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PREFACE

¿etaskof �nding aminimizer ū of a Fréchet di�erentiable functional J can o en be reduced to
solving the �rst order necessary optimality conditions J ′(ū) = 0, which is sometimes referred
to as Fermat’s principle. If J is non-di�erentiable but convex, the convex subdi�erential ∂J
replaces the nonexistant Fréchet derivative, as it satis�es Fermat’s principle and allows for a
rich calculus – in particular Fenchel duality – that can be used to obtain explicit optimality
conditions.

In the (twice) di�erentiable case, the numerical computation of a minimizer ū thus amounts
to solving the (o en nonlinear) equation J ′(ū) = 0, for which Newton’s method is an e�cient
choice. ¿e convex analogue 0 ∈ ∂J(ū) can o en be reformulated as a non-di�erentiable
but locally Lipschitz continuous equation; here, the so-called Newton derivative is a suitable
replacement for the Fréchet derivative, as it allows a similarly e�cient semismooth Newton
method.

¿e purpose of these notes is to give a brief, “bird’s-eye”, overview over the concepts and
most important results on these topics. ¿e classical reference for convex analysis and duality
is [Ekeland and Témam 1999], while [Attouch, Buttazzo, and Michaille 2006, Chapter 9]
contains a readable and complete overview. A rigorous and extensive treatment can be found
in the excellent textbook [Schirotzek 2007], which we follow here. For semismooth Newton
methods, the reader is referred to the expositions in [Ito and Kunisch 2008; Ulbrich 2011;
Schiela 2008].

notation

For a normed vector space V , we denote by V∗ the topological dual of V . Note that this
de�nition depends on the choice of the topology, speci�ed via the duality pairing 〈·, ·〉V,V∗
betweenV andV∗ (i.e., (V, V∗, 〈·, ·〉V,V∗) is a dual pair; see, e.g., [Werner 2011, ChapterVIII.3]).
¿e topological dual V∗ is always a Banach space if equipped with the norm

‖v∗‖V∗ = sup {〈v, v∗〉V,V∗ : v ∈ V, ‖v‖V 6 1} .

For (non-re�exive) Banach spaces, two di�erent topologies are of particular relevance.
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contents

(i) ¿e weak topology corresponds to the duality pairing between a normed vector space V
and the space V∗ of all continuous linear forms on V , de�ned by

〈v, v∗〉V,V∗ := v
∗(v)

for all v ∈ V and v∗ ∈ V∗. For example, the weak topological dual of L1(Ω) can be
identi�ed with L∞(Ω), with the duality pairing reducing to

〈v, v∗〉L1,L∞ =

∫
Ω

v(x)v∗(x)dx,

see, e.g., [Brezis 2010, ¿eorem 4.14]. If not speci�ed otherwise, the topological dual is
to be understood with respect to the weak topology.

(ii) If V∗ is the weak topological dual of V , the duality pairing between V∗ and V is de�ned
by

〈v∗, v〉V∗,V := v∗(v)

for all v∗ ∈ V∗ and v ∈ V . ¿is allows identifying the weak-? topological dual (or
predual) of V∗ with V (i.e, the weak-? dual of L∞(Ω) is L1(Ω)).

(For re�exive Banach spaces, of course, both notions coincide.)

For a linear operator A : X → Y between the normed vector spaces X and Y, we call A∗ :
Y∗ → X∗ the adjoint operator to A if

〈x,A∗y∗〉X,X∗ = 〈Ax, y
∗〉Y,Y∗

for all x ∈ X and y∗ ∈ Y∗. If the duality is taken with respect to the weak topology, this
coincides again with the standard de�nition. On the other hand, if there exists B : Y → X

such that B∗ = A with respect to the weak topology, we can identify the weak-? adjoint (or
preadjoint) A∗ of an operator A : X∗ → Y∗ with B, since

〈x∗, By〉X∗,X = 〈Ax∗, y〉Y∗,Y

for all x∗ ∈ X∗ and y ∈ Y.
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CONVEX ANALYSIS

Recall that a function f : V → R := R ∪ {+∞} is called convex if

f(λv1 + (1− λ)v2) 6 λf(v1) + (1− λ)f(v2)

for all v1, v2 ∈ V and λ ∈ (0, 1), and proper if f is not identically equal to +∞. For example,
the indicator function δC of a nonempty, convex set C ⊂ V (i.e., λv1 + (1− λ)v2 ∈ C for all
v1, v2 ∈ C and λ ∈ (0, 1)), de�ned by

δC(v) :=

{
0 if v ∈ C,∞ otherwise,

is convex and proper. Similarly, for any Banach space V , the norm ‖ · ‖V is convex and proper
(by virtue of the triangle inequality).

1.1 convex subdifferentials

Let f : V → R be convex and proper, and let v̄ ∈ V with f(v̄) <∞. ¿e set

(1.1) ∂f(v̄) := {v∗ ∈ V∗ : 〈v− v̄, v∗〉V,V∗ 6 f(v) − f(v̄) for all v ∈ V}

is called subdi�erential of f at v̄. Every v∗ ∈ ∂f(v̄) is called subgradient of f at v̄. From the
de�nition (1.1), we immediately obtain Fermat’s principle for convex functions: ¿e point v̄ is
a minimizer of f if and only if f(v̄) 6 f(v) for all v ∈ V , which is equivalent to 0 ∈ ∂f(v̄).

