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INTRODUCTION

Optimization is concerned with finding solutions to problems of the form

min

𝑥∈𝑈
𝐹 (𝑥)

for a function 𝐹 : 𝑋 → ℝ and a set 𝑈 ⊂ 𝑋 . Specifically, one considers the following

questions:

1. Does this problem admit a solution, i.e., is there an 𝑥 ∈ 𝑈 such that

𝐹 (𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑈 ?

2. Is there an intrinsic characterization of 𝑥 , i.e., one not requiring comparison with all

other 𝑥 ∈ 𝑈 ?

3. How can this 𝑥 be computed (efficiently)?

For𝑈 ⊂ ℝ𝑛
, these questions can be answered roughly as follows.

1. If𝑈 is compact and 𝐹 is continuous, the Weierstraß Theorem yields that 𝐹 attains its

minimum at a point 𝑥 ∈ 𝑈 (as well as its maximum).

2. If 𝐹 is differentiable, the Fermat principle

0 = 𝐹 ′(𝑥)

holds.

3. If 𝐹 is continuously differentiable and 𝑈 is open, one can apply the steepest descent
or gradient method to compute an 𝑥 satisfying the Fermat principle: Choosing a

starting point 𝑥0
and setting

𝑥𝑘+1 = 𝑥𝑘 − 𝑡𝑘𝐹 ′(𝑥𝑘), 𝑘 = 0, . . . ,

for suitable step sizes 𝑡𝑘 , we have that 𝑥
𝑘 → 𝑥 for 𝑘 → ∞.

If 𝐹 is even twice continuously differentiable, one can apply Newton’s method to the

Fermat principle: Choosing a suitable starting point 𝑥0
and setting

𝑥𝑘+1 = 𝑥𝑘 − 𝐹 ′′(𝑥𝑘)−1𝐹 ′(𝑥𝑘), 𝑘 = 0, . . . ,

we have that 𝑥𝑘 → 𝑥 for 𝑘 → ∞.
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introduction

However, there are many practically relevant functions that are not differentiable, such
as the absolute value or maximum function. The aim of nonsmooth analysis is therefore

to find generalized derivative concepts that on the one hand allow the above sketched

approach for such functions and on the other hand admit a sufficiently rich calculus to

give explicit derivatives for a sufficiently large class of functions. Here we concentrate on

the two classes of

i) convex functions,

ii) locally Lipschitz continuous functions,

which together cover a wide spectrum of applications. In particular, the first class will lead

us to generalized gradient methods, while the second class are the basis for generalized

Newton methods. To fix ideas, we aim at treating problems of the form

min

𝑥∈𝐶

1

𝑝
∥𝐹 (𝑥) − 𝑧∥𝑝

𝑌
+ 𝛼
𝑞
∥𝑥 ∥𝑞

𝑋

for a closed convex set𝐶 ⊂ 𝑋 , a (possibly nonlinear but differentiable) operator 𝐹 : 𝑋 → 𝑌 ,

𝛼 ≥ 0 and 𝑝, 𝑞 ∈ [1,∞) (in particular, 𝑝 = 1 and/or 𝑞 = 1). Such problems are ubiquitous

in inverse problems, imaging, and optimal control of differential equations. Hence, we

consider optimization in infinite-dimensional function spaces; i.e., we are looking for

functions as minimizers. The main benefit (beyond the frequently cleaner notation) is that

the developed algorithms become discretization independent: they can be applied to any

(reasonable) finite-dimensional approximation, and the details – in particular, the fineness

– of the approximation do not influence the convergence behavior of the algorithm.

Since we deal with infinite-dimensional spaces, some knowledge of functional analysis is

assumed, but the necessary background will be summarized in Chapter 1. The results on

pointwise operators on Lebesgue spaces also require elementary (Lebesgue) measure and

integration theory. Basic familiarity with classical nonlinear optimization is helpful but

not necessary.

These notes are mainly based on [Brokate 2014; Schirotzek 2007; Attouch, Buttazzo &

Michaille 2006; Bauschke & Combettes 2017; Clarke 2013; Ulbrich 2002; Schiela 2008]. All

mistakes are of course entirely my own.
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BACKGROUND
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1 FUNCTIONAL ANALYSIS

In this chapterwe collect the basic concepts and results (and,more importantly,fix notations)

from linear functional analysis that will be used in the following. For details and proofs,

the reader is referred to the standard literature, e.g., [Alt 2016; Brezis 2010] and to [Clason

2020].

1.1 normed vector spaces

In the following, 𝑋 will denote a vector space over the field 𝕂, where we restrict ourselves

for the sake of simplicity to the case 𝕂 = ℝ. A mapping ∥ · ∥ : 𝑋 → ℝ+
:= [0,∞) is called

a norm (on 𝑋 ), if for all 𝑥 ∈ 𝑋 there holds

(i) ∥𝜆𝑥 ∥ = |𝜆 |∥𝑥 ∥ for all 𝜆 ∈ 𝕂,

(ii) ∥𝑥 + 𝑦 ∥ ≤ ∥𝑥 ∥ + ∥𝑦 ∥ for all 𝑦 ∈ 𝑋 ,

(iii) ∥𝑥 ∥ = 0 if and only if 𝑥 = 0 ∈ 𝑋 .

Example 1.1. (i) The following mappings define norms on 𝑋 = ℝ𝑁
:

∥𝑥 ∥𝑝 =
(
𝑁∑︁
𝑖=1

|𝑥𝑖 |𝑝
)

1/𝑝

1 ≤ 𝑝 < ∞,

∥𝑥 ∥∞ = max

𝑖=1,...,𝑁
|𝑥𝑖 |.

(ii) The following mappings define norms on 𝑋 = ℓ𝑝 (the space of real-valued se-

quences for which these terms are finite):

∥𝑥 ∥𝑝 =
( ∞∑︁
𝑖=1

|𝑥𝑖 |𝑝
)

1/𝑝
1 ≤ 𝑝 < ∞,

∥𝑥 ∥∞ = sup

𝑖=1,...,∞
|𝑥𝑖 |.
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1 functional analysis

(iii) The following mappings define norms on 𝑋 = 𝐿𝑝 (Ω) (the space of real-valued
measurable functions on the domain Ω ⊂ ℝ𝑛

for which these terms are finite):

∥𝑢∥𝐿𝑝 =
(∫

Ω
|𝑢 (𝑥) |𝑝

)
1/𝑝

1 ≤ 𝑝 < ∞,

∥𝑢∥𝐿∞ = ess sup

𝑥∈Ω
|𝑢 (𝑥) |.

(iv) The following mapping defines a norm on 𝑋 = 𝐶 (Ω) (the space of continuous
functions on Ω):

∥𝑢∥𝐶 = sup

𝑥∈Ω
|𝑢 (𝑥) |.

An analogous norm is defined on 𝑋 = 𝐶0(Ω) (the space of continuous functions
on Ω with compact support), if the supremum is taken only over the space of

continuous functions on Ω with compact support), if the supremum is taken only

over 𝑥 ∈ Ω.

If ∥ · ∥ is a norm on 𝑋 , the tuple (𝑋, ∥ · ∥) is called a normed vector space, and one frequently
denotes this by writing ∥ · ∥𝑋 . If the norm is canonical (as in Example 1.1 (ii)–(iv)), it is often

omitted and one speaks simply of “the normed vector space 𝑋 ”.

Two norms ∥ · ∥1, ∥ · ∥2 are called equivalent on 𝑋 , if there are constants 𝑐1, 𝑐2 > 0 such

that

𝑐1∥𝑥 ∥2 ≤ ∥𝑥 ∥1 ≤ 𝑐2∥𝑥 ∥2 for all 𝑥 ∈ 𝑋 .
If 𝑋 is finite-dimensional, all norms on 𝑋 are equivalent. However, the corresponding con-

stants 𝑐1 and 𝑐2 may depend on the dimension 𝑁 of 𝑋 ; avoiding such dimension-dependent

constants is one of the main reasons to consider optimization in infinite-dimensional

spaces.

If (𝑋, ∥ · ∥𝑋 ) and (𝑌, ∥ · ∥𝑌 ) are normed vector spaces with 𝑋 ⊂ 𝑌 , we call 𝑋 continuously
embedded in 𝑌 , denoted by 𝑋 ↩→ 𝑌 , if there exists a 𝐶 > 0 with

∥𝑥 ∥𝑌 ≤ 𝐶 ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 .

We now consider mappings between normed vector spaces. In the following, let (𝑋, ∥ · ∥𝑋 )
and (𝑌, ∥ · ∥𝑌 ) be normed vector spaces,𝑈 ⊂ 𝑋 , and 𝐹 : 𝑈 → 𝑌 be a mapping. We denote

by

• dom 𝐹 := 𝑈 the domain of definition of 𝐹 ;

• ker 𝐹 := {𝑥 ∈ 𝑈 : 𝐹 (𝑥) = 0} kernel or null space of 𝐹 ;

• ran 𝐹 := {𝐹 (𝑥) ∈ 𝑌 : 𝑥 ∈ 𝑈 } the range of 𝐹 ;
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1 functional analysis

• graph 𝐹 := {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑦 = 𝐹 (𝑥)} the graph of 𝐹 .

We call 𝐹 : 𝑈 → 𝑌

• continuous in 𝑥 ∈ 𝑈 , if for all 𝜀 > 0 there exists a 𝛿 > 0 with

∥𝐹 (𝑥) − 𝐹 (𝑧)∥𝑌 ≤ 𝜀 for all 𝑧 ∈ 𝑈 with ∥𝑥 − 𝑧∥𝑋 ≤ 𝛿 ;

• Lipschitz continuous, if there exists an 𝐿 > 0 (called Lipschitz constant) with

∥𝐹 (𝑥1) − 𝐹 (𝑥2)∥𝑌 ≤ 𝐿∥𝑥1 − 𝑥2∥𝑋 for all 𝑥1, 𝑥2 ∈ 𝑈 .

• locally Lipschitz continuous in 𝑥 ∈ 𝑈 , if there exists a 𝛿 > 0 and a 𝐿 = 𝐿(𝑥, 𝛿) > 0

with

∥𝐹 (𝑥) − 𝐹 (𝑧)∥𝑌 ≤ 𝐿∥𝑥 − 𝑧∥𝑋 for all 𝑧 ∈ 𝑈 with ∥𝑥 − 𝑧∥𝑋 ≤ 𝛿.

If 𝑇 : 𝑋 → 𝑌 is linear, continuity is equivalent to the existence of a constant 𝐶 > 0 with

∥𝑇𝑥 ∥𝑌 ≤ 𝐶 ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 .

For this reason, continuous linear mappings are called bounded; one speaks of a bounded
linear operator. The space 𝐿(𝑋,𝑌 ) of bounded linear operators is itself a normed vector

space if endowed with the operator norm

∥𝑇 ∥𝐿(𝑋,𝑌 ) = sup

𝑥∈𝑋\{0}

∥𝑇𝑥 ∥𝑌
∥𝑥 ∥𝑋

= sup

∥𝑥 ∥𝑋=1

∥𝑇𝑥 ∥𝑌 = sup

∥𝑥 ∥𝑋≤1

∥𝑇𝑥 ∥𝑌

(which is equal to the smallest possible constant 𝐶 in the definition of continuity). If

𝑇 ∈ 𝐿(𝑋,𝑌 ) is bijective, the inverse 𝑇 −1
: 𝑌 → 𝑋 is continuous if and only if there exists a

𝑐 > 0 with

𝑐 ∥𝑥 ∥𝑋 ≤ ∥𝑇𝑥 ∥𝑌 for all 𝑥 ∈ 𝑋 .
In this case, ∥𝑇 −1∥𝐿(𝑌,𝑋 ) = 𝑐−1

for the largest possible choice of 𝑐 .

1.2 strong and weak convergence

A norm directly induces a notion of convergence, the so-called strong convergence: A
sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 converges (strongly in 𝑋 ) to a 𝑥 ∈ 𝑋 , denoted by 𝑥𝑛 → 𝑥 , if

lim

𝑛→∞
∥𝑥𝑛 − 𝑥 ∥𝑋 = 0.

A subset𝑈 ⊂ 𝑋 is called
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1 functional analysis

• closed, if for every convergent sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑈 the limit 𝑥 ∈ 𝑈 as well;

• compact, if every sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑈 contains a convergent subsequence {𝑥𝑛𝑘 }𝑘∈ℕ
with limit 𝑥 ∈ 𝑈 .

A mapping 𝐹 : 𝑋 → 𝑌 is continuous if and only if 𝑥𝑛 → 𝑥 implies 𝐹 (𝑥𝑛) → 𝐹 (𝑥), and
closed, if 𝑥𝑛 → 𝑥 and 𝐹 (𝑥𝑛) → 𝑦 imply 𝐹 (𝑥) = 𝑦 (i.e., graph 𝐹 ⊂ 𝑋 × 𝑌 is a closed set).

Further we define for later use for 𝑥 ∈ 𝑋 and 𝑟 > 0

• the open ball 𝑂𝑟 (𝑥) := {𝑧 ∈ 𝑋 : ∥𝑥 − 𝑧∥𝑋 < 𝑟 } and

• the closed ball 𝐾𝑟 (𝑥) := {𝑧 ∈ 𝑋 : ∥𝑥 − 𝑧∥𝑋 ≤ 𝑟 }.

The closed ball around 0 ∈ 𝑋 with radius 1 is also referred to a the unit ball 𝐵𝑋 . A set

𝑈 ⊂ 𝑋 is called

• open, if for all 𝑥 ∈ 𝑈 there exists an 𝑟 > 0 with 𝑂𝑟 (𝑥) ⊂ 𝑈 (i.e., all 𝑥 ∈ 𝑈 are interior
points of𝑈 , which together form the interior 𝑈 𝑜

);

• bounded, if it is contained in 𝐾𝑟 (0) for a 𝑟 > 0;

• convex, if for any 𝑥, 𝑦 ∈ 𝑈 and 𝜆 ∈ [0, 1] also 𝜆𝑥 + (1 − 𝜆)𝑦 ∈ 𝑈 .

In normed vector spaces it always holds that the complement of an open set is closed and

vice versa (i.e., the closed sets in the sense of topology are exactly the (sequentially) closed

set as defined above). The definition of a norm directly implies that both open and closed

balls are convex.

A normed vector space 𝑋 is called complete if every Cauchy sequence in 𝑋 is convergent;

in this case,𝑋 is called a Banach space. All spaces in Example 1.1 are Banach spaces. If 𝑌 is a

Banach space, so is 𝐿(𝑋,𝑌 ) if endowed with the operator norm. Convex subsets of Banach

spaces have the following useful property which derives from the Baire Theorem.

Lemma 1.2. Let 𝑋 be a Banach space and𝑈 ⊂ 𝑋 be closed and convex. Then

𝑈 𝑜 = {𝑥 ∈ 𝑈 : for all ℎ ∈ 𝑋 there is a 𝛿 > 0 with 𝑥 + 𝑡ℎ ∈ 𝑈 for all 𝑡 ∈ [0, 𝛿]} .

The set on the right-hand side is called algebraic interior or core. For this reason, Lemma 1.2

is sometimes referred to as the “core-int Lemma”. Note that the inclusion “⊂” always holds
in normed vector spaces due to the definition of interior points via open balls.

Of particular importance to us is the special case 𝐿(𝑋,𝑌 ) for 𝑌 = ℝ, the space of bounded
linear functionals on 𝑋 . In this case, 𝑋 ∗

:= 𝐿(𝑋,ℝ) is called the dual space (or just dual of
𝑋 . For 𝑥∗ ∈ 𝑋 ∗

and 𝑥 ∈ 𝑋 , we set

⟨𝑥∗, 𝑥⟩𝑋 := 𝑥∗(𝑥) ∈ ℝ.
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1 functional analysis

This duality pairing indicates that we can also interpret it as 𝑥 acting on 𝑥∗, which will

become important later. The definition of the operator norm immediately implies that

(1.1) ⟨𝑥∗, 𝑥⟩𝑋 ≤ ∥𝑥∗∥𝑋 ∗ ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝑋 ∗.

In many cases, the dual of a Banach space can be identified with another known Banach

space.

Example 1.3. (i) (ℝ𝑁 , ∥ · ∥𝑝)∗ � (ℝ𝑁 , ∥ · ∥𝑞) with 𝑝−1 +𝑞−1 = 1, where we set 0
−1 = ∞

and∞−1 = 0. The duality pairing is given by

⟨𝑥∗, 𝑥⟩𝑝 =
𝑁∑︁
𝑖=1

𝑥∗𝑖 𝑥𝑖 .

(ii) (ℓ𝑝)∗ � (ℓ𝑞) for 1 < 𝑝 < ∞. The duality pairing is given by

⟨𝑥∗, 𝑥⟩𝑝 =
∞∑︁
𝑖=1

𝑥∗𝑖 𝑥𝑖 .

Furthermore, (ℓ1)∗ = ℓ∞, but (ℓ∞)∗ is not a sequence space.

(iii) Analogously, 𝐿𝑝 (Ω)∗ � 𝐿𝑞 (Ω) for 1 < 𝑝 < ∞. The duality pairing is given by

⟨𝑢∗, 𝑢⟩𝑝 =
∫
Ω
𝑢∗(𝑥)𝑢 (𝑥) 𝑑𝑥.

Furthermore, 𝐿1(Ω)∗ � 𝐿∞(Ω), but 𝐿∞(Ω)∗ is not a function space.

(iv) 𝐶0(Ω)∗ � M(Ω), the space of Radon measure; it contains among others the

Lebesgue measure as well as Dirac measures 𝛿𝑥 for 𝑥 ∈ Ω, defined via 𝛿𝑥 (𝑢) = 𝑢 (𝑥)
for 𝑢 ∈ 𝐶0(Ω). The duality pairing is given by

⟨𝑢∗, 𝑢⟩𝐶 =

∫
Ω
𝑢 (𝑥) 𝑑𝑢∗.

A central result on dual spaces is the Hahn–Banach Theorem, which comes in both an

algebraic and a geometric version.

Theorem 1.4 (Hahn–Banach, algebraic). Let 𝑋 be a normed vector space. For any 𝑥 ∈ 𝑋 there
exists a 𝑥∗ ∈ 𝑋 ∗ with

∥𝑥∗∥𝑋 ∗ = 1 and ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 .

8



1 functional analysis

Theorem 1.5 (Hahn–Banach, geometric). Let 𝑋 be a normed vector space and 𝐴, 𝐵 ⊂ 𝑋 be
convex, nonempty, and disjoint.

(i) If 𝐴 is open, there exists an 𝑥∗ ∈ 𝑋 ∗ and a 𝜆 ∈ ℝ with

⟨𝑥∗, 𝑥1⟩𝑋 < 𝜆 ≤ ⟨𝑥∗, 𝑥2⟩𝑋 for all 𝑥1 ∈ 𝐴, 𝑥2 ∈ 𝐵.

(ii) If 𝐴 is closed and 𝐵 is compact, there exists an 𝑥∗ ∈ 𝑋 ∗ and a 𝜆 ∈ ℝ with

⟨𝑥∗, 𝑥1⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥2⟩𝑋 for all 𝑥1 ∈ 𝐴, 𝑥2 ∈ 𝐵.

Particularly the geometric version – also referred to as separation theorems – is of crucial

importance in convex analysis. We will also require their following variant, which is known

as Eidelheit’s Theorem.

Corollary 1.6. Let 𝑋 be a normed vector space and 𝐴, 𝐵 ⊂ 𝑋 be convex and nonempty. If the
interior 𝐴𝑜 of 𝐴 is nonempty and disjoint with 𝐵, there exists an 𝑥∗ ∈ 𝑋 ∗ \ {0} and a 𝜆 ∈ ℝ

with
⟨𝑥∗, 𝑥1⟩𝑋 ≤ 𝜆 ≤ ⟨𝑥∗, 𝑥2⟩𝑋 for all 𝑥1 ∈ 𝐴, 𝑥2 ∈ 𝐵.

Proof. Theorem 1.5 (i) yields the existence of 𝑥∗ and 𝜆 satisfying the claim for all 𝑥 ∈ 𝐴𝑜
(even with strict inequality, which also implies 𝑥∗ ≠ 0). It thus remains to show that

⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝜆 also for 𝑥 ∈ 𝐴 \𝐴𝑜 . Since 𝐴𝑜 is nonempty, there exists an 𝑥0 ∈ 𝐴𝑜 , i.e., there is
an 𝑟 > 0 with 𝑂𝑟 (𝑥0) ⊂ 𝐴. The convexity of 𝐴 then implies that 𝑡𝑥 + (1 − 𝑡)𝑥 ∈ 𝐴 for all

𝑥 ∈ 𝑂𝑟 (𝑥0) and 𝑡 ∈ [0, 1]. Hence,

𝑡𝑂𝑟 (𝑥0) + (1 − 𝑡)𝑥 = 𝑂𝑡𝑟 (𝑡𝑥0 + (1 − 𝑡)𝑥) ⊂ 𝐴,

and in particular 𝑥 (𝑡) := 𝑡𝑥0 + (1 − 𝑡)𝑥 ∈ 𝐴𝑜 for all 𝑡 ∈ (0, 1).

We can thus find a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝐴𝑜 (e.g., 𝑥𝑛 = 𝑥 (𝑛−1)) with 𝑥𝑛 → 𝑥 . Due to the

continuity of 𝑥∗ ∈ 𝑋 ∗ = 𝐿(𝑋,ℝ) we can thus pass to the limit 𝑛 → ∞ and obtain

⟨𝑥∗, 𝑥⟩𝑋 = lim

𝑛→∞
⟨𝑥∗, 𝑥𝑛⟩𝑋 ≤ 𝜆. □

In a certain way, a normed vector space is thus characterized by its dual. A direct conse-

quence of Theorem 1.4 is that the norm on a Banach space can be expressed in the manner

of an operator norm.

Corollary 1.7. Let 𝑋 be a Banach space. Then for all 𝑥 ∈ 𝑋 ,

∥𝑥 ∥𝑋 = sup

∥𝑥∗∥𝑋∗≤1

|⟨𝑥∗, 𝑥⟩𝑋 |,

and the supremum is attained.

9



1 functional analysis

A vector 𝑥 ∈ 𝑋 can therefore be considered as a linear and, by (1.1), bounded functional on

𝑋 ∗
, i.e., as an element of the bidual 𝑋 ∗∗

:= (𝑋 ∗)∗. The embedding 𝑋 ⊂ 𝑋 ∗∗
is realized by

the canonical injection

𝐽 : 𝑋 → 𝑋 ∗∗, ⟨𝐽𝑥, 𝑥∗⟩𝑋 ∗ := ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥∗ ∈ 𝑋 ∗.

Clearly, 𝐽 is linear; Theorem 1.4 furthermore implies that ∥ 𝐽𝑥 ∥𝑋 ∗∗ = ∥𝑥 ∥𝑋 . If the canonical
injection is surjective and we can thus identify 𝑋 ∗∗

with 𝑋 , the space 𝑋 is called reflexive.
All finite-dimensional spaces are reflexive, as are Example 1.1 (ii) and (iii) for 1 < 𝑝 < ∞ but

not ℓ1, ℓ∞ as well as 𝐿1(Ω), 𝐿∞(Ω) and 𝐶 (Ω).

The duality pairing induces further notions of convergence: the weak convergence on 𝑋 as

well as the weak-∗ convergence on 𝑋 ∗
.

(i) A sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 converges weakly (in 𝑋 ) to 𝑥 ∈ 𝑋 , denoted by 𝑥𝑛 ⇀ 𝑥 , if

⟨𝑥∗, 𝑥𝑛⟩𝑋 → ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥∗ ∈ 𝑋 ∗.

(ii) A sequence {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗
convergesweakly-∗ (in𝑋 ∗

) to𝑥∗ ∈ 𝑋 ∗
, denoted by𝑥∗𝑛 ⇀

∗ 𝑥∗,
if

⟨𝑥∗𝑛, 𝑥⟩𝑋 → ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Weak convergence generalizes the concept of componentwise convergence in ℝ𝑛
, which –

as can be seen from the proof of the Heine–Borel Theorem – is the appropriate concept in

the context of compactness. Strong convergence implies weak convergence by continuity

of the duality pairing; in the same way, convergence with respect to the operator norm

(also called pointwise convergence) implies weak-∗ convergence. If 𝑋 is reflexive, weak

and weak-∗ convergence (both in 𝑋 = 𝑋 ∗∗
!) coincide. In finite-dimensional spaces, all

convergence notions coincide.

If 𝑥𝑛 → 𝑥 and 𝑥∗𝑛 ⇀
∗ 𝑥∗ or 𝑥𝑛 ⇀ 𝑥 and 𝑥∗𝑛 → 𝑥∗, then ⟨𝑥∗𝑛, 𝑥𝑛⟩𝑋 → ⟨𝑥∗, 𝑥⟩𝑋 . However, the

duality pairing of weak(-∗) convergent sequences does not converge in general.

As for strong convergence, one defines weak(-∗) continuity and closedness of mappings

as well as weak(-∗) closedness and compactness of sets. The last property is of fundamen-

tal importance in optimization; its characterization is therefore a central result of this

chapter.

Theorem 1.8 (Eberlein–S̆mulyan). If 𝑋 is a normed vector space, 𝐵𝑋 is weakly compact if and
only if 𝑋 is reflexive.

Hence in a reflexive space, all bounded and weakly closed sets are weakly compact. Note

that weak closedness is a stronger claim than closedness, since the property has to hold for

more sequences. For convex sets, however, both concepts coincide.

10
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Lemma 1.9. A convex set𝑈 ⊂ 𝑋 is closed if and only if it is weakly closed.

Proof. Weakly closed sets are always closed since a convergent sequence is also weakly

convergent. Let now𝑈 ⊂ 𝑋 be convex closed and nonempty (otherwise nothing has to be

shown) and consider a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑈 with 𝑥𝑛 ⇀ 𝑥 ∈ 𝑋 . Assume that 𝑥 ∈ 𝑋 \𝑈 .
Then, the sets𝑈 and {𝑥} satisfy the premise of Theorem 1.5 (ii); we thus find an 𝑥∗ ∈ 𝑋 ∗

and a 𝜆 ∈ ℝ with

⟨𝑥∗, 𝑥𝑛⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑛 ∈ ℕ.

Passing to the limit 𝑛 → ∞ in the first inequality yields the contradiction

⟨𝑥∗, 𝑥⟩𝑋 < ⟨𝑥∗, 𝑥⟩𝑋 . □

If 𝑋 is not reflexive (e.g., 𝑋 = 𝐿∞(Ω)), we have to turn to weak-∗ convergence.

Theorem 1.10 (Banach–Alaoglu). If 𝑋 is a separable normed vector space (i.e., contains a
countable dense subset), 𝐵𝑋 ∗ is weakly-∗ compact.

By the Weierstraß Approximation Theorem, both 𝐶 (Ω) and 𝐿𝑝 (Ω) for 1 ≤ 𝑝 < ∞ are

separable; also, ℓ𝑝 is separable for 1 ≤ 𝑝 < ∞. Hence, bounded and weakly-∗ closed balls in
ℓ∞, 𝐿∞(Ω), andM(Ω) are weakly-∗ compact. However, these spaces themselves are not

separable.

Finally, we will also need the following “weak-∗” separation theorem, whose proof is

analogous to the proof of Theorem 1.5 (using the fact that the linear weakly-∗ continuous
functionals are exactly those of the form 𝑥∗ ↦→ ⟨𝑥∗, 𝑥⟩𝑋 for some 𝑥 ∈ 𝑋 ); see also [Rudin
1991, Theorem 3.4(b)].

Theorem 1.11. Let𝐴 ⊂ 𝑋 ∗ be a non-empty, convex, and weakly-∗ closed subset and 𝑥∗ ∈ 𝑋 ∗ \𝐴.
Then there exist an 𝑥 ∈ 𝑋 and a 𝜆 ∈ ℝ with

⟨𝑧∗, 𝑥⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑧∗ ∈ 𝐴.

Note, however, that closed convex sets in non-reflexive spaces do not have to be weakly-∗
closed.

Since a normed vector space is characterized by its dual, this is also the case for linear

operators acting on this space. For any 𝑇 ∈ 𝐿(𝑋,𝑌 ), the adjoint operator 𝑇 ∗ ∈ 𝐿(𝑌 ∗, 𝑋 ∗) is
defined via

⟨𝑇 ∗𝑦∗, 𝑥⟩𝑋 = ⟨𝑦∗,𝑇𝑥⟩𝑌 for all 𝑥 ∈ 𝑋, 𝑦∗ ∈ 𝑌 ∗.

It always holds that ∥𝑇 ∗∥𝐿(𝑌 ∗,𝑋 ∗) = ∥𝑇 ∥𝐿(𝑋,𝑌 ) . Furthermore, the continuity of𝑇 implies that

𝑇 ∗
is weakly-∗ continuous (and 𝑇 weakly continuous).
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1.3 hilbert spaces

Especially strong duality properties hold in Hilbert spaces. A mapping (·, ·) : 𝑋 × 𝑋 → ℝ

on a vector space 𝑋 over ℝ is called inner product, if

(i) (𝛼𝑥 + 𝛽𝑦, 𝑧) = 𝛼 (𝑥, 𝑧) + 𝛽 (𝑦, 𝑧) for all 𝑥, 𝑦, 𝑧 ∈ 𝑋 and 𝛼, 𝛽 ∈ ℝ;

(ii) (𝑥, 𝑦) = (𝑦, 𝑥) for all 𝑥, 𝑦 ∈ 𝑋 ;

(iii) (𝑥, 𝑥) ≥ 0 for all 𝑥 ∈ 𝑋 with equality if and only if 𝑥 = 0.

A Banach space together with an inner product (𝑋, (·, ·)𝑋 ) is called a Hilbert space; if the
inner product is canonical, it is frequently omitted, and the Hilbert space is simply denoted

by 𝑋 . An inner product induces a norm

∥𝑥 ∥𝑋 :=
√︁
(𝑥, 𝑥)𝑋 ,

which satisfies the Cauchy–Schwarz inequality:

(𝑥, 𝑦)𝑋 ≤ ∥𝑥 ∥𝑋 ∥𝑦 ∥𝑋 .

The spaces in Example 1.3 (i–iii) for 𝑝 = 2(= 𝑞) are all Hilbert spaces, where the inner
product coincides with the duality pairing and induces the canonical norm.

The relevant point in our context is that the dual of a Hilbert space 𝑋 can be identified

with 𝑋 itself.

Theorem 1.12 (Fréchet–Riesz). Let 𝑋 be a Hilbert space. Then for each 𝑥∗ ∈ 𝑋 ∗ there exists a
unique 𝑧𝑥∗ ∈ 𝑋 with ∥𝑥∗∥𝑋 ∗ = ∥𝑧𝑥∗ ∥𝑋 and

⟨𝑥∗, 𝑥⟩𝑋 = (𝑥, 𝑧𝑥∗)𝑋 for all 𝑥 ∈ 𝑋 .

The element 𝑧𝑥∗ is called Riesz representation of 𝑥∗. The (linear) mapping 𝐽𝑋 : 𝑋 ∗ → 𝑋 ,

𝑥∗ ↦→ 𝑧𝑥∗ , is called Riesz isomorphism, and can be used to show that every Hilbert space is

reflexive.

Theorem 1.12 allows to use the inner product instead of the duality pairing in Hilbert spaces.

For example, a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 converges weakly to 𝑥 ∈ 𝑋 if and only if

(𝑥𝑛, 𝑧)𝑋 → (𝑥, 𝑧)𝑋 for all 𝑧 ∈ 𝑋 .

Similar statements hold for linear operators on Hilbert spaces. For a linear operator 𝑇 ∈
𝐿(𝑋,𝑌 ) between Hilbert spaces 𝑋 and 𝑌 , the Hilbert space adjoint operator 𝑇★ ∈ 𝐿(𝑌,𝑋 ) is
defined via (

𝑇★𝑦, 𝑥
)
𝑋
= (𝑇𝑥, 𝑦)𝑌 for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌 .

If 𝑇★ = 𝑇 , the operator 𝑇 is called self-adjoint. Both definitions of adjoints are related via

𝑇★ = 𝐽𝑋𝑇
∗𝐽−1

𝑌
. If the context is obvious, we will not distinguish the two in notation.
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2 CALCULUS OF VARIATIONS

We first consider the question about the existence of minimizers of a (nonlinear) functional

𝐹 : 𝑈 → ℝ for a subset 𝑈 of a Banach space 𝑋 . Answering such questions is one of the

goals of the calculus of variations.

It is helpful to include the constraint 𝑥 ∈ 𝑈 into the functional by extending 𝐹 to all of 𝑋

with the value∞. We thus consider

𝐹 : 𝑋 → ℝ := ℝ ∪ {∞}, 𝐹 (𝑥) =
{
𝐹 (𝑥) if 𝑥 ∈ 𝑈 ,
∞ if 𝑥 ∈ 𝑋 \𝑈 .

We extend the usual arithmetic on ℝ to ℝ by letting 𝑡 < ∞ and 𝑡 + ∞ = ∞ for all 𝑡 ∈ ℝ;

subtraction and multiplication of negative numbers with ∞ and in particular 𝐹 (𝑥) = −∞
is not allowed, however. Thus if there is any 𝑥 ∈ 𝑈 at all, a minimizer 𝑥 of 𝐹 necessarily

must lie in𝑈 and coincide with a minimizer of 𝐹 over𝑈 .

We thus consider from now on functionals 𝐹 : 𝑋 → ℝ. The set on which 𝐹 is finite is called

the effective domain
dom 𝐹 := {𝑥 ∈ 𝑋 : 𝐹 (𝑥) < ∞} .

If dom 𝐹 ≠ ∅, the functional 𝐹 is called proper.

2.1 the direct method

We now generalize the Weierstraß Theorem (every real-valued continuous function on

a compact set attains its minimum and maximum) to Banach spaces and in particular to

functions of the form 𝐹 . Since we are only interested in minimizers, we only require a

“one-sided” continuity: We call 𝐹 lower semicontinuous in 𝑥 ∈ 𝑋 if

𝐹 (𝑥) ≤ lim inf

𝑛→∞
𝐹 (𝑥𝑛) for every {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with 𝑥𝑛 → 𝑥 .

Analogously, we define weakly(-∗) lower semicontinuous functionals via weakly(-∗) con-
vergent sequences. Finally, 𝐹 is called coercive if for every sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with

∥𝑥𝑛∥𝑋 → ∞ we also have 𝐹 (𝑥𝑛) → ∞.

13



2 calculus of variations

We now have all concepts at hand for proving the central existence result in the calculus

of variations. The strategy for its proof is known as the direct method.1

Theorem 2.1 (direct method). Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ be proper,
coercive, and weakly lower semicontinuous. Then the minimization problem

min

𝑥∈𝑋
𝐹 (𝑥)

has a solution 𝑥 ∈ dom 𝐹 .

Proof. The proof can be separated into three steps.

(i) Pick a minimizing sequence.

Since 𝐹 is proper, there exists an 𝑀 := inf𝑥∈𝑋 𝐹 (𝑥) < ∞ (although 𝑀 = −∞ is not

excluded so far). Thus, by the properties of the infimum, there exists a sequence

{𝑦𝑛}𝑛∈ℕ ⊂ ran 𝐹 \ {∞} ⊂ ℝ with 𝑦𝑛 → 𝑀 , i.e., there exists a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋
with

𝐹 (𝑥𝑛) → 𝑀 = inf

𝑥∈𝑋
𝐹 (𝑥).

Such a sequence is called minimizing sequence. Note that from the convergence of

{𝐹 (𝑥𝑛)}𝑛∈ℕ we cannot conclude the convergence of {𝑥𝑛}𝑛∈ℕ (yet).

(ii) Show that the minimizing sequence contains a weakly convergent subsequence.

Assume to the contrary that {𝑥𝑛}𝑛∈ℕ is unbounded, i.e., that ∥𝑥𝑛∥𝑋 → ∞ for 𝑛 → ∞.

The coercivity of 𝐹 then implies that 𝐹 (𝑥𝑛) → ∞ as well, in contradiction to 𝐹 (𝑥𝑛) →
𝑀 < ∞ by definition of the minimizing sequence. Hence, the sequence is bounded, i.e.,

there is an𝑀 > 0 with ∥𝑥𝑛∥𝑋 ≤ 𝑀 for all 𝑛 ∈ ℕ. In particular, {𝑥𝑛}𝑛∈ℕ ⊂ 𝐾𝑀 (0). The
Eberlein–S̆mulyan Theorem 1.8 therefore implies the existence of a weakly converging

subsequence {𝑥𝑛𝑘 }𝑘∈ℕ with limit 𝑥 ∈ 𝑋 . (This limit is a candidate for the minimizer.)

(iii) Show that this limit is a minimizer.

From the definition of the minimizing sequence, we also have 𝐹 (𝑥𝑛𝑘 ) → 𝑀 for 𝑘 → ∞.

Together with the weak lower semicontinuity of 𝐹 and the definition of the infimum

we thus obtain

inf

𝑥∈𝑋
𝐹 (𝑥) ≤ 𝐹 (𝑥) ≤ lim inf

𝑘→∞
𝐹 (𝑥𝑛𝑘 ) = 𝑀 = inf

𝑥∈𝑋
𝐹 (𝑥) < ∞.

This implies that 𝑥 ∈ dom 𝐹 and that inf𝑥∈𝑋 𝐹 (𝑥) = 𝐹 (𝑥) > −∞. Hence, the infimum

is attained in 𝑥 which is therefore the desired minimizer. □

1
This strategy is applied so often in the literature that one usually just writes “Existence of a minimizer

follows from the direct method” or even just “Existence follows from standard arguments”. The basic idea

goes back to Hilbert; the version based on lower semicontinuity which we use here is due to Leonida

Tonelli (1885–1946), who had a lasting influence on the modern calculus of variations through it.
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2 calculus of variations

If 𝑋 is not reflexive but the dual of a separable Banach space, we can argue analogously

using the Banach–Alaoglu Theorem 1.10

Note how the topology on 𝑋 used in the proof is restricted in step (ii) and (iii): Step (ii)

profits from a coarse topology (in which more sequences are convergent), while step (iii)

profits from a fine topology (the fewer sequences are convergent, the easier it is to satisfy

the lim inf conditions). Since in the cases of interest to us no more than boundedness of a

minimizing sequence can be expected, we cannot use a finer than the weak topology. We

thus have to ask whether a sufficiently large class of (interesting) functionals are weakly

lower semicontinuous.

A first example is the class of bounded linear functionals: For any 𝑥∗ ∈ 𝑋 ∗
, the functional

𝐹 : 𝑋 → ℝ, 𝑥 ↦→ ⟨𝑥∗, 𝑥⟩𝑋 ,

is weakly continuous by definition of weak convergence and hence a fortiori weakly lower

semicontinuous. Another advantage of (weak) lower semicontinuity is that it is preserved

under certain operations.

Lemma 2.2. Let 𝑋 and 𝑌 be Banach spaces and 𝐹 : 𝑋 → ℝ be weakly lower semicontinuous.
Then, the following functionals are weakly lower semicontinuous as well:

(i) 𝛼𝐹 for all 𝛼 ≥ 0;

(ii) 𝐹 +𝐺 for 𝐺 : 𝑋 → ℝ weakly lower semicontinuous;

(iii) 𝜑 ◦ 𝐹 for 𝜑 : ℝ → ℝ lower semicontinuous and increasing.

(iv) 𝐹 ◦ Φ for Φ : 𝑌 → 𝑋 weakly continuous, i.e., 𝑦𝑛 ⇀ 𝑦 implies Φ(𝑦𝑛) ⇀ Φ(𝑦);

(v) 𝑥 ↦→ sup𝑖∈𝐼 𝐹𝑖 (𝑥) with 𝐹𝑖 : 𝑋 → ℝ weakly lower semicontinuous for an arbitrary set 𝐼 .

Note that (v) does not hold for continuous functions.

Proof. Statements (i) and (ii) follow directly from the properties of the limes inferior.

For statement (iii), it first follows from the weak lower semicontinuity of 𝐹 and the mono-

tonicity of 𝜑 that 𝑥𝑛 ⇀ 𝑥 implies

𝜑 (𝐹 (𝑥)) ≤ 𝜑 (lim inf

𝑛→∞
𝐹 (𝑥𝑛)) .

It remains to show that the right-hand side can be bounded by lim inf𝑛→∞ 𝜑 (𝐹 (𝑥𝑛)). For that
purpose, we consider the subsequence {𝜑 (𝐹 (𝑥𝑛𝑘 )}𝑘∈ℕ realizing the lim inf, i.e., for which

lim inf𝑛→∞ 𝜑 (𝐹 (𝑥𝑛)) = lim𝑘→∞ 𝜑 (𝐹 (𝑥𝑛𝑘 )). By passing to a further subsequence (which we

index by 𝑘′ for simplicity) we can also obtain that lim inf𝑘→∞ 𝐹 (𝑥𝑛𝑘 ) = lim𝑘 ′→∞ 𝐹 (𝑥𝑛𝑘′ ).
Since the lim inf restricted to a subsequence can never be smaller than that of the full
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sequence, the monotonicity of 𝜑 together with its weak lower semicontinuity now implies

that

𝜑 (lim inf

𝑛→∞
𝐹 (𝑥𝑛)) ≤ 𝜑 ( lim

𝑘 ′→∞
𝐹 (𝑥𝑛𝑘′ )) ≤ lim inf

𝑘 ′→∞
𝜑 (𝐹 (𝑥𝑛𝑘′ )) = lim inf

𝑛→∞
𝜑 (𝐹 (𝑥𝑛)),

where we have used in the last step that a subsequence of a convergent sequence has the

same limit (which coincides with the lim inf).

Statement (iv) follows directly from the weak continuity of Φ: 𝑦𝑛 ⇀ 𝑦 implies that 𝑥𝑛 :=

Φ(𝑦𝑛) ⇀ Φ(𝑦) =: 𝑥 , and the lower semicontinuity of 𝐹 yields

𝐹 (Φ(𝑦𝑛)) ≤ lim inf

𝑛→∞
𝐹 (Φ(𝑦)) .

Finally, let {𝑥𝑛}𝑛∈ℕ be a weakly converging sequence with limit 𝑥 ∈ 𝑋 . Then the weak

lower semicontinuity of the 𝐹𝑖 together with the definition of the supremum implies that

𝐹 𝑗 (𝑥) ≤ lim inf

𝑛→∞
𝐹 𝑗 (𝑥𝑛) ≤ lim inf

𝑛→∞
sup

𝑖∈𝐼
𝐹𝑖 (𝑥𝑛) for all 𝑗 ∈ 𝐼 .

Taking the supremum over all 𝑗 ∈ 𝐼 on both sides yields statement (v). □

Corollary 2.3. If 𝑋 is a Banach space, the norm ∥ · ∥𝑋 is proper, coercive, and weakly lower
semicontinuous.

Proof. Coercivity and dom ∥ · ∥𝑋 = 𝑋 follow directly from the definition. Weak lower

semicontinuity follows from Lemma 2.2 (v) and Corollary 1.7 since

∥𝑥 ∥𝑋 = sup

∥𝑥∗∥𝑋∗≤1

|⟨𝑥∗, 𝑥⟩𝑋 |. □

Another frequently occurring functional is the indicator function2 of a set 𝑈 ⊂ 𝑋 , defined
as

𝛿𝑈 (𝑥) =
{

0 𝑥 ∈ 𝑈 ,
∞ 𝑥 ∈ 𝑋 \𝑈 .

The purpose of this definition is of course to reduce the minimization of a functional

𝐹 : 𝑋 → ℝ over 𝑈 to the minimization of 𝐹 := 𝐹 + 𝛿𝑈 over 𝑋 . The following result is

therefore important for showing the existence of a minimizer.

Lemma 2.4. Let 𝑋 be a Banach space and𝑈 ⊂ 𝑋 . Then, 𝛿𝑈 is

(i) proper if𝑈 is non-empty;

(ii) weakly lower semicontinuous if𝑈 is convex and closed;

2
not to be confused with the characteristic function 𝟙𝑈 with 𝟙𝑈 (𝑥) = 1 for 𝑥 ∈ 𝑈 and 0 else
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2 calculus of variations

(iii) coercive if𝑈 is bounded.

Proof. Statement (i) is clear. For (ii), consider a weakly converging sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋
with limit 𝑥 ∈ 𝑋 . If 𝑥 ∈ 𝑈 , then 𝛿𝑈 ≥ 0 immediately yields

𝛿𝑈 (𝑥) = 0 ≤ lim inf

𝑛→∞
𝛿𝑈 (𝑥𝑛).

Let now 𝑥 ∉ 𝑈 . Since 𝑈 is convex and closed and hence by Lemma 1.9 also weakly closed,

there must be an 𝑁 ∈ ℕ with 𝑥𝑛 ∉ 𝑈 for all 𝑛 ≥ 𝑁 (otherwise we could – by passing to a

subsequence if necessary – construct a sequence with 𝑥𝑛 ⇀ 𝑥 ∈ 𝑈 , in contradiction to the

assumption). Thus, 𝛿𝑈 (𝑥𝑛) = ∞ for all 𝑛 ≥ 𝑁 , and therefore

𝛿𝑈 (𝑥) = ∞ = lim inf

𝑛→∞
𝛿𝑈 (𝑥𝑛).

For (iii), let𝑈 be bounded, i.e., there exist an𝑀 > 0 with 𝑈 ⊂ 𝐾𝑀 (0). If ∥𝑥𝑛∥𝑋 → ∞, then

there exists an 𝑁 ∈ ℕ with ∥𝑥𝑛∥𝑋 > 𝑀 for all 𝑛 ≥ 𝑁 , and thus 𝑥𝑛 ∉ 𝐾𝑀 (0) ⊃ 𝑈 for all

𝑛 ≥ 𝑁 . Hence, 𝛿𝑈 (𝑥𝑛) → ∞ as well. □

2.2 differential calculus in normed vector spaces

To characterize minimizers of functionals on infinite-dimensional spaces using the Fermat

principle, we transfer the classical derivative concepts to normed vector spaces.

Let 𝑋 and 𝑌 be normed vector spaces, 𝐹 : 𝑋 → 𝑌 be a mapping, and 𝑥, ℎ ∈ 𝑋 be given.

• If the one-sided limit

𝐹 ′(𝑥 ;ℎ) := lim

𝑡→0
+

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

∈ 𝑌,

exists, it is called the directional derivative of 𝐹 in 𝑥 in direction ℎ.

• If 𝐹 ′(𝑥 ;ℎ) exists for all ℎ ∈ 𝑋 and

𝐷𝐹 (𝑥) : 𝑋 → 𝑌, ℎ ↦→ 𝐹 ′(𝑥 ;ℎ)

defines a bounded linear operator, we call 𝐹 Gâteaux differentiable (in 𝑥) and 𝐷𝐹 ∈
𝐿(𝑋,𝑌 ) its Gâteaux derivative.

• If additionally

lim

∥ℎ∥𝑋→0

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝐹 (𝑥)ℎ∥𝑌
∥ℎ∥𝑋

= 0,

then 𝐹 is called Fréchet differentiable (in 𝑥 ) and 𝐹 ′(𝑥) := 𝐷𝐹 (𝑥) ∈ 𝐿(𝑋,𝑌 ) its Fréchet
derivative.
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2 calculus of variations

• If the mapping 𝑥 ↦→ 𝐹 ′(𝑥) is (Lipschitz) continuous, we call 𝐹 (Lipschitz) continuously
differentiable.

