a priori error estimates, we show how to formulate discontinuous Galerkin
methods as time stepping methods. First consider the case r = 0, i.e., piecewise constant
functions in time.�en, dtuh = 0 and uh(t)|Jm = um = u+

m−1 ∈ Vh. Using as test functions
yh = χJm(t)vh for arbitrary vh ∈ Vh andm = 1, . . . ,N, we obtain

〈um, vh〉H + km a(um, vh) = 〈um−1, vh〉H + km

∫
Jm

〈f, vh〉V∗,V dt

for all vh ∈ Vh, which is a variant of the implicit Euler scheme.2

For r = 1 (piecewise linear functions), we make the ansatz

uh|Jm(t) = u
0
m +

t− tm−1

km
u1m

2If the discrete spaces are di�erent for each time interval, we need to use the H-projection of um−1 on Vm.
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for u0m, u1m ∈ Vh. Again, we choose for each Jm test functions which are zero outside Jm;
speci�cally, we take χJm(t)vh and χJm(t)

t−tm−1

km
wh for arbitrary vh, wh ∈ Vh. Inserting these

into the bilinear form and computing the integrals yields the coupled system

〈
u0m, vh

〉
H
+ km a(u

0
m, vh) +

〈
u1m, vh

〉
H
+
km

2
a(u1m, vh)

= 〈um−1, vh〉H + km

∫
Jm

〈f, vh〉V∗,V dt,

km

2
a(u0m, vh) +

1

2

〈
u1m, vh

〉
H
+
km

3
a(u1m, vh)

=
1

km

∫
Jm

(t− tm−1) 〈f, vh〉V∗,V dt

for all vh, wh ∈ Vh. By solving this system successively at each time step and setting um =

u0m + u1m, we obtain the approximate solution uh.3

12.3 a priori error estimates

As before, we will estimate the error u− uh using the approximation properties of the space
Xh. Due to the discontinuity of the functions in Xh, we can use a local projection on each
time intervall Jm to bound the approximation error. It will be convenient to split this error
into two parts: one due to the temporal and one due to the spatial discretization.

We �rst consider the temporal discretization error. Let

Xr =
{
yr ∈ L2(0, T ;V) : yr|Jm ∈ Pr(tm−1, tm;V), 1 6 m 6 N

}
and consider the local projection πr(u) ∈ Xr of u ∈ X de�ned by πr(u)(t0) = u(t0) and

πr(u)(tm) = u(tm),∫
Jm

(u(t) − πr(u)(t))ϕ(t)dt = 0 for all ϕ ∈ Pr−1(Jm;V),

for all 1 6 m 6 N. (For r = 0, the second condition is void.)�is projection is well-de�ned
since u ∈ X is continuous in time, and hence the interpolation conditions make sense. Using
the Bramble–Hilbert lemma and a scaling argument, we obtain for su�ciently smooth u the
following error estimate for every t ∈ Jm, 1 6 m 6 N:

‖u(t) − πr(u)(t)‖H 6 Ckr+1m

∫
Jm

∥∥dr+1t u(t)
∥∥
H
dt.

3Similarly, discontinuous Galerkin methods for r > 2 lead to r+ 1-stage implicit Runge–Kutta time-stepping
schemes.
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Similarly, we assume that for each t ∈ [0, T ] the spatial interpolation error in Vh satis�es the
estimate

‖u(t) − Ihu(t)‖H + h ‖u(t) − Ihu(t)‖V 6 Chs+1 ‖u(t)‖Hs+1(Ω) .

(�is is the case, e.g., if H = L2(Ω), V = H10(Ω), and Vh consists of continuous piecewise
polynomials of degree s > 1, cf.�eorem 5.9.)

Finally, we will make use of a duality argument, which requires considering for given ϕ ∈ H
the solution of the adjoint equation

bh(yh, zh) = 〈yN, ϕ〉H .

Integrating by parts on each interval Jm and rearranging the jump terms, we can express the
adjoint equation as

(12.5)
N∑
m=1

∫
Jm

− 〈yh, dtzh〉H + a(yh, zh)dt+

N−1∑
m=1

〈
ym, JzhKm

〉
H
+ 〈yN, zN〉H

= 〈yN, ϕ〉H .