¿e usefulness of the convex subdi�erential now lies in the fact that it can o en be charac-
terized explicitly. If f is convex, proper, and Gâteaux di�erentiable, then ∂f(v) = {f ′(v)}; see,
e.g., [Schirotzek 2007, Proposition 4.1.8].

To give another example, we return to the indicator function of a convex set C. For v̄ ∈ C, we
have

v∗ ∈ ∂δC(v̄)⇔ 〈v− v̄, v∗〉V,V∗ 6 δC(v) for all v ∈ V
⇔ 〈v− v̄, v∗〉V,V∗ 6 0 for all v ∈ C,
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1 convex analysis

since the condition is trivially satis�ed for all v /∈ C. In other words, the subdi�erential of the
indicator function of a convex set is its normal cone. Of particular importance for us will be
the case when the set Cα for α > 0 is given by pointwise constraints,

Cα = {v ∈ C0(Ω) : −α 6 v(x) 6 α for all x ∈ Ω} ,

where we can give a pointwise characterization of the subdi�erential. By separate pointwise
inspection of the

• positive active set: x ∈ A+ := {x ∈ Ω : v̄(x) = α},

• negative active set: x ∈ A− := {x ∈ Ω : v̄(x) = −α},

• inactive set: x ∈ I := {x ∈ Ω : |v̄(x)| < α},

we obtain the equivalent complementarity conditions for v∗ ∈ ∂δCα(v̄) ⊂M(Ω) = C0(Ω)∗:

v∗(A+) > 0, v∗(A−) 6 0, v∗(I) = 0.

¿e complementarity conditions can equivalently be expressed for any γ > 0 as

(1.2) v∗ +max(0,−v∗ + γ(v̄− α)) +min(0,−v∗ + γ(v̄+ α)) = 0,

where max and min are taken pointwise in Ω (in the sense of Jordan decomposition of
measures); this can again be seen by pointwise inspection.

Another relevant example is the subdi�erential of the norm of V , which is given by

∂(‖·‖V)(v̄) =

{
{v∗ ∈ V∗ : 〈v̄, v∗〉V,V∗ = ‖v̄‖V and ‖v∗‖V∗ = 1} if v̄ 6= 0,
{v∗ ∈ V∗ : ‖v∗‖V∗ = 1} =: BV∗ if v̄ = 0.

To see this, �rst let v̄ 6= 0 and consider v∗ ∈ ∂(‖·‖V)(v̄). ¿en we have by inserting in turn
0 ∈ V and 2x̄ ∈ V into (1.1) that

‖v̄‖V 6 〈v̄, v∗〉V,V∗ = 〈2v̄− v̄, v
∗〉V,V∗ 6 ‖2v̄‖V − ‖v̄‖V = ‖v̄‖V .

Similarly, we have for any v ∈ V

〈v, v∗〉V,V∗ = 〈(v+ v̄) − v̄, v
∗〉V,V∗ 6 ‖v+ v̄‖V − ‖v̄‖V 6 ‖v‖V ,

which implies that ‖v∗‖V∗ 6 1; since ṽ = v̄/ ‖v̄‖V satis�es

〈ṽ, v∗〉V,V∗ = ‖v̄‖
−1
V ‖v̄‖V = 1,

we conclude ‖v∗‖V∗ = 1. Conversely, let v∗ ∈ V∗ satisfy 〈v̄, v∗〉V,V∗ = ‖v̄‖V and ‖v∗‖V∗ = 1.
¿en, for any v ∈ V we have

〈v− v̄, v∗〉V,V∗ = 〈v, v
∗〉V,V∗ − 〈v̄, v

∗〉V,V∗ 6 ‖v‖V − ‖v̄‖V ,
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1 convex analysis

i.e., v∗ ∈ ∂(‖·‖V)(v̄). If v̄ = 0, de�nition (1.1) reduces to

〈v, v∗〉V,V∗ 6 ‖v‖V for all v ∈ V,

which by the de�nition of the dual norm is equivalent to ‖v∗‖V∗ 6 1.

For V = L1(Ω), we can use this de�nition and pointwise inspection to explicitly compute
v∗ ∈ L∞(Ω) for given v to obtain

∂(‖·‖L1)(v) = sign(v) :=


1 if v(x) > 0,

−1 if v(x) < 0,
t ∈ [−1, 1] if v(x) = 0

¿e convex subdi�erential satis�es the following sum rule. Let f1, f2 : V → R be convex and
proper. If there exists a point v̄ ∈ V such that f1(v̄), f2(v̄) < ∞ and f2 is continuous at v̄
(which allows application of separation theorems), then

(1.3) ∂(f1 + f2)(v) = ∂f1(v) + ∂f2(v)

for all v ∈ V for which f1 and f2 are �nite; see, e.g, [Schirotzek 2007, Proposition 4.5.1].
Similarly, if T : U→ V is a continuous linear operator, f : V → R is convex, and there exists
a u0 ∈ U such that f is continuous at Tu0, then g : U→ R, g(u) = f(Tu), is convex and

(1.4) ∂g(u) = T∗∂f(Tu) = {T∗v∗ : v∗ ∈ ∂f(Tu)} ,

see [Clarke 2013, ¿eorem 4.13].