The difference between Gâteaux and Fréchet differentiable lies in the approximation error

of 𝐹 near 𝑥 by 𝐹 (𝑥) + 𝐷𝐹 (𝑥)ℎ: While it only has to be bounded in ∥ℎ∥𝑋 – i.e., linear in

∥ℎ∥𝑋 – for a Gâteaux differentiable function, it has to be superlinear in ∥ℎ∥𝑋 if 𝐹 is Fréchet

differentiable. (For a fixed direction ℎ, this of course also the case for Gâteaux differentiable

functions; Fréchet differentiability thus additionally requires a uniformity in ℎ.)

If 𝐹 is Gâteaux differentiable, the Gâteaux derivative can be computed via

𝐷𝐹 (𝑥)ℎ =

(
𝑑
𝑑𝑡
𝐹 (𝑥 + 𝑡ℎ)

) ���
𝑡=0

.

Bounded linear operators 𝐹 ∈ 𝐿(𝑋,𝑌 ) are obviously Fréchet differentiable with derivative

𝐹 ′(𝑥) = 𝐹 ∈ 𝐿(𝑋,𝑌 ) for all 𝑥 ∈ 𝑋 . Further derivatives can be obtained through the usual

calculus, whose proof in normed vector spaces is exactly as inℝ𝑛
. As an example, we prove

a chain rule.

Theorem 2.5. Let 𝑋 , 𝑌 , and 𝑍 be normed vector spaces, and let 𝐹 : 𝑋 → 𝑌 be Fréchet
differentiable in 𝑥 ∈ 𝑋 and𝐺 : 𝑌 → 𝑍 be Fréchet differentiable in 𝑦 := 𝐹 (𝑥) ∈ 𝑌 . Then,𝐺 ◦ 𝐹
is Fréchet differentiable in 𝑥 and

(𝐺 ◦ 𝐹 )′(𝑥) = 𝐺′(𝐹 (𝑥)) ◦ 𝐹 ′(𝑥).

Proof. For ℎ ∈ 𝑋 with 𝑥 + ℎ ∈ dom 𝐹 we have

(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) = 𝐺 (𝐹 (𝑥 + ℎ)) −𝐺 (𝐹 (𝑥)) = 𝐺 (𝑦 + 𝑔) −𝐺 (𝑦)

with 𝑔 := 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥). The Fréchet differentiability of 𝐺 thus implies that

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) −𝐺′(𝑦)𝑔∥𝑍 = 𝑟1(∥𝑔∥𝑌 )

with 𝑟1(𝑡)/𝑡 → 0 for 𝑡 → 0. The Fréchet differentiability of 𝐹 further implies

∥𝑔 − 𝐹 ′(𝑥)ℎ∥𝑌 = 𝑟2(∥ℎ∥𝑋 )

with 𝑟2(𝑡)/𝑡 → 0 for 𝑡 → 0. In particular, the reverse triangle inequality yields

(2.1) ∥𝑔∥𝑌 ≤ ∥𝐹 ′(𝑥)ℎ∥𝑌 + 𝑟2(∥ℎ∥𝑋 ) .

Hence, with 𝑐 := ∥𝐺′(𝐹 (𝑥))∥𝐿(𝑌,𝑍 ) we have

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) −𝐺′(𝐹 (𝑥))𝐹 ′(𝑥)ℎ∥𝑍 ≤ 𝑟1(∥𝑔∥𝑌 ) + 𝑐 𝑟2(∥ℎ∥𝑋 ).

If ∥ℎ∥𝑋 → 0, we obtain from (2.1) and 𝐹 ′(𝑥) ∈ 𝐿(𝑋,𝑌 ) that ∥𝑔∥𝑌 → 0 as well, and the

claim follows. □
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2 calculus of variations

A similar rule for Gâteaux derivatives does not hold, however.

We will also need the following variant of the mean value theorem. Let [𝑎, 𝑏] ⊂ ℝ be a

bounded interval and 𝑓 : [𝑎, 𝑏] → 𝑋 be continuous. Then the Bochner integral
∫ 𝑏

𝑎
𝑓 (𝑡) 𝑑𝑡 ∈

𝑋 is well-defined and by construction satisfies

(2.2)

〈
𝑥∗,

∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡
〉
𝑋

=

∫ 𝑏

𝑎

⟨𝑥∗, 𝑓 (𝑡)⟩𝑋 𝑑𝑡 for all 𝑥∗ ∈ 𝑋 ∗,

as well as

(2.3)






∫ 𝑏

𝑎

𝑓 (𝑡) 𝑑𝑡






𝑋

≤
∫ 𝑏

𝑎

∥ 𝑓 (𝑡)∥𝑋 𝑑𝑡,

see, e.g., [Yosida 1995, Corollary v.1].

Theorem 2.6. Let 𝐹 : 𝑈 → 𝑌 be Fréchet differentiable, and let 𝑦 ∈ 𝑈 and ℎ ∈ 𝑌 be given with
𝑦 + 𝑡ℎ ∈ 𝑈 for all 𝑡 ∈ [0, 1]. Then

𝐹 (𝑦 + ℎ) − 𝐹 (𝑦) =
∫

1

0

𝐹 ′(𝑦 + 𝑡ℎ)ℎ 𝑑𝑡 .

Proof. Consider for arbitrary 𝑦∗ ∈ 𝑌 ∗
the function

𝑓 : [0, 1] → ℝ, 𝑡 ↦→ ⟨𝑦∗, 𝐹 (𝑦 + 𝑡ℎ)⟩𝑌 .

From Theorem 2.5 we obtain that 𝑓 (as a composition of mappings on normed vector

spaces) is differentiable with

𝑓 ′(𝑡) = ⟨𝑦∗, 𝐹 ′(𝑦 + 𝑡ℎ)ℎ⟩𝑌 ,

and the fundamental theorem of calculus in ℝ yields that

⟨𝑦∗, 𝐹 (𝑦 + ℎ) − 𝐹 (𝑦)⟩𝑌 = 𝑓 (1) − 𝑓 (0) =
∫

1

0

𝑓 ′(𝑡) 𝑑𝑡 =
〈
𝑦∗,

∫
1

0

𝐹 ′(𝑦 + 𝑡ℎ)ℎ 𝑑𝑡
〉
𝑌

,

where the last equality follows from (2.2). Since 𝑦∗ ∈ 𝑌 ∗
was arbitrary, the claim follows

from this together with Corollary 1.7. □

We now turn to the characterization of minimizers of a differentiable functions 𝐹 : 𝑋 →
ℝ.3

3
The indirect method of the calculus of variations uses this to show existence of minimizers as well, e.g., as

the solution of a partial differential equation.
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2 calculus of variations

Theorem 2.7 (Fermat principle). Let 𝐹 : 𝑋 → ℝ be Gâteaux differentiable and 𝑥 ∈ 𝑋 be a
minimizer of 𝐹 . Then 𝐷𝐹 (𝑥) = 0, i.e.,

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = 0 for all ℎ ∈ 𝑋 .

Proof. Let ℎ ∈ 𝑋 be arbitrary. Since 𝑥 is a local minimizer, the core–int Lemma 1.2 implies

that there exists an 𝜖 > 0 such that 𝐹 (𝑥) ≤ 𝐹 (𝑥 + 𝑡ℎ) for all 𝑡 ∈ (0, 𝜀), i.e.,

(2.4) 0 ≤ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

→ 𝐹 ′(𝑥 ;ℎ) = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 for 𝑡 → 0,

where we have used the Gâteaux differentiability and hence directional differentiability of

𝐹 . Since the right-hand side is linear in ℎ, the same argument for −ℎ yields ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 ≤ 0

and therefore the claim. □

Of particular relevance in optimization is of course the special case 𝐹 : 𝑋 → ℝ, where

𝐷𝐹 (𝑥) ∈ 𝐿(𝑋 ;ℝ) = 𝑋 ∗
(if the Gâteaux derivative exists). Note that since the Gâteaux

derivative of 𝐹 : 𝑋 → ℝ is an element of 𝑋 ∗
, it cannot be added to elements in 𝑋 (as

required for, e.g., a steepest descent method). However, in Hilbert spaces (and in particular

inℝ𝑁
), we can use the Fréchet–Riesz Theorem 1.12 to identify 𝐷𝐹 (𝑥) ∈ 𝑋 ∗

with an element

∇𝐹 (𝑥) ∈ 𝑋 , called the gradient of 𝐹 at 𝑥 , in a canonical way via

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = (∇𝐹 (𝑥), ℎ)𝑋 for all ℎ ∈ 𝑋 .
We illustrate this with a simple example.

Example 2.8. Let 𝐹 (𝑥) = 1

2
∥𝑥 ∥2

𝑋
= 1

2
(𝑥, 𝑥)𝑋 . Then we have for all 𝑥, ℎ ∈ 𝑋 that

𝐹 ′(𝑥 ;ℎ) = lim

𝑡→0

1

2
(𝑥 + 𝑡ℎ, 𝑥 + 𝑡ℎ)𝑋 − 1

2
(𝑥, 𝑥)𝑋

𝑡
= (𝑥, ℎ)𝑋 = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 ,

since the inner product is linear in ℎ for fixed 𝑥 . Hence, the squared norm is Gâteaux

differentiable at every 𝑥 ∈ 𝑋 with derivative 𝐷𝐹 (𝑥) = ℎ ↦→ (𝑥, ℎ)𝑋 ∈ 𝑋 ∗
; it is even

Fréchet differentiable since

lim

∥ℎ∥𝑋→0

�� 1

2
∥𝑥 + ℎ∥2

𝑋
− 1

2
∥𝑥 ∥2

𝑋
− (𝑥, ℎ)𝑋

��
∥ℎ∥𝑋

= lim

∥ℎ∥𝑋→0

1

2

∥ℎ∥𝑋 = 0.

The gradient ∇𝐹 (𝑥) ∈ 𝑋 by definition is given by

(∇𝐹 (𝑥), ℎ)𝑋 = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = (𝑥, ℎ)𝑋 for all ℎ ∈ 𝑋,

i.e., ∇𝐹 (𝑥) = 𝑥 .

The following example demonstrates how the gradient (in contrast to the derivative)

depends on the inner product on 𝑋 – which may be different from the inner product

inducing the squared norm.
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2 calculus of variations

Example 2.9. Let𝑀 ∈ 𝐿(𝑋 ;𝑋 ) be self-adjoint and positive definite (and thus continu-

ously invertible). Then (𝑥, 𝑦)𝑍 := (𝑀𝑥, 𝑦)𝑋 also defines an inner product on the vector

space 𝑋 and induces an (equivalent) norm ∥𝑥 ∥𝑍 := (𝑥, 𝑥)1/2

𝑍
on 𝑋 . Hence (𝑋, (·, ·)𝑍 )

is a Hilbert space as well, which we will denote by 𝑍 . Consider now the functional

˜𝐹 : 𝑍 → ℝ with
˜𝐹 (𝑥) := 1

2
∥𝑥 ∥2

𝑋
(which is well-defined since ∥ · ∥𝑋 is also an equivalent

norm on 𝑍 ). Then, the derivative 𝐷𝐹 (𝑥) ∈ 𝑍 ∗
is still given by ⟨𝐷𝐹 (𝑥), ℎ⟩𝑍 = (𝑥, ℎ)𝑋 for

all ℎ ∈ 𝑍 (or, equivalently, for all ℎ ∈ 𝑋 since we defined 𝑍 via the same vector space).

However, ∇ ˜𝐹 (𝑥) ∈ 𝑍 is now characterized by

(𝑥, ℎ)𝑋 = ⟨𝐷 ˜𝐹 (𝑥), ℎ⟩𝑍 =

(
∇ ˜𝐹 (𝑥), ℎ

)
𝑍
=

(
𝑀∇ ˜𝐹 (𝑥), ℎ

)
𝑋

for all ℎ ∈ 𝑍,

i.e., ∇ ˜𝐹 (𝑥) = 𝑀−1𝑥 ≠ ∇𝐹 (𝑥).

(The situation is even more delicate if𝑀 is only positive definite on a subspace, as in the

case of 𝑋 = 𝐿2(Ω) and 𝑍 = 𝐻 1(Ω).)

2.3 superposition operators

A special class of operators on function spaces arise from pointwise application of a real-

valued function, e.g.,𝑢 (𝑥) ↦→ sin(𝑢 (𝑥)). We thus consider for 𝑓 : Ω×ℝ → ℝ with Ω ⊂ ℝ𝑛

open and bounded as well as 𝑝, 𝑞 ∈ [1,∞] the corresponding superposition or Nemytskii
operator

(2.5) 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω), [𝐹 (𝑢)] (𝑥) = 𝑓 (𝑥,𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

For this operator to bewell-defined requires certain restrictions on 𝑓 . We call 𝑓 aCarathéodory
function, if

(i) for all 𝑧 ∈ ℝ, the mapping 𝑥 ↦→ 𝑓 (𝑥, 𝑧) is measurable;

(ii) for almost every 𝑥 ∈ Ω, the mapping 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is continuous.

We additionally require the following growth condition: For given 𝑝, 𝑞 ∈ [1,∞) there exist
𝑎 ∈ 𝐿𝑞 (Ω) and 𝑏 ∈ 𝐿∞(Ω) with

(2.6) |𝑓 (𝑥, 𝑧) | ≤ 𝑎(𝑥) + 𝑏 (𝑥) |𝑧 |𝑝/𝑞 .

Under these conditions, 𝐹 is well-defined and even continuous.

Theorem 2.10. If the Carathéodory function 𝑓 : Ω ×ℝ → ℝ satisfies the growth condition
(2.6) for 𝑝, 𝑞 ∈ [1,∞), then the superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) defined via (2.5) is
continuous.
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Proof. We sketch the essential steps; a complete proof can be found in, e.g., [Appell &

Zabreiko 1990, Theorems 3.1, 3.7]. First, one shows for given 𝑢 ∈ 𝐿𝑝 (Ω) the measurability

of 𝐹 (𝑢) using the Carathéodory properties. It then follows from (2.6) and the triangle

inequality that

∥𝐹 (𝑢)∥𝐿𝑞 ≤ ∥𝑎∥𝐿𝑞 + ∥𝑏∥𝐿∞ ∥|𝑢 |𝑝/𝑞 ∥𝐿𝑞 = ∥𝑎∥𝐿𝑞 + ∥𝑏∥𝐿∞ ∥𝑢∥𝑝/𝑞𝐿𝑝
< ∞,

i.e., 𝐹 (𝑢) ∈ 𝐿𝑞 (Ω).

To show continuity, we consider a sequence {𝑢𝑛}𝑛∈ℕ ⊂ 𝐿𝑝 (Ω) with 𝑢𝑛 → 𝑢 ∈ 𝐿𝑝 (Ω). Then
there exists a subsequence, again denoted by {𝑢𝑛}𝑛∈ℕ, that converges pointwise almost

everywhere in Ω, as well as a 𝑣 ∈ 𝐿𝑝 (Ω) with |𝑢𝑛 (𝑥) | ≤ |𝑣 (𝑥) | + |𝑢1(𝑥) | =: 𝑔(𝑥) for all
𝑛 ∈ ℕ and almost every 𝑥 ∈ Ω (see, e.g., [Alt 2016, Lemma 3.22 as well as (3-14) in the proof

of Theorem 3.17]). The continuity of 𝑧 ↦→ 𝑓 (𝑥, 𝑧) then implies 𝐹 (𝑢𝑛) → 𝐹 (𝑢) pointwise
almost everywhere as well as

| [𝐹 (𝑢𝑛)] (𝑥) | ≤ 𝑎(𝑥) + 𝑏 (𝑥) |𝑢𝑛 (𝑥) |𝑝/𝑞 ≤ 𝑎(𝑥) + 𝑏 (𝑥) |𝑔(𝑥) |𝑝/𝑞 for almost every 𝑥 ∈ Ω.

Since 𝑔 ∈ 𝐿𝑝 (Ω), the right-hand side defines a function in 𝐿𝑞 (Ω), and we can apply

Lebesgue’s dominated convergence theorem to deduce that 𝐹 (𝑢𝑛) → 𝐹 (𝑢) in 𝐿𝑞 (Ω). As
this argument can be applied to any subsequence, the whole sequence must converge to

𝐹 (𝑢), which yields the claimed continuity. □

In fact, the growth condition (2.6) is also necessary for continuity; see [Appell & Zabreiko

1990, Theorem 3.2]. In addition, it is straightforward to show that for 𝑝 = 𝑞 = ∞, the

growth condition (2.6) (with 𝑝/𝑞 := 0 in this case) implies that 𝐹 is even locally Lipschitz

continuous.

Similarly, one would like to show that differentiability of 𝑓 implies differentiability of the

corresponding superposition operator 𝐹 , ideally with pointwise derivative [𝐹 ′(𝑢)ℎ] (𝑥) =
𝑓 ′(𝑢 (𝑥))ℎ(𝑥). However, this does not hold in general; for example, the superposition

operator defined by 𝑓 (𝑥, 𝑧) = sin(𝑧) is not differentiable in 𝑢 = 0 for 1 ≤ 𝑝 = 𝑞 < ∞. The

reason is that for a Fréchet differentiable superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) and
a direction ℎ ∈ 𝐿𝑝 (Ω), the pointwise(!) product 𝐹 ′(𝑢)ℎ has to be in 𝐿𝑞 (Ω). This leads to
additional conditions on the superposition operator 𝐹 ′ defined by 𝑓 ′, which is known as

two norm discrepancy.

Theorem 2.11. Let 𝑓 : Ω × ℝ → ℝ be a Carathéodory function that satisfies the growth
condition (2.6) for 1 ≤ 𝑞 < 𝑝 < ∞. If the partial derivative 𝑓 ′𝑧 is a Carathéodory function
as well and satisfies (2.6) for 𝑝′ = 𝑝 − 𝑞, the superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) is
continuously Fréchet differentiable, and its derivative in 𝑢 ∈ 𝐿𝑝 (Ω) in direction ℎ ∈ 𝐿𝑝 (Ω) is
given by

[𝐹 ′(𝑢)ℎ] (𝑥) = 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))ℎ(𝑥) for almost every 𝑥 ∈ Ω.
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Proof. Theorem 2.10 yields that for 𝑟 :=
𝑝𝑞

𝑝−𝑞 (i.e.,
𝑟
𝑝
=

𝑝′

𝑞
), the superposition operator

𝐺 : 𝐿𝑝 (Ω) → 𝐿𝑟 (Ω), [𝐺 (𝑢)] (𝑥) = 𝑓 ′𝑧 (𝑥,𝑢 (𝑥)) for almost every 𝑥 ∈ Ω,

is well-defined and continuous. The Hölder inequality further implies that for any 𝑢 ∈
𝐿𝑝 (Ω),

(2.7) ∥𝐺 (𝑢)ℎ∥𝐿𝑞 ≤ ∥𝐺 (𝑢)∥𝐿𝑟 ∥ℎ∥𝐿𝑝 for all ℎ ∈ 𝐿𝑝 (Ω),

i.e., ℎ ↦→ 𝐺 (𝑢)ℎ defines a bounded linear operator 𝐷𝐹 (𝑢) : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω).

Let now ℎ ∈ 𝐿𝑝 (Ω) be arbitrary. Since 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is continuously differentiable by

assumption, the classical mean value theorem together with (2.3) and (2.7) implies that

∥𝐹 (𝑢 + ℎ) − 𝐹 (𝑢) − 𝐷𝐹 (𝑢)ℎ∥𝐿𝑞

=

(∫
Ω
|𝑓 (𝑥,𝑢 (𝑥) + ℎ(𝑥)) − 𝑓 (𝑥,𝑢 (𝑥)) − 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))ℎ(𝑥) |𝑞 𝑑𝑥

) 1

𝑞

=

(∫
Ω

����∫ 1

0

𝑓 ′𝑧 (𝑥,𝑢 (𝑥) + 𝑡ℎ(𝑥))ℎ(𝑥) 𝑑𝑡 − 𝑓 ′𝑧 (𝑥,𝑢 (𝑥))ℎ(𝑥)
����𝑞 𝑑𝑥) 1

𝑞

=





∫ 1

0

𝐺 (𝑢 + 𝑡ℎ)ℎ 𝑑𝑡 −𝐺 (𝑢)ℎ





𝐿𝑞

≤
∫

1

0

∥(𝐺 (𝑢 + 𝑡ℎ) −𝐺 (𝑢))ℎ∥𝐿𝑞 𝑑𝑡

≤
∫

1

0

∥𝐺 (𝑢 + 𝑡ℎ) −𝐺 (𝑢)∥𝐿𝑟 𝑑𝑡 ∥ℎ∥𝐿𝑝 .

Due to the continuity of 𝐺 : 𝐿𝑝 (Ω) → 𝐿𝑟 (Ω), the integral tends to zero for ∥ℎ∥𝐿𝑝 → 0,

and hence 𝐹 is by definition Fréchet differentiable with derivative 𝐹 ′(𝑢) = 𝐷𝐹 (𝑢) (whose
continuity we have already shown). □

In fact, this result is sharp: except for the case 𝑝 = 𝑞 = ∞, no superposition operator is

differentiable from 𝐿𝑝 (Ω) to 𝐿𝑝 (Ω) (unless it is affine-linear); see, e.g., [Appell & Zabreiko

1990, Theorem 3.12].
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3 CONVEX FUNCTIONS

The classical derivative concepts from the previous chapter are not sufficient for our

purposes, since many interesting functionals are not differentiable in this sense; also, they

cannot handle functionals with values in ℝ. We therefore need a derivative concept that is

more general than Gâteaux and Fréchet derivatives and still allows a Fermat principle and

a rich calculus.

We first consider a general class of functionals that admit such a generalized derivative. A

proper functional 𝐹 : 𝑋 → ℝ is called convex if

(3.1) 𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦) for all 𝑥, 𝑦 ∈ 𝑋 and 𝜆 ∈ [0, 1]

(where the function value ∞ is allowed on both sides). If for 𝑥 ≠ 𝑦 and 𝜆 ∈ (0, 1) we even
have

𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) < 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦),
we call 𝐹 strictly convex.

An alternative characterization of the convexity of a functional 𝐹 : 𝑋 → ℝ is based on its

epigraph
epi 𝐹 := {(𝑥, 𝑡) ∈ 𝑋 ×ℝ : 𝐹 (𝑥) ≤ 𝑡} .

Lemma 3.1. Let 𝐹 : 𝑋 → ℝ. Then epi 𝐹 is

(i) nonempty if and only if 𝐹 is proper;

(ii) convex if and only if 𝐹 is convex;

(iii) (weakly) closed if and only if 𝐹 is (weakly) lower semicontinuous.

Proof. Statement (i) follows directly from the definition: 𝐹 is proper if and only if there

exists an 𝑥 ∈ 𝑋 and a 𝑡 ∈ ℝ with 𝐹 (𝑥) ≤ 𝑡 < ∞, i.e., (𝑥, 𝑡) ∈ epi 𝐹 .

For (ii), let 𝐹 be convex and (𝑥, 𝑟 ), (𝑦, 𝑠) ∈ epi 𝐹 be given. For any 𝜆 ∈ [0, 1], the definition
(3.1) then implies that

𝐹 (𝜆𝑥 + (1 − 𝜆)𝑦) ≤ 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦) ≤ 𝜆𝑟 + (1 − 𝜆)𝑠,
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3 convex functions

i.e., that

𝜆(𝑥, 𝑟 ) + (1 − 𝜆) (𝑦, 𝑠) = (𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝑟 + (1 − 𝜆)𝑠) ∈ epi 𝐹,

and hence epi 𝐹 is convex. Let conversely epi 𝐹 be convex and 𝑥, 𝑦 ∈ 𝑋 be arbitrary,

where we can assume that 𝐹 (𝑥) < ∞ and 𝐹 (𝑦) < ∞ (otherwise (3.1) is trivially satisfied).

We clearly have (𝑥, 𝐹 (𝑥)), (𝑦, 𝐹 (𝑦)) ∈ epi 𝐹 . The convexity of epi 𝐹 then implies for all

𝜆 ∈ [0, 1] that

(𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑦)) = 𝜆(𝑥, 𝐹 (𝑥)) + (1 − 𝜆) (𝑦, 𝐹 (𝑦)) ∈ epi 𝐹,

and hence by definition of epi 𝐹 that (3.1) holds.

Finally, we show (iii): Let first 𝐹 be lower semicontinuous and {(𝑥𝑛, 𝑡𝑛)}𝑛∈ℕ ⊂ epi 𝐹 be an

arbitrary sequence with (𝑥𝑛, 𝑡𝑛) → (𝑥, 𝑡) ∈ 𝑋 ×ℝ. Then we have that

𝐹 (𝑥) ≤ lim inf

𝑛→∞
𝐹 (𝑥𝑛) ≤ lim sup

𝑛→∞
𝑡𝑛 = 𝑡,

i.e., (𝑥, 𝑡) ∈ epi 𝐹 . Let conversely epi 𝐹 be closed and assume that 𝐹 is not lower semicon-

tinuous. Then there exists a sequence {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 with 𝑥𝑛 → 𝑥 ∈ 𝑋 and

𝐹 (𝑥) > lim inf

𝑛→∞
𝐹 (𝑥𝑛) =: 𝑀 ∈ [−∞,∞) .

We now distinguish two cases.

a) 𝑥 ∈ dom 𝐹 : In this case, we can select a subsequence, again denoted by {𝑥𝑛}𝑛∈ℕ, such
that there exists an 𝜀 > 0 with 𝐹 (𝑥𝑛) ≤ 𝐹 (𝑥) − 𝜀 and thus (𝑥𝑛, 𝐹 (𝑥) − 𝜀) ∈ epi 𝐹 for all

𝑛 ∈ ℕ. From 𝑥𝑛 → 𝑥 and the closedness of epi 𝐹 , we deduce that (𝑥, 𝐹 (𝑥) − 𝜀) ∈ epi 𝐹

and hence 𝐹 (𝑥) ≤ 𝐹 (𝑥) − 𝜀, contradicting 𝜀 > 0.

b) 𝑥 ∉ dom 𝐹 : In this case, we can argue similarly using 𝐹 (𝑥𝑛) ≤ 𝑀 + 𝜀 for 𝑀 > −∞ or

𝐹 (𝑥𝑛) ≤ 𝜀 for𝑀 = −∞ to obtain a contradiction with 𝐹 (𝑥) = ∞.

The equivalence of weak lower semicontinuity and weak closedness follows in exactly the

same way. □

Note that (𝑥, 𝑡) ∈ epi 𝐹 implies that 𝑥 ∈ dom 𝐹 ; hence the effective domain of a proper,

convex, and lower semicontinuous functional is always nonempty, convex, and closed as

well. Also, together with Lemma 1.9 we immediately obtain

Corollary 3.2. Let 𝐹 : 𝑋 → ℝ be convex. Then, 𝐹 is weakly lower semicontinuous if and only
𝐹 is lower semicontinuous.

Also useful for the study of a functional 𝐹 : 𝑋 → ℝ are the corresponding sublevel sets

𝐹𝛼 := {𝑥 ∈ 𝑋 : 𝐹 (𝑥) ≤ 𝛼} , 𝛼 ∈ ℝ,

for which one shows as in Lemma 3.1 the following properties.
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Lemma 3.3. Let 𝐹 : 𝑋 → ℝ.

(i) If 𝐹 is convex, 𝐹𝛼 is convex for all 𝛼 ∈ ℝ, but the converse does not hold.

(ii) 𝐹 is (weakly) lower semicontinuous if and only if 𝐹𝛼 is (weakly) closed for all 𝛼 ∈ ℝ.

Directly from the definition we obtain the convexity of

(i) affine functionals of the form 𝑥 ↦→ ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 for fixed 𝑥∗ ∈ 𝑋 ∗
and 𝛼 ∈ ℝ;

(ii) the norm ∥ · ∥𝑋 in a normed vector space 𝑋 ;

(iii) the indicator function 𝛿𝐶 for a convex set 𝐶 .

If 𝑋 is a Hilbert space, 𝐹 (𝑥) = ∥𝑥 ∥2

𝑋
is even strictly convex: For 𝑥, 𝑦 ∈ 𝑋 with 𝑥 ≠ 𝑦 and

any 𝜆 ∈ (0, 1),

∥𝜆𝑥 + (1 − 𝜆)𝑦 ∥2

𝑋 = (𝜆𝑥 + (1 − 𝜆)𝑦, 𝜆𝑥 + (1 − 𝜆)𝑦)𝑋
= 𝜆2 (𝑥, 𝑥)𝑋 + 2𝜆(1 − 𝜆) (𝑥, 𝑦)𝑋 + (1 − 𝜆)2 (𝑦, 𝑦)𝑋
= 𝜆

(
𝜆 (𝑥, 𝑥)𝑋 − (1 − 𝜆) (𝑥 − 𝑦, 𝑦)𝑋 + (1 − 𝜆) (𝑦, 𝑦)𝑋

)
+ (1 − 𝜆)

(
𝜆 (𝑥, 𝑥)𝑋 + 𝜆 (𝑥 − 𝑦, 𝑦)𝑋 + (1 − 𝜆) (𝑦, 𝑦)𝑋

)
= (𝜆 + (1 − 𝜆))

(
𝜆 (𝑥, 𝑥)𝑋 + (1 − 𝜆) (𝑦, 𝑦)𝑋

)
− 𝜆(1 − 𝜆) (𝑥 − 𝑦, 𝑥 − 𝑦)𝑋

= 𝜆∥𝑥 ∥2

𝑋 + (1 − 𝜆)∥𝑦 ∥2

𝑋 − 𝜆(1 − 𝜆)∥𝑥 − 𝑦 ∥2

𝑋

< 𝜆∥𝑥 ∥2

𝑋 + (1 − 𝜆)∥𝑦 ∥2

𝑋 .

Further examples can be constructed as in Lemma 2.2 through the following operations.

Lemma 3.4. Let 𝑋 and 𝑌 be normed vector spaces and let 𝐹 : 𝑋 → ℝ be convex. Then the
following functionals are convex as well:

(i) 𝛼𝐹 for all 𝛼 ≥ 0;

(ii) 𝐹 +𝐺 for 𝐺 : 𝑋 → ℝ convex (strictly if 𝐹 or 𝐺 is strictly convex);

(iii) 𝜑 ◦ 𝐹 for 𝜑 : ℝ → ℝ convex and increasing;

(iv) 𝐹 ◦𝐴 for 𝐴 : 𝑌 → 𝑋 linear;

(v) 𝑥 ↦→ sup𝑖∈𝐼 𝐹𝑖 (𝑥) with 𝐹𝑖 : 𝑋 → ℝ convex for an arbitrary set 𝐼 .

Lemma 3.4 (v) in particular implies that the pointwise supremum of affine functionals is

always convex. In fact, any convex functional can be written in this way. To show this, we

define for a proper functional 𝐹 : 𝑋 → ℝ the convex hull

𝐹 Γ (𝑥) := sup {𝑎(𝑥) : 𝑎 affine with 𝑎(𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑋 } .

Note that 𝐹 Γ : 𝑋 → [−∞,∞] without further assumptions of 𝐹 .
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Lemma 3.5. Let 𝐹 : 𝑋 → ℝ be proper. Then 𝐹 is convex and lower semicontinuous if and only
if 𝐹 = 𝐹 Γ .

Proof. Since affine functionals are convex and continuous, Lemma 3.4 (v) and Lemma 2.2 (v)

imply that 𝐹 = 𝐹 Γ is always convex and lower semicontinuous.

Let now 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. It is obvious from the

definition of 𝐹 Γ as a supremum that 𝐹 Γ ≤ 𝐹 always holds pointwise. Assume that 𝐹 Γ < 𝐹 .

Then there exists an 𝑥0 ∈ 𝑋 and a 𝜆 ∈ ℝ with

𝐹 Γ (𝑥0) < 𝜆 < 𝐹 (𝑥0).

We now use the Hahn–Banach separation theorem to construct an affine functional 𝑎

with 𝑎 ≤ 𝐹 but 𝑎(𝑥0) > 𝜆 > 𝐹 Γ (𝑥0), which would contradict the definition of 𝐹 Γ . Since

𝐹 is proper, convex, and lower semicontinuous, epi 𝐹 is nonempty, convex, and closed

by Lemma 3.1. Furthermore, {(𝑥0, 𝜆)} is compact and, as 𝜆 < 𝐹 (𝑥0), disjoint with epi 𝐹 .

Theorem 1.5 (ii) hence yields a 𝑧∗ ∈ (𝑋 ×ℝ)∗ and an 𝛼 ∈ ℝ with

⟨𝑧∗, (𝑥, 𝑡)⟩𝑋×ℝ ≤ 𝛼 < ⟨𝑧∗, (𝑥0, 𝜆)⟩𝑋×ℝ for all (𝑥, 𝑡) ∈ epi 𝐹 .

We now define an 𝑥∗ ∈ 𝑋 ∗
via ⟨𝑥∗, 𝑥⟩𝑋 = ⟨𝑧∗, (𝑥, 0)⟩𝑋×ℝ for all 𝑥 ∈ 𝑋 and set 𝑠 :=

⟨𝑧∗, (0, 1)⟩𝑋×ℝ ∈ ℝ. Then, ⟨𝑧∗, (𝑥, 𝑡)⟩𝑋×ℝ = ⟨𝑥∗, 𝑥⟩𝑋 + 𝑠𝑡 and hence

(3.2) ⟨𝑥∗, 𝑥⟩𝑋 + 𝑠𝑡 ≤ 𝛼 < ⟨𝑥∗, 𝑥0⟩𝑋 + 𝑠𝜆 for all (𝑥, 𝑡) ∈ epi 𝐹 .

Now for (𝑥, 𝑡) ∈ epi 𝐹 we also have (𝑥, 𝑡 ′) ∈ epi 𝐹 for all 𝑡 ′ > 𝑡 , and the first inequality in

(3.2) implies that for all sufficiently large 𝑡 ′ > 0,

𝑠 ≤ 𝛼 − ⟨𝑥∗, 𝑥⟩𝑋
𝑡 ′

→ 0 for 𝑡 ′ → ∞.

Hence 𝑠 ≤ 0. We continue with a case distinction.

(i) 𝑠 < 0: We set

𝑎 : 𝑋 → ℝ, 𝑥 ↦→ 𝛼 − ⟨𝑥∗, 𝑥⟩𝑋
𝑠

,

which is affine and continuous. Furthermore, using the “productive zero” (i.e., adding

and subtracting the same term) in the first inequality in (3.2) for (𝑥, 𝐹 (𝑥)) ∈ epi 𝐹

implies (noting 𝑠 < 0!) that

𝑎(𝑥) = 1

𝑠
(𝛼 − ⟨𝑥∗, 𝑥⟩𝑋 − 𝑠𝐹 (𝑥)) + 𝐹 (𝑥) ≤ 𝐹 (𝑥).

(For 𝑥 ∉ dom 𝐹 this holds trivially.) But the second inequality in (3.2) implies that

𝑎(𝑥0) = 1

𝑠
(𝛼 − ⟨𝑥∗, 𝑥0⟩𝑋 ) > 𝜆.

28



3 convex functions

(ii) 𝑠 = 0: Then ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝛼 < ⟨𝑥∗, 𝑥0⟩𝑋 for all 𝑥 ∈ dom 𝐹 , which can only hold for

𝑥0 ∉ dom 𝐹 . But 𝐹 is proper, and hence we can find a 𝑦0 ∈ dom 𝐹 , for which we

can construct as in case (i) by separating epi 𝐹 and (𝑦0, 𝜇) for sufficiently small 𝜇 a

continuous affine functional 𝑎0 : 𝑋 → ℝ with 𝑎0 ≤ 𝐹 pointwise. For 𝜌 > 0 we now

set

𝑎𝜌 : 𝑋 → ℝ, 𝑥 ↦→ 𝑎0(𝑥) + 𝜌 (⟨𝑥∗, 𝑥⟩𝑋 − 𝛼) ,
which is affine and continuous as well. Since ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝛼 , we also have that 𝑎𝜌 (𝑥) ≤
𝑎0(𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ dom 𝐹 and any 𝜌 > 0. But due to ⟨𝑥∗, 𝑥0⟩𝑋 > 𝛼 , we can

choose 𝜌 > 0 with 𝑎𝜌 (𝑥0) > 𝜆.

In both cases, the definition of 𝐹 Γ as a supremum implies that 𝐹 Γ (𝑥0) > 𝜆 as well, contra-
dicting the assumption 𝐹 Γ (𝑥0) < 𝜆. □

A particularly useful class of convex functionals in the calculus of variations arises from

integral functionals with convex integrands defined through superposition operators.

Lemma 3.6. Let 𝑓 : ℝ → ℝ be proper, convex, and lower semicontinuous. If Ω ⊂ ℝ𝑛 is
bounded and 1 ≤ 𝑝 ≤ ∞, this also holds for

𝐹 : 𝐿𝑝 (Ω) → ℝ, 𝑢 ↦→
{∫

Ω
𝑓 (𝑢 (𝑥)) 𝑑𝑥 if 𝑓 ◦ 𝑢 ∈ 𝐿1(Ω),

∞ else.

Proof. First, Lemma 3.5 implies that there exist 𝑎, 𝛼 ∈ ℝ such that

(3.3) 𝑓 (𝑡) ≥ 𝑎𝑡 − 𝛼 for all 𝑡 ∈ ℝ.

Since Ω is bounded and hence 𝐿𝑝 (Ω) ⊂ 𝐿1(Ω) for any 𝑝 ≥ 1, this implies that

𝐹 (𝑢) ≥
∫
Ω
𝑎𝑢 (𝑥) − 𝛼 𝑑𝑥 ∈ ℝ for any 𝑢 ∈ 𝐿𝑝 (Ω).

In particular, 𝐹 (𝑢) > −∞ for all 𝑢 ∈ 𝐿𝑝 (Ω). Since 𝑓 is proper, there is a 𝑡0 ∈ dom 𝑓 . Hence

(using again that Ω is bounded) the constant function 𝑢0 ≡ 𝑡0 ∈ dom 𝐹 satisfies 𝐹 (𝑢0) < ∞.

This shows that 𝐹 is proper.

To show convexity, we take 𝑢, 𝑣 ∈ dom 𝐹 (since otherwise (3.1) is trivially satisfied) and

𝜆 ∈ [0, 1] arbitrary. The convexity of 𝑓 now implies that

𝑓 (𝜆𝑢 (𝑥) + (1 − 𝜆)𝑣 (𝑥)) ≤ 𝜆𝑓 (𝑢 (𝑥)) + (1 − 𝜆) 𝑓 (𝑣 (𝑥)) for almost every 𝑥 ∈ Ω.

Since 𝑢, 𝑣 ∈ dom 𝐹 and 𝐿1(Ω) is a vector space, 𝜆𝑓 (𝑢 (𝑥)) + (1 − 𝜆) 𝑓 (𝑣 (𝑥)) ∈ 𝐿1(Ω) as well.
Similarly, the left-hand side is bounded from below by 𝑎(𝜆𝑢 (𝑥) + (1 − 𝜆)𝑣 (𝑥)) − 𝛼 ∈ 𝐿1(Ω)
by (3.3). We can thus integrate the inequality over Ω to obtain the convexity of 𝐹 .
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To show lower semicontinuity, we use Lemma 3.1. Let {(𝑢𝑛, 𝑡𝑛)}𝑛∈ℕ ⊂ epi 𝐹 with 𝑢𝑛 → 𝑢

in 𝐿𝑝 (Ω) and 𝑡𝑛 → 𝑡 in ℝ. Then there exists a subsequence {𝑢𝑛𝑘 }𝑘∈ℕ with 𝑢𝑛𝑘 (𝑥) → 𝑢 (𝑥)
almost everywhere. Hence, the lower semicontinuity of 𝑓 together with Fatou’s Lemma

implies that∫
Ω
𝑓 (𝑢 (𝑥)) − (𝑎𝑢 (𝑥) − 𝛼) 𝑑𝑥 ≤

∫
Ω

lim inf

𝑘→∞
(𝑓 (𝑢𝑛𝑘 (𝑥)) − (𝑎𝑢𝑛𝑘 (𝑥) − 𝛼)) 𝑑𝑥

≤ lim inf

𝑘→∞

∫
Ω
𝑓 (𝑢𝑛𝑘 (𝑥)) − (𝑎𝑢𝑛𝑘 (𝑥) − 𝛼) 𝑑𝑥

= lim inf

𝑘→∞

∫
Ω
𝑓 (𝑢𝑛𝑘 (𝑥)) 𝑑𝑥 −

∫
Ω
𝑎𝑢 (𝑥) − 𝛼 𝑑𝑥

as the integrands are nonnegative due to (3.3). Since (𝑢𝑛𝑘 , 𝑡𝑛𝑘 ) ∈ epi 𝐹 , this yields

𝐹 (𝑢) =
∫
Ω
𝑓 (𝑢 (𝑥)) 𝑑𝑥 ≤ lim inf

𝑘→∞

∫
Ω
𝑓 (𝑢𝑛𝑘 (𝑥)) 𝑑𝑥 = lim inf

𝑘→∞
𝐹 (𝑢𝑛𝑘 ) ≤ lim

𝑘→∞
𝑡𝑛𝑘 = 𝑡,

i.e., (𝑢, 𝑡) ∈ epi 𝐹 . Hence epi 𝐹 is closed, and the lower semicontinuity of 𝐹 follows from

Lemma 3.1 (iii). □

After all this preparation, we can quickly prove the main result on existence of solutions

to convex minimization problems.

Theorem 3.7. Let 𝑋 be a reflexive Banach space and let

(i) 𝑈 ⊂ 𝑋 be nonempty, convex, and closed;

(ii) 𝐹 : 𝑈 → ℝ be proper, convex, and lower semicontinuous with dom 𝐹 ∩𝑈 ≠ ∅;

(iii) 𝑈 be bounded or 𝐹 be coercive.

Then the problem
min

𝑥∈𝑈
𝐹 (𝑥)

admits a solution 𝑥 ∈ 𝑈 ∩ dom 𝐹 . If 𝐹 is strictly convex, the solution is unique.

Proof. We consider the extended functional 𝐹 = 𝐹 + 𝛿𝑈 : 𝑋 → ℝ. Assumption (i) together

with Lemma 2.2 implies that 𝛿𝑈 is proper, convex, and weakly lower semicontinuous. From

(ii) we obtain an 𝑥0 ∈ 𝑈 with 𝐹 (𝑥0) < ∞, and hence 𝐹 is proper, convex, and weakly lower

semicontinuous. Finally, 𝐹 is coercive since for bounded𝑈 , we can use that 𝐹 > −∞, and

for coercive 𝐹 , we can use that 𝛿𝑈 ≥ 0. Hence we can apply Theorem 2.1 to obtain the

existence of a minimizer 𝑥 ∈ dom 𝐹 = 𝑈 ∩ dom 𝐹 of 𝐹 with

𝐹 (𝑥) = 𝐹 (𝑥) ≤ 𝐹 (𝑥) = 𝐹 (𝑥) for all 𝑥 ∈ 𝑈 ,
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i.e., 𝑥 is the claimed solution.

Let now 𝐹 be strictly convex, and let 𝑥 and 𝑥′ ∈ 𝑈 be two different minimizers, i.e.,

𝐹 (𝑥) = 𝐹 (𝑥′) = min𝑥∈𝑈 𝐹 (𝑥) and 𝑥 ≠ 𝑥′. Then by the convexity of 𝑈 we have for all

𝜆 ∈ (0, 1) that
𝑥𝜆 := 𝜆𝑥 + (1 − 𝜆)𝑥′ ∈ 𝑈 ,

while the strict convexity of 𝐹 implies that

𝐹 (𝑥𝜆) < 𝜆𝐹 (𝑥) + (1 − 𝜆)𝐹 (𝑥′) = 𝐹 (𝑥).

But this is a contradiction to 𝐹 (𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑈 . □

Note that for a sum of two convex functionals to be coercive, it is in general not sufficient

that only one of them is. Functionals for which this is the case – such as the indicator

function of a bounded set – are called supercoercive; another example which will be helpful

later is the squared norm.

Lemma 3.8. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝑥0 ∈ 𝑋 be
given. Then the functional

𝐽 : 𝑋 → ℝ, 𝑥 ↦→ 𝐹 (𝑥) + 1

2

∥𝑥 − 𝑥0∥2

𝑋

is coercive.

Proof. Since 𝐹 is proper, convex, and lower semicontinuous, it follows from Lemma 3.5

that 𝐹 is bounded from below by an affine functional, i.e., there exists an 𝑥∗ ∈ 𝑋 ∗
and an

𝛼 ∈ ℝ with 𝐹 (𝑥) ≥ ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 for all 𝑥 ∈ 𝑋 . Together with the reverse triangle inequality

and (1.1), we obtain that

𝐽 (𝑥) ≥ ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 + 1

2
(∥𝑥 ∥𝑋 − ∥𝑥0∥𝑋 )2

≥ −∥𝑥∗∥𝑋 ∗ ∥𝑥 ∥𝑋 − 𝛼 + 1

2
∥𝑥 ∥2

𝑋 − ∥𝑥 ∥𝑋 ∥𝑥0∥𝑋
= ∥𝑥 ∥𝑋

(
1

2
∥𝑥 ∥𝑋 − ∥𝑥∗∥𝑋 ∗ − ∥𝑥0∥𝑋

)
− 𝛼.

Since 𝑥∗ and 𝑥0 are fixed, the term in parentheses is positive for ∥𝑥 ∥𝑋 sufficiently large,

and hence 𝐽 (𝑥) → ∞ for ∥𝑥 ∥𝑋 → ∞ as claimed. □

To close this chapter, we show the following remarkable result: Any (locally) bounded
convex functional is (locally) continuous. (An extended real-valued proper functional must

necessarily be discontinuous at some point.) Besides being of use in later chapters, this

result illustrates the beauty of convex analysis: an algebraic but global property (convexity)

connects two topological but local properties (neighborhood and continuity). Here we

consider of course the strong topology in a normed vector space.
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Lemma 3.9. Let 𝑋 be a normed vector space, 𝐹 : 𝑋 → ℝ be convex, and 𝑥 ∈ 𝑋 . If there is a
𝜌 > 0 such that 𝐹 is bounded from above on 𝑂𝜌 (𝑥), then 𝐹 is locally Lipschitz continuous in
𝑥 .

Proof. By assumption, there exists an 𝑀 ∈ ℝ with 𝐹 (𝑦) ≤ 𝑀 for all 𝑦 ∈ 𝑂𝜌 (𝑥). We first

show that 𝐹 is locally bounded from below as well. Let 𝑦 ∈ 𝑂𝜌 (𝑥) be arbitrary. Since

∥𝑥 − 𝑦 ∥𝑋 < 𝜌 , we also have that 𝑧 := 2𝑥 − 𝑦 = 𝑥 − (𝑦 − 𝑥) ∈ 𝑂𝜌 (𝑥), and the convexity of

𝐹 implies that 𝐹 (𝑥) = 𝐹
(

1

2
𝑦 + 1

2
𝑧
)
≤ 1

2
𝐹 (𝑦) + 1

2
𝐹 (𝑧) and hence that

−𝐹 (𝑦) ≤ 𝐹 (𝑧) − 2𝐹 (𝑥) ≤ 𝑀 − 2𝐹 (𝑥) =:𝑚,

i.e., −𝑚 ≤ 𝐹 (𝑦) ≤ 𝑀 for all 𝑦 ∈ 𝑂𝜌 (𝑥).