�is can be interpreted as a backwards in time equation with “initial value” zh(tN) = ϕ.
Making the substitution τ = tN − t, we can apply�eorem 12.2 to obtain

(12.6)
N∑
m=1

∫
Jm

‖dtzh‖2H + ‖Azh‖2H dt+
N∑
m=1

∥∥JzhKm−1

∥∥2
H
6 C ‖ϕ‖2H .

Now everything is in place to show the following a priori estimate for the solution at the time
steps.

�eorem 12.3. For r = 0, the solutions u ∈ X to (11.2) and uh ∈ Xh to (12.2) satisfy

‖u(tm) − um‖H 6 C max
16n6m

(
hs+1 sup

t∈Jn
‖u(t)‖Hs+1(Ω) + kn

∫
Jn

‖dtu‖H dt
)

for all 1 6 m 6 N.

Proof. Let r = 0. We write the error e(t) at each time t as

e(t) = u(t) − uh(t) = (u(t) − Ihπr(u)(t)) + (Ihπr(u)(t) − uh(t))

:= e1(t) + e2(t).

For t = tm, we have πr(u)(tm) = u(tm) by construction, and hence

(12.7) ‖e1(tm)‖H = ‖Ihu(tm) − u(tm)‖H 6 Chs+1 ‖u(tm)‖Hs+1(Ω) .
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To bound e2(tm), we use the duality trick. For arbitrary ϕ ∈ H, let zh denote the solution
to (12.5) with N = m. Since we have a consistent approximation, we can use the Galerkin
orthogonality to deduce

0 = bh(e, yh) = bh(e1, yh) + bh(e2, yh) for all yh ∈ Xh.

From this and dt(zh|Jn) = 0 we obtain with yh = e2 ∈ Xh that

〈e2(tm), ϕ〉H = bh(e2, zh) = −bh(e1, zh)

= −

m∑
n=1

∫
Jn

a(e1, zh)dt+

m−1∑
n=1

〈
e1(tn), JzhKn

〉
H
− 〈e1(tm), ϕ〉H .

Introducing 〈Azh, e1〉H = a(e1, zh) as above and estimating e1 by its pointwise in time
maximum yields

| 〈e2(tm), ϕ〉H | 6

(
sup
t6tm

‖e1(t)‖H

)(
m∑
n=1

∫
Jn

‖Azh‖H dt+
m−1∑
n=1

∥∥JzhKn∥∥H + ‖ϕ‖H

)
.

From the dual de�nition of the norm in H and estimate (12.6), we obtain

(12.8) ‖e2(tm)‖H 6 C max
16n6m

sup
t∈Jn
‖e1(t)‖H .

It remains to bound e1(t) for arbitrary t ∈ Jn, which we do by estimating

(12.9) ‖e1(t)‖H = ‖u(t) − Ihπr(u)(t)‖H
6 ‖u(t) − πr(u)(t)‖H + ‖πr(u)(t) − Ihπr(u)(t)‖H

6 Ckn

∫
Jn

‖dtu‖H dt+ Ch
s+1 ‖u(t)‖Hs+1(Ω) .

Combining (12.7), (12.8) and (12.9) yields the claim.

For r = 1, one can proceed similarly (using that dtzh|Jm ∈ Pr−1(Jm, Vh), and hence that∫
Jn
〈dtzh, e1〉H dt vanishes by de�nition of πr) to obtain

�eorem 12.4. For r = 1, the solutions u ∈ X to (11.2) and uh ∈ Xh to (12.2) satisfy

‖u(tm) − um‖H 6 C max
16n6m

(
hs+1 sup

t∈Jn
‖u(t)‖Hs+1(Ω) + k

3
n

∫
Jn

∥∥d2tu∥∥H2(Ω)
dt

)
for all 1 6 m 6 N.

�e general case (including time-dependent bilinear form a and di�erent discrete spaces Vm)
can be found in [Chrysa�nos and Walkington 2006].
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