We now show that this implies Lipschitz continuity on 𝑂 𝜌

2

(𝑥). Let 𝑦1, 𝑦2 ∈ 𝑂 𝜌

2

(𝑥) with
𝑦1 ≠ 𝑦2 and set

𝑧 := 𝑦1 +
𝜌

2

𝑦1 − 𝑦2

∥𝑦1 − 𝑦2∥𝑋
∈ 𝑂𝜌 (𝑥),

which holds because ∥𝑧 − 𝑥 ∥𝑋 ≤ ∥𝑦1 − 𝑥 ∥𝑋 + 𝜌

2
< 𝜌 . By construction, we thus have that

𝑦1 = 𝜆𝑧 + (1 − 𝜆)𝑦2 for 𝜆 :=
∥𝑦1 − 𝑦2∥𝑋

∥𝑦1 − 𝑦2∥𝑋 + 𝜌

2

∈ (0, 1),

and the convexity of 𝐹 now implies that 𝐹 (𝑦1) ≤ 𝜆𝐹 (𝑧) + (1 − 𝜆)𝐹 (𝑦2). Together with the

definition of 𝜆 as well as 𝐹 (𝑧) ≤ 𝑀 and −𝐹 (𝑦1) ≤ 𝑚 = 𝑀 − 2𝐹 (𝑥), this yields the estimate

𝐹 (𝑦1) − 𝐹 (𝑦2) ≤ 𝜆(𝐹 (𝑧) − 𝐹 (𝑦2)) ≤ 𝜆(2𝑀 − 2𝐹 (𝑥))

≤ 2(𝑀 − 𝐹 (𝑥))
∥𝑦1 − 𝑦2∥𝑋 + 𝜌

2

∥𝑦1 − 𝑦2∥𝑋

≤ 2(𝑀 − 𝐹 (𝑥))
𝜌/2

∥𝑦1 − 𝑦2∥𝑋 .

Exchanging the roles of 𝑦1 and 𝑦2, we obtain that

|𝐹 (𝑦1) − 𝐹 (𝑦2) | ≤
2(𝑀 − 𝐹 (𝑥))

𝜌/2

∥𝑦1 − 𝑦2∥𝑋 for all 𝑦1, 𝑦2 ∈ 𝑂 𝜌

2

(𝑥)

and hence the local Lipschitz continuity with constant 𝐿(𝑥, 𝜌/2) := 4(𝑀 − 𝐹 (𝑥))/𝜌 . □

It thus remains to show that convex functions are bounded from above. We start with the

scalar case.

Lemma 3.10. If 𝑓 : ℝ → ℝ is convex, then 𝑓 is locally bounded from above on (dom 𝑓 )𝑜 .
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Proof. Let 𝑥 ∈ (dom 𝑓 )𝑜 , i.e., there exist 𝑎, 𝑏 ∈ ℝ with 𝑥 ∈ (𝑎, 𝑏) ⊂ dom 𝑓 ; by possibly

shrinking the interval we can even assume that [𝑎, 𝑏] ⊂ dom 𝑓 . Let now 𝑧 ∈ (𝑎, 𝑏). Since
intervals are convex, there exists a 𝜆 ∈ (0, 1) with 𝑧 = 𝜆𝑎 + (1 − 𝜆)𝑏. By convexity, we thus

have

𝑓 (𝑧) ≤ 𝜆𝑓 (𝑎) + (1 − 𝜆) 𝑓 (𝑏) ≤ max{|𝑓 (𝑎) |, |𝑓 (𝑏) |} < ∞.
Hence 𝑓 is locally bounded from above in 𝑥 . □

With a bit more effort, one can show that the claim holds for 𝐹 : ℝ𝑛 → ℝ with arbitrary

𝑛 ∈ ℕ; see, e.g., [Schirotzek 2007, Corollary 1.4.2].

The proof of the general case requires further assumptions on 𝑋 and 𝐹 .

Lemma 3.11. Let 𝑋 be a Banach space. If 𝐹 : 𝑋 → ℝ is convex and lower semicontinuous,
then 𝐹 is locally bounded from above on (dom 𝐹 )𝑜 .

Proof. We first show the claim for the case 𝑥 = 0 ∈ (dom 𝐹 )𝑜 , which implies in particular

that𝑀 := |𝐹 (0) | < ∞. Consider now for arbitrary ℎ ∈ 𝑋 the mapping

𝑓 : ℝ → ℝ, 𝑡 ↦→ 𝐹 (𝑡ℎ).

It is straightforward to verify that 𝑓 is convex and lower semicontinuous as well and

satisfies 0 ∈ (dom 𝑓 )𝑜 . By Lemmas 3.9 and 3.10, 𝑓 is thus locally Lipschitz continuous in

0; in particular, |𝑓 (𝑡) − 𝑓 (0) | ≤ 𝐿𝑡 ≤ 1 for sufficiently small 𝑡 > 0. The reverse triangle

inequality therefore yields a 𝛿 > 0 with

𝐹 (0 + 𝑡ℎ) ≤ |𝐹 (0 + 𝑡ℎ) | = |𝑓 (𝑡) | ≤ |𝑓 (0) | + 1 = 𝑀 + 1 for all 𝑡 ∈ [0, 𝛿] .

Hence 0 lies in the algebraic interior of the sublevel set 𝐹𝑀+1, which is convex and closed by

Lemma 3.3. The core–int Lemma 1.2 thus yields that 0 ∈ (𝐹𝑀+1)𝑜 , i.e., there exists a 𝜌 > 0

with 𝐹 (𝑧) ≤ 𝑀 + 1 for all 𝑧 ∈ 𝑂𝜌 (0).

For the general case 𝑥 ∈ (dom 𝐹 )𝑜 , consider
˜𝐹 : 𝑋 → ℝ, 𝑦 ↦→ 𝐹 (𝑦 + 𝑥).

Again, it is straightforward to verify convexity and lower semicontinuity of
˜𝐹 and that

0 ∈ (dom
˜𝐹 )𝑜 . It follows from what we’ve shown before that

˜𝐹 is locally bounded from

above on 𝑂𝜌 (0), which also implies that 𝐹 is locally bounded from above on 𝑂𝜌 (𝑥). □

Together with Lemma 3.9, we thus obtain the desired result.

Theorem 3.12. Let 𝑋 be a Banach space. If 𝐹 : 𝑋 → ℝ is convex and lower semicontinuous,
then 𝐹 is locally Lipschitz continuous on (dom 𝐹 )𝑜 .

We shall have several more occasions to observe the unreasonably nice behavior of convex

functions on the interior of their effective domain.
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We now turn to the characterization of minimizers of convex functionals via a Fermat

principle. A first candidate for the required notion of derivative is the directional derivative,

since it exists (at least in the extended real-valued sense) for any convex function.

Lemma 4.1. Let 𝐹 : 𝑋 → ℝ be convex and let 𝑥 ∈ dom 𝐹 and ℎ ∈ 𝑋 be given. Then:

(i) the function

𝜑 : (0,∞) → ℝ, 𝑡 ↦→ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

,

is increasing;

(ii) there exists a limit 𝐹 ′(𝑥 ;ℎ) = lim𝑡→0
+ 𝜑 (𝑡) ∈ [−∞,∞], which satisfies

𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥);

(iii) if 𝑥 ∈ (dom 𝐹 )𝑜 , the limit 𝐹 ′(𝑥 ;ℎ) is finite.

Proof. (i): Inserting the definition and sorting terms shows that for all 0 < 𝑠 < 𝑡 , the

condition 𝜑 (𝑠) ≤ 𝜑 (𝑡) is equivalent to

𝐹 (𝑥 + 𝑠ℎ) ≤ 𝑠

𝑡
𝐹 (𝑥 + 𝑡ℎ) +

(
1 − 𝑠

𝑡

)
𝐹 (𝑥),

which follows from the convexity of 𝐹 since 𝑥 + 𝑠ℎ = (1 − 𝑠
𝑡
)𝑥 + 𝑠

𝑡
(𝑥 + 𝑡ℎ).

(ii): The claim immediately follows from (i) since

𝐹 ′(𝑥 ;ℎ) = lim

𝑡→0
+
𝜑 (𝑡) = inf

𝑡>0

𝜑 (𝑡) ≤ 𝜑 (1) = 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥).

(iii): Since (dom 𝐹 )𝑜 is contained in the algebraic interior of dom 𝐹 , there exists an 𝜀 > 0

such that 𝑥 + 𝑡ℎ ∈ dom 𝐹 for all 𝑡 ∈ (−𝜀, 𝜀). Proceeding as in (i), we obtain that 𝜑 (𝑠) ≤ 𝜑 (𝑡)
for all 𝑠 < 𝑡 < 0 as well. From 𝑥 = 1

2
(𝑥 + 𝑡ℎ) + 1

2
(𝑥 − 𝑡ℎ) for 𝑡 > 0, we also obtain that

𝜑 (−𝑡) = 𝐹 (𝑥 − 𝑡ℎ) − 𝐹 (𝑥)
−𝑡 ≤ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)

𝑡
= 𝜑 (𝑡)

and hence that 𝜑 is increasing on all ℝ \ {0}. As in (ii), the choice of 𝜀 now implies that

−∞ < 𝜑 (−𝜀) ≤ 𝐹 ′(𝑥 ;ℎ) ≤ 𝜑 (𝜀) < ∞. □
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Unfortunately, this concept can’t yet be what we are looking for, since the convex function

𝑓 : ℝ → ℝ, 𝑓 (𝑡) = |𝑡 | has a minimum in 𝑡 = 0, but 𝑓 ′(0;ℎ) = |ℎ | > 0 for ℎ ∈ ℝ \ {0}.
We thus don’t have 𝑓 ′(0;ℎ) = 0 for some ℎ ≠ 0 – but we at least have 0 ≤ 𝑓 ′(0;ℎ) for
all ℎ ∈ ℝ. It is this condition that we now generalize to normed vector spaces. For this

purpose, consider for convex 𝐹 : 𝑋 → ℝ and any 𝑥 ∈ dom 𝐹 the set

(4.1) {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } .

With the help of Lemma 4.1, this set (which can be empty!) can also be expressed without

directional derivatives.

Lemma 4.2. Let 𝐹 : 𝑋 → ℝ be convex and 𝑥 ∈ dom 𝐹 . For any 𝑥∗ ∈ 𝑋 ∗, the following
statements are equivalent:

(i) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 ;

(ii) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) for all ℎ ∈ 𝑋 .

Proof. If (i) holds, we immediately obtain from Lemma 4.1 (ii) that

⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) for all ℎ ∈ 𝑋 .

Conversely, if (ii) holds for all ℎ ∈ 𝑋 , it also holds for 𝑡ℎ for all ℎ ∈ 𝑋 and 𝑡 > 0. Dividing

by 𝑡 and passing to the limit then yields that

⟨𝑥∗, ℎ⟩𝑋 ≤ lim

𝑡→0
+

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

= 𝐹 ′(𝑥 ;ℎ). □

If we introduce 𝑥 = 𝑥 +ℎ ∈ 𝑋 , the second statement leads to our desired derivative concept:

For 𝐹 : 𝑋 → ℝ and 𝑥 ∈ dom 𝐹 , we define the (convex) subdifferential as

(4.2) 𝜕𝐹 (𝑥) := {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋 } .

(Note that 𝑥 ∉ dom 𝐹 is allowed since in this case the inequality is trivially satisfied.) For

𝑥 ∉ dom 𝐹 , we set 𝜕𝐹 (𝑥) = ∅.1 It follows directly from the definition that 𝜕𝐹 (𝑥) is convex
and weakly-∗ closed. An element 𝜉 ∈ 𝜕𝐹 (𝑥) is called a subderivative.2

Theorem 4.3 (Fermat principle). Let 𝐹 : 𝑋 → ℝ and 𝑥 ∈ dom 𝐹 . Then the following
statements are equivalent:

(i) 0 ∈ 𝜕𝐹 (𝑥);

(ii) 𝐹 (𝑥) = min

𝑥∈𝑋
𝐹 (𝑥).

1
We will later show that 𝜕𝐹 (𝑥) is nonempty and bounded for all 𝑥 ∈ (dom 𝐹 )𝑜 ; see Corollary 8.14.

2
Following the terminology for classical derivatives, we reserve the more common term subgradient for its
Riesz representation 𝑧𝑥∗ ∈ 𝑋 when 𝑋 is a Hilbert space.
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Proof. This is a direct consequence of the definitions: 0 ∈ 𝜕𝐹 (𝑥) if and only if

0 = ⟨0, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝑥) − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋,

i.e., 𝐹 (𝑥) ≤ 𝐹 (𝑥) for all 𝑥 ∈ 𝑋 .3 □

This matches the geometrical intuition: If 𝑋 = ℝ � 𝑋 ∗
, the affine function 𝑓 (𝑥) :=

𝑓 (𝑥) + 𝜉 (𝑥 − 𝑥) with 𝜉 ∈ 𝜕𝑓 (𝑥) describes a tangent at (𝑥, 𝑓 (𝑥)) with slope 𝜉 ; die condition

𝜉 = 0 ∈ 𝜕𝑓 (𝑥) thus means that 𝑓 has a horizontal tangent in 𝑥 .

We now look at some examples. First, the construction from the directional derivative

indicates that the subdifferential is indeed a generalization of the Gâteaux derivative.

Theorem 4.4. Let 𝐹 : 𝑋 → ℝ be convex and Gâteaux differentiable in 𝑥 . Then, 𝜕𝐹 (𝑥) =

{𝐷𝐹 (𝑥)}.

Proof. By definition of the Gâteaux derivative, we have that

⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 = 𝐷𝐹 (𝑥)ℎ = 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 .

Lemma 4.2 with 𝑥 := 𝑥 + ℎ now immediately yields 𝐷𝐹 (𝑥) ∈ 𝜕𝐹 (𝑥).

Conversely, the definition of 𝜉 ∈ 𝜕𝐹 (𝑥) with ℎ := 𝑥 − 𝑥 ∈ 𝑋 implies that

⟨𝜉, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) = ⟨𝐷𝐹 (𝑥), ℎ⟩𝑋 .

Since 𝑥 ∈ 𝑋 was arbitrary, this has to hold for all ℎ ∈ 𝑋 . Taking the supremum over all ℎ

with ∥ℎ∥𝑋 ≤ 1 now yields that ∥𝜉 − 𝐷𝐹 (𝑥)∥𝑋 ∗ ≤ 0, i.e., 𝜉 = 𝐷𝐹 (𝑥). □

Of course, we also want to compute subdifferentials of functionals that are not differentiable.

The canonical example is the norm ∥ · ∥𝑋 in a normed vector space, which even for 𝑋 = ℝ

is not differentiable in 𝑥 = 0.

Theorem 4.5. For any 𝑥 ∈ 𝑋 ,

𝜕(∥ · ∥𝑋 ) (𝑥) =
{
{𝑥∗ ∈ 𝑋 ∗

: ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 and ∥𝑥∗∥𝑋 ∗ = 1} if 𝑥 ≠ 0,

𝐵𝑋 ∗ if 𝑥 = 0.

3
Note that convexity of 𝐹 is not required for Theorem 4.3! The condition 0 ∈ 𝜕𝐹 (𝑥) therefore characterizes
the global(!) minimizers of any function 𝐹 . However, nonconvex functionals can also have localminimizers,

for which the subdifferential inclusion is not satisfied. In fact, (convex) subdifferentials of nonconvex

functionals are usually empty. (And conversely, one can show that 𝜕𝐹 (𝑥) ≠ ∅ for all 𝑥 ∈ dom 𝐹 implies

that 𝐹 is convex.) This leads to problems in particular for the proof of calculus rules, for which we will

indeed have to assume convexity.
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Proof. For 𝑥 = 0, we have 𝜉 ∈ 𝜕(∥ · ∥𝑋 ) (𝑥) by definition if and only if

⟨𝜉, 𝑥⟩𝑋 ≤ ∥𝑥 ∥𝑋 for all 𝑥 ∈ 𝑋 \ {0}

(since the inequality is trivial for 𝑥 = 0), which by definition of the operator norm holds if

and only if ∥𝜉 ∥𝑋 ∗ ≤ 1.

Let now 𝑥 ≠ 0 and consider 𝜉 ∈ 𝜕(∥ · ∥𝑋 ) (𝑥). Successively inserting 𝑥 = 0 and 𝑥 = 2𝑥 in

the definition (4.2) yields

∥𝑥 ∥𝑋 ≤ ⟨𝜉, 𝑥⟩𝑋 = ⟨𝜉, 2𝑥 − 𝑥⟩ ≤ ∥2𝑥 ∥𝑋 − ∥𝑥 ∥𝑋 = ∥𝑥 ∥𝑋 ,

i.e., ⟨𝜉, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 . Similarly, we have for all 𝑥 ∈ 𝑋 that

⟨𝜉, 𝑥⟩𝑋 = ⟨𝜉, (𝑥 + 𝑥) − 𝑥⟩𝑋 ≤ ∥𝑥 + 𝑥 ∥𝑋 − ∥𝑥 ∥𝑋 ≤ ∥𝑥 ∥𝑋 ,

As in the case 𝑥 = 0, this implies that ∥𝜉 ∥𝑋 ∗ ≤ 1. For 𝑥 = 𝑥/∥𝑥 ∥𝑋 we further have that

⟨𝜉, 𝑥⟩𝑋 = ∥𝑥 ∥−1

𝑋 ⟨𝜉, 𝑥⟩𝑋 = ∥𝑥 ∥−1

𝑋 ∥𝑥 ∥𝑋 = 1.

Hence, ∥𝜉 ∥𝑋 ∗ = 1 is in fact attained.

Conversely, let 𝑥∗ ∈ 𝑋 ∗
with ⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥 ∥𝑋 and ∥𝑥∗∥𝑋 ∗ = 1. Then we obtain for all 𝑥 ∈ 𝑋

from (1.1) the relation

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 = ⟨𝑥∗, 𝑥⟩𝑋 − ⟨𝑥∗, 𝑥⟩𝑋 ≤ ∥𝑥 ∥𝑋 − ∥𝑥 ∥𝑋 ,

and hence 𝑥∗ ∈ 𝜕(∥ · ∥𝑋 ) (𝑥) by definition. □

In particular, we obtain for 𝑋 = ℝ the subdifferential of the absolute value function as

(4.3) 𝜕( | · |) (𝑡) = sign(𝑡) :=


{1} if 𝑡 > 0,

{−1} if 𝑡 < 0,

[−1, 1] if 𝑡 = 0.

We can also give a more explicit characterization of the subdifferential of the indicator

functional of a convex set 𝐶 ⊂ 𝑋 : For any 𝑥 ∈ 𝐶 = dom𝛿𝐶 , we have that

𝑥∗ ∈ 𝜕𝛿𝐶 (𝑥) ⇔ ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 𝛿𝐶 (𝑥) for all 𝑥 ∈ 𝑋
⇔ ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝐶,

since the first inequality is trivially satisfied for all 𝑥 ∉ 𝐶 . The set 𝜕𝛿𝐶 (𝑥) is also called the

normal cone to 𝐶 at 𝑥 . Depending on the set 𝐶 , this can be made even more explicit. Let

𝑋 = ℝ and𝐶 = [−1, 1], and let 𝑡 ∈ 𝐶 . Then we have 𝜉 ∈ 𝜕𝛿 [−1,1] (𝑡) if and only if 𝜉 (𝑡 − 𝑡) ≤ 0

for all 𝑡 ∈ [−1, 1]. We proceed by distinguishing three cases.

Case 1: 𝑡 = 1. Then 𝑡 − 𝑡 ∈ [−2, 0], and hence the product is positive if and only if 𝜉 ≥ 0.

37
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Case 2: 𝑡 = −1. Then 𝑡 − 𝑡 ∈ [0, 2], and hence the product is positive if and only if 𝜉 ≤ 0.

Case 3: 𝑡 ∈ (−1, 1). Then 𝑡 − 𝑡 can be positive as well as negative, and hence only 𝜉 = 0 is

possible.

We thus obtain that

𝜕𝛿 [−1,1] (𝑡) =


[0,∞) if 𝑡 = 1,

(−∞, 0] if 𝑡 = −1,

{0} if 𝑡 ∈ (−1, 1),
∅ if 𝑡 ∈ ℝ \ [−1, 1] .

Readers familiar with (non)linear optimization will recognize these as the complementarity
conditions for Lagrange multipliers corresponding to the inequalities −1 ≤ 𝑡 ≤ 1.

The following result furnishes a crucial link between finite- and infinite-dimensional

convex optimization. We again assume (as we will from now on) that Ω ⊂ ℝ𝑛
is open and

bounded.

Theorem 4.6. Let 𝑓 : ℝ → ℝ be proper, convex, and lower semicontinuous, and let 𝐹 :

𝐿𝑝 (Ω) → ℝ with 1 ≤ 𝑝 < ∞ be as in Lemma 3.6. Then we have for all 𝑢 ∈ dom 𝐹 with
𝑞 :=

𝑝

𝑝−1
that

𝜕𝐹 (𝑢) = {𝑢∗ ∈ 𝐿𝑞 (Ω) : 𝑢∗(𝑥) ∈ 𝜕𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω} .

Proof. Let 𝑢, 𝑢̃ ∈ dom 𝐹 , i.e., 𝑓 ◦ 𝑢, 𝑓 ◦ 𝑢̃ ∈ 𝐿1(Ω) (otherwise there is nothing to show), and

let 𝑢∗ ∈ 𝐿𝑞 (Ω) be arbitrary. If 𝑢∗ ∈ 𝐿𝑞 (Ω) satisfies 𝑢∗(𝑥) ∈ 𝜕𝑓 (𝑢 (𝑥)) almost everywhere,

we can insert 𝑢̃ (𝑥) into the definition and integrate over all 𝑥 ∈ Ω to obtain

𝐹 (𝑢̃) − 𝐹 (𝑢) =
∫
Ω
𝑓 (𝑢̃ (𝑥)) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥 ≥

∫
Ω
𝑢∗(𝑥) (𝑢̃ (𝑥) − 𝑢 (𝑥)) 𝑑𝑥 = ⟨𝑢∗, 𝑢̃ − 𝑢⟩𝐿𝑝 ,

i.e., 𝑢∗ ∈ 𝜕𝐹 (𝑢).

Conversely, let 𝑢∗ ∈ 𝜕𝐹 (𝑢). Then by definition it holds that∫
Ω
𝑢∗(𝑥) (𝑢̃ (𝑥) − 𝑢 (𝑥)) 𝑑𝑥 ≤

∫
Ω
𝑓 (𝑢̃ (𝑥)) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥 for all 𝑢̃ ∈ 𝐿𝑝 (Ω).

Let now 𝑡 ∈ ℝ be arbitrary and let 𝐴 ⊂ Ω be an arbitrary measurable set. Setting

𝑢̃ (𝑥) :=

{
𝑡 if 𝑥 ∈ 𝐴,
𝑢 (𝑥) if 𝑥 ∉ 𝐴,

the above inequality implies due to 𝑢̃ ∈ 𝐿𝑝 (Ω) that∫
𝐴

𝑢∗(𝑥) (𝑡 − 𝑢 (𝑥)) 𝑑𝑥 ≤
∫
𝐴

𝑓 (𝑡) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥.
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Since 𝐴 was arbitrary, it must hold that

𝑢∗(𝑥) (𝑡 − 𝑢 (𝑥)) ≤ 𝑓 (𝑡) − 𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

Furthermore, since 𝑡 ∈ ℝ was arbitrary, we obtain that 𝑢∗(𝑥) ∈ 𝜕𝑢 (𝑥) for almost every

𝑥 ∈ Ω. □

A similar proof shows that for 𝐹 : ℝ𝑁 → ℝwith 𝐹 (𝑥) = ∑𝑁
𝑖=1
𝑓𝑖 (𝑥𝑖) and 𝑓𝑖 : ℝ → ℝ convex,

we have for any 𝑥 ∈ dom 𝐹 that

𝜕𝐹 (𝑥) =
{
𝑥∗ ∈ ℝ𝑁

: 𝑥∗𝑖 ∈ 𝜕𝑓𝑖 (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁
}
.

Together with the above examples, this yields componentwise expressions for the subdif-

ferential of the norm ∥ · ∥1 as well as of the indicator functional of the unit ball with respect

to the supremum norm in ℝ𝑁
.

As for classical derivatives, one rarely obtains subdifferentials from the fundamental defini-

tion but rather by applying calculus rules. It stands to reason that these are more difficult

to derive the weaker the derivative concept is (i.e., the more functionals are differentiable

in that sense). For convex subdifferentials, the following two rules still follow directly from

the definition.

Lemma 4.7. Let 𝐹 : 𝑋 → ℝ be convex and 𝑥 ∈ dom 𝐹 . Then,

(i) 𝜕(𝜆𝐹 ) (𝑥) = 𝜆(𝜕𝐹 (𝑥)) := {𝜆𝜉 : 𝜉 ∈ 𝜕𝐹 (𝑥)} for 𝜆 > 0;

(ii) 𝜕𝐹 (· + 𝑥0) (𝑥) = 𝜕𝐹 (𝑥 + 𝑥0) for 𝑥0 ∈ 𝑋 with 𝑥 + 𝑥0 ∈ dom 𝐹 .

The sum rule is already considerably more delicate.

Theorem 4.8 (sum rule). Let 𝐹,𝐺 : 𝑋 → ℝ be convex and lower semicontinuous, and
𝑥 ∈ dom 𝐹 ∩ dom𝐺 . Then,

𝜕𝐹 (𝑥) + 𝜕𝐺 (𝑥) ⊂ 𝜕(𝐹 +𝐺) (𝑥),

with equality if there exists an 𝑥0 ∈ (dom 𝐹 )𝑜 ∩ dom𝐺 .

Proof. The inclusion follows directly from adding the definitions of the two subdifferentials.

Let therefore 𝑥 ∈ dom 𝐹 ∩ dom𝐺 and 𝜉 ∈ 𝜕(𝐹 +𝐺) (𝑥), i.e., satisfying

(4.4) ⟨𝜉, 𝑥 − 𝑥⟩𝑋 ≤ (𝐹 (𝑥) +𝐺 (𝑥)) − (𝐹 (𝑥) +𝐺 (𝑥)) for all 𝑥 ∈ 𝑋 .
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Our goal is now to use (as in the proof of Lemma 3.5) the characterization of convex

functionals via their epigraph together with the Hahn–Banach separation theorem to

construct a bounded linear functional 𝜁 ∈ 𝜕𝐺 (𝑥) ⊂ 𝑋 ∗
with 𝜉 − 𝜁 ∈ 𝜕𝐹 (𝑥), i.e.,

𝐹 (𝑥) − 𝐹 (𝑥) − ⟨𝜉, 𝑥 − 𝑥⟩𝑋 ≥ ⟨𝜁 , 𝑥 − 𝑥⟩𝑋 for all 𝑥 ∈ dom 𝐹,

𝐺 (𝑥) −𝐺 (𝑥) ≤ ⟨𝜁 , 𝑥 − 𝑥⟩𝑋 for all 𝑥 ∈ dom𝐺.

For that purpose, we define the sets

𝐶1 := {(𝑥, 𝑡 − (𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 )) : 𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 ≤ 𝑡} ,
𝐶2 := {(𝑥,𝐺 (𝑥) − 𝑡) : 𝐺 (𝑥) ≤ 𝑡} ,

i.e.,

𝐶1 = epi(𝐹 − 𝜉) − (0, 𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 ), 𝐶2 = −(epi𝐺 − (0,𝐺 (𝑥))) .
To apply Corollary 1.6 to these sets, we have to verify its conditions.

1. Since 𝑥 ∈ dom 𝐹 ∩ dom𝐺 , both 𝐶1 and 𝐶2 are nonempty. Furthermore, since 𝐹 and

𝐺 are convex, it is straightforward (if tedious) to verify from the definition that 𝐶1

and 𝐶2 are convex.

2. The critical point is of course the nonemptiness of𝐶𝑜
1
, for which we argue as follows.

Since 𝑥0 ∈ (dom 𝐹 )𝑜 , we know from Lemma 3.11 that 𝐹 is bounded in an open

neighborhood 𝑈 ⊂ (dom 𝐹 )𝑜 of 𝑥0. We can thus find an open interval 𝐼 ⊂ ℝ such

that 𝑈 × 𝐼 ⊂ 𝐶1. Since 𝑈 × 𝐼 is open by the definition of the product topology on

𝑋 ×ℝ, any (𝑥0, 𝛼) with 𝛼 ∈ 𝐼 is an interior point of 𝐶1.

3. It remains to show that𝐶𝑜
1
∩𝐶2 = ∅. Assume there exists a (𝑥, 𝛼) ∈ 𝐶𝑜

1
∩𝐶2. But then

the definitions of these sets and of the product topology imply that

𝐹 (𝑥) − 𝐹 (𝑥) − ⟨𝜉, 𝑥 − 𝑥⟩𝑋 < 𝛼 ≤ 𝐺 (𝑥) −𝐺 (𝑥),

contradicting (4.4). Hence 𝐶𝑜
1
and 𝐶2 are disjoint.

Corollary 1.6 therefore yields a pair (𝑥∗, 𝑠) ∈ (𝑋 ×ℝ)∗ \ {(0, 0)} and a 𝜆 ∈ ℝ with

⟨𝑥∗, 𝑥⟩𝑋 + 𝑠 (𝑡 − (𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 )) ≤ 𝜆, 𝑥 ∈ dom 𝐹, 𝑡 ≥ 𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 ,(4.5)

⟨𝑥∗, 𝑥⟩𝑋 + 𝑠 (𝐺 (𝑥) − 𝑡) ≥ 𝜆, 𝑥 ∈ dom𝐺, 𝑡 ≥ 𝐺 (𝑥).(4.6)

We now show that 𝑠 < 0. If 𝑠 = 0, we can insert 𝑥 = 𝑥0 ∈ dom 𝐹 ∩ dom𝐺 to obtain the

contradiction

⟨𝑥∗, 𝑥0⟩𝑋 < 𝜆 ≤ ⟨𝑥∗, 𝑥0⟩𝑋 ,
which follows since (𝑥0, 𝛼) for 𝛼 large enough is an interior point of 𝐶1 and hence can be

strictly separated from 𝐶2 by Theorem 1.5. If 𝑠 > 0, choosing 𝑡 > 𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 makes the

term in parentheses in (4.5) strictly positive, and taking 𝑡 → ∞ with fixed 𝑥 leads to a

contradiction to the boundedness by 𝜆.
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Hence 𝑠 < 0, and (4.5) with 𝑡 = 𝐹 (𝑥) − ⟨𝜉, 𝑥⟩𝑋 and (4.6) with 𝑡 = 𝐺 (𝑥) imply that

𝐹 (𝑥) − 𝐹 (𝑥) + ⟨𝜉, 𝑥 − 𝑥⟩𝑋 ≥ 𝑠−1(𝜆 − ⟨𝑥∗, 𝑥⟩𝑋 ), for all 𝑥 ∈ dom 𝐹,

𝐺 (𝑥) −𝐺 (𝑥) ≤ 𝑠−1(𝜆 − ⟨𝑥∗, 𝑥⟩𝑋 ), for all 𝑥 ∈ dom𝐺.

Taking 𝑥 = 𝑥 ∈ dom 𝐹 ∩ dom𝐺 in both inequalities immediately yields that 𝜆 = ⟨𝑥∗, 𝑥⟩𝑋 .
Hence, 𝜁 = 𝑠−1𝑥∗ is the desired functional with (𝜉 − 𝜁 ) ∈ 𝜕𝐹 (𝑥) and 𝜁 ∈ 𝜕𝐺 (𝑥), i.e.,
𝜉 ∈ 𝜕𝐹 (𝑥) + 𝜕𝐺 (𝑥). □

By induction, we obtain from this sum rules for an arbitrary (finite) number of functionals

(where 𝑥0 has to be an interior point of all but one effective domain). A chain rule for linear

operators can be proved similarly.

Theorem 4.9 (chain rule). Let 𝐴 ∈ 𝐿(𝑋,𝑌 ), 𝐹 : 𝑌 → ℝ be convex and lower semicontinuous,
and 𝑥 ∈ dom(𝐹 ◦𝐴). Then,

𝜕(𝐹 ◦𝐴) (𝑥) ⊃ 𝐴∗𝜕𝐹 (𝐴𝑥) := {𝐴∗𝑦∗ : 𝑦∗ ∈ 𝜕𝐹 (𝐴𝑥)}

with equality if there exists an 𝑥0 ∈ 𝑋 with 𝐴𝑥0 ∈ (dom 𝐹 )𝑜 .

Proof. The inclusion is again a direct consequence of the definition: If 𝑦∗ ∈ 𝜕𝐹 (𝐴𝑥) ⊂ 𝑌 ∗
,

we in particular have for all 𝑦̃ = 𝐴𝑥 ∈ 𝑌 with 𝑥 ∈ 𝑋 that

𝐹 (𝐴𝑥) − 𝐹 (𝐴𝑥) ≥ ⟨𝑦∗, 𝐴𝑥 −𝐴𝑥⟩𝑌 = ⟨𝐴∗𝑦∗, 𝑥 − 𝑥⟩𝑋 ,

i.e., 𝜉 := 𝐴∗𝑦∗ ∈ 𝜕(𝐹 ◦𝐴) ⊂ 𝑋 ∗
.

Let now 𝑥 ∈ dom(𝐹 ◦𝐴) and 𝜉 ∈ 𝜕(𝐹 ◦𝐴) (𝑥), i.e.,

𝐹 (𝐴𝑥) + ⟨𝜉, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝐴𝑥) for all 𝑥 ∈ 𝑋 .

We now construct a 𝑦∗ ∈ 𝜕𝐹 (𝐴𝑥) with 𝜉 = 𝐴∗𝑦∗ by applying the sum rule to

𝐻 : 𝑋 × 𝑌 → ℝ, (𝑥, 𝑦) ↦→ 𝐹 (𝑦) + 𝛿graph𝐴 (𝑥, 𝑦).

(This technique of getting rid of the operator composition by working in the graph space

is called “lifting”.) Since 𝐴 is linear, graph𝐴 and hence 𝛿graph𝐴 are convex. Furthermore,

𝐴𝑥 ∈ dom 𝐹 by assumption and thus (𝑥,𝐴𝑥) ∈ dom𝐻 .

We begin by showing that 𝜉 ∈ 𝜕(𝐹 ◦ 𝐴) (𝑥) if and only if (𝜉, 0) ∈ 𝜕𝐻 (𝑥,𝐴𝑥). First, let
(𝜉, 0) ∈ 𝜕𝐻 (𝑥,𝐴𝑥). Then we have for all 𝑥 ∈ 𝑋, 𝑦̃ ∈ 𝑌 that

⟨𝜉, 𝑥 − 𝑥⟩𝑋 + ⟨0, 𝑦̃ −𝐴𝑥⟩𝑌 ≤ 𝐹 (𝑦̃) − 𝐹 (𝐴𝑥) + 𝛿graph𝐴 (𝑥, 𝑦̃) − 𝛿graph𝐴 (𝑥,𝐴𝑥).

In particular, this holds for all 𝑦̃ ∈ ran(𝐴) = {𝐴𝑥 : 𝑥 ∈ 𝑋 }. By 𝛿graph𝐴 (𝑥,𝐴𝑥) = 0 we thus

obtain that

⟨𝜉, 𝑥 − 𝑥⟩𝑋 ≤ 𝐹 (𝐴𝑥) − 𝐹 (𝐴𝑥) for all 𝑥 ∈ 𝑋,
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i.e., 𝜉 ∈ 𝜕(𝐹 ◦ 𝐴) (𝑥). Conversely, let 𝜉 ∈ 𝜕(𝐹 ◦ 𝐴) (𝑥). Since 𝛿graph𝐴 (𝑥,𝐴𝑥) = 0 and

𝛿graph𝐴 (𝑥, 𝑦̃) ≥ 0, it then follows for all 𝑥 ∈ 𝑋 and 𝑦̃ ∈ 𝑌 that

⟨𝜉, 𝑥 − 𝑥⟩𝑋 + ⟨0, 𝑦̃ −𝐴𝑥⟩𝑌 = ⟨𝜉, 𝑥 − 𝑥⟩𝑋
≤ 𝐹 (𝐴𝑥) − 𝐹 (𝐴𝑥) + 𝛿graph𝐴 (𝑥, 𝑦̃) − 𝛿graph𝐴 (𝑥,𝐴𝑥)
= 𝐹 (𝑦̃) − 𝐹 (𝐴𝑥) + 𝛿graph𝐴 (𝑥, 𝑦̃) − 𝛿graph𝐴 (𝑥,𝐴𝑥),

where we have used that the last equality holds trivially as ∞ = ∞ for 𝑦̃ ≠ 𝐴𝑥 . Hence,

(𝜉, 0) ∈ 𝜕𝐻 (𝑥,𝐴𝑥).

We now consider 𝐹 : 𝑋 × 𝑌 → ℝ, (𝑥, 𝑦) ↦→ 𝐹 (𝑦), and (𝑥0, 𝐴𝑥0) ∈ graph𝐴 = dom𝛿graph𝐴.

Since 𝐴𝑥0 ∈ (dom 𝐹 )𝑜 ⊂ 𝑌 by assumption, (𝑥0, 𝐴𝑥0) ∈ (dom
˜𝐹 )𝑜 = 𝑋 × (dom 𝐹 )𝑜 ⊂ 𝑋 × 𝑌

as well. We can thus apply Theorem 4.8 to obtain

(𝜉, 0) ∈ 𝜕𝐻 (𝑥,𝐴𝑥) = 𝜕 ˜𝐹 (𝑥,𝐴𝑥) + 𝜕𝛿graph𝐴 (𝑥,𝐴𝑥),

i.e., (𝜉, 0) = (𝑥∗, 𝑦∗) + (𝑤∗, 𝑧∗) for some (𝑥∗, 𝑦∗) ∈ 𝜕 ˜𝐹 (𝑥,𝐴𝑥) and (𝑤∗, 𝑧∗) ∈ 𝜕𝛿graph𝐴 (𝑥,𝐴𝑥).

Finally, we “collapse” these subdifferentials back to the individual spaces to obtain the

desired characterization. First, we have (𝑥∗, 𝑦∗) ∈ 𝜕 ˜𝐹 (𝑥,𝐴𝑥) if and only if

⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 + ⟨𝑦∗, 𝑦̃ −𝐴𝑥⟩𝑌 ≤ 𝐹 (𝑦̃) − 𝐹 (𝐴𝑥) for all 𝑥 ∈ 𝑋, 𝑦̃ ∈ 𝑌 .

Fixing in turn 𝑥 = 𝑥 and 𝑦̃ = 𝐴𝑥 implies that 𝑦∗ ∈ 𝜕𝐹 (𝐴𝑥) and 𝑥∗ = 0, respectively. Second,

(𝑤∗, 𝑧∗) ∈ 𝜕𝛿graph𝐴 (𝑥,𝐴𝑥) if and only if

⟨𝑤∗, 𝑥 − 𝑥⟩𝑋 + ⟨𝑧∗, 𝑦̃ −𝐴𝑥⟩𝑌 ≤ 0 for all (𝑥, 𝑦̃) ∈ graph𝐴,

i.e., for all 𝑥 ∈ 𝑋 and 𝑦̃ = 𝐴𝑥 . Therefore,

⟨𝑤∗ +𝐴∗𝑧∗, 𝑥 − 𝑥⟩𝑋 ≤ 0 for all 𝑥 ∈ 𝑋

and hence𝑤∗ = −𝐴∗𝑧∗ ∈ 𝑋 ∗
. Together we obtain

(𝜉, 0) = (0, 𝑦∗) + (−𝐴∗𝑧∗, 𝑧∗),

which implies 𝑦∗ = −𝑧∗ and thus that 𝜉 = −𝐴∗𝑧∗ = 𝐴∗𝑦∗ with 𝑦∗ ∈ 𝜕𝐹 (𝐴𝑥) as claimed. □

The Fermat principle together with the sum rule yields the following characterization of

minimizers of convex functionals under convex constraints.

Corollary 4.10. Let 𝑈 ⊂ 𝑋 be nonempty, convex, and closed, and let 𝐹 : 𝑋 → ℝ be proper,
convex, and lower semicontinuous. If there exists an 𝑥0 ∈ 𝑈 𝑜 ∩ dom 𝐹 , then 𝑥 ∈ 𝑈 solves

min

𝑥∈𝑈
𝐹 (𝑥)

if and only if there exists a 𝜉 ∈ 𝑋 ∗ with

(4.7)

{
𝜉 ∈ 𝜕𝐹 (𝑥),
⟨𝜉, 𝑥 − 𝑥⟩ ≥ 0 for all 𝑥 ∈ 𝑈 .
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4 convex subdifferentials

Proof. Due to the assumptions on 𝐹 and 𝑈 , we can apply Theorem 4.3 to 𝐽 := 𝐹 + 𝛿𝑈 .
Furthermore, since 𝑥0 ∈ 𝑈 𝑜 = (dom𝛿𝑈 )𝑜 , we can also apply Theorem 4.8. Hence 𝐹 has a

minimum in 𝑥 if and only if

0 ∈ 𝜕𝐽 (𝑥) = 𝜕𝐹 (𝑥) + 𝜕𝛿𝑈 (𝑥).

Together with the characterization of subdifferentials of indicator functionals as normal

cones, this yields (4.7). □

If 𝐹 : 𝑋 → ℝ is Gâteaux differentiable (and hence finite-valued), (4.7) coincide with the

classical Karush–Kuhn–Tucker conditions; the existence of an interior point 𝑥0 ∈ 𝑈 𝑜
is an

analogue of the Slater condition needed to show existence of the Lagrange multiplier 𝜉 for

the inequality constraints.

43



5 FENCHEL DUALITY

A particularly useful calculus rule connects the convex subdifferential with the so-called

Fenchel–Legendre transform. Let 𝑋 be a normed vector space and 𝐹 : 𝑋 → ℝ be proper

but not necessarily convex. We then define the Fenchel conjugate of 𝐹 as

𝐹 ∗ : 𝑋 ∗ → ℝ, 𝐹 ∗(𝑥∗) = sup

𝑥∈𝑋
⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥).

(Since dom 𝐹 ≠ ∅ is excluded, we have that 𝐹 ∗(𝑥∗) > −∞ for all 𝑥∗ ∈ 𝑋 ∗
, and hence the

definition is meaningful.) Lemma 3.4 (v) and Lemma 2.2 (v) immediately imply that 𝐹 ∗ is
always convex and lower semicontinuous (as long as 𝐹 is indeed proper). If 𝐹 is bounded

from below by an affine functional (which is always the case if 𝐹 is proper, convex, and

lower semicontinuous by Lemma 3.5), then 𝐹 ∗ is proper as well. Finally, the definition

directly yields the Fenchel–Young inequality

(5.1) ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝐹 (𝑥) + 𝐹 ∗(𝑥∗) for all 𝑥 ∈ 𝑋, 𝑥∗ ∈ 𝑋 ∗.

Intuitively, 𝐹 ∗(𝑥∗) is the (negative of the) affine part of the tangent to 𝐹 (in the point 𝑥 in

which the supremum is attained) with slope 𝑥∗. Similarly, we define the Fenchel conjugate

of 𝐹 : 𝑋 ∗ → ℝ (i.e., if 𝐹 is defined on some dual space) as

𝐹 ∗ : 𝑋 → ℝ, 𝐹 ∗(𝑥) = sup

𝑥∗∈𝑋 ∗
⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥∗).

The point of this convention is that even in nonreflexive spaces, the biconjugate 𝐹 ∗∗ := (𝐹 ∗)∗
is again defined on 𝑋 (rather than 𝑋 ∗∗ ⊃ 𝑋 ). Intuitively, 𝐹 ∗∗ is the convex hull of 𝐹 , which
by Lemma 3.5 coincides with 𝐹 itself if 𝐹 is convex.

Theorem 5.1 (Fenchel–Moreau–Rockafellar). Let 𝐹 : 𝑋 → ℝ be proper. Then,

(i) 𝐹 ∗∗ ≤ 𝐹 ;

(ii) 𝐹 ∗∗ = 𝐹 Γ ;

(iii) 𝐹 ∗∗ = 𝐹 if and only if 𝐹 is convex and lower semicontinuous.
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5 fenchel duality

Proof. For (i), we take the supremum over all 𝑥∗ ∈ 𝑋 ∗
in the Fenchel–Young inequality (5.1)

and obtain that

𝐹 (𝑥) ≥ sup

𝑥∗∈𝑋 ∗
⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 ∗(𝑥∗) = 𝐹 ∗∗(𝑥).

For (ii), we first note that 𝐹 ∗∗ is convex and lower semicontinuous by definition as a Fenchel

conjugate as well as proper by (i). Hence, Lemma 3.5 yields that

𝐹 ∗∗(𝑥) = (𝐹 ∗∗)Γ (𝑥) = sup {𝑎(𝑥) : 𝑎 : 𝑋 → ℝ affine with 𝑎 ≤ 𝐹 ∗∗} .

We now show that we can replace 𝐹 ∗∗ with 𝐹 on the right-hand side. For this, let 𝑎(𝑥) =
⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 with arbitrary 𝑥∗ ∈ 𝑋 ∗

and 𝛼 ∈ ℝ. If 𝑎 ≤ 𝐹 ∗∗, then (i) implies that 𝑎 ≤ 𝐹 .

Conversely, if 𝑎 ≤ 𝐹 , we have that ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥) ≤ 𝛼 for all 𝑥 ∈ 𝑋 , and taking the

supremum over all 𝑥 ∈ 𝑋 yields that 𝛼 ≥ 𝐹 ∗(𝑥∗). By definition of 𝐹 ∗∗, we thus obtain that

𝑎(𝑥) = ⟨𝑥∗, 𝑥⟩𝑋 − 𝛼 ≤ ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 ∗(𝑥∗) ≤ 𝐹 ∗∗(𝑥) for all 𝑥 ∈ 𝑋,

i.e., 𝑎 ≤ 𝐹 ∗∗.

Statement (iii) now directly follows from (ii) and Lemma 3.5. □

We again consider some relevant examples.

Example 5.2.

(i) Let𝑋 be a Hilbert space and 𝐹 (𝑥) = 1

2
∥𝑥 ∥2

𝑋
. Using the Fréchet–Riesz Theorem 1.12,

we identify 𝑋 with its dual 𝑋 ∗
and can express the duality pairing using the inner

product. Since 𝐹 is Fréchet differentiable with gradient ∇𝐹 (𝑥) = 𝑥 , the solution
𝑥 ∈ 𝑋 to

sup

𝑥∈𝑋
(𝑥∗, 𝑥)𝑋 − 1

2
(𝑥, 𝑥)𝑋

for given 𝑥∗ ∈ 𝑋 has to satisfy the Fermat principle, i.e., 𝑥 = 𝑥∗. Inserting this into
the definition and simplifying yields the Fenchel conjugate

𝐹 ∗ : 𝑋 → ℝ, 𝐹 ∗(𝑥∗) = 1

2
∥𝑥∗∥2

𝑋 .

(ii) Let 𝐵𝑋 be the unit ball in the normed vector space 𝑋 and take 𝐹 = 𝛿𝐵𝑋 . Then we

have for any 𝑥∗ ∈ 𝑋 ∗
that

(𝛿𝐵𝑋 )∗(𝑥∗) = sup

𝑥∈𝑋
⟨𝑥∗, 𝑥⟩𝑋 − 𝛿𝐵𝑋 (𝑥) = sup

∥𝑥 ∥𝑋≤1

⟨𝑥∗, 𝑥⟩𝑋 = ∥𝑥∗∥𝑋 ∗ .

Similarly, one shows using the definition of the Fenchel conjugate in dual spaces

and Corollary 1.7 that (𝛿𝐵𝑋∗ )∗(𝑥) = ∥𝑥 ∥𝑋 .

(iii) Let 𝑋 be a normed vector space and take 𝐹 (𝑥) = ∥𝑥 ∥𝑋 . We now distinguish two

cases for a given 𝑥∗ ∈ 𝑋 ∗
.
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5 fenchel duality

Case 1: ∥𝑥∗∥𝑋 ∗ ≤ 1. Then it follows from (1.1) that ⟨𝑥∗, 𝑥⟩𝑋 − ∥𝑥 ∥𝑋 ≤ 0 for all

𝑥 ∈ 𝑋 . Furthermore, ⟨𝑥∗, 0⟩ = 0 = ∥0∥𝑋 , which implies that

𝐹 ∗(𝑥∗) = sup

𝑥∈𝑋
⟨𝑥∗, 𝑥⟩𝑋 − ∥𝑥 ∥𝑋 = 0.

Case 2: ∥𝑥∗∥𝑋 ∗ > 1. Then by definition of the dual norm, there exists an 𝑥0 ∈ 𝑋
with ⟨𝑥∗, 𝑥0⟩𝑋 > ∥𝑥0∥𝑋 . Hence, taking 𝑡 → ∞ in

0 < 𝑡 (⟨𝑥∗, 𝑥0⟩𝑋 − ∥𝑥0∥𝑋 ) = ⟨𝑥∗, 𝑡𝑥0⟩𝑋 − ∥𝑡𝑥0∥𝑋 ≤ 𝐹 ∗(𝑥∗)

yields 𝐹 ∗(𝑥∗) = ∞.

Together we obtain that 𝐹 ∗ = 𝛿𝐵𝑋∗ . As above, a similar argument shows that

(∥ · ∥𝑋 ∗)∗ = 𝛿𝐵𝑋 .

As for convex subdifferentials, Fenchel conjugates of integral functionals can be computed

pointwise.

Theorem 5.3. Let 𝑓 : ℝ → ℝ be measurable, proper and lower semicontinuous, and let
𝐹 : 𝐿𝑝 (Ω) → ℝ with 1 ≤ 𝑝 < ∞ be defined as in Lemma 3.6. Then we have for 𝑞 =

𝑝

𝑝−1
that

𝐹 ∗ : 𝐿𝑞 (Ω) → ℝ, 𝐹 ∗(𝑢∗) =
∫
Ω
𝑓 ∗(𝑢∗(𝑥)) 𝑑𝑥.

Proof. We argue similarly as in the proof of Theorem 4.6,with some changes that are needed

since measurability of 𝑓 ◦ 𝑢 does not immediately imply that of 𝑓 ∗ ◦ 𝑢∗. Let 𝑢∗ ∈ 𝐿𝑞 (Ω) be
arbitrary and consider for all 𝑥 ∈ Ω the functions

𝜑 (𝑥) := sup

𝑡∈ℝ
𝑡𝑢∗(𝑥) − 𝑓 (𝑡) = 𝑓 ∗(𝑢∗(𝑥)),

as well as for 𝑛 ∈ ℕ

𝜑𝑛 (𝑥) := sup

|𝑡 |≤𝑛
𝑡𝑢∗(𝑥) − 𝑓 (𝑡) ≤ 𝑓 ∗(𝑢∗(𝑥)) .

By a measurable selection theorem ([Ekeland & Témam 1999, Theorem VIII.1.2]), the point-

wise supremum in the definition of 𝜑𝑛 is attained at some 𝑡∗𝑥 for almost every 𝑥 ∈ Ω and

defines a measurable mapping 𝑥 ↦→ 𝑢𝑛 (𝑥) := 𝑡∗𝑥 with ∥𝑢𝑛∥𝐿∞ ≤ 𝑛. This also implies that

𝜑𝑛 = 𝑢𝑛 · 𝑢∗ − 𝑓 ◦ 𝑢𝑛 is measurable. Furthermore, by assumption there exists a 𝑡0 ∈ dom 𝑓 ,

and hence 𝑢0 := 𝑡0𝑢
∗(𝑥) − 𝑓 (𝑡0) is measurable and satisfies 𝑢0 ≤ 𝜑𝑛 (𝑥) for all 𝑛 ≥ |𝑡0 |.

Finally, by construction, 𝜑𝑛 (𝑥) is monotonically increasing and converges to 𝜑 (𝑥) for all
𝑥 ∈ Ω. The sequence {𝜑𝑛 − 𝑢0}𝑛∈ℕ of functions is thus measurable and nonnegative, and

the monotone convergence theorem yields that∫
Ω
𝜑 (𝑥) − 𝑢0(𝑥) 𝑑𝑥 =

∫
Ω

sup

𝑛∈ℕ
𝜑𝑛 (𝑥) − 𝑢0(𝑥) 𝑑𝑥 = sup

𝑛∈ℕ

∫
Ω
𝜑𝑛 (𝑥) − 𝑢0(𝑥) 𝑑𝑥 .
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5 fenchel duality

Hence the pointwise limit 𝜑 = 𝑓 ∗ ◦ 𝑢∗ is measurable as well.

The measurable selection theorem also yields that∫
Ω
𝑓 ∗(𝑢∗(𝑥)) 𝑑𝑥 = sup

𝑛∈ℕ

∫
Ω

sup

|𝑡 |≤𝑛
{𝑡𝑢∗(𝑥) − 𝑓 (𝑡)} 𝑑𝑥

= sup

𝑛∈ℕ

∫
Ω
𝑢∗(𝑥)𝑢𝑛 (𝑥) − 𝑓 (𝑢𝑛 (𝑥)) 𝑑𝑥

≤ sup

𝑢∈𝐿𝑝 (Ω)

∫
Ω
𝑢∗(𝑥)𝑢 (𝑥) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥 = 𝐹 ∗(𝑢∗),

since 𝑢𝑛 ∈ 𝐿∞(Ω) ⊂ 𝐿𝑝 (Ω) for all 𝑛 ∈ ℕ.

For the converse inequality, we can now proceed as in the proof of Theorem 4.6. For any

𝑢 ∈ 𝐿𝑝 (Ω) and 𝑢∗ ∈ 𝐿𝑞 (Ω), we have by the Fenchel–Young inequality (5.1) applied to 𝑓 and
𝑓 ∗ that

𝑓 (𝑢 (𝑥)) + 𝑓 ∗(𝑢∗(𝑥)) ≥ 𝑢∗(𝑥)𝑢 (𝑥) for almost every 𝑥 ∈ Ω.

Since both sides are measurable, this implies that∫
Ω
𝑓 ∗(𝑢∗(𝑥)) 𝑑𝑥 ≥

∫
Ω
𝑢∗(𝑥)𝑢 (𝑥) − 𝑓 (𝑢 (𝑥)) 𝑑𝑥,

and taking the supremum over all 𝑢 ∈ 𝐿𝑝 (Ω) yields the claim. □

Fenchel conjugates satisfy a number of useful calculus rules, which follow directly from

the properties of the supremum.

Lemma 5.4. Let 𝐹 : 𝑋 → ℝ be proper. Then,

(i) (𝛼𝐹 )∗ = 𝛼𝐹 ∗ ◦ (𝛼−1
Id) for any 𝛼 > 0;

(ii) (𝐹 (· + 𝑥0) + ⟨𝑥∗
0
, ·⟩𝑋 )∗ = 𝐹 ∗(· − 𝑥∗0) − ⟨· − 𝑥∗

0
, 𝑥0⟩𝑋 for all 𝑥0 ∈ 𝑋 , 𝑥∗

0
∈ 𝑋 ∗;

(iii) (𝐹 ◦𝐴)∗ = 𝐹 ∗ ◦𝐴−∗ for continuously invertible 𝐴 ∈ 𝐿(𝑌,𝑋 ) and 𝐴−∗
:= (𝐴−1)∗.

Proof. (i): For any 𝛼 > 0, we have that

(𝛼𝐹 )∗(𝑥∗) = sup

𝑥∈𝑋

(
𝛼 ⟨𝛼−1𝑥∗, 𝑥⟩𝑋 − 𝛼𝐹 (𝑥)

)
= 𝛼 sup

𝑥∈𝑋

(
⟨𝛼−1𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥)

)
= 𝛼𝐹 ∗(𝛼−1𝑥∗).

(ii): Since {𝑥 + 𝑥0 : 𝑥 ∈ 𝑋 } = 𝑋 , we have that
(𝐹 (· + 𝑥0) + ⟨𝑥∗

0
, ·⟩𝑋 )∗(𝑥∗) = sup

𝑥∈𝑋
⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥 + 𝑥0) − ⟨𝑥∗

0
, 𝑥⟩𝑋

= sup

𝑥∈𝑋

(
⟨𝑥∗ − 𝑥∗

0
, 𝑥 + 𝑥0⟩𝑋 − 𝐹 (𝑥 + 𝑥0)

)
− ⟨𝑥∗ − 𝑥∗

0
, 𝑥0⟩𝑋

= sup

𝑥=𝑥+𝑥0,𝑥∈𝑋

(
⟨𝑥∗ − 𝑥∗

0
, 𝑥⟩𝑋 − 𝐹 (𝑥)

)
− ⟨𝑥∗ − 𝑥∗

0
, 𝑥0⟩𝑋

= 𝐹 ∗(𝑥∗ − 𝑥∗
0
) − ⟨𝑥∗ − 𝑥∗

0
, 𝑥0⟩𝑋 .
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5 fenchel duality

(iii): Since 𝑋 = ran𝐴, we have that

(𝐹 ◦𝐴)∗(𝑦∗) = sup

𝑦∈𝑌
⟨𝑦∗, 𝐴−1𝐴𝑦⟩𝑌 − 𝐹 (𝐴𝑦)

= sup

𝑥=𝐴𝑦,𝑦∈𝑌
⟨𝐴−∗𝑦∗, 𝑥⟩𝑋 − 𝐹 (𝑥) = 𝐹 ∗(𝐴−∗𝑦∗). □

There are some obvious similarities between the definitions of the Fenchel conjugate and

of the subdifferential, which yield the following very useful property.

Lemma 5.5 (Fenchel–Young). Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous.
Then the following statements are equivalent for any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 ∗:

(i) ⟨𝑥∗, 𝑥⟩𝑋 = 𝐹 (𝑥) + 𝐹 ∗(𝑥∗);

(ii) 𝑥∗ ∈ 𝜕𝐹 (𝑥);

(iii) 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗).

Proof. If (i) holds, the definition of 𝐹 ∗ as a supremum immediately implies that

(5.2) ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥) = 𝐹 ∗(𝑥∗) ≥ ⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 (𝑥) for all 𝑥 ∈ 𝑋,

which again by definition is equivalent to (ii). Conversely, taking the supremum over all

𝑥 ∈ 𝑋 in (5.2) yields

⟨𝑥∗, 𝑥⟩𝑋 ≥ 𝐹 (𝑥) + 𝐹 ∗(𝑥∗),
which together with the Fenchel–Young inequality (5.1) leads to (i).

Similarly, (i) in combination with Theorem 5.1 implies that

⟨𝑥∗, 𝑥⟩𝑋 − 𝐹 ∗(𝑥∗) = 𝐹 (𝑥) = 𝐹 ∗∗(𝑥) ≥ ⟨𝑥∗, 𝑥⟩ − 𝐹 ∗(𝑥∗) for all 𝑥∗ ∈ 𝑋 ∗,

yielding as above the equivalence of (i) and (iii).

Remark. If 𝐹 is not convex, the above proof shows that we still have the equivalence (i)⇔ (ii).

Furthermore since always 𝐹 ∗∗ ≤ 𝐹 by Theorem 5.1 (i), it still holds that (ii)⇒ (iii). However, we can

only conclude from (iii) that (ii) holds for 𝐹 ∗∗ ≠ 𝐹 in place of 𝐹 . Applying Lemma 5.5 to nonconvex

functionals therefore inevitably introduces a convexification (by replacing the nonconvex 𝐹 with its

convex envelope 𝐹 ∗∗).

□
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Remark. If 𝑋 is not reflexive, 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗) ⊂ 𝑋 ∗∗
in (iii) has to be understood via the canonical

injection, i.e., as

⟨𝐽 (𝑥), 𝑥∗ − 𝑥∗⟩𝑋 ∗ = ⟨𝑥∗ − 𝑥∗, 𝑥⟩𝑋 ≤ 𝐹 ∗(𝑥∗) − 𝐹 ∗(𝑥∗) for all 𝑥∗ ∈ 𝑋 .

Using (iii) to conclude equality in (i) or, equivalently, the subdifferential inclusion (ii) therefore

requires the additional condition that 𝑥 ∈ 𝑋 ⊂ 𝑋 ∗∗
. Conversely, if (i) or (ii) hold, (iii) also guarantees

that the subgradient 𝑥 ∈ 𝜕𝐹 ∗(𝑥∗) ∩ 𝑋 , which is a stronger fact. (Similar statements apply to

𝐹 : 𝑋 ∗ → ℝ and 𝐹 ∗ : 𝑋 → ℝ.)

Lemma 5.5 plays the role of a “convex inverse function theorem” and can be used to,

e.g., replace the subdifferential of a (complicated) norm with that of a (simpler) conjugate

indicator functional (or vice versa). For example, given a problem of the form

(5.3) inf

𝑥∈𝑋
𝐹 (𝑥) +𝐺 (𝐴𝑥)

for 𝐹 : 𝑋 → ℝ and𝐺 : 𝑌 → ℝ proper, convex, and lower semicontinuous, and𝐴 ∈ 𝐿(𝑋,𝑌 ),
we can use Theorem 5.1 to replace 𝐺 with the definition of 𝐺∗∗

and obtain

inf

𝑥∈𝑋
sup

𝑌 ∗∈𝑌 ∗
𝐹 (𝑥) + ⟨𝑦∗, 𝐴𝑥⟩𝑌 −𝐺∗(𝑦∗).

If(!) we were now able to exchange inf and sup, we could write (with inf 𝐹 = − sup(−𝐹 ))

inf

𝑥∈𝑋
sup

𝑦∗∈𝑦∗
𝐹 (𝑥) + ⟨𝑦∗, 𝐴𝑥⟩𝑌 −𝐺∗(𝑦∗) = sup

𝑦∗∈𝑌 ∗
inf

𝑥∈𝑋
𝐹 (𝑥) + ⟨𝑦∗, 𝐴𝑥⟩𝑌 −𝐺∗(𝑦∗)

= sup

𝑦∗∈𝑌 ∗
−

(
sup

𝑥∈𝑋
−𝐹 (𝑥) + ⟨−𝐴∗𝑦∗, 𝑥⟩𝑋

)
−𝐺∗(𝑦∗) .

By definition of 𝐹 ∗, we thus obtain the dual problem

(5.4) sup

𝑦∗∈𝑌 ∗
−𝐹 ∗(−𝐴∗𝑦∗) −𝐺∗(𝑦∗).

As a side effect, we have shifted the operator 𝐴 from 𝐺 to 𝐹 ∗ without having to invert it.

The following theorem uses in an elegant way the Fermat principle, the sum and chain rules,

and the Fenchel–Young equality to derive sufficient conditions for the exchangeability.

Theorem 5.6 (Fenchel–Rockafellar). Let 𝑋 and 𝑌 be normed vector spaces, 𝐹 : 𝑋 → ℝ

and 𝐺 : 𝑌 → ℝ be proper, convex, and lower semicontinuous, and 𝐴 ∈ 𝐿(𝑋,𝑌 ). Assume
furthermore that

(i) the primal problem (5.3) admits a solution 𝑥 ∈ 𝑋 ;

(ii) there exists an 𝑥0 ∈ dom 𝐹 ∩ dom(𝐺 ◦𝐴) with 𝐴𝑥0 ∈ (dom𝐺)𝑜 .
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Then, the dual problem (5.4) admits a solution 𝑦∗ ∈ 𝑌 ∗ and

(5.5) min

𝑥∈𝑋
𝐹 (𝑥) +𝐺 (𝐴𝑥) = max

𝑦∗∈𝑌 ∗
−𝐹 ∗(−𝐴∗𝑦∗) −𝐺∗(𝑦∗).

Furthermore, 𝑥 and 𝑦∗ are solutions to (5.3) and (5.4), respectively, if and only if

(5.6)

{−𝐴∗𝑦∗ ∈ 𝜕𝐹 (𝑥),
𝑦∗ ∈ 𝜕𝐺 (𝐴𝑥).

Proof. Theorem 4.3 states that 𝑥 ∈ 𝑋 is a solution to (5.3) if and only if 0 ∈ 𝜕(𝐹 +𝐺 ◦𝐴) (𝑥).
By assumption (ii), Theorems 4.8 and 4.9 are applicable, and we thus obtain that

0 ∈ 𝜕(𝐹 +𝐺 ◦𝐴) (𝑥) = 𝜕𝐹 (𝑥) +𝐴∗𝜕𝐺 (𝐴𝑥),

which implies that there exists a 𝑦∗ ∈ 𝜕𝐺 (𝐴𝑥) with −𝐴∗𝑦∗ ∈ 𝜕𝐹 (𝑥), i.e., satisfying (5.6).

The relations (5.6) together with Lemma 5.5 further imply equality in the Fenchel–Young

inequalities for 𝐹 and 𝐺 , i.e.,

(5.7)

{⟨−𝐴∗𝑦∗, 𝑥⟩𝑋 = 𝐹 (𝑥) + 𝐹 ∗(−𝐴∗𝑦∗),
⟨𝑦∗, 𝐴𝑥⟩𝑌 = 𝐺 (𝐴𝑥) +𝐺∗(𝑦∗).

Adding both equations now yields

(5.8) 𝐹 (𝑥) +𝐺 (𝐴𝑥) = −𝐹 ∗(−𝐴∗𝑦∗) −𝐺∗(𝑦∗).

It remains to show that 𝑦∗ is a solution to (5.4). For this purpose,we introduce the Lagrangian

𝐿 : 𝑋 × 𝑌 ∗ → ℝ, 𝐿(𝑥, 𝑦∗) = 𝐹 (𝑥) + ⟨𝑦∗, 𝐴𝑥⟩𝑌 −𝐺∗(𝑦∗) .

For all 𝑥 ∈ 𝑋 and 𝑦̃∗ ∈ 𝑌 ∗
, we always have that

sup

𝑦∗∈𝑌 ∗
𝐿(𝑥, 𝑦∗) ≥ 𝐿(𝑥, 𝑦̃∗) ≥ inf

𝑥∈𝑋
𝐿(𝑥, 𝑦̃∗),

and hence (taking the infimum over all 𝑥 in the first and the supremum over all 𝑦̃∗ in the

second inequality) that

inf

𝑥∈𝑋
sup

𝑦∗∈𝑌 ∗
𝐿(𝑥, 𝑦∗) ≥ sup

𝑦∗∈𝑌 ∗
inf

𝑥∈𝑋
𝐿(𝑥, 𝑦∗).

We thus obtain that

(5.9) 𝐹 (𝑥) +𝐺 (𝐴𝑥) = inf

𝑥∈𝑋
sup

𝑌 ∗∈𝑌 ∗
𝐹 (𝑥) + ⟨𝑦∗, 𝐴𝑥⟩𝑌 −𝐺∗(𝑦∗)

≥ sup

𝑌 ∗∈𝑌 ∗
inf

𝑥∈𝑋
𝐹 (𝑥) + ⟨𝑦∗, 𝐴𝑥⟩𝑌 −𝐺∗(𝑦∗)

= sup

𝑦∗∈𝑌 ∗
−𝐹 ∗(−𝐴∗𝑦∗) −𝐺∗(𝑦∗).
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Combining this with (5.8) yields that

−𝐹 ∗(−𝐴∗𝑦∗) −𝐺∗(𝑦∗) = 𝐹 (𝑥) +𝐺 (𝐴𝑥) ≥ sup

𝑦∗∈𝑌 ∗
−𝐹 ∗(−𝐴∗𝑦∗) −𝐺∗(𝑦∗),

i.e., 𝑦∗ is a solution to (5.4), and hence (5.5) follows from (5.8).

Finally, if 𝑥 ∈ 𝑋 and 𝑦∗ ∈ 𝑌 ∗
are solutions to (5.3) and (5.4), respectively, then (5.5) implies

(5.8). Together with the productive zero, this implies that

0 = [𝐹 (𝑥) + 𝐹 ∗(−𝐴∗𝑦∗) − ⟨−𝐴∗𝑦∗, 𝑥⟩𝑋 ] + [𝐺 (𝐴𝑥) +𝐺∗(𝑦∗) − ⟨𝑦∗, 𝐴𝑥⟩𝑌 ] .

Since both brackets have to be nonnegative due to the Fenchel–Young inequality, they each

have to be zero. We therefore deduce that (5.7) holds, and hence Lemma 5.5 implies (5.6). □

The relations (5.6) are referred to as Fenchel extremality conditions; we can use Lemma 5.5

to generate further, equivalent, optimality conditions by inverting one or the other sub-

differential inclusion. We will later exploit this to derive implementable algorithms for

solving optimization problems of the form (5.3).
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Any minimizer 𝑥 ∈ 𝑋 of the convex functional 𝐹 : 𝑋 → ℝ satisfies by Theorem 4.3

the Fermat principle 0 ∈ 𝜕𝐹 (𝑥). To obtain from this useful information about (and, later,

implementable algorithms for the computation of) 𝑥 , we thus have to study the mapping

𝑥 ↦→ 𝜕𝐹 (𝑥). To avoid mechnical difficulties – and since we will use the following results

mainly for numerical algorithms, i.e., for 𝑋 = ℝ𝑁
– we restrict the discussion in this and

the next chapter to Hilbert spaces. This allows identifying 𝑋 ∗
with 𝑋 ; in particular, we will

from now on identify the set 𝜕𝐹 (𝑥) ⊂ 𝑋 ∗
of subderivatives with the corresponding set in

𝑋 of Riesz representations (subgradients).

6.1 monotone operators

For two normed vector spaces 𝑋 and 𝑌 we consider a set-valued mapping 𝐴 : 𝑋 → P(𝑌 ),
also denoted by 𝐴 : 𝑋 ⇒ 𝑌 , and define

• its domain of definition dom𝐴 = {𝑥 ∈ 𝑋 : 𝐴𝑥 ≠ ∅};

• its range ran𝐴 =
⋃
𝑥∈𝑋 𝐴𝑥 ;

• its graph graph𝐴 = {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 : 𝑦 ∈ 𝐴𝑥};

• its inverse 𝐴−1
: 𝑌 ⇒ 𝑋 via 𝐴−1(𝑦) = {𝑥 ∈ 𝑋 : 𝑦 ∈ 𝐴𝑥} for all 𝑦 ∈ 𝑌 .

(Note that 𝐴−1(𝑦) = ∅ is allowed by the definition; hence for set-valued mappings, the

inverse always exists.) We say that set-valued mapping 𝐴 is surjective if ran𝐴 = 𝑌 . For

𝐴, 𝐵 : 𝑋 ⇒ 𝑌 , 𝐶 : 𝑌 ⇒ 𝑍 , and 𝜆 ∈ ℝ we further define

• 𝜆𝐴 : 𝑋 ⇒ 𝑌 via (𝜆𝐴) (𝑥) = {𝜆𝑦 : 𝑦 ∈ 𝐴𝑥};

• 𝐴 + 𝐵 : 𝑋 ⇒ 𝑌 via (𝐴 + 𝐵) (𝑥) = {𝑦 + 𝑧 : 𝑦 ∈ 𝐴𝑥, 𝑧 ∈ 𝐵𝑥};

• 𝐶 ◦𝐴 : 𝑋 ⇒ 𝑍 via (𝐶 ◦𝐴) (𝑥) = {𝑧 : there is 𝑦 ∈ 𝐴𝑥 with 𝑧 ∈ 𝐶𝑦}.

Let from now on 𝑋 be a Hilbert space. A set-valued mapping𝐴 : 𝑋 ⇒ 𝑋 is calledmonotone
if

(6.1)

(
𝑥∗

1
− 𝑥∗

2
, 𝑥1 − 𝑥2

)
𝑋
≥ 0 for all (𝑥1, 𝑥

∗
1
), (𝑥2, 𝑥

∗
2
) ∈ graph𝐴.
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Example 6.1. (i) It follows directly from the definition that the identity mapping

Id : 𝑋 ⇒ 𝑋 , 𝑥 ↦→ {𝑥}, is monotone.

(ii) Similarly, if 𝐴, 𝐵 : 𝑋 ⇒ 𝑋 are monotone and 𝜆 ≥ 0, then 𝜆𝐴 and 𝐴 + 𝐵 are

monotone as well.

(iii) If 𝐹 : 𝑋 → ℝ is proper, then 𝜕𝐹 : 𝑋 ⇒ 𝑋 , 𝑥 ↦→ 𝜕𝐹 (𝑥), is monotone: For any

𝑥1, 𝑥2 ∈ 𝑋 with 𝑥∗
1
∈ 𝜕𝐹 (𝑥1) and 𝑥∗2 ∈ 𝜕𝐹 (𝑥2), we have by definition that(
𝑥∗

1
, 𝑥 − 𝑥1

)
𝑋
≤ 𝐹 (𝑥) − 𝐹 (𝑥1) for all 𝑥 ∈ 𝑋,(

𝑥∗
2
, 𝑥 − 𝑥2

)
𝑋
≤ 𝐹 (𝑥) − 𝐹 (𝑥2) for all 𝑥 ∈ 𝑋 .

Adding the first inequality for 𝑥 = 𝑥2 and the second for 𝑥 = 𝑥1 and rearranging

the result yields (6.1).

In fact, we will need the following, stronger, property, which guarantees that 𝐴 is closed: A

monotone operator 𝐴 : 𝑋 ⇒ 𝑋 is called maximally monotone if for any 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋
the condition

(6.2) (𝑥∗ − 𝑥∗, 𝑥 − 𝑥)𝑋 ≥ 0 for all (𝑥, 𝑥∗) ∈ graph𝐴

implies that 𝑥∗ ∈ 𝐴𝑥 . (In other words, (6.2) holds if and only if (𝑥, 𝑥∗) ∈ graph𝐴.) For fixed

𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 , the condition claims that if 𝐴 is monotone, so is the extension

˜𝐴 : 𝑋 ⇒ 𝑋, 𝑥 ↦→
{
𝐴𝑥 ∪ {𝑥∗} if 𝑥 = 𝑥,

𝐴𝑥 if 𝑥 ≠ 𝑥 .

For𝐴 to bemaximallymonotonemeans that this is not a true extension, i.e.,
˜𝐴 = 𝐴.

Example 6.2. The operator

𝐴 : ℝ ⇒ ℝ, 𝑡 ↦→

{1} if 𝑡 > 0,

{0} if 𝑡 = 0,

{−1} if 𝑡 < 0,

is monotone but not maximally monotone, since 𝐴 is a proper subset of the monotone

operator defined by
˜𝐴𝑡 = sign(𝑡) = 𝜕( | · |) (𝑡).

Several useful properties follow directly from the definition.

Lemma 6.3. If 𝐴 : 𝑋 ⇒ 𝑋 is maximally monotone, then so is 𝜆𝐴 for all 𝜆 > 0.
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Proof. Let 𝑥, 𝑥∗ ∈ 𝑋 and assume that

0 ≤ (𝑥∗ − 𝑥∗, 𝑥 − 𝑥)𝑋 = 𝜆
(
𝜆−1𝑥∗ − 𝜆−1𝑥∗, 𝑥 − 𝑥

)
𝑋

for all (𝑥, 𝑥∗) ∈ graph 𝜆𝐴.

Since 𝑥∗ ∈ 𝜆𝐴𝑥 if and only if 𝜆−1𝑥∗ ∈ 𝐴𝑥 and 𝐴 is maximally monotone, this implies that

𝜆−1𝑥∗ ∈ 𝐴𝑥 , i.e., 𝑥∗ ∈ (𝜆𝐴)𝑥 . Hence, 𝜆𝐴 is maximally monotone. □

Lemma 6.4. Let 𝐴 : 𝑋 ⇒ 𝑋 be maximally monotone. Then 𝐴 is weakly–strongly closed, i.e.,
𝑥𝑛 ⇀ 𝑥 and 𝐴𝑥𝑛 ∋ 𝑥∗𝑛 → 𝑥∗ imply that 𝑥∗ ∈ 𝐴𝑥 .

Proof. For arbitrary 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝐴𝑥 , the monotonicity of 𝐴 implies that

0 ≤
(
𝑥∗𝑛 − 𝑥∗, 𝑥𝑛 − 𝑥

)
𝑋
→ (𝑥∗ − 𝑥∗, 𝑥 − 𝑥)𝑋

since the duality pairing and hence the inner product of weakly and strongly converging

sequences is convergent. Since 𝐴 is maximally monotone, we obtain that 𝑥∗ ∈ 𝐴𝑥 . □

Of central importance to the theory of monotone operators isMinty’s theorem, which states

that a monotone operator 𝐴 is maximally monotone if and only if Id +𝐴 is surjective. As a

preparation, we first prove an important partial result.

Lemma 6.5. Let 𝐹 : 𝑋 → ℝ be proper, convex and lower semicontinuous. Then Id + 𝜕𝐹 is
surjective.

Proof. We consider for given 𝑧 ∈ 𝑋 the functional

𝐽 : 𝑋 → ℝ, 𝑥 ↦→ 1

2

∥𝑥 − 𝑧∥2

𝑋 + 𝐹 (𝑥),

which is proper, (strictly) convex and lower semicontinuous by the assumptions on 𝐹 .

Furthermore, 𝐽 is coercive by Lemma 3.8. Theorem 3.7 thus yields a (unique) 𝑥 ∈ 𝑋 with

𝐽 (𝑥) = min𝑥∈𝑋 𝐽 (𝑥), which by Theorems 4.3, 4.4 and 4.8 satisfies that

0 ∈ 𝜕𝐽 (𝑥) = {𝑥 − 𝑧} + 𝜕𝐹 (𝑥),

i.e., 𝑧 ∈ {𝑥} + 𝜕𝐹 (𝑥) = (Id + 𝜕𝐹 ) (𝑥). Hence ran(Id + 𝜕𝐹 ) = 𝑋 as claimed. □

We now turn to the general case.

Theorem 6.6 (Minty). Let 𝐴 : 𝑋 ⇒ 𝑋 be monotone with graph𝐴 ≠ 0. Then 𝐴 is maximally
monotone if and only if Id +𝐴 is surjective.
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Proof. First, assume that Id +𝐴 is surjective, and consider 𝑥 ∈ 𝑋 and 𝑥∗ ∈ 𝑋 with

(6.3) (𝑥∗ − 𝑥∗, 𝑥 − 𝑥)𝑋 ≥ 0 for all (𝑥, 𝑥∗) ∈ graph𝐴.

The assumption now implies that for 𝑥 + 𝑥∗ ∈ 𝑋 , there exist a 𝑧 ∈ 𝑋 and a 𝑧∗ ∈ 𝐴𝑧 with

(6.4) 𝑥 + 𝑥∗ = 𝑧 + 𝑧∗ ∈ (Id +𝐴)𝑧.

Inserting (𝑥, 𝑥∗) = (𝑧, 𝑧∗) into (6.3) then yields that

0 ≤ (𝑥∗ − 𝑧∗, 𝑥 − 𝑧)𝑋 = (𝑧 − 𝑥, 𝑥 − 𝑧)𝑋 = −∥𝑥 − 𝑧∥2

𝑋 ≤ 0,

i.e., 𝑥 = 𝑧. From (6.4) we further obtain 𝑥∗ = 𝑧∗ ∈ 𝐴𝑧 = 𝐴𝑥 , and hence 𝐴 is maximally

monotone.

The proof of the converse implication is significantly more involved. The special case

𝐴 = 𝜕𝐹 for a convex functional 𝐹 was already shown in Lemma 6.5; for the general case,

we proceed similarly by constructing a functional 𝐹𝐴 that plays the same role for 𝐴 as 𝐹

does for 𝜕𝐹 . Specifically, we define for a maximally monotone operator 𝐴 : 𝑋 ⇒ 𝑋 with

graph𝐴 ≠ ∅ the Fitzpatrick functional

(6.5) 𝐹𝐴 : 𝑋 × 𝑋 → [−∞,∞], (𝑥, 𝑦) ↦→ sup

(𝑧,𝑤)∈graph𝐴

(
(𝑧, 𝑦)𝑋 + (𝑥,𝑤)𝑋 − (𝑧,𝑤)𝑋

)
,

which can be written equivalently as

(6.6) 𝐹𝐴 (𝑥, 𝑦) = (𝑥, 𝑦)𝑋 − inf

(𝑧,𝑤)∈graph𝐴
(𝑥 − 𝑧, 𝑦 −𝑤)𝑋 .

Each characterization implies useful properties.

(i) By maximal monotonicity of 𝐴, we have by definition that (𝑥 − 𝑧, 𝑦 −𝑤)𝑋 ≥ 0 for all

(𝑧,𝑤) ∈ graph𝐴 if and only if (𝑥, 𝑦) ∈ graph𝐴. In particular, for all (𝑥, 𝑦) ∉ graph𝐴

there exists (𝑧,𝑤) ∈ graph𝐴with (𝑥−𝑧, 𝑦−𝑤)𝑋 < 0, and therefore inf (𝑧,𝑤)∈graph𝐴 (𝑥−
𝑧, 𝑦−𝑤)𝑋 < 0 for all (𝑥, 𝑦) ∉ graph𝐴. Furthermore, for (𝑥, 𝑦) ∈ graph𝐴, the infimum

is attained in (𝑧,𝑤) = (𝑥, 𝑦). Hence (6.6) implies that 𝐹𝐴 (𝑥, 𝑦) ≥ (𝑥, 𝑦)𝑋 for all

(𝑥, 𝑦) ∈ 𝑋 ×𝑋 with equality for (𝑥, 𝑦) ∈ graph𝐴. Since graph𝐴 ≠ ∅, this shows that
𝐹𝐴 is proper.

(ii) On the other hand, the definition (6.5) yields that

𝐹𝐴 = (𝐺𝐴)∗ for 𝐺𝐴 (𝑤, 𝑧) = (𝑤, 𝑧)𝑋 + 𝛿
graph𝐴−1 (𝑤, 𝑧)

(since (𝑧,𝑤) ∈ graph𝐴 if and only if (𝑤, 𝑧) ∈ graph𝐴−1
). Since we have required

that graph𝐴 ≠ ∅, the Fitzpatrick functional 𝐹𝐴 is the Fenchel conjugate of a proper

functional and therefore convex and lower semicontinuous.
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6 monotone operators and proximal points

As a first step,we now show that 0 ∈ ran(Id+𝐴). We set𝑍 := 𝑋×𝑋 as well as 𝜉 := (𝑥, 𝑦) ∈ 𝑍
and consider the functional

𝐽𝐴 : 𝑍 → ℝ, 𝜉 ↦→ 𝐹𝐴 (𝜉) +
1

2

∥𝜉 ∥2

𝑍 .

We first note that property (i) implies for all 𝜉 ∈ 𝑍 that

(6.7) 𝐽𝐴 (𝜉) = 𝐹𝐴 (𝜉) +
1

2

∥𝜉 ∥2

𝑍 = 𝐹𝐴 (𝑥, 𝑦) +
1

2

∥𝑥 ∥2

𝑋 + 1

2

∥𝑦 ∥2

𝑋

≥ (𝑥, 𝑦)𝑋 + 1

2

∥𝑥 ∥2

𝑋 + 1

2

∥𝑦 ∥2

𝑋 =
1

2

∥𝑥 + 𝑦 ∥2

𝑋

≥ 0.

Furthermore, 𝐽𝐴 is proper, (strictly) convex, lower semicontinuous, and (by Lemma 3.8)

coercive. Theorem 3.7 thus yields a (unique)
¯𝜉 := (𝑥, 𝑦) ∈ 𝑍 with 𝐽𝐴 ( ¯𝜉) = min𝜉∈𝑍 𝐽𝐴 (𝜉),

which by Theorems 4.3, 4.4 and 4.8 satisfies that

0 ∈ 𝜕𝐽𝐴 ( ¯𝜉) = { ¯𝜉} + 𝜕𝐹𝐴 ( ¯𝜉),
i.e., − ¯𝜉 ∈ 𝜕𝐹𝐴 ( ¯𝜉). By definition of the subdifferential, we thus have for all 𝜉 ∈ 𝑍 that

𝐹𝐴 (𝜉) ≥ 𝐹𝐴 ( ¯𝜉) +
(
− ¯𝜉, 𝜉 − ¯𝜉

)
𝑍
= 𝐽𝐴 ( ¯𝜉) + 1

2

∥− ¯𝜉 ∥2

𝑍 +
(
− ¯𝜉, 𝜉

)
𝑍

≥ 1

2

∥− ¯𝜉 ∥2

𝑍 +
(
− ¯𝜉, 𝜉

)
𝑍
,

where the last step follows from (6.7). For the sake of presentation, we will replace
¯𝜉 ↦→ − ¯𝜉

from now on; property (i) then implies for all (𝑥, 𝑦) ∈ graph𝐴 that

(6.8) (𝑥, 𝑦)𝑋 = 𝐹𝐴 (𝑥, 𝑦) ≥
1

2

∥𝑥 ∥2

𝑋 + (𝑥, 𝑥)𝑋 + 1

2

∥𝑦 ∥2

𝑋 + (𝑦, 𝑦)𝑋
≥ − (𝑥, 𝑦)𝑋 + (𝑥, 𝑥)𝑋 + (𝑦, 𝑦)𝑋 ,

and hence (𝑦 − 𝑥, 𝑥 − 𝑦)𝑋 ≥ 0. The maximal monotonicity of 𝐴 thus yields that 𝑥 ∈ 𝐴𝑦 ,
i.e., (𝑦, 𝑥) ∈ graph𝐴. Inserting this into the first inequality of (6.8) then implies that

(𝑦, 𝑥)𝑋 ≥ 1

2

∥𝑥 ∥2

𝑋 + (𝑥, 𝑦)𝑋 + 1

2

∥𝑦 ∥2

𝑋 + (𝑦, 𝑥)𝑋 =
1

2

∥𝑥 + 𝑦 ∥2

𝑋 + (𝑦, 𝑥)𝑋 ≥ (𝑦, 𝑥)𝑋
and hence ∥𝑥 + 𝑦 ∥𝑋 = 0, i.e., 0 = 𝑦 + 𝑥 ∈ (Id +𝐴) (𝑦).

Finally, let 𝑧 ∈ 𝑋 be arbitrary and set 𝐵 : 𝑋 ⇒ 𝑋 , 𝑥 ↦→ {−𝑧} +𝐴𝑥 . Using the definition, it
is straightforward to verify that 𝐵 is maximally monotone with graph𝐵 ≠ ∅ as well. As we

have just shown, there now exists a 𝑦 ∈ 𝑋 with 0 ∈ (Id + 𝐵) (𝑦) = {𝑦} + {−𝑧} + 𝐴𝑦 , i.e.,
𝑧 ∈ (Id +𝐴) (𝑦). Hence Id +𝐴 is surjective. □

Together with Lemma 6.5 (which in particular implies graph 𝜕𝐹 ≠ ∅ for proper, convex, and

lower semicontinuous 𝐹 ), this yields the maximalmonotonicity of convex subdifferentials.

Corollary 6.7. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then 𝜕𝐹 : 𝑋 ⇒ 𝑋

is maximally monotone.
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6.2 resolvents and proximal points

We know from Lemma 6.5 that Id + 𝜕𝐹 is surjective for any proper, convex, and lower

semicontinuous functional 𝐹 ; the proof even shows that each preimage is unique. Hence

(Id + 𝜕𝐹 )−1
is single-valued even if 𝜕𝐹 is not. We can thus hope to use this object instead of

a subdifferential – or, more generally, a maximally monotone operator – for algorithms.

We thus define for a maximally monotone operator 𝐴 : 𝑋 ⇒ 𝑋 with graph𝐴 ≠ ∅ the

resolvent
R𝐴 : 𝑋 ⇒ 𝑋, R𝐴 (𝑥) = (Id +𝐴)−1𝑥,

as well as for a proper, convex, and lower semicontinuous functional 𝐹 : 𝑋 → ℝ the

proximal point mapping

(6.9) prox𝐹 : 𝑋 → 𝑋, prox𝐹 (𝑥) = arg min

𝑧∈𝑋

1

2

∥𝑧 − 𝑥 ∥2

𝑋 + 𝐹 (𝑧).

Since𝑤 ∈ R𝜕𝐹 (𝑥) are the necessary and sufficient conditions for the proximal point 𝑤 to

be a minimizer of the strictly convex functional in (6.9), we have that

(6.10) prox𝐹 = (Id + 𝜕𝐹 )−1 = R𝜕𝐹 .

It remains to show that the resolvent of arbitrary maximally monotone operators is single-

valued on 𝑋 as well and we can thus write R𝐴 : 𝑋 → 𝑋 .

Lemma 6.8. Let 𝐴 : 𝑋 ⇒ 𝑋 be maximally monotone with graph𝐴 ≠ ∅. Then R𝐴 : 𝑋 → 𝑋 .

Proof. Since𝐴 is maximally monotone with graph𝐴 ≠ ∅, Id+𝐴 is surjective by Theorem 6.6,

which implies that R𝐴 (𝑥) ≠ ∅ for all 𝑥 ∈ 𝑋 , i.e., domR𝐴 = 𝑋 . Let now 𝑥, 𝑧 ∈ 𝑋 with

𝑥∗ ∈ R𝐴 (𝑥) and 𝑧∗ ∈ R𝐴 (𝑧), i.e., 𝑥 ∈ {𝑥∗} +𝐴𝑥∗ and 𝑧 ∈ {𝑧∗} +𝐴𝑧∗. For 𝑥 − 𝑥∗ ∈ 𝐴𝑥∗ and
𝑧 − 𝑧∗ ∈ 𝐴𝑧∗, the monotonicity of 𝐴 implies that

(6.11) ∥𝑥∗ − 𝑧∗∥2

𝑋 ≤ (𝑥 − 𝑧, 𝑥∗ − 𝑧∗)𝑋 .

Hence 𝑥 = 𝑧 implies 𝑥∗ = 𝑧∗, i.e., R𝐴 is single-valued. □

The inequality (6.11) together with the Cauchy–Schwarz inequality shows that resolvents

are Lipschitz continuous with constant 𝐿 = 1; such mappings are called nonexpansive. Since
(6.11) is in fact a stronger property, a mapping 𝑇 : 𝑋 → 𝑋 is called firmly nonexpansive if it
satisfies this inequality, i.e., if

∥𝑇𝑥 −𝑇𝑧∥2

𝑋 ≤ (𝑇𝑥 −𝑇𝑧, 𝑥 − 𝑧)𝑋 for all 𝑥, 𝑧 ∈ 𝑋 .

Firm nonexpansivity implies another useful inequality.
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6 monotone operators and proximal points

Lemma 6.9. Let 𝐴 : 𝑋 ⇒ 𝑋 be maximally monotone with graph𝐴 ≠ ∅. Then R𝐴 : 𝑋 → 𝑋 is
firmly nonexpansive and satisfies that

∥R𝐴𝑥 − R𝐴𝑧∥2

𝑋 + ∥(Id − R𝐴)𝑥 − (Id − R𝐴)𝑧∥2

𝑋 ≤ ∥𝑥 − 𝑧∥2

𝑋 for all 𝑥, 𝑧 ∈ 𝑋 .

Proof. Firm nonexpansivity of R𝐴 was already shown in (6.11), which further implies that

∥(Id − R𝐴)𝑥 − (Id − R𝐴)𝑧∥2

𝑋 = ∥𝑥 − 𝑧∥2

𝑋 − 2 (𝑥 − 𝑧,R𝐴𝑥 − R𝐴𝑧)𝑋 + ∥R𝐴𝑥 − R𝐴𝑧∥2

𝑋

≤ ∥𝑥 − 𝑧∥2

𝑋 − ∥R𝐴𝑥 − R𝐴𝑧∥2

𝑋 . □

Corollary 6.10. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then prox𝐹 :

𝑋 → 𝑋 is Lipschitz continuous with constant 𝐿 = 1.

The following useful result allows characterizing minimizers of convex functionals as

proximal points.

Lemma 6.11. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝑥, 𝑥∗ ∈ 𝑋 .
Then for any 𝛾 > 0,

𝑥∗ ∈ 𝜕𝐹 (𝑥) ⇔ 𝑥 = prox𝛾𝐹 (𝑥 + 𝛾𝑥∗).

Proof. Multiplying both sides of the subdifferential inclusion by 𝛾 > 0 and adding 𝑥 yields

that

𝑥∗ ∈ 𝜕𝐹 (𝑥) ⇔ 𝑥 + 𝛾𝑥∗ ∈ (Id + 𝛾𝜕𝐹 ) (𝑥)
⇔ 𝑥 ∈ (Id + 𝛾𝜕𝐹 )−1(𝑥 + 𝛾𝑥∗)
⇔ 𝑥 = prox𝛾𝐹 (𝑥 + 𝛾𝑥∗),

where in the last step we have used that 𝛾𝜕𝐹 = 𝜕(𝛾𝐹 ) by Lemma 4.7 (i) and hence that

prox𝛾𝐹 = R𝛾𝜕𝐹 . □

Corollary 6.12. Let 𝐹 : 𝑋 → ℝ be proper, convex and lower semicontinuous, and 𝛾 > 0 be
arbitrary. Then 𝑥 ∈ dom 𝐹 is a minimizer of 𝐹 if and only if

𝑥 = prox𝛾𝐹 (𝑥).

Proof. Simply apply Lemma 6.11 to the Fermat principle 0 ∈ 𝜕𝐹 (𝑥). □

This simple result should not be underestimated: It allows replacing (explicit) set inclusions

by (implicit) Lipschitz continuous equations in optimality conditions, thus opening the

door to fixed point iterations or Newton-type methods.

We can also derive a generalization of the orthogonal decomposition of vector spaces.
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Theorem 6.13 (Moreau decomposition). Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous. Then we have for all 𝑥 ∈ 𝑋 that

𝑥 = prox𝐹 (𝑥) + prox𝐹 ∗ (𝑥).

Proof. Setting𝑤 = prox𝐹 (𝑥), Lemmas 5.5 and 6.11 imply that

𝑤 = prox𝐹 (𝑥) = prox𝐹 (𝑤 + (𝑥 −𝑤)) ⇔ 𝑥 −𝑤 ∈ 𝜕𝐹 (𝑤)
⇔ 𝑤 ∈ 𝜕𝐹 ∗(𝑥 −𝑤)
⇔ 𝑥 −𝑤 = prox𝐹 ∗ ((𝑥 −𝑤) +𝑤) = prox𝐹 ∗ (𝑥). □

The following calculus rules will prove useful.

Lemma 6.14. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then,

(i) for 𝜆 ≠ 0 and 𝑧 ∈ 𝑋 we have with 𝐻 (𝑥) := 𝐹 (𝜆𝑥 + 𝑧) that

prox𝐻 (𝑥) = 𝜆−1(prox𝜆2𝐹 (𝜆𝑥 + 𝑧) − 𝑧);

(ii) for 𝛾 > 0 we have that
prox𝛾𝐹 ∗ (𝑥) = 𝑥 − 𝛾 prox𝛾−1𝐹 (𝛾−1𝑥);

(iii) for proper, convex, lower semicontinuous𝐺 : 𝑌 → ℝ and 𝛾 > 0 we have with 𝐻 (𝑥, 𝑦) :=

𝐹 (𝑥) +𝐺 (𝑦) that

prox𝛾𝐻 (𝑥, 𝑦) =
(
prox𝛾𝐹 (𝑥)
prox𝛾𝐺 (𝑦)

)
.

Proof. (i): By definition,

prox𝐻 (𝑥) = arg min

𝑤∈𝑋

1

2

∥𝑤 − 𝑥 ∥2

𝑋 + 𝐹 (𝜆𝑤 + 𝑧) =: 𝑤̄ .

Now note that since 𝑋 is a vector space,

min

𝑤∈𝑋

1

2

∥𝑤 − 𝑥 ∥2

𝑋 + 𝐹 (𝜆𝑤 + 𝑧) = min

𝑣∈𝑋

1

2

∥𝜆−1(𝑣 − 𝑧) − 𝑥 ∥2

𝑋 + 𝐹 (𝑣),

and the respective minimizers 𝑤̄ and 𝑣 are related by 𝑣 = 𝜆𝑤̄ + 𝑧. The claim then follows

from

𝑣 = arg min

𝑣∈𝑋

1

2

∥𝜆−1(𝑣 − 𝑧) − 𝑥 ∥2

𝑋 + 𝐹 (𝑣)

= arg min

𝑣∈𝑋

1

2𝜆2
∥𝑣 − (𝜆𝑥 + 𝑧)∥2

𝑋 + 𝐹 (𝑣)

= arg min

𝑣∈𝑋

1

2

∥𝑣 − (𝜆𝑥 + 𝑧)∥2

𝑋 + 𝜆2𝐹 (𝑣)

= prox𝜆2𝐹 (𝜆𝑥 + 𝑧).
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Hence, 𝑤̄ := 𝜆−1(𝑣 − 𝑧) is the desired minimizer.

(ii): Theorem 6.13, Lemma 5.4 (i), and (i) for 𝜆 = 𝛾−1
and 𝑧 = 0 together imply that

prox𝛾𝐹 (𝑥) = 𝑥 − prox(𝛾𝐹 )∗ (𝑥)
= 𝑥 − prox𝛾𝐹 ∗◦(𝛾−1

Id) (𝑥)
= 𝑥 − 𝛾 prox𝛾 (𝛾−2𝐹 ∗) (𝛾−1𝑥).

Applying this to 𝐹 ∗ and using that 𝐹 ∗∗ = 𝐹 now yields the claim.

(iii): By definition of the norm on the product space 𝑋 × 𝑌 , we have that

prox𝛾𝐻 (𝑥, 𝑦) = arg min

(𝑢,𝑣)∈𝑋×𝑌

1

2

∥(𝑢, 𝑣) − (𝑥, 𝑦)∥2

𝑋×𝑌 + 𝛾𝐻 (𝑢, 𝑣)

= arg min

𝑢∈𝑋,𝑣∈𝑌

(
1

2

∥𝑢 − 𝑥 ∥2

𝑋 + 𝛾𝐹 (𝑢)
)
+

(
1

2

∥𝑣 − 𝑦 ∥2

𝑌 + 𝛾𝐺 (𝑣)
)
.

Since there are no mixed terms in 𝑢 and 𝑣 , the two terms in parentheses can be minimized

separately. Hence, prox𝛾𝐻 (𝑥, 𝑦) = (𝑢, 𝑣) for

𝑢 = arg min

𝑢∈𝑋

1

2

∥𝑢 − 𝑥 ∥2

𝑋 + 𝛾𝐹 (𝑢) = prox𝛾𝐹 (𝑥),

𝑣 = arg min

𝑣∈𝑌

1

2

∥𝑣 − 𝑦 ∥2

𝑌 + 𝛾𝐺 (𝑣) = prox𝛾𝐺 (𝑥) . □

Computing proximal points is difficult in general since evaluating prox𝐹 by its definition

entails minimizing 𝐹 . In some cases, however, it is possible to give an explicit formula for

prox𝐹 .

Example 6.15. We first consider scalar functions 𝑓 : ℝ → ℝ.

(i) 𝑓 (𝑡) = 1

2
|𝑡 |2. Since 𝑓 is differentiable, we can set the derivative of

1

2
(𝑠 − 𝑡)2 + 𝛾

2
𝑠2

to zero and solve for 𝑠 to obtain prox𝛾 𝑓 (𝑡) = (1 + 𝛾)−1𝑡 .

(ii) 𝑓 (𝑡) = |𝑡 |. By (4.3) we have that 𝜕𝑓 (𝑡) = sign(𝑡); hence 𝑠 := prox𝛾 𝑓 (𝑡) = (Id +
𝛾 sign)−1(𝑡) if and only if 𝑡 ∈ {𝑠} + 𝛾 sign(𝑠). Let 𝑡 be given and assume this holds

for some 𝑠 . We now proceed by case distinction.

Case 1: 𝑠 > 0. This implies that 𝑡 = 𝑠 + 𝛾 , i.e., 𝑠 = 𝑡 − 𝛾 , and hence that 𝑡 > 𝛾 .

Case 2: 𝑠 < 0. This implies that 𝑡 = 𝑠 − 𝛾 , i.e., 𝑠 = 𝑡 + 𝛾 , and hence that 𝑡 < −𝛾 .

Case 3: 𝑠 = 0. This implies that 𝑡 ∈ 𝛾 [−1, 1] = [−𝛾,𝛾].

Since this yields a complete and disjoint case distinction for 𝑡 , we can conclude
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that

prox𝛾 𝑓 (𝑡) =

𝑡 − 𝛾 if 𝑡 > 𝛾,

0 if 𝑡 ∈ [−𝛾,𝛾],
𝑡 + 𝛾 if 𝑡 < −𝛾 .

This mapping is also known as the soft-shrinkage or soft-thresholding operator.

(iii) 𝑓 (𝑡) = 𝛿 [−1,1] (𝑡). By Example 5.2 (iii) we have that 𝑓 ∗(𝑡) = |𝑡 |. Hence Lemma 6.14 (ii)

yields that

prox𝛾 𝑓 (𝑡) = 𝑡 − 𝛾 prox𝛾−1 𝑓 ∗ (𝛾−1𝑡)

=


𝑡 − 𝛾 (𝛾−1𝑡 − 𝛾−1) if 𝛾−1𝑡 > 𝛾−1,

𝑡 − 0 if 𝛾−1𝑡 ∈ [−𝛾−1, 𝛾−1],
𝑡 − 𝛾 (𝛾−1𝑡 + 𝛾−1) if 𝛾−1𝑡 < −𝛾−1

=


1 if 𝑡 > 1,

𝑡 if 𝑡 ∈ [−1, 1],
−1 if 𝑡 < −1.

For every 𝛾 > 0, the proximal point of 𝑡 is thus its projection onto [−1, 1].

Example 6.16. We can generalize Example 6.15 to 𝑋 = ℝ𝑁
(endowed with the Euclidean

inner product) by applying Lemma 6.14 (iii) 𝑁 times. We thus obtain componentwise

(i) for 𝐹 (𝑥) = 1

2
∥𝑥 ∥2

2
=

∑𝑁
𝑖=1

1

2
𝑥2

𝑖 that

[prox𝛾𝐹 (𝑥)]𝑖 =
(

1

1 + 𝛾

)
𝑥𝑖, 1 ≤ 𝑖 ≤ 𝑁 ;

(ii) for 𝐹 (𝑥) = ∥𝑥 ∥1 =
∑𝑁
𝑖=1

|𝑥𝑖 | that

[prox𝛾𝐹 (𝑥)]𝑖 = ( |𝑥𝑖 | − 𝛾)+ sign(𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁 ;

(iii) for 𝐹 (𝑥) = 𝛿𝐵∞ (𝑥) =
∑𝑁
𝑖=1
𝛿 [−1,1] (𝑥𝑖) that

[prox𝛾𝐹 (𝑥)]𝑖 = 𝑥𝑖 − (𝑥𝑖 − 1)+ − (𝑥𝑖 + 1)− =
𝑥𝑖

max{1, |𝑥𝑖 |}
, 1 ≤ 𝑖 ≤ 𝑁 .

Here we have used the convenient notation (𝑡)+ := max{𝑡, 0} and (𝑡)− := min{𝑡, 0}.

Many more examples can be found in [Parikh & Boyd 2014, § 6.5].
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6 monotone operators and proximal points

Since the subdifferential of convex integral functionals can be evaluated pointwise by

Theorem 4.6, the same holds for the definition (6.10) of the proximal point mapping.

Corollary 6.17. Let 𝑓 : ℝ → ℝ be proper, convex, and lower semicontinuous, and 𝐹 : 𝐿2(Ω) →
ℝ be defined as in Lemma 3.6. Then we have for all 𝛾 > 0 and 𝑢 ∈ 𝐿2(Ω) that

[prox𝛾𝐹 (𝑢)] (𝑥) = prox𝛾 𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

Example 6.18. Let 𝑋 be a Hilbert space. Similarly to Example 6.15 one can show

(i) for 𝐹 = 1

2
∥ · ∥2

𝑋
= 1

2
(·, ·)𝑋 , that

prox𝛾𝐹 (𝑥) =
(

1

1 + 𝛾

)
𝑥 ;

(ii) for 𝐹 = ∥ · ∥𝑋 , using a case distinction as in Theorem 4.5, that

prox𝛾𝐹 (𝑥) =
(
1 − 𝛾

∥𝑥 ∥𝑋

)+
𝑥 ;

(iii) for 𝐹 = 𝛿𝐶 with 𝐶 ⊂ 𝑋 nonempty, convex, and closed, that by definition

prox𝛾𝐹 (𝑥) = proj𝐶 (𝑥) := arg min

𝑧∈𝐶
∥𝑧 − 𝑥 ∥𝑋

the metric projection of 𝑥 onto 𝐶; the proximal point mapping thus generalizes

the concept projection onto convex sets. Explicit or at least constructive formulas

for the projection onto different classes of sets can be found in [Cegielski 2012,

Chapter 4.1].

6.3 moreau–yosida regularization

Before we turn to algorithms for the minimization of convex functionals, we will look at

anotherway to reformulate optimality conditions using proximal pointmappings. Although

these are no longer equivalent reformulations, they will serve as a link to the Newton-type

methods introduced in Chapter 9.

Let 𝐴 : 𝑋 ⇒ 𝑋 be a maximally monotone operator with graph𝐴 ≠ ∅ and 𝛾 > 0. Then we

define the Yosida approximation of 𝐴 as

𝐴𝛾 :=
1

𝛾

(
Id − R𝛾𝐴

)
.
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6 monotone operators and proximal points

In particular, the Yosida approximation of the subdifferential of a proper, convex, and lower

semicontinuous functional 𝐹 : 𝑋 → ℝ is given by

(𝜕𝐹 )𝛾 :=
1

𝛾

(
Id − prox𝛾𝐹

)
,

which by Corollary 6.10 is always Lipschitz continuous with constant 𝐿 = 𝛾−1
.

An alternative point of view is the following. For a proper, convex, and lower semicontinuous

functional 𝐹 : 𝑋 → ℝ and 𝛾 > 0, we define the Moreau envelope1 as

𝐹𝛾 : 𝑋 → ℝ, 𝑥 ↦→ inf

𝑧∈𝑋

1

2𝛾
∥𝑧 − 𝑥 ∥2

𝑋 + 𝐹 (𝑧).

Comparing this with the definition (6.9) of the proximal point mapping of 𝐹 , we see that

(6.12) 𝐹𝛾 (𝑥) =
1

2𝛾
∥prox𝛾𝐹 (𝑥) − 𝑥 ∥2

𝑋 + 𝐹 (prox𝛾𝐹 (𝑥)) .

(Note that multiplying a functional by 𝛾 > 0 does not change its minimizers.) Hence 𝐹𝛾 is

indeed well-defined on 𝑋 and single-valued. Furthermore, we can deduce from (6.12) that

𝐹𝛾 is convex as well.

Lemma 6.19. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝛾 > 0. Then
𝐹𝛾 is convex.

Proof. We first show that for any convex 𝐺 : 𝑋 → ℝ, the mapping

𝐻 : 𝑋 × 𝑋 → ℝ, (𝑥, 𝑧) ↦→ 𝐹 (𝑧) +𝐺 (𝑧 − 𝑥)

is convex as well. Indeed, for any (𝑥1, 𝑧1), (𝑥2, 𝑧2) ∈ 𝑋 × 𝑋 and 𝜆 ∈ [0, 1], the convexity of

𝐹 and 𝐺 implies that

𝐻 (𝜆(𝑥1, 𝑧1) + (1 − 𝜆) (𝑥2, 𝑧2)) = 𝐹 (𝜆𝑧1 + (1 − 𝜆)𝑧2) +𝐺 (𝜆(𝑧1 − 𝑥1) + (1 − 𝜆) (𝑧2 − 𝑥2))
≤ 𝜆 (𝐹 (𝑧1) +𝐺 (𝑧1 − 𝑥1)) + (1 − 𝜆) (𝐹 (𝑧2) +𝐺 (𝑧2 − 𝑥2))
= 𝜆𝐻 (𝑥1, 𝑧1) + (1 − 𝜆)𝐻 (𝑥2, 𝑧2).

Let now 𝑥1, 𝑥2 ∈ 𝑋 and 𝜆 ∈ [0, 1]. Since 𝐹𝛾 (𝑥) = inf𝑧∈𝑋 𝐻 (𝑥, 𝑧) for 𝐺 (𝑦) := 1

2𝛾
∥𝑦 ∥2

𝑋
, there

exist two minimizing sequences {𝑧1

𝑛}𝑛∈ℕ, {𝑧2

𝑛}𝑛∈ℕ ⊂ 𝑋 with

𝐻 (𝑥1, 𝑧
1

𝑛) → 𝐹𝛾 (𝑥1), 𝐻 (𝑥2, 𝑧
2

𝑛) → 𝐹𝛾 (𝑥2).

From the properties of the infimum together with the convexity of 𝐻 , we thus obtain for

all 𝑛 ∈ ℕ that

𝐹𝛾 (𝜆𝑥1 + (1 − 𝜆)𝑥2) ≤ 𝐻 (𝜆(𝑥1, 𝑧
1

𝑛) + (1 − 𝜆) (𝑥2, 𝑧
2

𝑛))
≤ 𝜆𝐻 (𝑥1, 𝑧

1

𝑛) + (1 − 𝜆)𝐻 (𝑥2, 𝑧
2

𝑛),
and passing to the limit 𝑛 → ∞ yields the desired convexity. □

1
not to be confused with the convex envelope 𝐹 Γ!

63



6 monotone operators and proximal points

The next theorem links the two concepts and hence justifies the term Moreau–Yosida
regularization.

Theorem 6.20. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and 𝛾 > 0. Then
𝐹𝛾 is Fréchet differentiable with

∇(𝐹𝛾 ) = (𝜕𝐹 )𝛾 .

Proof. Let 𝑥, 𝑦 ∈ 𝑋 be arbitrary and set 𝑥∗ = prox𝛾𝐹 (𝑥) and 𝑦∗ = prox𝛾𝐹 (𝑦). We first show

that

(6.13)

1

𝛾
(𝑦∗ − 𝑥∗, 𝑥 − 𝑥∗)𝑋 ≤ 𝐹 (𝑦∗) − 𝐹 (𝑥∗).

(Note that for proper 𝐹 , the definition of proximal points as minimizers necessarily implies

that 𝑥∗, 𝑦∗ ∈ dom 𝐹 .) To this purpose, consider for 𝑡 ∈ (0, 1) the point 𝑥∗𝑡 := 𝑡𝑦∗ + (1 − 𝑡)𝑥∗.
Using the minimizing property of the proximal point 𝑥∗ together with the convexity of 𝐹

and completing the square, we obtain that

𝐹 (𝑥∗) ≤ 𝐹 (𝑥∗𝑡 ) +
1

2𝛾
∥𝑥∗𝑡 − 𝑥 ∥2

𝑋 − 1

2𝛾
∥𝑥∗ − 𝑥 ∥2

𝑋

≤ 𝑡𝐹 (𝑦∗) + (1 − 𝑡)𝐹 (𝑥∗) − 𝑡

𝛾
(𝑥 − 𝑥∗, 𝑦∗ − 𝑥∗)𝑋 + 𝑡2

2𝛾
∥𝑥∗ − 𝑦∗∥2

𝑋 .

Rearranging the terms, dividing by 𝑡 > 0 and passing to the limit 𝑡 → 0 then yields (6.13).

Combining this with (6.12) implies that

𝐹𝛾 (𝑦) − 𝐹𝛾 (𝑥) = 𝐹 (𝑦∗) − 𝐹 (𝑥∗) +
1

2𝛾

(
∥𝑦 − 𝑦∗∥2

𝑋 − ∥𝑥 − 𝑥∗∥2

𝑋

)
≥ 1

2𝛾

(
2 (𝑦∗ − 𝑥∗, 𝑥 − 𝑥∗)𝑋 + ∥𝑦 − 𝑦∗∥2

𝑋 − ∥𝑥 − 𝑥∗∥2

𝑋

)
=

1

2𝛾

(
2 (𝑦 − 𝑥, 𝑥 − 𝑥∗)𝑋 + ∥𝑦 − 𝑦∗ − 𝑥 + 𝑥∗∥2

𝑋

)
≥ 1

𝛾
(𝑦 − 𝑥, 𝑥 − 𝑥∗)𝑋 .

By exchanging the roles of 𝑥∗ and 𝑦∗ in (6.13), we obtain that

𝐹𝛾 (𝑦) − 𝐹𝛾 (𝑥) ≤
1

𝛾
(𝑦 − 𝑥, 𝑦 − 𝑦∗)𝑋 .
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6 monotone operators and proximal points

Together, these two inequalities yield that

0 ≤ 𝐹𝛾 (𝑦) − 𝐹𝛾 (𝑥) −
1

𝛾
(𝑦 − 𝑥, 𝑥 − 𝑥∗)𝑋

≤ 1

𝛾
(𝑦 − 𝑥, (𝑦 − 𝑦∗) − (𝑥 − 𝑥∗))𝑋

≤ 1

𝛾

(
∥𝑦 − 𝑥 ∥2

𝑋 − ∥𝑦∗ − 𝑥∗∥2

𝑋

)
≤ 1

𝛾
∥𝑦 − 𝑥 ∥2

𝑋 ,

where the next-to-last inequality follows from the firm nonexpansivity of proximal point

mappings (Lemma 6.9).

If we now set 𝑦 = 𝑥 + ℎ for arbitrary ℎ ∈ 𝑋 , we obtain that

0 ≤
𝐹𝛾 (𝑥 + ℎ) − 𝐹𝛾 (𝑥) −

(
𝛾−1(𝑥 − 𝑥∗), ℎ

)
𝑋

∥ℎ∥𝑋
≤ 1

𝛾
∥ℎ∥𝑋 → 0 for ℎ → 0,

i.e., 𝐹𝛾 is Fréchet differentiable with gradient
1

𝛾
(𝑥 − 𝑥∗) = (𝜕𝐹 )𝛾 . □

Since 𝐹𝛾 is convex by Lemma 6.19, this result together with Theorem 4.4 yields the catchy

relation 𝜕(𝐹𝛾 ) = (𝜕𝐹 )𝛾 .

Example 6.21. We consider again 𝑋 = ℝ𝑁
.

(i) For 𝐹 (𝑥) = ∥𝑥 ∥1, we have from Example 6.16 (ii) that the proximal point mapping

is given by the component-wise soft-shrinkage operator. Inserting this into the

definition yields that

[
(𝜕∥ · ∥1)𝛾 (𝑥)

]
𝑖
=


1

𝛾
(𝑥𝑖 − (𝑥𝑖 − 𝛾)) = 1 if 𝑥𝑖 > 𝛾,

1

𝛾
𝑥𝑖 if 𝑥𝑖 ∈ [−𝛾,𝛾],

1

𝛾
(𝑥𝑖 − (𝑥𝑖 + 𝛾)) = −1 if 𝑥𝑖 < −𝛾 .

Comparing this to the corresponding subdifferential (4.3), we see that the set-

valued case in the point 𝑥𝑖 = 0 has been replaced by a linear function on a small

interval.

Similarly, inserting the definition of the proximal point into (6.12) shows that

𝐹𝛾 (𝑥) =
𝑁∑︁
𝑖=1

𝑓𝛾 (𝑥𝑖) for 𝑓𝛾 (𝑡) :=


1

2𝛾
|𝑡 − (𝑡 − 𝛾) |2 + |𝑡 − 𝛾 | = 𝑡 − 𝛾

2
if 𝑡 > 𝛾,

1

2𝛾
|𝑡 |2 if 𝑡 ∈ [−𝛾,𝛾],

1

2𝛾
|𝑡 − (𝑡 + 𝛾) |2 + |𝑡 + 𝛾 | = −𝑡 + 𝛾

2
if 𝑡 < −𝛾 .
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6 monotone operators and proximal points

For small values, the absolute value is thus replaced by a quadratic function (which

removes the nondifferentiability at 0). This modification is well-known under the

name Huber norm.

(ii) For 𝐹 (𝑥) = 𝛿𝐵∞ (𝑥), we have from Example 6.16 (iii) that the proximal mapping is

given by the component-wise projection onto [−1, 1] and hence that[
(𝜕𝛿𝐵∞)𝛾 (𝑥)

]
𝑖
=

1

𝛾

(
𝑥𝑖 −

(
𝑥𝑖 − (𝑥𝑖 − 1)+ − (𝑥𝑖 + 1)−

) )
=

1

𝛾
(𝑥𝑖 − 1)+ + 1

𝛾
(𝑥𝑖 + 1)−.

Similarly, inserting this and using that prox𝛾𝐹 (𝑥) ∈ 𝐵∞ and ((𝑥 + 1)+, (𝑥 − 1)−)𝑋 =

0 yields that

(𝛿𝐵∞)𝛾 (𝑥) =
1

2𝛾
∥(𝑥 − 1)+∥2

2
+ 1

2𝛾
∥(𝑥 + 1)−∥2

2
,

which corresponds to the classical penalty functional for the inequality constraints

𝑥 − 1 ≤ 0 and 𝑥 + 1 ≥ 0 in nonlinear optimization.

A further connection exists between the Moreau envelope and the Fenchel conjugate.

Theorem 6.22. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous. Then we have
for all 𝛾 > 0 that

(𝐹𝛾 )∗ = 𝐹 ∗ +
𝛾

2

∥ · ∥2

𝑋 .

Proof. We obtain directly from the definition of the Fenchel conjugate in Hilbert spaces

and of the Moreau envelope that

(𝐹𝛾 )∗(𝑥∗) = sup

𝑥∈𝑋

(
(𝑥∗, 𝑥)𝑋 − inf

𝑧∈𝑋

(
1

2𝛾
∥𝑥 − 𝑧∥2

𝑋 + 𝐹 (𝑧)
))

= sup

𝑥∈𝑋

(
(𝑥∗, 𝑥)𝑋 + sup

𝑧∈𝑋

(
− 1

2𝛾
∥𝑥 − 𝑧∥2

𝑋 − 𝐹 (𝑧)
))

= sup

𝑧∈𝑋

(
(𝑥∗, 𝑧)𝑋 − 𝐹 (𝑧) + sup

𝑥∈𝑋

(
(𝑥∗, 𝑥 − 𝑧)𝑋 − 1

2𝛾
∥𝑥 − 𝑧∥2

𝑋

))
= 𝐹 ∗(𝑥∗) +

(
1

2𝛾
∥ · ∥2

𝑋

)∗
(𝑥∗),

since for any given 𝑧 ∈ 𝑋 , the inner supremum is always taken over the full space 𝑋 . The

claim now follows from Example 5.2 (i) and Lemma 5.4 (i). □

We briefly sketch the relevance for nonsmooth optimization. For a convex functional

𝐹 : 𝑋 → ℝ, every minimizer 𝑥 ∈ 𝑋 satisfies the Fermat principle 0 ∈ 𝜕𝐹 (𝑥), which we
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6 monotone operators and proximal points

can write equivalently as 𝑥 ∈ 𝜕𝐹 ∗(0). If we now replace 𝜕𝐹 ∗ with its Yosida approximation

(𝜕𝐹 ∗)𝛾 , we obtain the regularized optimality condition

𝑥𝛾 = (𝜕𝐹 ∗)𝛾 (0) = − 1

𝛾
prox𝛾𝐹 ∗ (0).

This is now an explicit and even Lipschitz continuous relation (which, among other things,

can be used to derive stability properties for 𝑥𝛾 under perturbations). Although 𝑥𝛾 is no

longer a minimizer of 𝐹 , the convexity of 𝐹𝛾 implies that 𝑥𝛾 ∈ (𝜕𝐹 ∗)𝛾 (0) = 𝜕(𝐹 ∗𝛾 ) (0) is
equivalent to

0 ∈ 𝜕(𝐹 ∗𝛾 )∗(𝑥𝛾 ) = 𝜕
(
𝐹 ∗∗ + 𝛾

2
∥ · ∥2

𝑋

)
(𝑥𝛾 ) = 𝜕

(
𝐹 + 𝛾

2
∥ · ∥2

𝑋

)
(𝑥𝛾 ),

i.e., 𝑥𝛾 is the (unique due to the strict convexity of the squared norm) minimizer of the

functional 𝐹 + 𝛾

2
∥ · ∥2

𝑋
. Hence, the regularization of 𝜕𝐹 ∗ has not made the original problem

smooth but merely (more) strongly convex. The equivalence can also be used to show (sim-

ilarly to the proof of Theorem 2.1) that 𝑥𝛾 ⇀ 𝑥 for 𝛾 → 0. In practice, this straightforward

approach fails due to the difficulty of computing 𝐹 ∗ and prox𝐹 ∗ and is therefore usually

combined with one of the splitting techniques introduced in the next chapter.
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We now turn to algorithms for computing minimizers of functionals 𝐽 : 𝑋 → ℝ of the

form

𝐽 (𝑥) := 𝐹 (𝑥) +𝐺 (𝑥)
for 𝐹,𝐺 : 𝑋 → ℝ convex but not necessarily differentiable. One of the main difficulties

compared to the differentiable setting is that the naive equivalent to steepest descent, the

iteration

𝑥𝑘+1 ∈ 𝑥𝑘 − 𝜏𝑘𝜕𝐽 (𝑥𝑘),
does not work since even in finite dimensions, arbitrary subgradients need not be descent

directions – this can only be guaranteed for the subgradient of minimal norm; see, e.g.,

[Ruszczyński 2006, Example 7.1, Lemma 2.77]. Furthermore, the minimal norm subgradient

of 𝐽 cannot be computed easily from those of 𝐹 and𝐺 . We thus follow a different approach

and look for a root of the set-valued mapping 𝑥 ↦→ 𝜕𝐽 (𝑥) ⊂ 𝑋 ∗ � 𝑋 .

7.1 proximal point method

We have seen in Corollary 6.12 that a root 𝑥 of 𝜕𝐽 : 𝑋 ⇒ 𝑋 can be characterized as a fixed

point of prox𝛾 𝐽 for any 𝛾 > 0. This suggests a fixed-point iteration: Choose 𝑥0 ∈ 𝑋 and set

for an appropriate sequence {𝛾𝑘}𝑘∈ℕ

(7.1) 𝑥𝑘+1 = prox𝛾𝑘 𝐽
(𝑥𝑘).

To show convergence of this iteration, we have to show as usual that the fixed-point

mapping is contracting in a suitable sense. As we will see, firm nonexpansivity will be

sufficient, which by Corollary 6.10 is always the case for resolvents of maximally monotone

operators (and hence in particular for proximal mappings of convex functionals). For later

use, we treat the general version of (7.1) for arbitrary maximally monotone operators.

Theorem 7.1. Let 𝐴 : 𝑋 ⇒ 𝑋 be maximally monotone with root 𝑥∗ ∈ 𝑋 , and let {𝛾𝑘}𝑘∈ℕ ⊂
(0,∞) with ∑∞

𝑘=0
𝛾2

𝑘
= ∞. If {𝑥𝑘}𝑘∈ℕ ⊂ 𝑋 is given by the iteration

𝑥𝑘+1 = R𝛾𝑘𝐴𝑥𝑘 ,

then 𝑥𝑘 ⇀ 𝑥 with 0 ∈ 𝐴𝑥 .
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7 proximal point and splitting methods

Proof. The iteration 𝑥𝑘+1 = R𝛾𝑘𝐴𝑥𝑘 = (Id + 𝛾𝑘𝐴)−1𝑥𝑘 implies that

𝑤𝑘
:= 𝛾−1

𝑘
(𝑥𝑘 − 𝑥𝑘+1) ∈ 𝐴𝑥𝑘+1

and hence that 𝑥𝑘+1 − 𝑥𝑘+2 = 𝛾𝑘+1𝑤
𝑘+1

. (The vector𝑤𝑘
will play the role of a residual in the

generalized equation 0 ∈ 𝐴𝑥 .) By monotonicity of 𝐴, we have for 𝛾𝑘+1 > 0 that

0 ≤ 𝛾−1

𝑘+1

(
𝑤𝑘 −𝑤𝑘+1, 𝑥𝑘+1 − 𝑥𝑘+2

)
𝑋

=

(
𝑤𝑘 −𝑤𝑘+1,𝑤𝑘+1

)
𝑋

=

(
𝑤𝑘 ,𝑤𝑘+1

)
𝑋
− ∥𝑤𝑘+1∥2

𝑋

≤ ∥𝑤𝑘+1∥𝑋
(
∥𝑤𝑘 ∥𝑋 − ∥𝑤𝑘+1∥𝑋

)
.

Hence, the nonnegative sequence {∥𝑤𝑘 ∥𝑋 }𝑘∈ℕ ⊂ ℝ is decreasing and hence convergent

(as long as𝑤𝑘+1 ≠ 0, but otherwise from𝑤𝑘+1 ∈ 𝐴𝑥𝑘+2
we immediately obtain that 𝑥𝑘+2

is

the desired root.)

Let now 𝑥∗ ∈ 𝑋 be a root of 𝐴, i.e., 0 ∈ 𝐴𝑥∗, which exists by assumption. As in the proof of

Corollary 6.12, this inclusion is equivalent to 𝑥∗ = R𝛾𝐴𝑥∗ for all 𝛾 > 0. From Lemma 6.9

together with (Id − R𝛾𝑘𝐴)𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘+1 = 𝛾𝑘𝑤
𝑘
, we now obtain that

(7.2) ∥𝑥𝑘+1 − 𝑥∗∥2

𝑋 = ∥R𝛾𝑘𝐴𝑥𝑘 − R𝛾𝑘𝐴𝑥∗∥2

𝑋

≤ ∥𝑥𝑘 − 𝑥∗∥2

𝑋 − ∥(Id − R𝛾𝑘𝐴)𝑥𝑘 − (Id − R𝛾𝑘𝐴)𝑥∗∥2

𝑋

= ∥𝑥𝑘 − 𝑥∗∥2

𝑋 − 𝛾2

𝑘
∥𝑤𝑘 ∥2

𝑋 .

Hence, {∥𝑥𝑘 − 𝑥∗∥𝑋 }𝑘∈ℕ is decreasing for any root 𝑥∗ (such sequences are called Féjer
monotone) and thus bounded. This implies that {𝑥𝑘}𝑘∈ℕ ⊂ 𝑋 is bounded as well and thus

contains a weakly convergent subsequence 𝑥𝑘𝑙 ⇀ 𝑥 .

Furthermore, recursive application of (7.2) yields that

0 ≤ ∥𝑥𝑘+1 − 𝑥∗∥2

𝑋 ≤ ∥𝑥0 − 𝑥∗∥2

𝑋 −
𝑘∑︁
𝑗=0

𝛾2

𝑗 ∥𝑤 𝑗 ∥2

𝑋 .

The (increasing) sequence of partial sums on the right-hand side is therefore bounded

and hence

∑∞
𝑘=0

𝛾2

𝑘
∥𝑤𝑘 ∥2

𝑋
is finite. Since the sequence {𝛾2

𝑘
}𝑘∈ℕ is not summable by as-

sumption, this requires that lim inf𝑘→∞ ∥𝑤𝑘 ∥2

𝑋
= 0. This together with the convergence

of {∥𝑤𝑘 ∥𝑋 }𝑘∈ℕ implies that 𝑤𝑘 → 0. In particular, we have that 𝐴𝑥𝑘𝑙+1 ∋ 𝑤𝑘𝑙 → 0 for

𝑥𝑘𝑙+1 ⇀ 𝑥 , and the closedness of maximally monotone operators (Lemma 6.4) yields that

0 ∈ 𝐴𝑥 . Hence, every weak accumulation point of {𝑥𝑘}𝑘∈ℕ is a root of 𝐴.

We finally show convergence of the full sequence {𝑥𝑘}𝑘∈ℕ.1 Let 𝑥 and 𝑥 be weak accumula-

tion points and therefore roots of 𝐴. The Féjer monotonicity of {𝑥𝑘}𝑘∈ℕ then implies that

1
The following argument in a more general setting is known as Opial’s Lemma.
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7 proximal point and splitting methods

both {∥𝑥𝑘 − 𝑥 ∥𝑋 }𝑘∈ℕ and {∥𝑥𝑘 − 𝑥 ∥𝑋 }𝑘∈ℕ are decreasing and bounded from below and

therefore convergent. This implies that(
𝑥𝑘 , 𝑥 − 𝑥

)
𝑋
=

1

2

(
∥𝑥𝑘 − 𝑥 ∥2

𝑋 − ∥𝑥𝑘 − 𝑥 ∥2

𝑋 + ∥𝑥 ∥2

𝑋 − ∥𝑥 ∥2

𝑋

)
→ 𝑐 ∈ ℝ.

Since 𝑥 is a weak accumulation point, there exists a subsequence {𝑥𝑘𝑛 }𝑛∈ℕ with 𝑥𝑘𝑛 ⇀ 𝑥 ;

similarly, there exists a subsequence {𝑥𝑘𝑚 }𝑚∈ℕ with 𝑥𝑘𝑚 ⇀ 𝑥 . Hence,

(𝑥, 𝑥 − 𝑥)𝑋 = lim

𝑛→∞

(
𝑥𝑘𝑛 , 𝑥 − 𝑥

)
𝑋
= 𝑐 = lim

𝑚→∞

(
𝑥𝑘𝑚 , 𝑥 − 𝑥

)
𝑋
= (𝑥, 𝑥 − 𝑥)𝑋 ,

and therefore

0 = (𝑥 − 𝑥, 𝑥 − 𝑥)𝑋 = ∥𝑥 − 𝑥 ∥2

𝑋 ,

i.e., 𝑥 = 𝑥 . Every convergent subsequence thus has the same limit, which by a subsequence–

subsequence argument must therefore be the limit of the full sequence {𝑥𝑘}𝑘∈ℕ. □

7.2 explicit splitting

As we have repeatedly noted, the proximal point method is not feasible for most functionals

of the form 𝐽 (𝑥) = 𝐹 (𝑥) +𝐺 (𝑥), since the evaluation of prox𝐽 is not significantly easier than

solving the original minimization problem – even if prox𝐹 and prox𝐺 have a closed-form

expression (i.e., are prox-simple). We thus proceed differently: instead of applying the

proximal point reformulation directly to 0 ∈ 𝜕𝐽 (𝑥), we first apply the sum rule and obtain

a 𝑝 ∈ 𝑋 with

(7.3)

{
𝑝 ∈ 𝜕𝐹 (𝑥),

−𝑝 ∈ 𝜕𝐺 (𝑥) .

We can now replace one or both of these subdifferential inclusions by a proximal point

reformulation that only involves 𝐹 or 𝐺 .

Explicit splitting methods apply Lemma 6.11 only to the second inclusion in (7.3) to obtain{
𝑝 ∈ 𝜕𝐹 (𝑥),
𝑥 = prox𝛾𝐺 (𝑥 − 𝛾𝑝).

The corresponding fixed-point iteration then consists in

1. choosing 𝑝𝑘 ∈ 𝜕𝐹 (𝑥𝑘) (with minimal norm);

2. setting 𝑥𝑘+1 = prox𝛾𝑘𝐺
(𝑥𝑘 − 𝛾𝑘𝑝𝑘).
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Again, computing a subgradient with minimal norm can be complicated in general. It

is, however, easy if 𝐹 is additionally differentiable since in this case 𝜕𝐹 (𝑥) = {∇𝐹 (𝑥)}
is a singleton. This leads to the proximal gradient method or forward-backward splitting
method

(7.4) 𝑥𝑘+1 = prox𝛾𝑘𝐺
(𝑥𝑘 − 𝛾𝑘∇𝐹 (𝑥𝑘)) .

(The special case 𝐺 = 𝛿𝐶 – i.e., prox𝛾𝐺 (𝑥) = proj𝐶 (𝑥) – is also known as the projected
gradient method).

Showing convergence of the proximal gradient method as for the proximal point method

requires assuming Lipschitz continuity of the gradient (since we are not using a proximal

point mapping for 𝐹 which is always firmly nonexpansive and hence Lipschitz continuous).

The following lemma – which is often referred to as the descent lemma – may be familiar

from nonlinear optimization.

Lemma 7.2. Let 𝐹 : 𝑋 → ℝ be Gâteaux differentiable with Lipschitz continuous gradient.
Then,

𝐹 (𝑦) ≤ 𝐹 (𝑥) + (∇𝐹 (𝑥), 𝑥 − 𝑦)𝑋 + 𝐿
2

∥𝑦 − 𝑥 ∥2

𝑋 for all 𝑥, 𝑦 ∈ 𝑋 .

Proof. The Gâteaux differentiability of 𝐹 implies that

𝑑

𝑑𝑡
𝐹 (𝑥 + 𝑡 (𝑦 − 𝑥)) = (∇𝐹 (𝑥 + 𝑡 (𝑦 − 𝑥)), 𝑦 − 𝑥)𝑋 for all 𝑥, 𝑦 ∈ 𝑋,

and integration over all 𝑡 ∈ [0, 1] yields that∫
1

0

(∇𝐹 (𝑥 + 𝑡 (𝑦 − 𝑥)), 𝑦 − 𝑥)𝑋 𝑑𝑡 = 𝐹 (𝑦) − 𝐹 (𝑥).

From this, we obtain together with the productive zero, the Cauchy–Schwarz inequality,

and the Lipschitz continuity of the gradient that

𝐹 (𝑦) = 𝐹 (𝑥) + (∇𝐹 (𝑥), 𝑦 − 𝑥)𝑋 +
∫

1

0

(∇𝐹 (𝑥 + 𝑡 (𝑦 − 𝑥)) − ∇𝐹 (𝑥), 𝑦 − 𝑥)𝑋 𝑑𝑡

≤ 𝐹 (𝑥) + (∇𝐹 (𝑥), 𝑦 − 𝑥)𝑋 +
∫

1

0

∥∇𝐹 (𝑥 + 𝑡 (𝑦 − 𝑥)) − ∇𝐹 (𝑥)∥𝑋 ∥𝑥 − 𝑦 ∥𝑋 𝑑𝑡

≤ 𝐹 (𝑥) + (∇𝐹 (𝑥), 𝑦 − 𝑥)𝑋 +
∫

1

0

𝐿𝑡 ∥𝑥 − 𝑦 ∥2

𝑋 𝑑𝑡

= 𝐹 (𝑥) + (∇𝐹 (𝑥), 𝑦 − 𝑥)𝑋 + 𝐿
2

∥𝑥 − 𝑦 ∥2

𝑋 . □

We can now show convergence of the proximal gradient method for sufficiently small step

sizes.
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Theorem 7.3. Let 𝐹 : 𝑋 → ℝ and 𝐺 : 𝑋 → ℝ be proper, convex, and lower semicontinuous.
Furthermore, let 𝐹 be Gâteaux differentiable with Lipschitz continuous gradient. If 0 < 𝛾min ≤
𝛾𝑘 ≤ 𝐿−1, the sequence generated by (7.4) converges weakly to a minimizer 𝑥 ∈ 𝑋 of 𝐽 .

Proof. We argue similarly as in the proof of Theorem 7.1, replacing the monotonicity of

the generalized residuals 𝑤𝑘 ∈ 𝐴𝑥𝑘+1
with those of the functional values 𝐽 (𝑥𝑘). For this

purpose, we define the operator

𝑇𝛾 : 𝑋 → 𝑋, 𝑥 ↦→ 𝛾−1(𝑥 − prox𝛾𝐺 (𝑥 − 𝛾∇𝐹 (𝑥))),

which allows reformulating the iteration (7.4) as

𝑥𝑘+1 = prox𝛾𝑘𝐺
(𝑥𝑘 − 𝛾𝑘∇𝐹 (𝑥𝑘)) = 𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘).

Applying Lemma 6.11 to the second equality then implies that

(7.5) 𝑇𝛾𝑘 (𝑥𝑘) − ∇𝐹 (𝑥𝑘) ∈ 𝜕𝐺 (𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘)) .

Lemma 7.2 with 𝑥 = 𝑥𝑘 , 𝑦 = 𝑥𝑘+1 = 𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘), and 𝛾𝑘 ≤ 𝐿−1
further implies that

(7.6) 𝐹 (𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘)) ≤ 𝐹 (𝑥𝑘) − 𝛾𝑘
(
∇𝐹 (𝑥𝑘),𝑇𝛾𝑘 (𝑥𝑘)

)
𝑋
+
𝛾2

𝑘
𝐿

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋

≤ 𝐹 (𝑥𝑘) − 𝛾𝑘
(
∇𝐹 (𝑥𝑘),𝑇𝛾𝑘 (𝑥𝑘)

)
𝑋
+ 𝛾𝑘

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋 .

Hence, using (7.5) and ∇𝐹 (𝑥) ∈ 𝜕𝐹 (𝑥), we obtain for all 𝑧 ∈ 𝑋 that

(7.7) 𝐽 (𝑥𝑘+1) = 𝐹 (𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘)) +𝐺 (𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘))

≤ 𝐹 (𝑥𝑘) − 𝛾𝑘
(
∇𝐹 (𝑥𝑘),𝑇𝛾𝑘 (𝑥𝑘)

)
𝑋
+ 𝛾𝑘

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋

+𝐺 (𝑧) +
(
𝑇𝛾𝑘 (𝑥𝑘) − ∇𝐹 (𝑥𝑘), 𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘) − 𝑧

)
𝑋

≤ 𝐹 (𝑧) +
(
∇𝐹 (𝑥𝑘), 𝑥𝑘 − 𝑧

)
𝑋
− 𝛾𝑘

(
∇𝐹 (𝑥𝑘),𝑇𝛾𝑘 (𝑥𝑘)

)
𝑋
+ 𝛾𝑘

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋

+𝐺 (𝑧) +
(
𝑇𝛾𝑘 (𝑥𝑘) − ∇𝐹 (𝑥𝑘), 𝑥𝑘 − 𝑧 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘)

)
𝑋

= 𝐽 (𝑧) +
(
𝑇𝛾𝑘 (𝑥𝑘), 𝑥𝑘 − 𝑧

)
𝑋
− 𝛾𝑘

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋 .

For 𝑧 = 𝑥𝑘 this implies that

𝐽 (𝑥𝑘+1) ≤ 𝐽 (𝑥𝑘) − 𝛾𝑘
2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋 ,
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i.e., {𝐽 (𝑥𝑘)}𝑘∈ℕ is decreasing. (The proximal gradient method is thus a descent method.)
Furthermore, by inserting 𝑧 = 𝑥∗ with 𝐽 (𝑥∗) = min𝑥∈𝑋 𝐽 (𝑥) in (7.7) and completing the

square, we deduce that

(7.8) 0 ≤ 𝐽 (𝑥𝑘+1) − 𝐽 (𝑥∗) ≤
(
𝑇𝛾𝑘 (𝑥𝑘), 𝑥𝑘 − 𝑥∗

)
𝑋
− 𝛾𝑘

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋

=
1

2𝛾𝑘

(
∥𝑥𝑘 − 𝑥∗∥2

𝑋 − ∥𝑥𝑘 − 𝑥∗ − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋

)
=

1

2𝛾𝑘

(
∥𝑥𝑘 − 𝑥∗∥2

𝑋 − ∥𝑥𝑘+1 − 𝑥∗∥2

𝑋

)
.

In particular, {∥𝑥𝑘 − 𝑥∗∥𝑋 }𝑘∈ℕ is decreasing, and hence {𝑥𝑘}𝑘∈ℕ is Féjer monotone and

therefore bounded. We can thus extract a weakly convergent subsequence {𝑥𝑘𝑙 }𝑙∈ℕ with

𝑥𝑘𝑙 ⇀ 𝑥 .

We now sum (7.8) over 𝑘 = 1, . . . , 𝑛 for arbitrary 𝑛 ∈ ℕ and use the telescoping sum to

obtain that

𝑛∑︁
𝑘=1

(𝐽 (𝑥𝑘) − 𝐽 (𝑥∗)) ≤ 1

2𝛾min

𝑛∑︁
𝑘=1

(
∥𝑥𝑘−1 − 𝑥∗∥2

𝑋 − ∥𝑥𝑘 − 𝑥∗∥2

𝑋

)
=

1

2𝛾min

(
∥𝑥0 − 𝑥∗∥2

𝑋 − ∥𝑥𝑛 − 𝑥∗∥2

𝑋

)
≤ 1

2𝛾min

∥𝑥0 − 𝑥∗∥2

𝑋 .

Since {𝐽 (𝑥𝑘)}𝑘∈ℕ is decreasing, this implies that

(7.9) 𝐽 (𝑥𝑛) − 𝐽 (𝑥∗) ≤ 1

𝑛

𝑛∑︁
𝑘=1

(𝐽 (𝑥𝑘) − 𝐽 (𝑥∗)) ≤ 1

2𝑛𝛾min

∥𝑥0 − 𝑥∗∥2

𝑋

and hence 𝐽 (𝑥𝑛) → 𝐽 (𝑥∗) for 𝑛 → ∞. The lower semicontinuity of 𝐹 and 𝐺 now yields

that

𝐽 (𝑥) ≤ lim inf

𝑙→∞
𝐽 (𝑥𝑘𝑙 ) = 𝐽 (𝑥∗).

As in the proof of Theorem 7.1, we can use the Féjer monotonicity of {𝑥𝑘}𝑘∈ℕ to show that

𝑥𝑘 ⇀ 𝑥 for the full sequence. □

In particular, we obtain from (7.9) that 𝐽 (𝑥𝑘) = 𝐽 (𝑥∗) + O(𝑘−1). Ensuring 𝐽 (𝑥𝑘) ≤ 𝐽 (𝑥∗) + 𝜀
thus requires O(𝜀−1) iterations. By introducing a clever extrapolation, this can be reduced

to O(𝜀−1/2) which is provably optimal; see [Nesterov 1983], [Nesterov 2004, Theorem

2.1.7]. (However, the sequence of iterates is then no longer monotonically decreasing.) The

corresponding iteration is given by
𝑥𝑘+1 = prox𝛾𝑘𝐺

(𝑥𝑘 − 𝛾𝑘∇𝐹 (𝑥𝑘)),

𝑥𝑘+1 = 𝑥𝑘+1 + 1 − 𝜏𝑘
𝜏𝑘+1

(
𝑥𝑘 − 𝑥𝑘+1

)
,
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for the (hardly intuitive) choice
2

𝜏0 = 1, 𝜏𝑘 =
1 +

√︃
1 + 4𝜏2

𝑘−1

2

(→ ∞),

see [Beck & Teboulle 2009, § 4].

One drawback of the explicit splitting is needing to know the Lipschitz constant 𝐿 of ∇𝐹
in order to choose admissible step sizes 𝛾𝑘 . Looking at the proof of Theorem 7.3, we can

see that this is only used to obtain the estimate (7.6). Hence, if the Lipschitz constant is

unknown, we can try to satisfy (7.6) by a line search in each iteration: Start with 𝛾0 > 0

and reduce 𝛾𝑘 (e.g., by halving) until

𝐹 (𝑥𝑘 − 𝛾𝑘𝑇𝛾𝑘 (𝑥𝑘)) ≤ 𝐹 (𝑥𝑘) − 𝛾𝑘
(
∇𝐹 (𝑥𝑘),𝑇𝛾𝑘 (𝑥𝑘)

)
𝑋
+ 𝛾𝑘

2

∥𝑇𝛾𝑘 (𝑥𝑘)∥2

𝑋

(which will be the case for 𝛾𝑘 < 𝐿−1
at the latest). Of course, there’s no free lunch: each

step of the line search requires evaluating both 𝐹 and prox𝛾𝑘𝐺
(although the latter can be

avoided by exchanging gradient and proximal steps, i.e., backward–forward splitting).

7.3 implicit splitting

Even with a line search, the restriction on the step sizes 𝛾𝑘 in explicit splitting remains

unsatisfactory. Such restrictions are not needed in implicit splitting methods (compare

the properties of explicit vs. implicit Euler methods for differential equations). Here, the

proximal point formulation is applied to both subdifferential inclusions in (7.3), which

yields the optimality system {
𝑥 = prox𝛾𝐹 (𝑥 + 𝛾𝑝),
𝑥 = prox𝛾𝐺 (𝑥 − 𝛾𝑝).

To eliminate 𝑝 from these equations, we set 𝑧 := 𝑥 + 𝛾𝑝 and 𝑤̄ := 𝑥 − 𝛾𝑝 . This implies that

𝑧 + 𝑤̄ = 2𝑥 , i.e.,

𝑤̄ = 2𝑥 − 𝑧.
It remains to derive a recursion for 𝑧, which we obtain from the tautology

𝑧 = 𝑧 + (𝑥 − 𝑥).
Replacing two (suitable) occurences of 𝑥 by a new 𝑦 in these four equations and then

applying a fixed-point iteration yields the Douglas–Rachford method

(7.10)


𝑥𝑘+1 = prox𝛾𝐹 (𝑧𝑘),
𝑦𝑘+1 = prox𝛾𝐺 (2𝑥𝑘+1 − 𝑧𝑘),
𝑧𝑘+1 = 𝑧𝑘 + 𝑦𝑘+1 − 𝑥𝑘+1.

2
This choice satisfies the quadratic recursion 𝜏2

𝑘+1
− 𝜏𝑘+1 = 𝜏𝑘 , which cancels the O(𝑘−1) terms in a key

estimate.
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This iteration can be written as a proximal point iteration by introducing suitable block

operators, which with some effort (in showing that these operators are maximally mono-

tone) allows deducing the convergence from Theorem 7.1; see, e.g., [Eckstein & Bertsekas

1992]. Here we will instead consider a variant which has proved extremely successful, in

particular in mathematical imaging, inverse problems, and optimal control.

7.4 primal-dual splitting

Methods of this class were specifically developed to solve problems of the form

min

𝑥∈𝑋
𝐹 (𝑥) +𝐺 (𝐴𝑥)

for 𝐹 : 𝑋 → ℝ and𝐺 : 𝑌 → ℝ proper, convex, and lower semicontinuous, and𝐴 ∈ 𝐿(𝑋,𝑌 ).
Applying Theorem 5.6 and Lemma 5.5 to such a problem yields the Fenchel extremality

conditions

(7.11)

{−𝐴∗𝑦 ∈ 𝜕𝐹 (𝑥),
𝑦 ∈ 𝜕𝐺 (𝐴𝑥),

⇔
{−𝐴∗𝑦 ∈ 𝜕𝐹 (𝑥),

𝐴𝑥 ∈ 𝜕𝐺∗(𝑦),

which can be reformulated using Lemma 6.11 as{
𝑥 = prox𝜏𝐹 (𝑥 − 𝜏𝐴∗𝑦),
𝑦 = prox𝜎𝐺∗ (𝑦 + 𝜎𝐴𝑥),

for arbitrary 𝜎, 𝜏 > 0. This suggests the fixed-point iteration

(7.12)

{
𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐴∗𝑦𝑘),
𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐴𝑥𝑘+1),

(where we have left the step sizes constant for simplicity). We now try to show convergence

by interpreting it as a proximal point method. To that end, we rewrite (7.12) in fully explicit

form to have (𝑥𝑘+1, 𝑦𝑘+1) and (𝑥𝑘 , 𝑦𝑘) on different sides. For the first equation, we use

prox𝜏𝐹 = (Id + 𝜏𝜕𝐹 )−1
to obtain that

𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐴∗𝑦𝑘) ⇔ 𝑥𝑘 − 𝜏𝐴∗𝑦𝑘 ∈ {𝑥𝑘+1} + 𝜏𝜕𝐹 (𝑥𝑘+1)
⇔ 𝜏−1𝑥𝑘 −𝐴∗𝑦𝑘 ∈ {𝜏−1𝑥𝑘+1} + 𝜕𝐹 (𝑥𝑘+1).

Similarly, for the second equation we have

𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐴𝑥𝑘+1) ⇔ 𝜎−1𝑦𝑘 ∈ {𝜎−1𝑦𝑘+1 −𝐴𝑥𝑘+1} + 𝜕𝐺∗(𝑦𝑘+1).

Setting 𝑍 = 𝑋 × 𝑌 , 𝑧 = (𝑥, 𝑦), as well as

𝑀 =

(
𝜏−1

Id −𝐴∗

0 𝜎−1
Id

)
, 𝑇 =

(
𝜕𝐹 𝐴∗

−𝐴 𝜕𝐺∗

)
,
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7 proximal point and splitting methods

we see that (7.12) is equivalent to

𝑀𝑧𝑘 ∈ (𝑀 +𝑇 )𝑧𝑘+1 ⇔ 𝑧𝑘+1 ∈ (𝑀 +𝑇 )−1𝑀𝑧𝑘 .

If 𝑀 were invertible, we could use that 𝑀 = (𝑀−1)−1
to obtain that (𝑀 + 𝑇 )−1𝑀𝑧𝑘 =

(Id +𝑀−1𝑇 )−1𝑧𝑘 ; the iteration would indeed amount to a proximal point method for the

operator𝑀−1𝑇 (which hopefully is maximally monotone).

Unfortunately, we cannot show the desired invertibility in this form. We therefore replace

𝑀 by a self-adjoint operator for which we can show positive definiteness; i.e., we consider

𝑀 =

(
𝜏−1

Id −𝐴∗

−𝐴 𝜎−1
Id

)
,

so that the second step in the iteration becomes

𝜎−1𝑦𝑘 −𝐴𝑥𝑘 ∈ {𝜎−1𝑦𝑘+1 − 2𝐴𝑥𝑘+1} + 𝜕𝐺∗(𝑦𝑘+1) ⇔ 𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐴(2𝑥𝑘+1 − 𝑥𝑘)) .
This yields the primal-dual extragradient method3

(7.13)


𝑥𝑘+1 = prox𝜏𝐹 (𝑥𝑘 − 𝜏𝐴∗𝑦𝑘),
𝑥𝑘+1 = 2𝑥𝑘+1 − 𝑥𝑘 ,
𝑦𝑘+1 = prox𝜎𝐺∗ (𝑦𝑘 + 𝜎𝐴𝑥𝑘+1).

We now show that – under suitable conditions on 𝜎 and 𝜏 – the operator𝑀 is self-adjoint

and positive definite with respect to the inner product

(𝑧1, 𝑧2)𝑍 = (𝑥1, 𝑥2)𝑋 + (𝑦1, 𝑦2)𝑌 for all 𝑧1 = (𝑥1, 𝑦1) ∈ 𝑍, 𝑧2 = (𝑥2, 𝑦2) ∈ 𝑍 .

Lemma 7.4. The operator𝑀 : 𝑍 → 𝑍 is bounded and self-adjoint. If 𝜎𝜏 ∥𝐴∥2

𝐿(𝑋,𝑌 ) < 1, then
𝑀 is uniformly positive definite.

Proof. The definition of 𝑀 directly implies boundedness (since 𝐴 ∈ 𝐿(𝑋,𝑌 ) is bounded)
and self-adjointness. Let now 𝑧 = (𝑥, 𝑦) ∈ 𝑍 be given. Then

(𝑀𝑧, 𝑧)𝑍 =
(
𝜏−1𝑥 −𝐴∗𝑦, 𝑥

)
𝑋
+

(
𝜎−1𝑦 −𝐴𝑥, 𝑦

)
𝑌

= 𝜏−1∥𝑥 ∥2

𝑋 − 2 (𝑥,𝐴∗𝑦)𝑋 + 𝜎−1∥𝑦 ∥2

𝑌

≥ 𝜏−1∥𝑥 ∥2

𝑋 − 2∥𝐴∥𝐿(𝑋,𝑌 ) ∥𝑥 ∥𝑋 ∥𝑦 ∥𝑌 + 𝜎−1∥𝑦 ∥2

𝑌

≥ 𝜏−1∥𝑥 ∥2

𝑋 − ∥𝐴∥𝐿(𝑋,𝑌 )
√
𝜎𝜏 (𝜏−1∥𝑥 ∥2

𝑋 + 𝜎−1∥𝑦 ∥2

𝑌 ) + 𝜎
−1∥𝑦 ∥2

𝑌

= (1 − ∥𝐴∥𝐿(𝑋,𝑌 )
√
𝜎𝜏) (𝜏−1∥𝑥 ∥2

𝑋 + 𝜎−1∥𝑦 ∥2

𝑌 )
≥ 𝐶 (∥𝑥 ∥2

𝑋 + ∥𝑦 ∥2

𝑌 )

for𝐶 := (1− ∥𝐴∥𝐿(𝑋,𝑌 )
√
𝜎𝜏) min{𝜏−1, 𝜎−1} > 0. Hence, (𝑀𝑧, 𝑧)𝑍 ≥ 𝐶 ∥𝑧∥2

𝑍
for all 𝑧 ∈ 𝑍 , and

therefore𝑀 is uniformly positive definite. □
3
This method was introduced in [Chambolle & Pock 2011], which is why it is frequently referred to as the

Chambolle–Pock method. The relation to proximal point methods was first pointed out in [He & Yuan

2012].
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Under these conditions, the operator𝑀 induces an inner product (𝑧1, 𝑧2)𝑀 := (𝑀𝑧1, 𝑧2)𝑍
and, through it, a norm ∥𝑧∥2

𝑀
= (𝑧, 𝑧)𝑀 that satisfies

(7.14) 𝑐1∥𝑧∥𝑍 ≤ ∥𝑧∥𝑀 ≤ 𝑐2∥𝑧∥𝑍 for all 𝑧 ∈ 𝑍,

where 𝑐1 =
√
𝐶 > 0 from the proof of Lemma 7.4 and 𝑐2 := ∥𝑀 ∥𝐿(𝑍,𝑍 ) > 0. From this, we

can deduce continuous invertibility of𝑀 by a standard functional-analytic argument (a

special case of the Lax–Milgram Theorem).

Corollary 7.5. If 𝜎𝜏 ∥𝐴∥2

𝐿(𝑋,𝑌 ) < 1, then𝑀 is continuously invertible, i.e.,𝑀−1 ∈ 𝐿(𝑌,𝑋 ).

Proof. Let 𝑧 ∈ 𝑍 be given. Then (7.14) implies that the mapping 𝑣 ↦→ (𝑧, 𝑣)𝑍 is a bounded

(with respect to ∥ · ∥𝑀 ) linear functional. The Fréchet–Riesz Theorem 1.12 applied to the

Hilbert space (𝑍, (·, ·)𝑀 ) thus yields a unique preimage 𝑧∗ ∈ 𝑍 with

(𝑀𝑧∗, 𝑣)𝑍 = (𝑧∗, 𝑣)𝑀 = (𝑧, 𝑣)𝑍 for all 𝑣 ∈ 𝑍 .

Furthermore, the Riesz mapping𝑀−1
: 𝑧 ↦→ 𝑧∗ is linear. Hence,

𝑐2

1
∥𝑧∗∥2

𝑍 ≤ ∥𝑧∗∥2

𝑀 = (𝑀𝑧∗, 𝑧∗)𝑍 = (𝑧, 𝑧∗)𝑍 ≤ ∥𝑧∥𝑍 ∥𝑧∗∥𝑍 ,

and dividing by 𝑐2

1
∥𝑧∗∥𝑍 yields the claimed boundedness of𝑀−1

. □

Hence 𝑀−1𝑇 is well-defined, i.e., graph𝑀−1𝑇 ≠ ∅. We now show maximal monotonicity

with respect to the inner product (·, ·)𝑀 .

Lemma 7.6. If 𝜎𝜏 ∥𝐴∥2

𝐿(𝑋,𝑌 ) < 1, then𝑀−1𝑇 is maximally monotone on (𝑍, (·, ·)𝑀 ).

Proof. We first show the monotonicity of𝑀−1𝑇 . Let 𝑧 ∈ 𝑍 and 𝑧∗ ∈ 𝑀−1𝑇𝑧, i.e.,𝑀𝑧∗ ∈ 𝑇𝑧.
By definition of𝑇 , we can thus find for any 𝑧 = (𝑥, 𝑦) a 𝜉 ∈ 𝜕𝐹 (𝑥) and an 𝜂 ∈ 𝜕𝐺∗(𝑦) with
𝑀𝑧∗ = (𝜉 +𝐴∗𝑦, 𝜂 −𝐴𝑥). Similarly, for given 𝑧 = (𝑥, 𝑦) ∈ 𝑍 and 𝑧∗ ∈ 𝑀−1𝑇𝑧 we can write

𝑀𝑧∗ = ( ¯𝜉 +𝐴∗𝑦, 𝜂 −𝐴𝑥) for a ¯𝜉 ∈ 𝜕𝐹 (𝑥) and an 𝜂 ∈ 𝜕𝐺∗(𝑦). Hence

(𝑧∗ − 𝑧∗, 𝑧 − 𝑧)𝑀 = (𝑀𝑧∗ −𝑀𝑧∗, 𝑧 − 𝑧)𝑍 =
(
( ¯𝜉 +𝐴∗𝑦) − (𝜉 +𝐴∗𝑦), 𝑥 − 𝑥

)
𝑋

+ ((𝜂 −𝐴𝑥) − (𝜂 −𝐴𝑥), 𝑦 − 𝑦)𝑌
=

(
¯𝜉 − 𝜉, 𝑥 − 𝑥

)
𝑋
+ (𝐴∗(𝑦 − 𝑦), 𝑥 − 𝑥)𝑋

− (𝐴(𝑥 − 𝑥), 𝑦 − 𝑦)𝑌 + (𝜂 − 𝜂, 𝑦 − 𝑦)𝑌
=

(
¯𝜉 − 𝜉, 𝑥 − 𝑥

)
𝑋
+ (𝜂 − 𝜂, 𝑦 − 𝑦)𝑌 ≥ 0

by the monotonicity of subdifferentials.

To show maximal monotonicity, let 𝑧∗, 𝑧 ∈ 𝑍 with

(7.15) (𝑀𝑧∗ −𝑀𝑧∗, 𝑧 − 𝑧)𝑍 = (𝑧∗ − 𝑧∗, 𝑧 − 𝑧)𝑀 ≥ 0 for all (𝑧, 𝑧∗) ∈ graph𝑀−1𝑇,
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7 proximal point and splitting methods

i.e., for all 𝑧 ∈ 𝑍 and𝑀𝑧∗ ∈ 𝑇𝑧. As above, we can write𝑀𝑧∗ = (𝜉 +𝐴∗𝑦, 𝜂 −𝐴𝑥) for some

𝜉 ∈ 𝜕𝐹 (𝑥) and 𝜂 ∈ 𝜕𝐺∗(𝑦). We now set
¯𝜉 := 𝑥∗ −𝐴∗𝑦 and 𝜂 := 𝑦∗ +𝐴𝑥 for𝑀𝑧∗ = (𝑥∗, 𝑦∗)

and 𝑧 = (𝑥, 𝑦). Then𝑀𝑧∗ = ( ¯𝜉 +𝐴∗𝑦, 𝜂 −𝐴𝑥), and (7.15) implies for all (𝑥, 𝑦) ∈ 𝑍 that

0 ≤
(
( ¯𝜉 +𝐴∗𝑦) − (𝜉 +𝐴∗𝑦), 𝑥 − 𝑥

)
𝑋
+ ((𝜂 −𝐴𝑥) − (𝜂 −𝐴𝑥), 𝑦 − 𝑦)𝑌

=
(
¯𝜉 − 𝜉, 𝑥 − 𝑥

)
𝑋
+ (𝜂 − 𝜂, 𝑦 − 𝑦)𝑌 .

In particular, this holds for pairs (𝑥, 𝑦) of the form (𝑥, 𝑦) for arbitrary 𝑥 ∈ 𝑋 or (𝑥, 𝑦) for
arbitrary 𝑦 ∈ 𝑌 , which shows that each inner product on the right-hand side is nonnegative.

Since this by definition of 𝑇𝑧 this holds for any 𝜉 ∈ 𝜕𝐹 (𝑥) and 𝜂 ∈ 𝜕𝐺∗(𝑦), the maximal

monotonicity of subdifferentials now implies that
¯𝜉 ∈ 𝜕𝐹 (𝑥) and 𝜂 ∈ 𝜕𝐺∗(𝑦). Hence

𝑀𝑧∗ = ( ¯𝜉 +𝐴∗𝑦, 𝜂 −𝐴𝑥) ∈ 𝑇𝑧,
i.e., 𝑧∗ ∈ 𝑀−1𝑇𝑧. We conclude that𝑀−1𝑇 is maximally monotone as claimed. □

In sum, we have shown that the primal-dual extragradient method (7.13) is equivalent to

the proximal point method 𝑧𝑘+1 = R𝑀−1𝑇𝑧
𝑘
for the maximally monotone operator 𝑀−1𝑇 ,

and hence its convergence follows from Theorem 7.1 together with the invertibility of𝑀 .

Theorem 7.7. Let 𝐹 : 𝑋 → ℝ, 𝐺 : 𝑌 → ℝ, and 𝐴 ∈ 𝐿(𝑋,𝑌 ) satisfy the assumptions
of Theorem 5.6. If 𝜎𝜏 ∥𝐴∥2

𝐿(𝑋,𝑌 ) < 1, then the sequence {(𝑥𝑘 , 𝑦𝑘)}𝑘∈ℕ generated by (7.13)

converges weakly to some (𝑥, 𝑦) ∈ 𝑋 × 𝑌 satisfying (7.11).

Proof. First, Theorem 5.6 yields the existence of a 𝑧 := (𝑥, 𝑦) satisfying the Fenchel ex-

tremality relations (7.11). By definition of 𝑇 , this is equivalent to 0 ∈ 𝑇𝑧, which by the

invertibility from𝑀 due to Corollary 7.5 holds if and only if 0 ∈ 𝑀−1𝑇𝑧. Hence there exists

a root of𝑀−1𝑇 . By Lemma 7.6,𝑀−1𝑇 is maximally monotone (with respect to (·, ·)𝑀 ) and
hence we can apply Theorem 7.1 to obtain that(

𝑧𝑘 , 𝑀𝑤

)
𝑍
= (𝑧𝑘 ,𝑤)𝑀 → (𝑧,𝑤)𝑀 = (𝑧,𝑀𝑤)𝑍 for all𝑤 ∈ 𝑍,

for some 𝑧 ∈ 𝑍 satisfying 0 ∈ 𝑀−1𝑇𝑧 and hence 0 ∈ 𝑇𝑧. Since𝑀 is invertible and hence in

particular surjective, this implies that (𝑧𝑘 , 𝑤̃)𝑍 → (𝑧, 𝑤̃)𝑍 for all 𝑤̃ := 𝑀𝑤 ∈ 𝑍 , which is

the claimed weak convergence. □

Note that although the iteration is implicit in 𝐹 and𝐺 , it is still explicit in 𝐴; it is therefore

not surprising that step size restrictions based on 𝐴 remain.
4

Finally, we remark that by setting 𝐴 = Id, 𝜏 = 𝛾 , 𝜎 = 𝛾−1
and 𝑧𝑘 = 𝑥𝑘 − 𝛾𝑦𝑘 in (7.13) and

applying Lemma 6.14 (ii), we recover the Douglas–Rachford method (7.10); however, since

in this case 𝜎𝜏 ∥𝐴∥2

𝐿(𝑋,𝑌 ) = 1, we cannot obtain its convergence from Theorem 7.7.

4
Using a proximal point mapping for𝐺 ◦𝐴 would lead to a fully implicit method but involve the inverse𝐴−1

in the corresponding proximal point mapping. It is precisely the point of the primal-dual extragradient

method to avoid having to invert 𝐴, which is often prohibitively expensive if not impossible (e.g., if 𝐴

does not have closed range as in many inverse problems).
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7.5 strong convergence and rates

The central idea of the convergence proofs we have seen so far is to use the iteration step

together with the monotonicity of the set-valued mapping to obtain the boundedness of the

error ∥𝑥𝑘 − 𝑥 ∥𝑋 and thus the weak convergence (at first of a subsequence) of the iterates.

For strong convergence, however, we require additional properties that yield a more direct

relation between the iteration step and the error, which will also allow deriving convergence
rates.

One possibility is the following: A set-valued mapping 𝐻 : 𝑋 ⇒ 𝑋 is called strongly
monotone if there exists a 𝛾 > 0 such that

(7.16)

(
𝑥∗

1
− 𝑥∗

2
, 𝑥1 − 𝑥2

)
𝑋
≥ 𝛾 ∥𝑥1 − 𝑥2∥2

𝑋 for all (𝑥1, 𝑥
∗
1
), (𝑥2, 𝑥

∗
2
) ∈ graph𝐻.

For example, 𝐻 = 𝜕𝐹 for 𝐹 (𝑥) = 1

2
∥𝑥 ∥2

𝑋
is clearly strongly monotone with 𝛾 = 1; more

generally, 𝜕𝐹 is strongly monotone if 𝐹 − 𝛾

2
∥ · ∥2

𝑋
is convex.

To illustrate the general approach, we show strong convergence for the proximal point

method.

Theorem 7.8. Let𝐻 : 𝑋 ⇒ 𝑋 be strongly monotone with𝛾 > 0 and let 𝑥 ∈ 𝑋 satisfy 0 ∈ 𝐻 (𝑥).
Furthermore, let {𝑥𝑘}𝑘∈ℕ be generated via

𝑥𝑘+1 = R𝜏𝑘𝐻 (𝑥𝑘)

for some 𝑥0 ∈ 𝑋 and {𝜏𝑘}𝑘∈ℕ ⊂ (0,∞).

(i) If 𝜏𝑘 ≡ 𝜏 is constant, then 𝑥𝑘 → 𝑥 linearly, i.e., lim𝑘→∞
∥𝑥𝑘+1−𝑥 ∥𝑋
∥𝑥𝑘−𝑥 ∥𝑋

= 𝜇 < 1.

(ii) If 𝜏𝑘 → ∞, then 𝑥𝑘 → 𝑥 superlinearly, i.e., lim𝑘→∞
∥𝑥𝑘+1−𝑥 ∥𝑋
∥𝑥𝑘−𝑥 ∥𝑋

= 0.

Proof. By definition of the resolvent, the iteration step is equivalent to

− 1

𝜏𝑘
(𝑥𝑘+1 − 𝑥𝑘) ∈ 𝐻 (𝑥𝑘+1).

Together with 0 ∈ 𝐻 (𝑥), it thus follows from (7.16) that

−
(
𝑥𝑘+1 − 𝑥𝑘 , 𝑥𝑘+1 − 𝑥

)
𝑋
≥ 𝜏𝑘𝛾 ∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 .

We now apply to the left-hand side the (easily verified) three-point identity

(𝑥 − 𝑦, 𝑥 − 𝑧)𝑋 =
1

2

∥𝑥 − 𝑦 ∥2

𝑋 − 1

2

∥𝑦 − 𝑧∥2

𝑋 + 1

2

∥𝑥 − 𝑧∥2

𝑋 for all 𝑥, 𝑦, 𝑧 ∈ 𝑋
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for 𝑥 = 𝑥𝑘+1
, 𝑦 = 𝑥𝑘 , and 𝑧 = 𝑥 . After rearranging, we obtain

1 + 2𝜏𝑘𝛾

2

∥𝑥𝑘+1 − 𝑥 ∥2

𝑋 + 1

2

∥𝑥𝑘+1 − 𝑥𝑘 ∥2

𝑋 ≤ 1

2

∥𝑥𝑘 − 𝑥 ∥2

𝑋 .

In particular, it follows that

∥𝑥𝑘+1 − 𝑥 ∥2

𝑋

∥𝑥𝑘 − 𝑥 ∥2

𝑋

≤ 1

1 + 2𝜏𝑘𝛾
.

We now make the case distinction:

(i) if 𝜏𝑘 ≡ 𝜏 , then 𝜇 := (1 + 2𝜏𝛾)−1/2 < 1 and hence 𝑥𝑘 → 𝑥 linearly;

(ii) if 𝜏𝑘 → ∞, then (1 + 2𝜏𝑘𝛾)−1/2 → 0 and hence 𝑥𝑘 → 𝑥 superlinearly. □

Similarly, one can show with a bit more effort that explicit splitting for strongly convex 𝐺

converges linearly (but not superlinearly, since 𝜏𝑘 ≤ 𝐿−1
has to remain bounded). For the

primal-dual extragradient method, this is possible as well (with significantly more effort) if

the definition of strong monotonicity and the three-point identity are adapted to norms

and inner products weighted with a “testing operator” that depends on the step sizes and

the desired convergence rate; see [Valkonen 2020].
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8 CLARKE SUBDIFFERENTIALS

We now turn to a concept of generalized derivatives that covers, among others, both Fréchet

derivatives and convex subdifferentials. Again, we start with the general class of functionals

that admit such a derivative; these are the locally Lipschitz continuous functionals. Recall

that 𝐹 : 𝑋 → ℝ is locally Lipschitz continuous in 𝑥 ∈ 𝑋 if there exist a 𝛿 > 0 and an 𝐿 > 0

(which in the following will always denote the local Lipschitz constant of 𝐹 ) such that

|𝐹 (𝑥1) − 𝐹 (𝑥2) | ≤ 𝐿∥𝑥1 − 𝑥2∥𝑋 for all 𝑥1, 𝑥2 ∈ 𝑂𝛿 (𝑥).

We will refer to the 𝑂𝛿 (𝑥) from the definition as the Lipschitz neighborhood of 𝑥 . Note that

in contrast to convexity, this is a purely local condition; on the other hand, we have to

require that 𝐹 is (locally) finite-valued.
1

8.1 definition and basic properties

We proceed as for the convex subdifferential and first define for 𝐹 : 𝑋 → ℝ the generalized
directional derivative in 𝑥 ∈ 𝑋 in direction ℎ ∈ 𝑋 as

𝐹 ◦(𝑥 ;ℎ) := lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

.

Note the difference to the classical directional derivative: We no longer require the existence

of a limit but merely of accumulation points. We will need the following properties.

Lemma 8.1. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous in 𝑥 ∈ 𝑋 . Then the mapping
ℎ ↦→ 𝐹 ◦(𝑥 ;ℎ) is

(i) Lipschitz continuous with constant 𝐿 and satisfies |𝐹 ◦(𝑥 ;ℎ) | ≤ 𝐿∥ℎ∥𝑋 < ∞;

(ii) subadditive, i.e., 𝐹 ◦(𝑥 ;ℎ + 𝑔) ≤ 𝐹 ◦(𝑥 ;ℎ) + 𝐹 ◦(𝑥 ;𝑔) for all ℎ,𝑔 ∈ 𝑋 ;

1
For 𝐹 : 𝑋 → ℝ, this is always the case in the interior of the effective domain. It is also possible to extend

the generalized derivative introduced below to points on the boundary of the effective domain where

𝐹 is finite using an equivalent, more geometrical, construction involving generalized normal cones to

epigraphs; see [Clarke 1990, Definition 2.4.10].
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8 clarke subdifferentials

(iii) positively homogeneous, i.e., 𝐹 ◦(𝑥 ;𝛼ℎ) = (𝛼𝐹 )◦(𝑥 ;ℎ) for all 𝛼 ≥ 0 and ℎ ∈ 𝑋 ;

(iv) reflective, i.e., 𝐹 ◦(𝑥 ;−ℎ) = (−𝐹 )◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 .

Proof. (i): Let ℎ,𝑔 ∈ 𝑋 be arbitrary. The local Lipschitz continuity of 𝐹 implies that

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦) ≤ 𝐹 (𝑦 + 𝑡𝑔) − 𝐹 (𝑦) + 𝑡𝐿∥ℎ − 𝑔∥𝑋

for all 𝑦 sufficiently close to 𝑥 and 𝑡 sufficiently small. Dividing by 𝑡 > 0 and taking the

lim sup then yields that

𝐹 ◦(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;𝑔) + 𝐿∥ℎ − 𝑔∥𝑋 .
Exchanging the roles of ℎ and 𝑔 shows the Lipschitz continuity of 𝐹 ◦(𝑥 ; ·), which also yields
the claimed boundedness since 𝐹 ◦(𝑥 ;𝑔) = 0 for 𝑔 = 0 from the definition.

(ii): The definition of the lim sup and the productive zero immediately yield

𝐹 ◦(𝑥 ;ℎ + 𝑔) = lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 + 𝑡ℎ + 𝑡𝑔) − 𝐹 (𝑦)
𝑡

≤ lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 + 𝑡ℎ + 𝑡𝑔) − 𝐹 (𝑦 + 𝑡𝑔)
𝑡

+ lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 + 𝑡𝑔) − 𝐹 (𝑦)
𝑡

= 𝐹 ◦(𝑥 ;ℎ) + 𝐹 ◦(𝑥 ;𝑔),

since 𝑦 → 𝑥 and 𝑡 → 0 implies that 𝑦 + 𝑡𝑔 → 𝑥 as well.

(iii): The claim is clear for 𝛼 = 0. For 𝛼 > 0, we obain again from the definition that

𝐹 ◦(𝑥 ;𝛼ℎ) = lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 − 𝑡 (𝛼ℎ)) − 𝐹 (𝑦)
𝑡

= lim sup

𝑦→𝑥

𝛼𝑡→0
+

𝛼
𝐹 (𝑦 + (𝛼𝑡)ℎ) − 𝐹 (𝑦)

𝛼𝑡
= (𝛼𝐹 )◦(𝑥 ;ℎ).

(iv): Similarly, we have that

𝐹 ◦(𝑥 ;−ℎ) = lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 − 𝑡ℎ) − 𝐹 (𝑦)
𝑡

= lim sup

𝑤→𝑥
𝑡→0

+

−𝐹 (𝑤 + 𝑡ℎ) − (−𝐹 (𝑤))
𝑡

= (−𝐹 )◦(𝑥 ;ℎ),

since 𝑦 → 𝑥 and 𝑡 → 0 implies that𝑤 := 𝑦 − 𝑡ℎ → 𝑥 as well. □
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8 clarke subdifferentials

In particular, Lemma 8.1 (i–iii) implies that the mapping ℎ ↦→ 𝐹 ◦(𝑥 ;ℎ) is proper, convex,
and lower semicontinuous.

We now define for a locally Lipschitz continuous functional 𝐹 : 𝑋 → ℝ the Clarke
subdifferential in 𝑥 ∈ 𝑋 as

(8.1) 𝜕𝐶𝐹 (𝑥) := {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } .

The definition together with Lemma 8.1 (i) directly implies the following properties.

Corollary 8.2. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous and 𝑥 ∈ 𝑋 . Then 𝜕𝐶𝐹 (𝑥) is
convex, weakly-∗ closed, and bounded. Specifically, if 𝐹 is Lipschitz near 𝑥 with constant 𝐿,
then 𝜕𝐶𝐹 (𝑥) ⊂ 𝐾𝐿 (0).

Furthermore, we have the following useful closedness property.

Lemma 8.3. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous in 𝑥 ∈ 𝑋 . If {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 is
a sequence with 𝑥𝑛 → 𝑥 and if 𝑥∗𝑛 ∈ 𝜕𝐶𝐹 (𝑥𝑛) for all 𝑛 ∈ ℕ with 𝑥∗𝑛 ⇀∗ 𝑥∗ in 𝑋 ∗, then
𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥).

Proof. Let ℎ ∈ 𝑋 be arbitrary. By assumption, we then have that ⟨𝑥∗𝑛, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥𝑛;ℎ) for
all 𝑛 ∈ ℕ. The weak-∗ convergence of {𝑥∗𝑛}𝑛∈ℕ then implies that

⟨𝑥∗, ℎ⟩𝑋 = lim

𝑛→∞
⟨𝑥∗𝑛, ℎ⟩𝑋 ≤ lim sup

𝑛→∞
𝐹 ◦(𝑥𝑛;ℎ).

Hence we are finished if we can show that lim sup𝑛→∞ 𝐹
◦(𝑥𝑛;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ) (since then

𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥) by definition).

For this,we use that by definition of 𝐹 ◦(𝑥𝑛;ℎ), there exist sequences {𝑦𝑛,𝑚}𝑚∈ℕ and {𝑡𝑛,𝑚}𝑚∈ℕ
with 𝑦𝑛,𝑚 → 𝑥𝑛 and 𝑡𝑛,𝑚 → 0 for𝑚 → ∞ realizing the lim sup for each 𝑥𝑛. Hence, for all

𝑛 ∈ ℕ we can find a 𝑦𝑛 := 𝑦𝑛,𝑚(𝑛) and a 𝑡𝑛 := 𝑡𝑛,𝑚(𝑛) such that ∥𝑦𝑛 − 𝑥𝑛∥𝑋 + 𝑡𝑛 < 𝑛−1
(and

hence in particular 𝑦𝑛 → 𝑥 and 𝑡𝑛 → 0) as well as

𝐹 ◦(𝑥𝑛;ℎ) − 1

𝑛
≤ 𝐹 (𝑦𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑦𝑛)

𝑡𝑛

for 𝑛 sufficiently large. Taking the lim sup for 𝑛 → ∞ on both sides yields the desired

inequality. □

Again, the construction immediately yields a Fermat principle.
2

2
Similarly to Theorem 4.3, we do not need to require Lipschitz continuity of 𝐹 – the Fermat principle for

the Clarke subdifferential characterizes (among others) any local minimizer. However, if we want to use

this principle to verify that a given 𝑥 ∈ 𝑋 is indeed a (candidate for) a minimizer, we need a suitable

characterization of the subdifferential – and this is only possible for (certain) locally Lipschitz continuous

functionals.
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8 clarke subdifferentials

Theorem 8.4. If 𝐹 : 𝑋 → ℝ has a local minimum in 𝑥 , then 0 ∈ 𝜕𝐶𝐹 (𝑥).

Proof. If 𝑥 ∈ 𝑋 is a local minimizer of 𝐹 , then 𝐹 (𝑥) ≤ 𝐹 (𝑥 + 𝑡ℎ) for all ℎ ∈ 𝑋 and 𝑡 > 0

sufficiently small (since the topological interior is always included in the algebraic interior).

But this implies that

⟨0, ℎ⟩𝑋 = 0 ≤ lim inf

𝑡→0
+

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

≤ lim sup

𝑡→0
+

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

≤ 𝐹 ◦(𝑥 ;ℎ)

and hence 0 ∈ 𝜕𝐶𝐹 (𝑥) by definition. □

Note that 𝐹 is not assumed to be convex, and hence the condition is in general not sufficient

(consider, e.g., 𝑓 (𝑡) = −|𝑡 |).

Next, we show that the Clarke subdifferential is indeed a generalization of the derivative

concepts we’ve studied so far.

Theorem 8.5. Let 𝐹 : 𝑋 → ℝ be continuously Fréchet differentiable in a neighborhood 𝑈 of
𝑥 ∈ 𝑋 . Then, 𝜕𝐶𝐹 (𝑥) = {𝐹 ′(𝑥)}.

Proof. First we note that the assumption implies local Lipschitz continuity of 𝐹 : Since

𝐹 ′ : 𝑋 → 𝑋 ∗
is continuous in𝑈 , there exists a 𝛿 > 0 with ∥𝐹 ′(𝑧) − 𝐹 ′(𝑥)∥𝑋 ∗ ≤ 1 and hence

∥𝐹 ′(𝑧)∥𝑋 ∗ ≤ 1 + ∥𝐹 ′(𝑥)∥𝑋 ∗ for all 𝑧 ∈ 𝐾𝛿 (𝑥) ⊂ 𝑈 . For any 𝑥1, 𝑥2 ∈ 𝐾𝛿 (𝑥) we also have

𝑥2 + 𝑡 (𝑥1 − 𝑥2) ∈ 𝐾𝛿 (𝑥) for all 𝑡 ∈ [0, 1] (since balls in normed vector spaces are convex),

and hence Theorem 2.6 implies that

|𝐹 (𝑥1) − 𝐹 (𝑥2) | ≤
∫

1

0

∥𝐹 ′(𝑥2 + 𝑡 (𝑥1 − 𝑥2))∥𝑋 ∗𝑡 ∥𝑥1 − 𝑥2∥𝑋 𝑑𝑡

≤ 1 + ∥𝐹 ′(𝑥)∥𝑋 ∗

2

∥𝑥1 − 𝑥2∥𝑋 .

We now show that 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥)ℎ for all ℎ ∈ 𝑋 . Take again sequences {𝑥𝑛}𝑛∈ℕ and

{𝑡𝑛}𝑛∈ℕ with 𝑥𝑛 → 𝑥 and 𝑡𝑛 → 0
+
realizing the lim sup. Applying again the mean value

Theorem 2.6 and using the continuity of 𝐹 ′ yields for any ℎ ∈ 𝑋 that

𝐹 ◦(𝑥 ;ℎ) = lim

𝑛→∞
𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)

𝑡𝑛

= lim

𝑛→∞

∫
1

0

1

𝑡𝑛
⟨𝐹 ′(𝑥𝑛 + 𝑡 (𝑡𝑛ℎ)), 𝑡𝑛ℎ⟩𝑋 𝑑𝑡

= ⟨𝐹 ′(𝑥), ℎ⟩𝑋

since the integrand converges uniformly in 𝑡 ∈ [0, 1] to ⟨𝐹 ′(𝑥), ℎ⟩𝑋 . Hence by definition,

𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥) if and only if ⟨𝑥∗, ℎ⟩𝑋 ≤ ⟨𝐹 ′(𝑥), ℎ⟩𝑋 for all ℎ ∈ 𝑋 , which is only possible for

𝑥∗ = 𝐹 ′(𝑥). □
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However, if 𝐹 is merely Fréchet differentiable, we only have that 𝐹 ′(𝑥) ∈ 𝜕𝐶𝐹 (𝑥).

Theorem 8.6. Let 𝐹 : 𝑋 → ℝ be convex and lower semicontinuous. Then, 𝜕𝐶𝐹 (𝑥) = 𝜕𝐹 (𝑥) for
all 𝑥 ∈ 𝑋 .

Proof. Since 𝐹 is finite-valued, (dom 𝐹 )𝑜 = 𝑋 , and hence 𝐹 is local Lipschitz continuous

in every 𝑥 ∈ 𝑋 by Theorem 3.12. We now show that 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋 ,

which together with the definition (4.1) of the convex subdifferential (which is equivalent

to definition (3.1) by Lemma 4.2) yields the claim. First, we always have that

𝐹 ′(𝑥 ;ℎ) = lim

𝑡→0
+

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

≤ lim sup

𝑦→𝑥

𝑡→0
+

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

= 𝐹 ◦(𝑥 ;ℎ).

To show the reverse inequality, let 𝛿 > 0 be arbitrary. Since the difference quotient of

convex functionals is increasing by Lemma 4.1 (i), we obtain that

𝐹 ◦(𝑥 ;ℎ) = lim

𝜀→0
+

sup

𝑦∈𝐾𝛿𝜀 (𝑥)
sup

0<𝑡<𝜀

𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦)
𝑡

≤ lim

𝜀→0
+

sup

𝑦∈𝐾𝛿𝜀 (𝑥)

𝐹 (𝑦 + 𝜀ℎ) − 𝐹 (𝑦)
𝜀

≤ lim

𝜀→0
+

𝐹 (𝑥 + 𝜀ℎ) − 𝐹 (𝑥)
𝜀

+ 2𝐿𝛿

= 𝐹 ′(𝑥 ;ℎ) + 2𝐿𝛿,

where the last inequality follows by adding two productive zeros and using the local

Lipschitz continuity in 𝑥 . Since 𝛿 > 0 was arbitrary, this implies that 𝐹 ◦(𝑥 ;ℎ) ≤ 𝐹 ′(𝑥 ;ℎ),
and the claim follows. □

A locally Lipschitz continuous functional 𝐹 : 𝑋 → ℝ with 𝐹 ◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) for all ℎ ∈ 𝑋
is called regular in 𝑥 ∈ 𝑋 . We have just shown that every continuously differentiable and

every convex and lower semicontinuous functional is regular; intuitively, a function is thus

regular in any points in which it is either differentiable or has at most a “convex kink”.

Finally, similarly to Theorem 4.6 one can show the following pointwise characterization of

the Clarke subdifferential of integral functionals with Lipschitz continuous integrands. We

again assume that Ω ⊂ ℝ𝑑
is open and bounded.

Theorem 8.7. Let 𝑓 : ℝ → ℝ be Lipschitz continuous and 𝐹 : 𝐿𝑝 (Ω) → ℝ with 1 ≤ 𝑝 < ∞
as in Lemma 3.6. Then we have for all 𝑢 ∈ 𝐿𝑝 (Ω) with 𝑞 =

𝑝

𝑝−1
(where 𝑞 = ∞ for 𝑝 = 1) that

𝜕𝐶𝐹 (𝑢) ⊂ {𝑢∗ ∈ 𝐿𝑞 (Ω) : 𝑢∗(𝑥) ∈ 𝜕𝐶 𝑓 (𝑢 (𝑥)) for almost every 𝑥 ∈ Ω} .

If 𝑓 is regular at 𝑢 (𝑥) for almost every 𝑥 ∈ Ω, then 𝐹 is regular at 𝑢, and equality holds.
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Proof. First, by the properties of the Lebesgue integral and the Lipschitz continuity of 𝑓 ,

we have for any 𝑢, 𝑣 ∈ 𝐿𝑝 (Ω) that

|𝐹 (𝑢) − 𝐹 (𝑣) | ≤
∫
Ω
|𝑓 (𝑢 (𝑥)) − 𝑓 (𝑣 (𝑥)) | 𝑑𝑥 ≤ 𝐿

∫
Ω
|𝑢 (𝑥) − 𝑣 (𝑥) | 𝑑𝑥 ≤ 𝐿𝐶𝑝 ∥𝑢 − 𝑣 ∥𝐿𝑝 ,

where 𝐿 is the Lipschitz constant of 𝑓 and𝐶𝑝 the constant from the continuous embedding

𝐿𝑝 (Ω) ↩→ 𝐿1(Ω) for 1 ≤ 𝑝 ≤ ∞. Hence 𝐹 : 𝐿𝑝 (Ω) → ℝ is Lipschitz continuous and

therefore finite-valued as well.

Let now 𝜉 ∈ 𝜕𝐶𝐹 (𝑢) ⊂ 𝐿𝑝 (Ω)∗ be given and ℎ ∈ 𝐿𝑝 (Ω) be arbitrary. By definition, we thus

have

(8.2) ⟨𝜉, ℎ⟩𝐿𝑝 ≤ 𝐹 ◦(𝑢;ℎ) = lim sup

𝑣→𝑢
𝑡→0

𝐹 (𝑣 + 𝑡ℎ) − 𝐹 (𝑣)
𝑡

≤
∫
Ω

lim sup

𝑣→𝑢
𝑡→0

𝑓 (𝑣 (𝑥) + 𝑡ℎ(𝑥)) − 𝑓 (𝑣 (𝑥))
𝑡

𝑑𝑥

≤
∫
Ω

lim sup

𝑣𝑥→𝑢 (𝑥)
𝑡𝑥→0

𝑓 (𝑣𝑥 + 𝑡𝑥ℎ(𝑥)) − 𝑓 (𝑣𝑥 )
𝑡𝑥

𝑑𝑥

=

∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥,

where we were able to use the Reverse Fatou Lemma to exchange the lim sup with the

integral in the first inequality since the integrand is bounded from above by the integrable

function 𝐿 |ℎ | due to Lemma 8.1 (i); the second inequality follows by bounding for almost

every 𝑥 ∈ Ω the (pointwise) limit over the sequences realizing the lim sup in the second

line by the lim sup over all admissible sequences.

In order to interpret (8.2) pointwise, we use that Lemma 8.1 (i) together with the (global)

Lipschitz continuity of 𝑓 implies that the function 𝑥 ↦→ 𝑓 ◦(𝑢 (𝑥); 𝑡) is integrable for any
𝑡 ∈ ℝ. We can thus argue exactly as in the proof of Theorem 4.6: Let 𝑡 ∈ ℝ be arbitrary

and 𝐴 ⊂ Ω be an arbitrary measurable subset. Setting

ℎ(𝑥) =
{
𝑡 if 𝑥 ∈ 𝐴,
0 if 𝑥 ∉ 𝐴,

(so that ℎ ∈ 𝐿∞(Ω) ⊂ 𝐿𝑝 (Ω)) and using 𝑓 ◦(𝑢 (𝑥); 0) = 0, we obtain from (8.2) together with

the representation of 𝜉 ∈ 𝐿𝑝 (Ω)∗ via some 𝑢∗ ∈ 𝐿𝑞 (Ω) that∫
𝐴

𝑢∗(𝑥)𝑡 𝑑𝑥 = ⟨𝜉, ℎ⟩𝐿𝑝 ≤
∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥 =

∫
𝐴

𝑓 ◦(𝑢 (𝑥); 𝑡) 𝑑𝑥.

Since 𝐴 was arbitrary, this implies that

𝑢∗(𝑥)𝑡 ≤ 𝑓 ◦(𝑢 (𝑥); 𝑡) for almost every 𝑥 ∈ Ω.
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Since 𝑡 ∈ ℝ was arbitrary, we obtain 𝑢∗(𝑥) ∈ 𝜕𝐶 𝑓 (𝑢 (𝑥)) almost everywhere.

It remains to show the remaining assertions when 𝑓 is regular. In this case, it follows from

(8.2) that for any ℎ ∈ 𝐿𝑝 (Ω),

(8.3) 𝐹 ◦(𝑢;ℎ) ≤
∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥 =

∫
Ω
𝑓 ′(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥

≤ lim

𝑡→0

𝐹 (𝑢 + 𝑡ℎ) − 𝐹 (𝑢)
𝑡

= 𝐹 ′(𝑢;ℎ) ≤ 𝐹 ◦(𝑢;ℎ),

where the second inequality is obtained by applying Fatou’s Lemma, this time appealing

to the integrable lower bound −𝐿 |ℎ(𝑥) |. This shows that 𝐹 ′(𝑢;ℎ) = 𝐹 ◦(𝑢;ℎ) and hence

that 𝐹 is regular. We further obtain for any 𝑢∗ ∈ 𝐿𝑞 (Ω) with 𝑢∗(𝑥) ∈ 𝜕𝐶 𝑓 (𝑢 (𝑥)) almost

everywhere and any ℎ ∈ 𝐿𝑝 (Ω), that

⟨𝑢∗, ℎ⟩𝐿𝑝 =
∫
Ω
𝑢∗(𝑥)ℎ(𝑥) 𝑑𝑥 ≤

∫
Ω
𝑓 ◦(𝑢 (𝑥);ℎ(𝑥)) 𝑑𝑥 ≤ 𝐹 ◦(𝑢,ℎ),

where we have used (8.3) in the last inequality. Since ℎ ∈ 𝐿𝑝 (Ω) was arbitrary, this implies

that 𝑢∗ ∈ 𝜕𝐶𝐹 (𝑢). □

Under additional assumptions similar to those of Theorem 2.10 and with more technical

arguments, this result can be extended to spatially varying integrands 𝑓 : Ω ×ℝ → ℝ; see,

e.g., [Clarke 1990, Theorem 2.7.5].

8.2 calculus rules

We now turn to calculus rules. The first one still follows directly from the definition.

Theorem 8.8. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous in 𝑥 ∈ 𝑋 and 𝛼 ∈ ℝ. Then,

𝜕𝐶 (𝛼𝐹 ) (𝑥) = 𝛼𝜕𝐶 (𝐹 ) (𝑥).

Proof. First, 𝛼𝐹 is clearly locally Lipschitz continuous for any 𝛼 ∈ ℝ. If 𝛼 = 0, both sides of

the claimed equality are zero (which is easiest seen from Theorem 8.5). If 𝛼 > 0, we have

that (𝛼𝐹 )◦(𝑥 ;ℎ) = 𝛼𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 from the definition. Hence,

𝛼𝜕𝐶𝐹 (𝑥) = {𝛼𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }

= {𝛼𝑥∗ ∈ 𝑋 ∗
: ⟨𝛼𝑥∗, ℎ⟩𝑋 ≤ 𝛼𝐹 ◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }

= {𝑦∗ ∈ 𝑋 ∗
: ⟨𝑦∗, ℎ⟩𝑋 ≤ (𝛼𝐹 )◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }

= 𝜕𝐶 (𝛼𝐹 ) (𝑥).
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To conclude the proof, it suffices to show the claim for𝛼 = −1. For that,we use Lemma 8.1 (iv)

to obtain that

𝜕𝐶 (−𝐹 ) (𝑥) = {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, ℎ⟩𝑋 ≤ (−𝐹 )◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 }

= {𝑥∗ ∈ 𝑋 ∗
: ⟨−𝑥∗,−ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;−ℎ) for all ℎ ∈ 𝑋 }

= {−𝑦∗ ∈ 𝑋 ∗
: ⟨𝑦∗, 𝑔⟩𝑋 ≤ 𝐹 ◦(𝑥 ;𝑔) for all 𝑔 ∈ 𝑋 }

= −𝜕𝐶 (𝐹 ) (𝑥). □

Corollary 8.9. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous in 𝑥 ∈ 𝑋 . If 𝐹 has a local
maximum in 𝑥 , then 0 ∈ 𝜕𝐶𝐹 (𝑥).

Proof. If 𝑥 is a local maximizer of 𝐹 , it is a local minimizer of −𝐹 . Hence, Theorem 8.4

implies that

0 ∈ 𝜕𝐶 (−𝐹 ) (𝑥) = −𝜕𝐶𝐹 (𝑥),
i.e., 0 = −0 ∈ 𝜕𝐶𝐹 (𝑥). □

support functionals

The remaining rules are again significantly more involved. As in the previous proofs, a

key step is to relate different sets of the form (8.1), for which the following lemmas will be

helpful.

Lemma 8.10. Let 𝑆 : 𝑋 → ℝ be positively homogeneous, subadditive, and lower semicontinu-
ous, and let

𝐴 = {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, 𝑥⟩𝑋 ≤ 𝑆 (𝑥) for all 𝑥 ∈ 𝑋 } .

Then

(8.4) 𝑆 (𝑥) = sup

𝑥∗∈𝐴
⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Proof. By definition of 𝐴, the inequality ⟨𝑥∗, 𝑥⟩𝑋 − 𝑆 (𝑥) ≤ 0 holds for all 𝑥 ∈ 𝑋 if and only

if 𝑥∗ ∈ 𝐴. Thus a case distinction as in Example 5.2 (iii) using the positive homogeneity of

𝑆 (which in particular implies that 𝑆 (0) = 0) shows that

𝑆∗(𝑥∗) = sup

𝑥∈𝑋
⟨𝑥∗, 𝑥⟩𝑋 − 𝑆 (𝑥) =

{
0 𝑥∗ ∈ 𝐴,
∞ 𝑥∗ ∉ 𝐴,

i.e., 𝑆∗ = 𝛿𝐴. Furthermore, by assumption 𝑆 is also subadditive and hence convex as well as

lower semicontinuous; it is also proper. Theorem 5.1 thus yields

□(8.5) 𝑆 (𝑥) = 𝑆∗∗(𝑥) = (𝛿𝐴)∗(𝑥) = sup

𝑥∗∈𝐴
⟨𝑥∗, 𝑥⟩𝑋 .
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The right-hand side of (8.4) is called the support functional of 𝐴. Note that (8.5) implies

that any set of the form 𝐴 is nonempty since the supremum over the empty set is −∞ and

𝑆 was assumed to be real-valued.

Lemma 8.11. Let 𝐴, 𝐵 ⊂ 𝑋 ∗ be nonempty, convex, and weakly-∗ closed. Then 𝐴 ⊂ 𝐵 if and
only if

(8.6) sup

𝑥∗∈𝐴
⟨𝑥∗, 𝑥⟩𝑋 ≤ sup

𝑥∗∈𝐵
⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Proof. If 𝐴 ⊂ 𝐵, then the right-hand side of (8.6) is obviously not less than the left-hand

side. Conversely, assume that there exists an 𝑥∗ ∈ 𝐴 with 𝑥∗ ∉ 𝐵. By the assumptions on 𝐴

and 𝐵, we then obtain from Theorem 1.11 an 𝑥 ∈ 𝑋 and a 𝜆 ∈ ℝ with

⟨𝑧∗, 𝑥⟩𝑋 ≤ 𝜆 < ⟨𝑥∗, 𝑥⟩𝑋 for all 𝑧∗ ∈ 𝐵.

Taking the supremum over all 𝑧∗ ∈ 𝐵 and estimating the right-hand side by the supremum

over all 𝑥∗ ∈ 𝐴 then yields that

sup

𝑧∗∈𝐵
⟨𝑧∗, 𝑥⟩𝑋 < sup

𝑥∗∈𝐴
⟨𝑥∗, 𝑥⟩𝑋 .

Hence (8.6) is violated, and the claim follows by contraposition. □

Corollary 8.12. Let 𝐴, 𝐵 ⊂ 𝑋 ∗ be nonempty, convex, and weakly-∗ closed. Then 𝐴 = 𝐵 if and
only if

(8.7) sup

𝑥∗∈𝐴
⟨𝑥∗, 𝑥⟩𝑋 = sup

𝑥∗∈𝐵
⟨𝑥∗, 𝑥⟩𝑋 for all 𝑥 ∈ 𝑋 .

Proof. Again, the claim is obvious if 𝐴 = 𝐵. Conversely, if (8.7) holds, then in particular

(8.6) holds, and we obtain from Lemma 8.11 that 𝐴 ⊂ 𝐵. Exchanging the roles of 𝐴 and 𝐵

now yields the claim. □

Since generalized directional derivatives are real-valued,Lemma 8.10 togetherwith Lemma 8.1

directly yields the following useful representation.

Corollary 8.13. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous and 𝑥 ∈ 𝑋 . Then

𝐹 ◦(𝑥 ;ℎ) = sup

𝑥∗∈𝜕𝐶𝐹 (𝑥)
⟨𝑥∗, ℎ⟩𝑋 for all ℎ ∈ 𝑋 .

In particular, 𝜕𝐶𝐹 (𝑥) is nonempty.
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With its help, we can finally show the promised nonemptiness of the convex subdifferen-

tial.

Corollary 8.14. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous, and𝑥 ∈ (dom 𝐹 )𝑜 .
Then, 𝜕𝐹 (𝑥) is nonempty, convex, weakly-∗ closed, and bounded.

Proof. Since 𝑥 ∈ (dom 𝐹 )𝑜 , Theorem 8.6 shows that 𝜕𝐹 (𝑥) = 𝜕𝐶𝐹 (𝑥) ≠ ∅ by Corollary 8.13.

The remaining properties follow similarly from Corollary 8.2. □

sum rule

We now use these results to prove a sum rule.

Theorem 8.15. Let 𝐹,𝐺 : 𝑋 → ℝ be locally Lipschitz continuous in 𝑥 ∈ 𝑋 . Then

𝜕𝐶 (𝐹 +𝐺) (𝑥) ⊂ 𝜕𝐶𝐹 (𝑥) + 𝜕𝐶𝐺 (𝑥) .

If 𝐹 and 𝐺 are regular in 𝑥 , then 𝐹 +𝐺 is regular in 𝑥 and equality holds.

Proof. It is clear that 𝐹 + 𝐺 is locally Lipschitz continuous in 𝑥 . Furthermore, from the

properties of the lim sup we always have for all ℎ ∈ 𝑋 that

(8.8) (𝐹 +𝐺)◦(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ).

If 𝐹 and 𝐺 are regular in 𝑥 , the calculus of limits yields that

𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ) = 𝐹 ′(𝑥 ;ℎ) +𝐺′(𝑥 ;ℎ) = (𝐹 +𝐺)′(𝑥 ;ℎ) ≤ (𝐹 +𝐺)◦(𝑥 ;ℎ),

which implies that (𝐹 +𝐺)◦(𝑥 ;ℎ) = (𝐹 +𝐺)′(𝑥 ;ℎ), i.e., 𝐹 +𝐺 is regular.

By the definition of the Clarke subdifferential, it follows from (8.8)

𝜕𝐶 (𝐹 +𝐺) (𝑥) ⊂ {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ) for all ℎ ∈ 𝑋 } =: 𝐴

(with equality if 𝐹 and 𝐺 are regular); it thus remains to show that 𝐴 = 𝜕𝐶𝐹 (𝑥) + 𝜕𝐶𝐺 (𝑥).
For this, we use that 𝜕𝐶𝐹 (𝑥) and 𝜕𝐶𝐺 (𝑥) are convex and weakly-∗ closed by Corollary 8.2

and nonempty by Corollary 8.13, and hence so is their sum since both sets are bounded.

Furthermore, as shown in Lemma 8.1, generalized directional derivatives and hence their

sums are real-valued, positively homogeneous, convex, and lower semicontinuous. We

thus obtain from Lemma 8.10 for all ℎ ∈ 𝑋 that

sup

𝑥∗∈𝜕𝐶𝐹 (𝑥)+𝜕𝐶𝐺 (𝑥)
⟨𝑥∗, ℎ⟩𝑋 = sup

𝑥∗
1
∈𝜕𝐶𝐹 (𝑥)

⟨𝑥∗
1
, ℎ⟩𝑋 + sup

𝑥∗
2
∈𝜕𝐶𝐺 (𝑥)

⟨𝑥∗
2
, ℎ⟩𝑋

= 𝐹 ◦(𝑥 ;ℎ) +𝐺◦(𝑥 ;ℎ) = sup

𝑥∗∈𝐴
⟨𝑥∗, ℎ⟩𝑋 .

The claimed equality of 𝐴 (which is nonempty, convex, and weakly-∗ closed as well) and

the sum of the subdifferentials now follows from Corollary 8.12. □
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Note the differences to the convex sum rule: The generic inclusion is now in the other

direction; furthermore, both functionals have to be regular, and in exactly the point where

the sum rule is applied. By induction, one obtains from this sum rule for an arbitrary

number of functionals (which all have to be regular).

chain rule

To prove a chain rule, we need the following “nonsmooth” mean value theorem due to

Lebourg.

Theorem 8.16. Let 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous near 𝑥 ∈ 𝑋 and 𝑥 be in the
Lipschitz neighborhood of 𝑥 . Then there exists a 𝜆 ∈ (0, 1) and an 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥 + 𝜆(𝑥 − 𝑥))
such that

𝐹 (𝑥) − 𝐹 (𝑥) = ⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 .

Proof. Define𝜓,𝜑 : [0, 1] → ℝ as

𝜓 (𝜆) := 𝐹 (𝑥 + 𝜆(𝑥 − 𝑥)), 𝜑 (𝜆) := 𝜓 (𝜆) + 𝜆(𝐹 (𝑥) − 𝐹 (𝑥)) .

By the assumptions on 𝐹 and 𝑥 , both𝜓 and 𝜑 are Lipschitz continuous. In addition, 𝜑 (0) =
𝐹 (𝑥) = 𝜑 (1), and hence 𝜑 has a local minimum or maximum in an interior point

¯𝜆 ∈ (0, 1).
From the Fermat principle Theorem 8.4 or Corollary 8.9, respectively, together with the

sum rule from Theorem 8.15 and the characterization of the subdifferential of the second

term from Theorem 8.5, we thus obtain that

0 ∈ 𝜕𝐶𝜑 ( ¯𝜆) ⊂ 𝜕𝐶𝜓 ( ¯𝜆) + {𝐹 (𝑥) − 𝐹 (𝑥)}.

Hence we are finished if we can show for 𝑥 ¯𝜆 := 𝑥 + ¯𝜆(𝑥 − 𝑥) that

(8.9) 𝜕𝐶𝜓 ( ¯𝜆) ⊂
{
⟨𝑥∗, 𝑥 − 𝑥⟩𝑋 : 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥 ¯𝜆)

}
=: 𝐴.

For this purpose, consider for arbitrary 𝑠 ∈ ℝ the generalized directional derivative

𝜓 ◦( ¯𝜆; 𝑠) = lim sup

𝜆→ ¯𝜆
𝑡→0

𝜓 (𝜆 + 𝑡𝑠) −𝜓 (𝜆)
𝑡

= lim sup

𝜆→ ¯𝜆
𝑡→0

𝐹 (𝑥 + (𝜆 + 𝑡𝑠) (𝑥 − 𝑥)) − 𝐹 (𝑥 + 𝜆(𝑥 − 𝑥))
𝑡

≤ lim sup

𝑧→𝑥 ¯𝜆
𝑡→0

𝐹 (𝑧 + 𝑡𝑠 (𝑥 − 𝑥)) − 𝐹 (𝑧)
𝑡

= 𝐹 ◦(𝑥 ¯𝜆; 𝑠 (𝑥 − 𝑥)),
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where the inequality follows from considering arbitrary sequences 𝑧 → 𝑥 ¯𝜆 (instead of

special sequences of the form 𝑧𝑛 = 𝑥 + 𝜆𝑛 (𝑥 − 𝑥)) in the last lim sup. Again, the definition

of the Clarke subdifferential thus implies that

(8.10) 𝜕𝐶𝜓 ( ¯𝜆) ⊂
{
𝑡∗ ∈ ℝ : 𝑡∗𝑠 ≤ 𝐹 ◦(𝑥 ¯𝜆; 𝑠 (𝑥 − 𝑥)) for all 𝑠 ∈ ℝ

}
=: 𝐵.

It remains to show that the nonempty, convex, and weakly-∗ closed sets 𝐴 and 𝐵 from (8.9)

and (8.10) coincide. But this follows again from Lemma 8.10 and Corollary 8.12, since for

all 𝑠 ∈ ℝ we have that

sup

𝑡∗∈𝐴
𝑡∗𝑠 = sup

𝑥∗∈𝜕𝐶𝐹 (𝑥 ¯𝜆)
⟨𝑥∗, 𝑠 (𝑥 − 𝑥)⟩𝑋 = 𝐹 ◦(𝑥 ¯𝜆; 𝑠 (𝑥 − 𝑥)) = sup

𝑡∗∈𝐵
𝑡∗𝑠 . □

We also need the following generalization of the argument in Theorem 8.5.

Lemma 8.17. Let 𝑋,𝑌 be Banach spaces and 𝐹 : 𝑋 → 𝑌 be continuously Fréchet differentiable
at 𝑥 ∈ 𝑋 . Let {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 be a sequence with 𝑥𝑛 → 𝑥 and {𝑡𝑛}𝑛∈ℕ ⊂ (0,∞) be a sequence
with 𝑡𝑛 → 0. Then for any ℎ ∈ 𝑋 ,

lim

𝑛→∞
𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)

𝑡𝑛
= 𝐹 ′(𝑥)ℎ.

Proof. Let ℎ ∈ 𝑋 be arbitrary. By the Hahn–Banach extension Theorem 1.4, for every 𝑛 ∈ ℕ

there exists a 𝑦∗𝑛 ∈ 𝑌 ∗
with ∥𝑦∗𝑛 ∥𝑌 ∗ = 1 and

∥𝑡−1

𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) − 𝐹 ′(𝑥)ℎ∥𝑌 = ⟨𝑦∗𝑛, 𝑡−1

𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) − 𝐹 ′(𝑥)ℎ⟩𝑌 .

Applying now the classical mean value theorem to the scalar functions

𝑓𝑛 : [0, 1] → ℝ, 𝑓𝑛 (𝑠) = ⟨𝑦∗𝑛, 𝐹 (𝑥𝑛 + 𝑠𝑡𝑛ℎ)⟩𝑌 ,

we obtain similarly to the proof of Theorem 2.6 for all 𝑛 ∈ ℕ that

∥𝑡−1

𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) − 𝐹 ′(𝑥)ℎ∥𝑌 = 𝑡−1

𝑛

∫
1

0

⟨𝑦∗𝑛, 𝐹 ′(𝑥𝑛 + 𝑠𝑡𝑛ℎ)𝑡𝑛ℎ⟩𝑌 𝑑𝑠 − ⟨𝑦∗𝑛, 𝐹 ′(𝑥)ℎ⟩𝑌

=

∫
1

0

⟨𝑦∗𝑛, [𝐹 ′(𝑥𝑛 + 𝑠𝑡𝑛ℎ) − 𝐹 ′(𝑥)]ℎ⟩𝑌 𝑑𝑠

≤
∫

1

0

∥𝐹 ′(𝑥𝑛 + 𝑠𝑡𝑛ℎ) − 𝐹 ′(𝑥))∥𝐿(𝑋 ;𝑌 ) 𝑑𝑠 ∥ℎ∥𝑋 ,

where we have used (1.1) together with ∥𝑦∗𝑛 ∥𝑌 ∗ = 1 in the last step. Since 𝐹 ′ is continuous
by assumption, the integrand goes to zero as 𝑛 → ∞ uniformly in 𝑠 ∈ [0, 1], and the claim

follows. □
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We now come to the chain rule, which in contrast to the convex case does not require the

inner mapping to be linear; this is one of the main advantages of the Clarke subdifferential

in the context of nonsmooth optimization.

Theorem 8.18. Let 𝑌 be a separable Banach space, 𝐹 : 𝑋 → 𝑌 be continuously Fréchet
differentiable at 𝑥 ∈ 𝑋 , and 𝐺 : 𝑌 → ℝ be locally Lipschitz continuous near 𝐹 (𝑥). Then

𝜕𝐶 (𝐺 ◦ 𝐹 ) (𝑥) ⊂ 𝐹 ′(𝑥)∗𝜕𝐶𝐺 (𝐹 (𝑥)) := {𝐹 ′(𝑥)∗𝑦∗ : 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥))} .

If 𝐺 is regular at 𝐹 (𝑥), then 𝐺 ◦ 𝐹 is regular at 𝑥 , and equality holds.

Proof. The local Lipschitz continuity of 𝐺 ◦ 𝐹 follows from that of 𝐺 and 𝐹 (which follows

from the assumption as in the proof of Theorem 8.5). For the claimed inclusion (or equality),

we argue as before using the support functional calculus. First we show that for every

ℎ ∈ 𝑋 there exists a 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥)) with

(8.11) (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩𝑌 .

To this end, consider for given ℎ ∈ 𝑋 sequences {𝑥𝑛}𝑛∈ℕ ⊂ 𝑋 and {𝑡𝑛}𝑛∈ℕ ⊂ (0,∞) with
𝑥𝑛 → 𝑥 , 𝑡𝑛 → 0, and

(𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = lim

𝑛→∞
𝐺 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ)) −𝐺 (𝐹 (𝑥𝑛))

𝑡𝑛
.

Furthermore, by continuity of 𝐹 , we can find 𝑛0 ∈ ℕ such that 𝐹 (𝑥𝑛), 𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) lie in the

Lipschitz neighborhood of 𝐹 (𝑥) for all 𝑛 ≥ 𝑛0. Theorem 8.16 thus yields for all 𝑛 ≥ 𝑛0 a

𝑦∗𝑛 ∈ 𝜕𝐶𝐺 (𝑦𝑛) with 𝑦𝑛 := 𝐹 (𝑥𝑛) + 𝜆𝑛 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)) for some 𝜆𝑛 ∈ (0, 1) such that

(8.12)

𝐺 (𝐹 (𝑥𝑛 + 𝑡𝑛ℎ)) −𝐺 (𝐹 (𝑥𝑛))
𝑡𝑛

= ⟨𝑦∗𝑛, 𝑞𝑛⟩𝑌 with 𝑞𝑛 :=
𝐹 (𝑥𝑛 + 𝑡𝑛ℎ) − 𝐹 (𝑥𝑛)

𝑡𝑛

Since 𝜆𝑛 ∈ (0, 1) is uniformly bounded, we also have that 𝑦𝑛 → 𝐹 (𝑥) for 𝑛 → ∞. Hence 𝑦𝑛
is in the Lipschitz neighborhood of 𝐹 (𝑥) for 𝑛 ∈ ℕ large enough, and Corollary 8.2 yields

that 𝑦∗𝑛 ∈ 𝜕𝐶𝐺 (𝑦𝑛) ⊂ 𝐾𝐿 (0) for 𝑛 ∈ ℕ sufficiently large. This implies that {𝑦∗𝑛}𝑛∈ℕ ⊂ 𝑌 ∗

is bounded, and the Banach–Alaoglu Theorem 1.10 yields a weakly-∗ convergent subse-
quence with limit 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥)) by Lemma 8.3. Finally, since 𝐹 is continuously Fréchet

differentiable, 𝑞𝑛 → 𝐹 ′(𝑥)ℎ strongly in 𝑌 by Lemma 8.17. Hence, ⟨𝑦∗𝑛, 𝑞𝑛⟩𝑌 → ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩
as the duality pairing of weakly-∗ and strongly converging sequences. Passing to the limit

in (8.12) therefore yields (8.11) (first along the subsequence chosen above; by convergence

of the left-hand side of (8.12) and the uniqueness of limits then for the full sequence as

well). By definition of the Clarke subdifferential, we thus have for 𝑦∗ ∈ 𝜕𝐶𝐺 (𝐹 (𝑥)) that

(8.13) (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = ⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩𝑌 ≤ 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ).
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If 𝐺 is now regular at 𝑥 , we have that 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ) = 𝐺′(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ) and hence by

the local Lipschitz continuity of 𝐺 and the Fréchet differentiability of 𝐹 that

𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ)

= lim

𝑡→0

𝐺 (𝐹 (𝑥) + 𝑡𝐹 ′(𝑥)ℎ) −𝐺 (𝐹 (𝑥))
𝑡

= lim

𝑡→0

𝐺 (𝐹 (𝑥) + 𝑡𝐹 ′(𝑥)ℎ) −𝐺 (𝐹 (𝑥 + 𝑡ℎ)) +𝐺 (𝐹 (𝑥 + 𝑡ℎ)) −𝐺 (𝐹 (𝑥))
𝑡

≤ lim

𝑡→0

(
𝐿∥ℎ∥𝑋

∥𝐹 (𝑥) + 𝐹 ′(𝑥)𝑡ℎ − 𝐹 (𝑥 + 𝑡ℎ)∥𝑌
∥𝑡ℎ∥𝑋

+ 𝐺 (𝐹 (𝑥 + 𝑡ℎ)) −𝐺 (𝐹 (𝑥))
𝑡

)
= (𝐺 ◦ 𝐹 )′(𝑥 ;ℎ) ≤ (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ).

Together with (8.13), this implies that (𝐺 ◦ 𝐹 )′(𝑥 ;ℎ) = (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) (i.e., 𝐺 ◦ 𝐹 is regular

at 𝑥 ) and that

(8.14) (𝐺 ◦ 𝐹 )◦(𝑥 ;ℎ) = 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ).

As before, Lemma 8.10 now implies for all ℎ ∈ 𝑋 that

sup

𝑥∗∈𝐹 ′ (𝑥)∗𝜕𝐶𝐺 (𝐹 (𝑥))
⟨𝑥∗, ℎ⟩𝑋 = sup

𝑦∗∈𝜕𝐶𝐺 (𝐹 (𝑥))
⟨𝑦∗, 𝐹 ′(𝑥)ℎ⟩𝑌 = 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ)

and hence by Lemma 8.11 that

𝐹 ′(𝑥)∗𝜕𝐶𝐺 (𝐹 (𝑥)) = {𝑥∗ ∈ 𝑋 ∗
: ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐺◦(𝐹 (𝑥); 𝐹 ′(𝑥)ℎ) for all ℎ ∈ 𝑋 } .

Combined with (8.13) or (8.14) and the definition of the Clarke subdifferential in (8.1), this

now yields the claimed inclusion or equality, respectively, for the Clarke subdifferential of

the composition. □

Again, the generic inclusion is the reverse of the one in the convex chain rule. Note that

equality in the chain rule also holds if −𝐺 is regular, since we can then apply Theorem 8.18

to −𝐺 ◦ 𝐹 and use that 𝜕𝐶 (−𝐺) (𝐹 (𝑥)) = −𝜕𝐶𝐺 (𝐹 (𝑥)) by Theorem 8.8. Furthermore, if 𝐺 is

not regular but 𝐹 ′(𝑥) is surjective, a similar proof shows that equality (but not the regularity

of 𝐺 ◦ 𝐹 ) holds in the chain rule; see [Clarke 2013, Theorem 10.19].

8.3 characterization in finite dimensions

Amore explicit characterization of the Clarke subdifferential is possible in finite-dimensional

spaces. The basis is the following theorem, which only holds in ℝ𝑁
; a proof can be found

in, e.g., [DiBenedetto 2002, Theorem 23.2] or [Heinonen 2005, Theorem 3.1].

95



8 clarke subdifferentials

Theorem 8.19 (Rademacher). Let𝑈 ⊂ ℝ𝑁 be open and 𝐹 : 𝑈 → ℝ be Lipschitz continuous.
Then 𝐹 is Fréchet differentiable in almost every 𝑥 ∈ 𝑈 .

This result allows replacing the lim sup in the definition of the Clarke subdifferential (now

considered as a subset of ℝ𝑁
, i.e., identifying the dual of ℝ𝑁

with ℝ𝑁
itself) with a proper

limit.

Theorem 8.20. Let 𝐹 : ℝ𝑁 → ℝ be locally Lipschitz continuous in 𝑥 ∈ ℝ𝑁 and Fréchet
differentiable on ℝ𝑁 \ 𝐸𝐹 for a set 𝐸𝐹 ⊂ ℝ𝑁 of Lebesgue measure 0. Then

(8.15) 𝜕𝐶𝐹 (𝑥) = co

{
lim

𝑛→∞
∇𝐹 (𝑥𝑛) : 𝑥𝑛 → 𝑥, 𝑥𝑛 ∉ 𝐸𝐹

}
,

where co𝐴 denotes the convex hull of 𝐴 ⊂ ℝ𝑁 .

Proof. We first note that the Rademacher Theorem ensures that such a set 𝐸𝐹 exists and has

Lebesgue measure 0. Hence there indeed exist sequences {𝑥𝑛}𝑛∈ℕ ∈ ℝ𝑁 \ 𝐸𝐹 with 𝑥𝑛 → 𝑥 .

Furthermore, the local Lipschitz continuity of 𝐹 yields that for any 𝑥𝑛 in the Lipschitz

neighborhood of 𝑥 and any ℎ ∈ ℝ𝑁
, we have that

| (∇𝐹 (𝑥𝑛), ℎ) | =
���� lim

𝑡→0
+

𝐹 (𝑥𝑛 + 𝑡ℎ) − 𝐹 (𝑥𝑛)
𝑡

���� ≤ 𝐿∥ℎ∥

and hence that ∥∇𝐹 (𝑥𝑛)∥ ≤ 𝐿 for all 𝑛 ∈ ℕ large enough. This implies that {∇𝐹 (𝑥𝑛)}𝑛∈ℕ ⊂
ℝ𝑁

is bounded and thus contains a convergent subsequence. The set on the right-hand

side of (8.15) is therefore nonempty.

Let now {𝑥𝑛}𝑛∈ℕ ⊂ ℝ𝑁 \ 𝐸𝐹 be an arbitrary sequence with 𝑥𝑛 → 𝑥 and {∇𝐹 (𝑥𝑛)}𝑛∈ℕ → 𝑥∗

for some 𝑥∗ ∈ ℝ𝑁
. Since 𝐹 is differentiable in every 𝑥𝑛 ∉ 𝐸𝐹 , we have that

(∇𝐹 (𝑥𝑛), ℎ) = 𝐹 ′(𝑥 ;ℎ) ≤ 𝐹 ◦(𝑥 ;ℎ)

and hence that ∇𝐹 (𝑥𝑛) ∈ 𝜕𝐶𝐹 (𝑥𝑛) by definition. Lemma 8.3 thus yields that 𝑥∗ ∈ 𝜕𝐶𝐹 (𝑥).
The convexity of 𝜕𝐶𝐹 (𝑥) from Corollary 8.2 now implies that any convex combination of

such limits 𝑥∗ is contained in 𝜕𝐶𝐹 (𝑥), which shows the inclusion “⊃” in (8.15).

For the other inclusion, we first show for all ℎ ∈ ℝ𝑁
and 𝜀 > 0 that

(8.16) 𝐹 ◦(𝑥 ;ℎ) − 𝜀 ≤ lim sup

𝐸𝐹∌𝑦→𝑥

(∇𝐹 (𝑦), ℎ) =: 𝑀 (ℎ).

Indeed, by definition of𝑀 (ℎ) and of the lim sup, for every 𝜀 > 0 there exists a 𝛿 > 0 such

that

(∇𝐹 (𝑦), ℎ) ≤ 𝑀 (ℎ) + 𝜀 for all 𝑦 ∈ 𝑂𝛿 (𝑥) \ 𝐸𝐹 .
Here, 𝛿 > 0 can be chosen sufficiently small for 𝐹 to be Lipschitz continuous on 𝑂𝛿 (𝑥).
In particular, 𝐸𝐹 ∩𝑂𝛿 (𝑥) is a set of zero measure. Hence, 𝐹 is differentiable in 𝑦 + 𝑡ℎ for
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almost all 𝑦 ∈ 𝑂𝛿/2(𝑥) and almost all 𝑡 ∈ (0, 𝛿
2∥ℎ∥ ) by Fubini’s Theorem. The classical mean

value theorem therefore yields for all such 𝑦 and 𝑡 that

(8.17) 𝐹 (𝑦 + 𝑡ℎ) − 𝐹 (𝑦) =
∫ 𝑡

0

(∇𝐹 (𝑦 + 𝑠ℎ), ℎ) 𝑑𝑠 ≤ 𝑡 (𝑀 (ℎ) + 𝜀)

since 𝑦 + 𝑠ℎ ∈ 𝑂𝛿 (𝑥) for all 𝑠 ∈ (0, 𝑡) by the choice of 𝑡 . The continuity of 𝐹 implies that

the full inequality (8.17) even holds for all 𝑦 ∈ 𝑂𝛿/2(𝑥) and all 𝑡 ∈ (0, 𝛿
2∥ℎ∥ ). Dividing by

𝑡 > 0 and taking the lim sup over all 𝑦 → 𝑥 and 𝑡 → 0 now yields (8.16).

Since 𝜀 > 0 was arbitrary, this implies that 𝐹 ◦(𝑥 ;ℎ) ≤ 𝑀 (ℎ) for all ℎ ∈ ℝ𝑁
and hence that

𝜕𝐶𝐹 (𝑥) ⊂
{
𝑥∗ ∈ ℝ𝑁

: (𝑥∗, ℎ) ≤ 𝑀 (ℎ) for all ℎ ∈ ℝ𝑁
}
=: 𝐵.

We are thus finished if we can show that 𝐵 is equal to the set on the right-hand side of

(8.15), which we denote by co𝐴. For this, we once again appeal to Corollary 8.12. First, we

note that the definition of the convex hull implies for all ℎ ∈ ℝ𝑁
that

sup

𝑥∗∈co𝐴

(𝑥∗, ℎ) = sup

𝑥∗𝑖 ∈𝐴∑
𝑖 𝑡𝑖=1,𝑡𝑖≥0

∑︁
𝑖

𝑡𝑖
(
𝑥∗𝑖 , ℎ

)
= sup∑

𝑖 𝑡𝑖=1,𝑡𝑖≥0

∑︁
𝑖

𝑡𝑖 sup

𝑥∗
𝑖
∈𝐴

(
𝑥∗𝑖 , ℎ

)
= sup

𝑥∗∈𝐴
(𝑥∗, ℎ)

since the sum is maximal if and only if each summand is maximal. Next we have that

𝑀 (ℎ) = lim sup

𝐸𝐹∌𝑦→𝑥

(∇𝐹 (𝑦), ℎ) = sup

𝐸𝐹∌𝑥𝑛→𝑥

(lim𝑛→∞ ∇𝐹 (𝑥𝑛), ℎ) = sup

𝑥∗∈𝐴
(𝑥∗, ℎ) .

Finally, one can show as in Lemma 8.1 that the mapping ℎ ↦→ 𝑀 (ℎ) is positively homoge-

neous, subadditive, and lower semicontinuous. From Lemma 8.10, we thus have that

sup

𝑥∗∈𝐵
(𝑥∗, ℎ) = 𝑀 (ℎ) = sup

𝑥∗∈𝐴
(𝑥∗, ℎ) = sup

𝑥∗∈co𝐴

(𝑥∗, ℎ) .

Since both sets are clearly convex and closed as well as nonempty (which we’ve already

argued for co𝐴 and which follows from (8.16) for 𝐵), Eq. (8.7) yields 𝐵 = co𝐴 and thus the

claim. □
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The proximal point and splitting methods in Chapter 7 are generalizations of gradient

methods and in general have the same only linear convergence. In this chapter, we will

therefore consider a generalization of Newton methods which admit (locally) superlinear

convergence.

9.1 convergence of generalized newton methods

As a motivation, we first consider the most general form of a Newton-type method. Let 𝑋

and 𝑌 be normed vector spaces and 𝐹 : 𝑋 → 𝑌 be given and suppose we are looking for an

𝑥 ∈ 𝑋 with 𝐹 (𝑥) = 0. A Newton-type method to find such an 𝑥 then consists of repeating

the following steps:

1. choose an invertible𝑀𝑘 := 𝑀 (𝑥𝑘) ∈ 𝐿(𝑋,𝑌 );

2. solve the Newton step 𝑀𝑘𝑠
𝑘 = −𝐹 (𝑥𝑘);

3. update 𝑥𝑘+1 = 𝑥𝑘 + 𝑠𝑘 .

We can now ask under which conditions this method converges to 𝑥 , and in particular,

when the convergence is superlinear, i.e.,

(9.1) lim

𝑘→∞

∥𝑥𝑘+1 − 𝑥 ∥𝑋
∥𝑥𝑘 − 𝑥 ∥𝑋

= 0.

For this purpose, we set 𝑒𝑘 := 𝑥𝑘 − 𝑥 and use the Newton step together with the fact that

𝐹 (𝑥) = 0 to obtain that

∥𝑥𝑘+1 − 𝑥 ∥𝑋 = ∥𝑥𝑘 −𝑀 (𝑥𝑘)−1𝐹 (𝑥𝑘) − 𝑥 ∥𝑋
= ∥𝑀 (𝑥𝑘)−1 [𝐹 (𝑥𝑘) − 𝐹 (𝑥) −𝑀 (𝑥𝑘) (𝑥𝑘 − 𝑥)] ∥𝑋
= ∥𝑀 (𝑥 + 𝑒𝑘)−1 [𝐹 (𝑥 + 𝑒𝑘) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒𝑘)𝑒𝑘] ∥𝑋
≤ ∥𝑀 (𝑥 + 𝑒𝑘)−1∥𝐿(𝑌,𝑋 ) ∥𝐹 (𝑥 + 𝑒𝑘) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒𝑘)𝑒𝑘 ∥𝑌 .

Hence, (9.1) holds under
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(i) a regularity condition: there exists a 𝐶 > 0 with

∥𝑀 (𝑥𝑘)−1∥𝐿(𝑌,𝑋 ) ≤ 𝐶 for all 𝑘 ∈ ℕ;

(ii) an approximation condition:

lim

𝑘→∞

∥𝐹 (𝑥 + 𝑒𝑘) − 𝐹 (𝑥) −𝑀 (𝑥 + 𝑒𝑘)𝑒𝑘 ∥𝑌
∥𝑒𝑘 ∥𝑋

= 0.

This motivates the following definition: We call 𝐹 : 𝑋 → 𝑌 Newton differentiable in 𝑥 ∈ 𝑋
with Newton derivative 𝐷𝑁 𝐹 (𝑥) if there exists a neighborhood 𝑈 ⊂ 𝑋 of 𝑥 and a mapping

𝐷𝑁 𝐹 : 𝑈 → 𝐿(𝑋,𝑌 ) such that

(9.2) lim

∥ℎ∥𝑋→0

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌
∥ℎ∥𝑋

= 0.

Note the differences to the Fréchet derivative: First, the Newton derivative is evaluated

in 𝑥 + ℎ instead of 𝑥 . More importantly, we have not required any connection between

𝐷𝑁 𝐹 with 𝐹 , while the only possible candidate for the Fréchet derivative was the Gâteaux

derivative (which itself was linked to 𝐹 via the directional derivative). A function thus

can only be Newton differentiable (or not) with respect to a concrete choice of 𝐷𝑁 𝐹 . In

particular, Newton derivatives are not unique.
1

If 𝐹 is Newton differentiable with Newton derivative 𝐷𝑁 𝐹 , we can set𝑀 (𝑥𝑘) = 𝐷𝑁 𝐹 (𝑥𝑘)
and obtain the semismooth Newton method

(9.3) 𝑥𝑘+1 = 𝑥𝑘 − 𝐷𝑁 𝐹 (𝑥𝑘)−1𝐹 (𝑥𝑘).

Its local superlinear convergence follows directly from the construction.

Theorem 9.1. Let 𝑋,𝑌 be normed vector spaces and let 𝐹 : 𝑋 → 𝑌 be Newton differentiable in
𝑥 ∈ 𝑋 with 𝐹 (𝑥) = 0 with Newton derivative 𝐷𝑁 𝐹 (𝑥). Assume further that there exist 𝛿 > 0

and 𝐶 > 0 with ∥𝐷𝑁 𝐹 (𝑥)−1∥𝐿(𝑌,𝑋 ) ≤ 𝐶 for all 𝑥 ∈ 𝑂𝛿 (𝑥). Then the semismooth Newton
method (9.3) converges to 𝑥 for all 𝑥0 sufficiently close to 𝑥 .

Proof. The proof is virtually identical to that for the classical Newton method. We have

already shown that for any 𝑥0 ∈ 𝑂𝛿 (𝑥),

(9.4) ∥𝑒1∥𝑋 ≤ 𝐶 ∥𝐹 (𝑥 + 𝑒0) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + 𝑒0)𝑒0∥𝑌 .
1
Here we follow [Chen, Nashed & Qi 2000; Ito & Kunisch 2008; Schiela 2008] and only consider single-

valued Newton derivatives (called slanting functions in the first-named work). Alternatively, one could fix

for each 𝑥 ∈ 𝑋 a set 𝜕𝑁 𝐹 (𝑥), from which the linear operator𝑀 (𝑥) in the Newton step has to be taken. If

the approximation condition together with a boundedness condition hold uniformly for all𝑀 ∈ 𝜕𝑁 𝐹 (𝑥),
the function 𝐹 is called semismooth (explaining the title of this chapter). This approach is followed in,

e.g., [Mifflin 1977; Kummer 1988; Ulbrich 2011].
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9 semismooth newton methods

Let now 𝜀 ∈ (0, 1) be arbitrary. The Newton differentiability of 𝐹 then implies that there

exists a 𝜌 > 0 such that

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌 ≤ 𝜀

𝐶
∥ℎ∥𝑋 for all ∥ℎ∥𝑋 ≤ 𝜌.

Hence, if we choose 𝑥0
such that ∥𝑥 − 𝑥0∥𝑋 ≤ min{𝛿, 𝜌}, the estimate (9.4) implies that

∥𝑥−𝑥 1∥𝑋 ≤ 𝜀∥𝑥−𝑥0∥𝑋 . By induction,we obtain from this that ∥𝑥−𝑥𝑘 ∥𝑋 ≤ 𝜀𝑘 ∥𝑥−𝑥0∥𝑋 → 0.

Since 𝜀 ∈ (0, 1) was arbitrary, we can take in each step 𝑘 a different 𝜀𝑘 → 0 to obtain that

∥𝑥𝑘+1 − 𝑥 ∥𝑋 ≤ 𝜀𝑘 ∥𝑥𝑘 − 𝑥 ∥𝑋 and hence that the convergence is superlinear. □

9.2 newton derivatives

The remainder of this chapter is dedicated to the construction of Newton derivatives

(although it should be pointed out that the verification of the approximation condition is

usually the much more involved step in practice). We begin with the obvious connection

with the Fréchet derivative.

Theorem 9.2. If 𝐹 : 𝑋 → 𝑌 is continuously differentiable in 𝑥 ∈ 𝑋 , then 𝐹 is also Newton
differentiable in 𝑥 with Newton derivative 𝐷𝑁 𝐹 (𝑥) = 𝐹 ′(𝑥).

Proof. We have for arbitrary ℎ ∈ 𝑋 that

∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥 + ℎ)ℎ∥𝑌 ≤ ∥𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥)ℎ∥𝑌
+ ∥𝐹 ′(𝑥) − 𝐹 ′(𝑥 + ℎ)∥𝐿(𝑋,𝑌 ) ∥ℎ∥𝑋 ,

where the first summand is 𝑜 (∥ℎ∥𝑋 ) by definition of the Fréchet derivative and the second

by the continuity of 𝐹 ′. □

Calculus rules can be shown similarly to those for Fréchet derivatives. For the sum rule

this is immediate; here we prove a chain rule by way of example.

Theorem 9.3. Let 𝑋 , 𝑌 , and 𝑍 be normed vector spaces, and let 𝐹 : 𝑋 → 𝑌 be Newton differ-
entiable in 𝑥 ∈ 𝑋 with Newton derivative 𝐷𝑁 𝐹 (𝑥) and 𝐺 : 𝑌 → 𝑍 be Newton differentiable
in 𝑦 := 𝐹 (𝑥) ∈ 𝑌 with Newton derivative 𝐷𝑁𝐺 (𝑦). If 𝐷𝑁 𝐹 and 𝐷𝑁𝐺 are uniformly bounded
in a neighborhood of 𝑥 and 𝑦 , respectively, then 𝐺 ◦ 𝐹 is also Newton differentiable in 𝑥 with
Newton derivative

𝐷𝑁 (𝐺 ◦ 𝐹 ) (𝑥) = 𝐷𝑁𝐺 (𝐹 (𝑥)) ◦ 𝐷𝑁 𝐹 (𝑥).
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9 semismooth newton methods

Proof. We proceed as in the proof of Theorem 2.5. For ℎ ∈ 𝑋 and 𝑔 := 𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) we
have that

(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) = 𝐺 (𝑦 + 𝑔) −𝐺 (𝑦).
The Newton differentiability of 𝐺 then implies that

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) − 𝐷𝑁𝐺 (𝑦 + 𝑔)𝑔∥𝑍 = 𝑟1(∥𝑔∥𝑌 )

with 𝑟1(𝑡)/𝑡 → 0 for 𝑡 → 0. The Newton differentiability of 𝐹 further implies that

∥𝑔 − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑌 = 𝑟2(∥ℎ∥𝑋 )

with 𝑟2(𝑡)/𝑡 → 0 for 𝑡 → 0. In particular,

∥𝑔∥𝑌 ≤ ∥𝐷𝑁 𝐹 (𝑥 + ℎ)∥𝐿(𝑋,𝑌 ) ∥ℎ∥𝑌 + 𝑟2(∥ℎ∥𝑋 ) .

The uniform boundedness of 𝐷𝑁 𝐹 now implies that ∥𝑔∥𝑌 → 0 for ∥ℎ∥𝑋 → 0. Hence,

∥(𝐺 ◦ 𝐹 ) (𝑥 + ℎ) − (𝐺 ◦ 𝐹 ) (𝑥) − 𝐷𝑁𝐺 (𝐹 (𝑥 + ℎ))𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ∥𝑍
≤ ∥𝐺 (𝑦 + 𝑔) −𝐺 (𝑦) − 𝐷𝑁𝐺 (𝑦 + 𝑔)𝑔∥𝑍
+ ∥𝐷𝑁𝐺 (𝑦 + 𝑔) [𝑔 − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ] ∥𝑍

≤ 𝑟1(∥𝑔∥𝑌 ) + ∥𝐷𝑁𝐺 (𝑦 + 𝑔)∥𝐿(𝑌,𝑍 )𝑟2(∥ℎ∥𝑋 ),

and the claim thus follows from the uniform boundedness of 𝐷𝑁𝐺 . □

Finally, it follows directly from the definition of the product norm andNewton differentiabil-

ity that Newton derivatives of vector-valued functions can be computed componentwise.

Theorem 9.4. Let 𝑋,𝑌𝑖 be normed vector spaces and let 𝐹𝑖 : 𝑋 → 𝑌𝑖 be Newton differentiable
with Newton derivative 𝐷𝑁 𝐹𝑖 for 1 ≤ 𝑖 ≤ 𝑚. Then

𝐹 : 𝑋 → (𝑌1 × · · · × 𝑌𝑚), 𝑥 ↦→ (𝐹1(𝑥), . . . , 𝐹𝑚 (𝑥))𝑇 ,

is also Newton differentiable with Newton derivative

𝐷𝑁 𝐹 (𝑥) = (𝐷𝑁 𝐹1(𝑥), . . . , 𝐷𝑁 𝐹𝑚 (𝑥))𝑇 .

Since the definition does not include a constructive prescription of Newton derivatives,

the question remains how to obtain a candidate for which the approximation condition

can be verified. For two classes of functions, such an explicit construction is known.
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9 semismooth newton methods

locally lipschitz continuous functions on ℝ𝑁

If 𝐹 : ℝ𝑁 → ℝ is locally Lipschitz continuous, candidates can be taken from the Clarke sub-

differential, which has an explicit characterization by Theorem 8.20. Under some additional

assumptions, each candidate is indeed a Newton derivative.
2

A function 𝐹 : ℝ𝑁 → ℝ is called piecewise (continuously) differentiable or PC1 function, if

(i) 𝐹 is continuous on ℝ𝑁
;

(ii) for all 𝑥 ∈ ℝ𝑁
there exists an open neighborhood 𝑈𝑥 ⊂ ℝ𝑁

of 𝑥 and a finite set

{𝐹𝑖 : 𝑈 → ℝ}𝑖∈𝐼𝑥 of continuously differentiable functions with

𝐹 (𝑥) ∈ {𝐹𝑖 (𝑥)}𝑖∈𝐼𝑥 for all 𝑥 ∈ 𝑈𝑥 .

In this case, we call 𝐹 a continuous selection of the 𝐹𝑖 in𝑈𝑥 . The set

𝐼𝑎 (𝑥) := {𝑖 ∈ 𝐼𝑥 : 𝐹 (𝑥) = 𝐹𝑖 (𝑥)}

is called the active index set at 𝑥 . Since the 𝐹𝑖 are continuous, we have that 𝐹 (𝑥) ≠ 𝐹 𝑗 (𝑥)
for all 𝑗 ∉ 𝐼𝑎 (𝑥) and 𝑥 sufficiently close to 𝑥 . Hence, indices that are only active on sets of

zero measure do not have to be considered in the following. We thus define the essentially
active index set

𝐼𝑒 (𝑥) := {𝑖 ∈ 𝐼𝑥 : 𝑥 ∈ cl ({𝑥 ∈ 𝑈𝑥 : 𝐹 (𝑥) = 𝐹𝑖 (𝑥)}𝑜)} ⊂ 𝐼𝑎 (𝑥).

An example of an active but not essentially active index set is the following.

Example 9.5. Consider the function 𝑓 : ℝ → ℝ, 𝑡 ↦→ max{0, 𝑡, 𝑡/2}, i.e., 𝑓1(𝑡) = 0,

𝑓2(𝑡) = 𝑡 and 𝑓3(𝑡) = 𝑡/2. Then 𝐼𝑎 (0) = {1, 2, 3} but 𝐼𝑒 (0) = {1, 2}, since 𝑓3 is active only
in 𝑡 = 0 and hence {𝑡 ∈ ℝ : 𝑓 (𝑡) = 𝑓3(𝑡)}𝑜 = ∅ = cl ∅.

Since any 𝐶1
function 𝐹𝑖 : 𝑈𝑥 → ℝ is Lipschitz continuous with Lipschitz constant

𝐿𝑖 := sup𝑥∈𝑈𝑥
|∇𝐹 (𝑥) |, PC1

functions are always locally Lipschitz continuous; see [Scholtes

2012, Corollary 4.1.1].

Theorem 9.6. Let 𝐹 : ℝ𝑁 → ℝ be piecewise differentiable. Then 𝐹 is locally Lipschitz
continuous in all 𝑥 ∈ ℝ𝑁 with local constant 𝐿(𝑥) = max𝑖∈𝐼𝑎 (𝑥) 𝐿𝑖 .

This yields the following explicit characterization of the Clarke subdifferential of a PC
1

function.

2
This is the original derivation of semismooth Newton methods.
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9 semismooth newton methods

Theorem 9.7. Let 𝐹 : ℝ𝑁 → ℝ be piecewise differentiable and 𝑥 ∈ ℝ𝑁 . Then

𝜕𝐶𝐹 (𝑥) = co {∇𝐹𝑖 (𝑥) : 𝑖 ∈ 𝐼𝑒 (𝑥)} .

Proof. Let 𝑥 ∈ ℝ𝑁
be arbitrary. By Theorem 8.20 it suffices to show that{
lim

𝑛→∞
∇𝐹 (𝑥𝑛) : 𝑥𝑛 → 𝑥, 𝑥𝑛 ∉ 𝐸𝐹

}
= {∇𝐹𝑖 (𝑥) : 𝑖 ∈ 𝐼𝑒 (𝑥)} .

For this, let {𝑥𝑛}𝑛∈ℕ ⊂ ℝ𝑁
be a sequence with 𝑥𝑛 → 𝑥 such that 𝐹 is differentiable in 𝑥𝑛

for all 𝑛 ∈ ℕ, and ∇𝐹 (𝑥𝑛) → 𝑥∗ ∈ ℝ𝑁
. Since 𝐹 is differentiable in 𝑥𝑛, it must hold that

𝐹 (𝑥) = 𝐹𝑖𝑛 (𝑥) for some 𝑖𝑛 ∈ 𝐼𝑎 (𝑥) and all 𝑥 sufficiently close to 𝑥𝑛, which implies that

∇𝐹 (𝑥𝑛) = ∇𝐹𝑖𝑛 (𝑥𝑛). For sufficiently large 𝑛 ∈ ℕ, we can further assume that 𝑖𝑛 ∈ 𝐼𝑒 (𝑥)
(if necessary, by adding 𝑥𝑛 with 𝑖𝑛 ∉ 𝐼𝑒 (𝑥) to 𝐸𝐹 , which does not increase its Lebesgue

measure). If we now consider subsequences {𝑥𝑛𝑘 }𝑘∈ℕ with constant index 𝑖𝑛𝑘 =: 𝑖 ∈ 𝐼𝑒 (𝑥)
(which exist since 𝐼𝑒 (𝑥) is finite), we obtain using the continuity of ∇𝐹𝑖 that

𝑥∗ = lim

𝑘→∞
∇𝐹 (𝑥𝑛𝑘 ) = lim

𝑘→∞
∇𝐹𝑖 (𝑥𝑛𝑘 ) ∈ {∇𝐹𝑖 (𝑥) : 𝑖 ∈ 𝐼𝑒 (𝑥)} .

Conversely, for every∇𝐹𝑖 (𝑥) with 𝑖 ∈ 𝐼𝑒 (𝑥) there exists by definition of the essentially active
indices a sequence {𝑥𝑛}𝑛∈ℕ with 𝑥𝑛 → 𝑥 and 𝐹 = 𝐹𝑖 in a sufficiently small neighborhood

of each 𝑥𝑛 for 𝑛 large enough. The continuous differentiability of the 𝐹𝑖 thus implies that

∇𝐹 (𝑥𝑛) = ∇𝐹𝑖 (𝑥𝑛) for all 𝑛 ∈ ℕ large enough and hence that

∇𝐹𝑖 (𝑥) = lim

𝑛→∞
∇𝐹𝑖 (𝑥𝑛) = lim

𝑛→∞
∇𝐹 (𝑥𝑛). □

From this, we obtain the Newton differentiability of PC
1
functions.

Theorem 9.8. Let 𝐹 : ℝ𝑁 → ℝ be piecewise differentiable. Then 𝐹 is Newton differentiable
for all 𝑥 ∈ ℝ𝑁 , and every 𝐷𝑁 𝐹 (𝑥) ∈ 𝜕𝐶𝐹 (𝑥) is a Newton derivative.

Proof. Let 𝑥 ∈ ℝ𝑁
be arbitrary and ℎ ∈ 𝑋 with 𝑥 + ℎ ∈ 𝑈 . By Theorem 9.7, every

𝐷𝑁 𝐹 (𝑥 + ℎ) ∈ 𝜕𝐶𝐹 (𝑥 + ℎ) is of the form

𝐷𝑁 𝐹 (𝑥 + ℎ) =
∑︁

𝑖∈𝐼𝑒 (𝑥+ℎ)
𝜆𝑖∇𝐹𝑖 (𝑥 + ℎ) for

∑︁
𝑖∈𝐼𝑒 (𝑥+ℎ)

𝜆𝑖 = 1, 𝜆𝑖 ≥ 0.

Since 𝐹 is continuous, we have for all ℎ ∈ ℝ𝑁
sufficiently small that 𝐼𝑒 (𝑥 +ℎ) ⊂ 𝐼𝑎 (𝑥 +ℎ) ⊂

𝐼𝑎 (𝑥), where the second inclusion follows from the fact that by continuity, 𝐹 (𝑥) ≠ 𝐹𝑖 (𝑥)
implies that 𝐹 (𝑥 + ℎ) ≠ 𝐹𝑖 (𝑥 + ℎ). Hence, 𝐹 (𝑥 + ℎ) = 𝐹𝑖 (𝑥 + ℎ) and 𝐹 (𝑥) = 𝐹𝑖 (𝑥) for all
𝑖 ∈ 𝐼𝑒 (𝑥 + ℎ). Theorem 9.2 then yields that

|𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐷𝑁 𝐹 (𝑥 + ℎ)ℎ | ≤
∑︁

𝑖∈𝐼𝑒 (𝑥+ℎ)
𝜆𝑖 |𝐹𝑖 (𝑥 + ℎ) − 𝐹𝑖 (𝑥) − ∇𝐹𝑖 (𝑥 + ℎ)ℎ | = 𝑜 (∥ℎ∥),

since all 𝐹𝑖 are continuously differentiable by assumption. □
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A natural application of the above are proximal point reformulations of optimality condi-

tions for convex optimization problems.

Example 9.9. We consider the minimization of 𝐹 +𝐺 for a twice continuously differ-

entiable functional 𝐹 : ℝ𝑁 → ℝ and 𝐺 = ∥ · ∥1. Proceeding as in the derivation of the

forward–backward splitting (7.4), we can use the regularity of 𝐹 and 𝐺 to write the

necessary optimality condition

0 ∈ 𝜕𝐶 (𝐹 +𝐺) (𝑥) = 𝜕𝐶𝐹 (𝑥) + 𝜕𝐶𝐺 (𝑥) = {𝐹 ′(𝑥)} + 𝜕𝐺 (𝑥)

equivalently as

𝑥 − prox𝛾𝐺 (𝑥 − 𝛾∇𝐹 (𝑥)) = 0

for any 𝛾 > 0. By Example 6.16 (ii), the proximal point mapping for 𝐺 is given compo-

nentwise as

[prox𝛾𝐺 (𝑥)]𝑖 =

𝑥𝑖 − 𝛾 if 𝑥𝑖 > 𝛾,

0 if 𝑥𝑖 ∈ [−𝛾,𝛾],
𝑥𝑖 + 𝛾 if 𝑥𝑖 < −𝛾,

which is clearly piecewise differentiable. Theorem 9.7 thus yields (also componentwise)

that

[𝜕𝐶 (prox𝛾𝐺 ) (𝑥)]𝑖 =

{1} if |𝑥𝑖 | > 𝛾,
{0} if |𝑥𝑖 | < 𝛾,
[0, 1] if |𝑥𝑖 | = 𝛾 .

By Theorems 9.4 and 9.8, a possible Newton derivative is therefore given by

[𝐷𝑁prox𝛾𝐺 (𝑥)ℎ]𝑖 = [𝟙{|𝑥 |≥𝛾}ℎ]𝑖 :=

{
ℎ𝑖 if |𝑥𝑖 | ≥ 𝛾,
0 if |𝑥𝑖 | < 𝛾 .

(The choice which case to include the equality in is arbitrary here.) Now, 𝐷𝑁prox𝛾𝐺 (𝑥)
and 𝐷𝑁 (∇𝐹 ) (𝑥) = ∇2𝐹 (𝑥) are locally uniformly bounded (obviously from the charac-

terization and the continuous differentiability, respectively), and using the chain rule

from Theorem 9.3 and rearranging yields the semismooth Newton step(
𝟙I𝑘 + 𝛾𝟙A𝑘

∇2𝐹 (𝑥𝑘)
)
𝑠𝑘 = −𝑥𝑘 + prox𝛾𝐺 (𝑥𝑘 − 𝛾∇𝐹 (𝑥𝑘)),

where we have defined the active and inactive sets, respectively, as

A𝑘 :=
{
𝑖 ∈ {1, . . . , 𝑁 } : |𝑥𝑘𝑖 − 𝛾 [∇𝐹 (𝑥𝑘)]𝑖 | ≥ 𝛾

}
, I𝑘 := {1, . . . , 𝑁 } \ A𝑘 .

If we now also partition 𝑠𝑘 as well as the right-hand side in active and inactive com-

ponents using the case distinction in the characterization of prox𝛾𝐺 (which follows

the same partition), we can rearrange this linear system into blocks corresponding to
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active and inactive components to observe that the Newton step coincides with an

active set strategy similar to those used for solving quadratic subproblems in sequential

programming methods with inequality constraints; cf. [Ito & Kunisch 2008, Chapter

8.4].

Of course, convergence of the semismooth Newton method additionally requires veri-

fying the regularity condition, which is only possible for – some – concrete choices

of 𝐹 .

superposition operators on 𝐿𝑝 (Ω)

Rademacher’s Theorem does not hold in infinite-dimensional function spaces, and hence

the Clarke subdifferential no longer yields an algorithmically useful candidate for a Newton

derivative in general. One exception is the class of superposition operators defined by

scalar Newton differentiable functions, for which the Newton derivative can be evaluated

pointwise as well.

We thus again consider for an open and bounded domain Ω ⊂ ℝ𝑁
, a Carathéodory function

𝑓 : Ω × ℝ → ℝ (i.e., 𝑓 is measurable in 𝑥 and continuous in 𝑧), and 1 ≤ 𝑝, 𝑞 ≤ ∞ the

corresponding superposition operator

𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω), [𝐹 (𝑢)] (𝑥) = 𝑓 (𝑥,𝑢 (𝑥)) for almost every 𝑥 ∈ Ω.

The goal is now to similarly obtain a Newton derivative 𝐷𝑁 𝐹 for 𝐹 as a superposition

operator defined by the Newton derivative 𝐷𝑁 𝑓 (𝑥, 𝑧) of 𝑧 ↦→ 𝑓 (𝑥, 𝑧). Here, the assump-

tion that 𝐷𝑁 𝑓 is also a Carathéodory function is too restrictive, since we want to allow

discontinuous derivatives as well (see Example 9.9). Luckily, for our purpose, a weaker

property is sufficient: A function is called Baire–Carathéodory function if it can be written

as a pointwise limit of Carathéodory functions, i.e., if

𝑓 (𝑥, 𝑧) = lim

𝑛→∞
𝑓𝑛 (𝑥, 𝑧) for almost every 𝑥 ∈ Ω and all 𝑧 ∈ ℝ,

where 𝑓𝑛 is a Carathéodory function for all 𝑛 ∈ ℕ; see [Appell & Zabreiko 1990, Lemma

1.4].

Under certain growth conditions on 𝑓 and 𝐷𝑁 𝑓 ,
3
we can transfer the Newton differentia-

bility of 𝑓 to 𝐹 , but we again have to take a two-norm discrepancy into account.

Theorem 9.10. Let 𝑓 : Ω ×ℝ → ℝ be a Carathéodory function. Furthermore, assume that

(i) 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is uniformly Lipschitz continuous for almost every 𝑥 ∈ Ω and 𝑥 ↦→ 𝑓 (𝑥, 0)
is bounded;

3
which can be significantly relaxed; see [Schiela 2008, Proposition a.1]

105



9 semismooth newton methods

(ii) 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is Newton differentiable with Newton derivative 𝑧 ↦→ 𝐷𝑁 𝑓 (𝑥, 𝑧) for almost
every 𝑥 ∈ Ω;

(iii) 𝐷𝑁 𝑓 is a Baire–Carathéodory function and uniformly bounded.

Then for any 1 ≤ 𝑞 < 𝑝 < ∞, the corresponding superposition operator 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω)
is Newton differentiable with Newton derivative

𝐷𝑁 𝐹 : 𝐿𝑝 (Ω) → 𝐿(𝐿𝑝 (Ω), 𝐿𝑞 (Ω)), [𝐷𝑁 𝐹 (𝑢)ℎ] (𝑥) = 𝐷𝑁 𝑓 (𝑥,𝑢 (𝑥))ℎ(𝑥)

for almost every 𝑥 ∈ Ω and all ℎ ∈ 𝐿𝑝 (Ω).

Proof. First, the uniform Lipschitz continuity together with the reverse triangle inequality

yields that

|𝑓 (𝑥, 𝑧) | ≤ |𝑓 (𝑥, 0) | + 𝐿 |𝑧 | ≤ 𝐶 + 𝐿 |𝑧 |𝑞/𝑞 for almost every 𝑥 ∈ Ω and all 𝑧 ∈ ℝ,

and hence the growth condition (2.6) is satisfied for all 1 ≤ 𝑞 < ∞. Due to the continuous

embedding 𝐿𝑝 (Ω) ↩→ 𝐿𝑞 (Ω) for all 1 ≤ 𝑞 < 𝑝 < ∞, the superposition operator 𝐹 :

𝐿𝑝 (Ω) → 𝐿𝑞 (Ω) is therefore well-defined and continuous by Theorem 2.10.

For any measurable 𝑢 : Ω → ℝ, we have that 𝑥 ↦→ 𝐷𝑁 𝑓 (𝑥,𝑢 (𝑥)) is by assumption (iii)

the pointwise limit of measurable functions and hence itself measurable. Furthermore,

its uniform boundedness in particular implies the growth condition (2.6) for 𝑝′ := 𝑝 and

𝑞′ := 𝑝 − 𝑞 > 0. As in the proof of Theorem 2.11, we deduce that the corresponding

superposition operator 𝐷𝑁 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑠 (Ω) is well-defined and continuous for 𝑠 :=
𝑝𝑞

𝑝−𝑞 ,

and that for any𝑢 ∈ 𝐿𝑝 (Ω), the mapping ℎ ↦→ 𝐷𝑁 𝐹 (𝑢) ·ℎ defines a bounded linear operator
𝐷𝑁 𝐹 (𝑢) : 𝐿𝑝 (Ω) → 𝐿𝑞 (Ω). (This time, we do not distinguish in notation between the linear

operator and the function defining this operator by pointwise multiplication.)

To show that 𝐷𝑁 𝐹 (𝑢) is a Newton derivative for 𝐹 in 𝑢 ∈ 𝐿𝑝 (Ω), we consider the pointwise
residual

𝑟 : Ω ×ℝ → ℝ, 𝑟 (𝑥, 𝑧) :=

{ |𝑓 (𝑥,𝑧)−𝑓 (𝑥,𝑢 (𝑥))−𝐷𝑁 𝑓 (𝑥,𝑧) (𝑧−𝑢 (𝑥)) |
|𝑧−𝑢 (𝑥) | if 𝑧 ≠ 𝑢 (𝑥),

0 if 𝑧 = 𝑢 (𝑥).

Since 𝑓 is a Carathéodory function and𝐷𝑁 𝑓 is a Baire–Carathéodory function, the function

𝑥 ↦→ 𝑟 (𝑥, 𝑢̃ (𝑥)) =: 𝑅(𝑢̃) is measurable for any measurable 𝑢̃ : Ω → ℝ (since sums, products,

and quotients of measurable functions are again measurable). Furthermore, for 𝑢̃ ∈ 𝐿𝑝 (Ω),
the uniform Lipschitz continuity of 𝑓 and the uniform boundedness of 𝐷𝑁 𝑓 imply that

(9.5) | [𝑅(𝑢̃)] (𝑥) | = |𝑓 (𝑥, 𝑢̃ (𝑥)) − 𝑓 (𝑥,𝑢 (𝑥)) − 𝐷𝑁 𝑓 (𝑥, 𝑢̃ (𝑥)) (𝑢̃ (𝑥) − 𝑢 (𝑥)) |
|𝑢̃ (𝑥) − 𝑢 (𝑥) | ≤ 𝐿 +𝐶

and thus that 𝑅(𝑢̃) ∈ 𝐿∞(Ω). Hence, the superposition operator 𝑅 : 𝐿𝑝 (Ω) → 𝐿𝑠 (Ω) is
well-defined.
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Let now {𝑢𝑛}𝑛∈ℕ ⊂ 𝐿𝑝 (Ω) be a sequence with 𝑢𝑛 → 𝑢 ∈ 𝐿𝑝 (Ω). Then there exists a

subsequence, again denoted by {𝑢𝑛}𝑛∈ℕ, with 𝑢𝑛 (𝑥) → 𝑢 (𝑥) for almost every 𝑥 ∈ Ω.
Since 𝑧 ↦→ 𝑓 (𝑥, 𝑧) is Newton differentiable almost everywhere, we have by definition

that 𝑟 (𝑥,𝑢𝑛 (𝑥)) → 0 for almost every 𝑥 ∈ Ω. Together with the boundedness from (9.5),

Lebesgue’s dominated convergence theorem therefore yields that 𝑅(𝑢𝑛) → 0 in 𝐿𝑠 (Ω) (and
hence along the full sequence since the limit is unique).

4
For any 𝑢̃ ∈ 𝐿𝑝 (Ω), the Hölder

inequality with
1

𝑝
+ 1

𝑠
= 1

𝑞
thus yields that

∥𝐹 (𝑢̃) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢̃) (𝑢̃ − 𝑢)∥𝐿𝑞 = ∥𝑅(𝑢̃) (𝑢̃ − 𝑢)∥𝐿𝑞 ≤ ∥𝑅(𝑢̃)∥𝐿𝑠 ∥𝑢̃ − 𝑢∥𝐿𝑝 .

If we now set 𝑢̃ := 𝑢 + ℎ for ℎ ∈ 𝐿𝑝 (Ω) with ∥ℎ∥𝐿𝑝 → 0, we have that ∥𝑅(𝑢 + ℎ)∥𝐿𝑠 → 0

and hence by definition the Newton differentiability of 𝐹 in 𝑢 with Newton derivative

ℎ ↦→ 𝐷𝑁 𝐹 (𝑢)ℎ as claimed. □

For 𝑝 = 𝑞 ∈ [1,∞], however, the claim is false in general, as can be shown by counterexam-

ples.

Example 9.11. We take

𝑓 : ℝ → ℝ, 𝑓 (𝑧) = max{0, 𝑧} :=

{
0 if 𝑧 ≤ 0,

𝑧 if 𝑧 ≥ 0.

This is a piecewise differentiable function, and hence by Theorem 9.8 we can for any

𝛿 ∈ [0, 1] take as Newton derivative

𝐷𝑁 𝑓 (𝑧)ℎ =


0 if 𝑧 < 0,

𝛿ℎ if 𝑧 = 0,

ℎ if 𝑧 > 0.

We now consider the corresponding superposition operators 𝐹 : 𝐿𝑝 (Ω) → 𝐿𝑝 (Ω)
and 𝐷𝑁 𝐹 (𝑢) ∈ 𝐿(𝐿𝑝 (Ω);𝐿𝑝 (Ω)) for any 𝑝 ∈ [1,∞) and show that the approximation

condition (9.2) is violated for Ω = (−1, 1), 𝑢 (𝑥) = −|𝑥 |, and

ℎ𝑛 (𝑥) =
{

1

𝑛
if |𝑥 | < 1

𝑛
,

0 if |𝑥 | ≥ 1

𝑛
.

First, it is straightforward to compute ∥ℎ𝑛∥𝑝𝐿𝑝 =
2

𝑛𝑝+1
. Then since

[𝐹 (𝑢)] (𝑥) = max{0,−|𝑥 |} = 0 almost everywhere,

4
This step fails for 𝐹 : 𝐿∞ (Ω) → 𝐿∞ (Ω) since pointwise convergence and boundedness together do not

imply uniform convergence almost everywhere.
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we have that

[𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛] (𝑥) =

−|𝑥 | if |𝑥 | < 1

𝑛
,

0 if |𝑥 | > 1

𝑛
,

−𝛿
𝑛

if |𝑥 | = 1

𝑛
,

and thus

∥𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛∥𝑝𝐿𝑝 =
∫ 1

𝑛

− 1

𝑛

|𝑥 |𝑝 𝑑𝑥 =
2

𝑝 + 1

(
1

𝑛

)𝑝+1

.

This implies that

lim

𝑛→∞
∥𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛∥𝐿𝑝

∥ℎ𝑛∥𝐿𝑝
=

(
1

𝑝 + 1

) 1

𝑝

≠ 0

and hence that 𝐹 is not Newton differentiable from 𝐿𝑝 (Ω) to 𝐿𝑝 (Ω) for any 𝑝 < ∞.

For the case 𝑝 = 𝑞 = ∞, we take Ω = (0, 1), 𝑢 (𝑥) = 𝑥 , and

ℎ𝑛 (𝑥) =
{
𝑛𝑥 − 1 if 𝑥 ≤ 1

𝑛
,

0 if 𝑥 ≥ 1

𝑛
,

such that ∥ℎ𝑛∥𝐿∞ = 1 for all 𝑛 ∈ ℕ. We also have that 𝑥 + ℎ𝑛 = (1 + 𝑛)𝑥 − 1 ≤ 0 for

𝑥 ≤ 1

𝑛+1
≤ 1

𝑛
and hence that

[𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛] (𝑥) =
{
(1 + 𝑛)𝑥 − 1 if 𝑥 ≤ 1

𝑛+1
,

0 if 𝑥 ≥ 1

𝑛+1
,

since either ℎ𝑛 = 0 or 𝐹 (𝑢 + ℎ𝑛) = 𝐹 (𝑢) + 𝐷𝑁 𝐹 (𝑢)ℎ𝑛 in the second case. Now,

sup

𝑥∈(0, 1

𝑛+1
]
| (1 + 𝑛)𝑥 − 1| = 1 for all 𝑛 ∈ ℕ,

which implies that

lim

𝑛→∞
∥𝐹 (𝑢 + ℎ𝑛) − 𝐹 (𝑢) − 𝐷𝑁 𝐹 (𝑢 + ℎ𝑛)ℎ𝑛∥𝐿𝑝

∥ℎ𝑛∥𝐿𝑝
= 1 ≠ 0

and hence that 𝐹 is not Newton differentiable from 𝐿∞(Ω) to 𝐿∞(Ω) either.

Due to the two norm discrepancy, we can no longer apply the semismooth Newton method

directly to proximal point reformulations in function spaces. We therefore have to fall back
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on the Moreau–Yosida regularization.

Example 9.12. We consider as in Example 9.9 the minimization of 𝐹 + 𝐺 for a twice

continuously differentiable functional 𝐹 : 𝐿2(Ω) → ℝ and 𝐺 = ∥ · ∥𝐿1 . The proximal

point reformulation of 0 ∈ 𝜕(𝐹 +𝐺) (𝑢),

𝑢 − prox𝛾𝐺 (𝑢 − 𝛾∇𝐹 (𝑢)) = 0,

now has to be considered as an equation in 𝐿2(Ω); however, prox𝛾𝐺 is not Newton
differentiable from 𝐿2(Ω) to 𝐿2(Ω). We therefore replace in the original optimality

conditions {−𝑝 = ∇𝐹 (𝑢),
𝑢 ∈ 𝜕𝐺∗(𝑝),

the subdifferential of𝐺∗
with its Moreau–Yosida regularization 𝐻𝛾 := (𝜕𝐺∗)𝛾 , which by

Corollary 6.17 and Example 6.21 is given pointwise as [𝐻𝛾 (𝑝)] (𝑥) = ℎ𝛾 (𝑝 (𝑥)) for

ℎ𝛾 : ℝ → ℝ, 𝑡 ↦→


1

𝛾
(𝑡 − 1) if 𝑡 > 1,

0 if 𝑡 ∈ [−1, 1],
1

𝛾
(𝑡 + 1) if 𝑡 < −1.

This function is clearly piecewise differentiable, and Theorem 9.7 yields that

𝜕𝐶ℎ𝛾 (𝑡) =


{

1

𝛾

}
if |𝑡 | > 1,

{0} if |𝑡 | < 1,[
0, 1

𝛾

]
if |𝑡 | = 1.

By Theorems 9.4 and 9.8, a possible Newton derivative is therefore given by

𝐷𝑁ℎ𝛾 (𝑡)ℎ = 1

𝛾
𝟙{|𝑡 |≥1}ℎ :=

{
1

𝛾
ℎ if |𝑡 | ≥ 1,

0 if |𝑡 | < 1.

The function 𝐷𝑁ℎ𝛾 is now uniformly bounded (by
1

𝛾
) and can be approximated by the

obvious pointwise limit of continuous functions. By Theorem 9.10, the superposition

operator 𝐻𝛾 : 𝐿𝑝 (Ω) → 𝐿2(Ω) is therefore Newton differentiable for all 𝑝 > 2, and a

possible Newton derivative is given by

[𝐷𝑁𝐻𝛾 (𝑝)ℎ] (𝑥) = 1

𝛾
𝟙{|𝑝 (𝑥) |≥1}ℎ(𝑥),
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Assume now that 𝐹 is such that 𝑝 = −∇𝐹 (𝑢) ∈ 𝐿𝑝 (Ω) for some 𝑝 > 2. (This is the

case, e.g., if 𝐹 involves the solution operator to a partial differential equation.) Then the

reduced regularized optimality condition

𝑢𝛾 − 𝐻𝛾 (−∇𝐹 (𝑢𝛾 )) = 0

is Newton differentiable by Theorems 9.2 and 9.3, and we arrive at the semismooth

Newton step (
Id + 1

𝛾
𝟙{|∇𝐹 (𝑢𝑘 ) |≥1}∇2𝐹 (𝑢𝑘)

)
𝑠𝑘 = −𝑢𝑘 + 𝐻𝛾 (−∇𝐹 (𝑢𝑘)),

where in a slight abuse of notation, 𝟙{|𝑝 |≥1} denotes the function 𝑥 ↦→ 𝟙{|𝑝 (𝑥) |≥1}.

In practice, the radius of convergence for semismooth Newtons applied to such a

Moreau–Yosida regularization shrinks with 𝛾 → 0. A possible way of dealing with this

is the following continuation strategy: Starting with a sufficiently large value of 𝛾 , solve

a sequence of problems with decreasing 𝛾 (e.g., 𝛾𝑘 = 𝛾0/2
𝑘
), taking the solution of the

previous problem as the starting point for the next (for which it hopefully close enough

to the solution to lie within the convergence region; otherwise the continuation has to

be terminated or the reduction strategy for 𝛾 adapted).
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While the Clarke subdifferential is a suitable concept for nonsmooth but convex or non-

convex but smooth functionals, it has severe drawbacks for nonsmooth and nonconvex

functionals: As shown in Corollary 8.9, its Fermat principle cannot distinguish minimizers

from maximizers. The reason is that the Clarke subdifferential is always convex, which

is a direct consequence of its construction (8.1) via polarity with respect to (generalized)

directional derivatives. To obtain sharper results for such functionals, it is therefore neces-

sary to construct nonconvex subdifferentials directly via a dual limiting process. On the

other hand, deriving calculus rules for the previous subdifferentials crucially exploited

their convexity by applying Hahn–Banach separation theorems, and calculus rules for

nonconvex subdifferentials are thus significantly more difficult to obtain. As in Chapter 8,

we will assume throughout this chapter that𝑋 is a Banach space unless stated otherwise.

10.1 bouligand subdifferentials

The first definition is motivated by Theorem 8.20: We define a subdifferential as a suitable
limit of classical derivatives (without convexification). For 𝐹 : 𝑋 → ℝ, we first define the

set of Gâteaux points

𝐺𝐹 := {𝑥 ∈ 𝑋 : 𝐹 is Gâteaux differentiable at 𝑥} ⊂ dom 𝐹

and then the Bouligand subdifferential of 𝐹 at 𝑥 as

(10.1) 𝜕𝐵𝐹 (𝑥) := {𝑥∗ ∈ 𝑋 ∗
: 𝐷𝐹 (𝑥𝑛) ⇀∗ 𝑥∗ for some 𝐺𝐹 ∋ 𝑥𝑛 → 𝑥} .

For 𝐹 : ℝ𝑁 → ℝ locally Lipschitz, it follows from Theorem 8.20 that 𝜕𝐶𝐹 (𝑥) = co 𝜕𝐵𝐹 (𝑥).
However, unless 𝑋 is finite-dimensional, it is not clear a priori that the Bouligand subdif-

ferential is nonempty even for 𝑥 ∈ dom 𝐹 .1 Furthermore, the subdifferential does not admit

a satisfactory calculus; not even a Fermat principle holds.

1
Although in special cases it is possible to give a full characterization in Hilbert spaces; see, e.g., [Christof

et al. 2018].
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Example 10.1. Let 𝐹 : ℝ → ℝ, 𝐹 (𝑥) := |𝑥 |. Then 𝐹 is differentiable at every 𝑥 ≠ 0 with

𝐹 ′(𝑥) = sign(𝑥). Correspondingly,

0 ∉ {−1, 1} = 𝜕𝐵𝐹 (0).

To make this approach work therefore requires a more delicate limiting process. The

remainder of this chapter is devoted to one such approach, where we only give an overview

and state important results following [Mordukhovich 2006]. For an alternative, more

axiomatic, approach to generalized derivatives of nonconvex functionals, we refer to [Penot

2013; Ioffe 2017].

10.2 fréchet subdifferentials

We begin with the following limiting construction, which combines the characterizations

of both the Fréchet derivative and the convex subdifferential. Let 𝑋 be a Banach space and

𝐹 : 𝑋 → ℝ. The Fréchet subdifferential (or regular subdifferential or presubdifferential) of 𝐹
at 𝑥 is then defined as

2

(10.2) 𝜕𝐹𝐹 (𝑥) :=

{
𝑥∗ ∈ 𝑋 ∗

: lim inf

𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋

≥ 0

}
.

Note how this “localizes” the definition of the convex subdifferential around the point of

interest: the numerator does not need to be nonnegative for all 𝑦 ; it suffices if this holds

for any 𝑦 sufficiently close to 𝑥 . By a similar argument as for Theorem 4.3, we thus obtain

a Fermat principle for local minimizers.

Theorem 10.2. Let 𝐹 : 𝑋 → ℝ be proper and𝑥 ∈ dom 𝐹 be a localminimizer. Then 0 ∈ 𝜕𝐹𝐹 (𝑥).

Proof. Let𝑥 ∈ dom 𝐹 be a local minimizer. Then there exists an 𝜀 > 0 such that 𝐹 (𝑥) ≤ 𝐹 (𝑦)
for all 𝑦 ∈ 𝑂𝜀 (𝑥), which is equivalent to

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨0, 𝑦 − 𝑥⟩𝑋
∥𝑦 − 𝑥 ∥𝑋

≥ 0 for all 𝑦 ∈ 𝑂𝜀 (𝑥) \ {𝑥}.

Now for any strongly convergent sequence 𝑦𝑛 → 𝑥 , we have that 𝑦𝑛 ∈ 𝑂𝜀 (𝑥) for 𝑛 large

enough. Taking the lim inf in the above inequality thus yields 0 ∈ 𝜕𝐹 (𝑥). □

For convex functionals, of course, the numerator is always nonnegative by definition, and

the Fréchet subdifferential reduces to the convex subdifferential.

2
The equivalence of (10.2) with the usual definition based on corresponding normal cones follows from,

e.g., [Mordukhovich 2006, Theorem 1.86].
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Theorem 10.3. Let 𝐹 : 𝑋 → ℝ be proper, convex, and lower semicontinuous and 𝑥 ∈ dom 𝐹 .
Then 𝜕𝐹𝐹 (𝑥) = 𝜕𝐹 (𝑥).

Proof. By definition of the convex subdifferential, any 𝑥∗ ∈ 𝜕𝐹 (𝑥) satisfies

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑦 − 𝑥⟩𝑋 ≥ 0 for all 𝑦 ∈ 𝑋 .

Dividing by ∥𝑥−𝑦 ∥𝑋 > 0 for 𝑦 ≠ 𝑥 and taking the lim inf as 𝑦 → 𝑥 thus yields 𝑥∗ ∈ 𝜕𝐹𝐹 (𝑥).

Conversely, let 𝑥∗ ∈ 𝜕𝐹𝐹 (𝑥) and ℎ ∈ 𝑋 \ {0} be arbitrary. Then for any 𝛿 > 0, there exists

an 𝜀 > 0 such that

𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥) − ⟨𝑥∗, 𝑡ℎ⟩𝑋
𝑡 ∥ℎ∥𝑋

≥ −𝛿 for all 𝑡 ∈ (0, 𝜀).

Multiplying by ∥ℎ∥𝑋 > 0 and letting 𝑡 → 0, we obtain from Lemma 4.1 that

(10.3) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 (𝑥 + 𝑡ℎ) − 𝐹 (𝑥)
𝑡

+ 𝛿 → 𝐹 ′(𝑥 ;ℎ) + 𝛿.

Since 𝛿 > 0 was arbitrary, this implies by Lemma 4.2 that 𝑥∗ ∈ 𝜕𝐹 (𝑥). □

Similarly, for Fréchet differentiable functionals, the limit in (10.2) is zero for all sequences.

Theorem 10.4. Let 𝐹 : 𝑋 → ℝ be Fréchet differentiable at 𝑥 ∈ 𝑋 . Then 𝜕𝐹𝐹 (𝑥) = {𝐹 ′(𝑥)}.

Proof. The definition of the Fréchet derivative immediately yields

lim

𝑦→𝑥

𝐹 (𝑦) − 𝐹 (𝑥) − ⟨𝐹 ′(𝑥), 𝑦 − 𝑥⟩𝑋
∥𝑥 − 𝑦 ∥𝑋

= lim

∥ℎ∥𝑋→0

𝐹 (𝑥 + ℎ) − 𝐹 (𝑥) − 𝐹 ′(𝑥)ℎ
∥ℎ∥𝑋

= 0

and hence 𝐹 ′(𝑥) ∈ 𝜕𝐹𝐹 (𝑥).

Conversely, let 𝑥∗ ∈ 𝜕𝐹𝐹 (𝑥) and let again ℎ ∈ 𝑋 \ {0} be arbitrary. As in the proof of

Theorem 10.3, we then obtain that

(10.4) ⟨𝑥∗, ℎ⟩𝑋 ≤ 𝐹 ′(𝑥 ;ℎ) = ⟨𝐹 ′(𝑥), ℎ⟩𝑋 .

Applying the same argument to −ℎ then yields ⟨𝑥∗, ℎ⟩𝑋 = ⟨𝐹 ′(𝑥), ℎ⟩𝑋 for all ℎ ∈ 𝑋 , i.e.,
𝑥∗ = 𝐹 ′(𝑥). □

For nonsmooth and nonconvex functionals, the Fréchet subdifferential can be strictly

smaller than the Clarke subdifferential.

Example 10.5. Consider 𝐹 : ℝ → ℝ, 𝐹 (𝑥) := −|𝑥 |. For any 𝑥 ≠ 0, it follows from

Theorem 10.4 that 𝜕𝐹𝐹 (𝑥) = {− sign(𝑥)}. But for 𝑥 = 0 and arbitrary 𝑥∗ ∈ ℝ, we have

that

lim inf

𝑦→0

𝐹 (𝑦) − 𝐹 (0) − ⟨𝑥∗, 𝑦 − 0⟩
|𝑦 − 0| = lim inf

𝑦→0

(−1 − 𝑥∗ · sign(𝑦)) = −1 − |𝑥∗ | < 0
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and hence that

𝜕𝐹𝐹 (0) = ∅ ⊊ [−1, 1] = 𝜕𝐶𝐹 (0).

Note that 0 ∈ dom 𝐹 in this example. Although the Fréchet subdifferential does not pick up

a maximizer in contrast to the Clarke subdifferential, the fact that 𝜕𝐹𝐹 (𝑥) can be empty even

for 𝑥 ∈ dom 𝐹 is a problem when trying to derive calculus rules that hold with equality. In

fact, as Example 10.5 shows, the set-valued mapping 𝑥 ↦→ 𝜕𝐹𝐹 (𝑥) fails to be closed, which

is also not desirable. This leads to the next and final definition.

10.3 mordukhovich subdifferentials

Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ. The Mordukhovich subdifferential (or
basic subdifferential or limiting subdifferential) of 𝐹 at 𝑥 ∈ dom 𝐹 is then defined as the

strong-to-weak
∗
closure of 𝜕𝐹𝐹 (𝑥), i.e.,3

(10.5) 𝜕𝑀𝐹 (𝑥) := w-∗- lim sup

𝑦→𝑥

𝜕𝐹𝐹 (𝑦)

=
{
𝑥∗ ∈ 𝑋 ∗

: 𝑥∗𝑛 ⇀
∗ 𝑥∗ for 𝑥∗𝑛 ∈ 𝜕𝐹𝐹 (𝑥𝑛) with 𝑥𝑛 → 𝑥

}
,

which can be seen as a generalization of the definition (10.1) of the Bouligand subdifferential.

Note that in contrast to (10.1), this definition includes the constant sequence 𝑥∗𝑛 ≡ 𝑥∗ even
at nondifferentiable points, which makes this a more useful concept in general. This also

implies that 𝜕𝐹𝐹 (𝑥) ⊂ 𝜕𝑀𝐹 (𝑥) for any 𝐹 , and Theorem 10.2 immediately yields a Fermat

principle.

Corollary 10.6. Let 𝐹 : 𝑋 → ℝ be proper and 𝑥 ∈ dom 𝐹 be a local minimizer. Then
0 ∈ 𝜕𝑀𝐹 (𝑥).

As for the Fréchet subdifferential, maximizers do not satisfy the Fermat principle.

Example 10.7. Consider again 𝐹 : ℝ → ℝ, 𝐹 (𝑥) := −|𝑥 |. Using Example 10.5, we directly

obtain from (10.5) that 𝜕𝑀𝐹 (0) = {−1, 1} = 𝜕𝐵𝐹 (0).

Since the convex subdifferential is strong-to-weak
∗
closed, the Mordukhovich subdifferen-

tial reduces to the convex subdifferential as well.

Theorem 10.8. Let 𝑋 be a reflexive Banach space, 𝐹 : 𝑋 → ℝ be proper, convex, and lower
semicontinuous, and 𝑥 ∈ dom 𝐹 . Then 𝜕𝑀𝐹 (𝑥) = 𝜕𝐹 (𝑥).
3
The equivalence of this definition with the original geometric definition – which holds in reflexive Banach
spaces – follows from [Mordukhovich 2006, Theorem 2.34].
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Proof. From Theorem 10.3, it follows that 𝜕𝐹 (𝑥) = 𝜕𝐹𝐹 (𝑥) ⊂ 𝜕𝑀𝐹 (𝑥). Let therefore 𝑥∗ ∈
𝜕𝑀𝐹 (𝑥) be arbitrary. Then by definition there exists a sequence {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗

with 𝑥∗𝑛 ⇀
∗

𝑥∗ and 𝑥∗𝑛 ∈ 𝜕𝐹𝐹 (𝑥𝑛) = 𝜕𝐹 (𝑥𝑛) for 𝑥𝑛 → 𝑥 . As in the proof of Corollary 6.7, it then follows

that 𝑥∗ ∈ 𝜕𝐹 (𝑥) as well. □

A similar result holds for continuously differentiable functionals.

Theorem 10.9. Let𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ be continuously differentiable
at 𝑥 ∈ 𝑋 . Then 𝜕𝑀𝐹 (𝑥) = {𝐹 ′(𝑥)}.

Proof. From Theorem 10.3, it follows that {𝐹 ′(𝑥)} = 𝜕𝐹𝐹 (𝑥) ⊂ 𝜕𝑀𝐹 (𝑥). Let therefore
𝑥∗ ∈ 𝜕𝑀𝐹 (𝑥) be arbitrary. Then by definition there exists a sequence {𝑥∗𝑛}𝑛∈ℕ ⊂ 𝑋 ∗

with

𝑥∗𝑛 ⇀
∗ 𝑥∗ and 𝑥∗𝑛 ∈ 𝜕𝐹𝐹 (𝑥𝑛) = {𝐹 ′(𝑥𝑛)} for 𝑥𝑛 → 𝑥 . The continuity of 𝐹 ′ then immediately

implies that 𝐹 ′(𝑥𝑛) → 𝐹 (𝑥), and since strong limits are also weak-∗ limits, we obtain

𝑥∗ = 𝐹 ′(𝑥). □

We also have the following relation to Clarke subdifferentials, which should be compared

to Theorem 8.20.

Theorem 10.10 ([Mordukhovich 2006, Theorem 3.57]). Let 𝑋 be a reflexive Banach space
and 𝐹 : 𝑋 → ℝ be locally Lipschitz continuous around 𝑥 ∈ 𝑋 . Then 𝜕𝐶𝐹 (𝑥) = cl

∗
co 𝜕𝑀𝐹 (𝑥),

where cl
∗𝐴 stands for the weak-∗ closure of the set 𝐴 ⊂ 𝑋 ∗.4

The following example illustrates that the Mordukhovich subdifferential can be noncon-

vex.

Example 10.11. Let 𝐹 : ℝ2 → ℝ, 𝐹 (𝑥1, 𝑥2) = |𝑥1 | − |𝑥2 |. Since 𝐹 is continuously differen-

tiable for any (𝑥1, 𝑥2) where 𝑥1, 𝑥2 ≠ 0 with

∇𝐹 (𝑥1, 𝑥2) ∈ {(1, 1), (−1, 1), (1,−1), (−1,−1)},

4
Of course, in reflexive Banach spaces the weak-∗ closure coincides with the weak closure. The statement

holds more general in so-called Asplund spaces which include some nonreflexive Banach spaces.
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we obtain from (10.2) that

𝜕𝐹𝐹 (𝑥1, 𝑥2) =



{(1,−1)} if 𝑥1 > 0, 𝑥2 > 0,

{(−1,−1)} if 𝑥1 < 0, 𝑥2 > 0,

{(−1, 1)} if 𝑥1 < 0, 𝑥2 < 0,

{(1, 1)} if 𝑥1 > 0, 𝑥2 < 0,

{(𝑡,−1) : 𝑡 ∈ [−1, 1]} if 𝑥1 = 0, 𝑥2 > 0,

{(𝑡, 1) : 𝑡 ∈ [−1, 1]} if 𝑥1 = 0, 𝑥2 < 0,

∅ if 𝑥2 = 0.

In particular, 𝜕𝐹𝐹 (0, 0) = ∅. However, from (10.5) it follows that

𝜕𝑀𝐹 (0, 0) = {(𝑡,−1) : 𝑡 ∈ [−1, 1]} ∪ {(𝑡, 1) : 𝑡 ∈ [−1, 1]} .

In particular, 0 ∉ 𝜕𝑀𝐹 (0, 0). On the other hand, Theorem 10.10 then yields that

(10.6) 𝜕𝐶𝐹 (0, 0) = {(𝑡, 𝑠) : 𝑡, 𝑠 ∈ [−1, 1]} = [−1, 1]2

and hence 0 ∈ 𝜕𝐶𝐹 (0, 0). (Note that 𝐹 attains neither a minimum nor a maximum on

ℝ2
, while (0, 0) is a nonsmooth saddle-point.)

In contrast to the Bouligand subdifferential, the Mordukhovich subdifferential admits a

satisfying calculus, although the assumptions are understandably more restrictive than in

the convex setting. The first rule follows as always straight from the definition.

Theorem 10.12. Let 𝑋 be a reflexive Banach space and 𝐹 : 𝑋 → ℝ. Then for any 𝜆 ≥ 0 and
𝑥 ∈ 𝑋 ,

𝜕𝑀 (𝜆𝐹 ) (𝑥) = 𝜆𝜕𝑀𝐹 (𝑥).

Full calculus in infinite-dimensional spaces holds only for a rather small class ofmappings.

Theorem 10.13 ([Mordukhovich 2006, Proposition 1.107]). Let 𝑋 be a reflexive Banach space,
𝐹 : 𝑋 → ℝ be continuously differentiable, and 𝐺 : 𝑋 → ℝ be arbitrary. Then for any
𝑥 ∈ dom𝐺 ,

𝜕𝑀 (𝐹 +𝐺) (𝑥) = {𝐹 ′(𝑥)} + 𝜕𝑀𝐺 (𝑥).

While the previous two theorems also hold for the Fréchet subdifferential (the latter even for

merely Fréchet differentiable 𝐹 ), the following chain rule is only valid for the Mordukhovich

subdifferential. Compared to Theorem 8.18, it also allows for the outer functional to be

extended-real valued.
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Theorem 10.14 ([Mordukhovich 2006, Proposition 1.112]). Let 𝑋 be a reflexive Banach space,
𝐹 : 𝑋 → 𝑌 be continuously differentiable, and 𝐺 : 𝑌 → ℝ be arbitrary. Then for any 𝑥 ∈ 𝑋
with 𝐹 (𝑥) ∈ dom𝐺 and 𝐹 ′(𝑥) : 𝑋 → 𝑌 surjective,

𝜕𝑀 (𝐺 ◦ 𝐹 ) (𝑥) = 𝐹 ′(𝑥)∗𝜕𝑀𝐺 (𝐹 (𝑥)) .

More general calculus rules require 𝑋 to be a reflexive Banach
5
space as well as additional,

nontrivial, assumptions on 𝐹 and 𝐺 ; see, e.g., [Mordukhovich 2006, Theorem 3.36 and

Theorem 3.41].

5
or Asplund
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