1.2 convex conjugates

One reason for the usefulness of convex subdi�erentials in our context is their connection
with the Legendre–Fenchel transform. For a function f : V → R, the Fenchel conjugate (or
convex conjugate) is de�ned as

(1.5) f∗ : V∗ → R, f∗(v∗) = sup
v∈V
〈v, v∗〉V,V∗ − f(v).

¿e convex conjugate is always convex and lower semicontinuous. If f is convex and proper,
then f∗ is proper as well; see, e.g., [Schirotzek 2007, Proposition 2.2.3]. We also introduce the
biconjugate of f, de�ned as

f∗∗ : V → R, f∗∗(v) = sup
v∗∈V∗

〈v∗, v〉V∗,V − f∗(v∗)

(i.e., if V∗ is the weak dual of V , we take V as the weak-? dual of V∗ (or vice versa) and set
f∗∗ = (f∗)∗). If f is proper, the Fenchel–Moreau–Rockafellar theorem states that f∗∗ = f if and
only if f is convex and lower semicontinuous; see, e.g., [Schirotzek 2007, ¿eorem 2.2.4].

We give a few relevant examples.
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1 convex analysis

(i) Let V = L2(Ω) and f(v) = 1
2
‖v‖2L2 . We identify V∗ with V (i.e., the duality pairing

is the inner product in L2(Ω)). ¿en, the function to be maximized in (1.5) is strictly
concave and di�erentiable, so that the supremum is attained if and only if v∗ = f ′(v) = v.
Inserting this into the de�nition and simplifying, we obtain

f∗ : L2(Ω)→ R, f∗(v∗) =
1

2
‖v∗‖2L2 .

(ii) Let V be a normed vector space and f(v) = δBV (v). We take V∗ as the weak (or weak-?)
dual of V and compute f∗(v∗) for v∗ ∈ V∗:

δ∗BV (v
∗) = sup

v∈V
〈v, v∗〉V,V∗ − δBV (v) = sup

‖v‖V61
〈v, v∗〉V,V∗ = ‖v

∗‖V∗ .

(iii) Let V be as above, V∗ its weak topological dual and f(v) = ‖v‖v. We compute f∗(v∗)
for given v∗ ∈ V∗ by discerning two cases:

a) ‖v∗‖V∗ 6 1. In this case, 〈v, v∗〉V,V∗ 6 ‖v‖V ‖v∗‖V∗ 6 ‖v‖V for all v ∈ V and
〈0, v∗〉V,V∗ = 0 = ‖0‖V . Hence,

f∗(v∗) = sup
v∈V
〈v, v∗〉V,V∗ − ‖v‖V = 0.

b) ‖v∗‖V∗ > 1. ¿en by the de�nition of the dual norm, there exists a v0 ∈ V with
〈v0, v∗〉V,V∗ > ‖v0‖V . Taking ρ→∞ in

0 < ρ (〈v0, v∗〉V,V∗ − ‖v0‖V) = 〈ρv0, v
∗〉V,V∗ − ‖ρv0‖V 6 f∗(v∗)

yields f∗(v∗) = +∞.
We conclude that f∗ = δBV∗ .

If we take the dual with respect to the weak-? topology between V∗ and V , this result
also follows directly from the Fenchel–Moreau–Rockafellar theorem and example (ii)
by noting that

δBV (v) = δ
∗∗
BV

(v) = sup
v∗∈V∗

〈v, v∗〉V,V∗ − δ
∗
BV

(v∗)

= sup
v∗∈V∗

〈v∗, v〉V∗,V − ‖v∗‖V∗ = f
∗(v)

for all v ∈ V .

Furthermore, straightforward calculation yields the following useful transformation rules;
see, e.g., [Ekeland and Témam 1999, page 17]. For f : V → R, we have for all α ∈ R and a ∈ V
that

(αf(·))∗(v∗) = αf∗(α−1v∗),

f(·− a)∗(v∗) = f∗(v∗) + 〈a, v∗〉V,V∗ .
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1 convex analysis

1.3 fenchel duality

We now discuss the relation between the Fenchel conjugate and the subdi�erential of convex
functions. Let f be a proper and convex function. ¿en we immediately obtain from the
de�nitions of the conjugate and the subdi�erential that for all v ∈ V with f(v) <∞ and all
v∗ ∈ V∗ the Fenchel–Young inequality

(1.6) 〈v, v∗〉V,V∗ 6 f(v) + f
∗(v∗),

is satis�ed. If v∗ ∈ ∂f(v), we have for all v ∈ V that

〈v, v∗〉V,V∗ − f(v) 6 〈v̄, v
∗〉V,V∗ − f(v̄),

Hence, taking the supremum on the le -hand side yields

(1.7) f∗(v∗) = sup
v∈V
〈v, v∗〉V,V∗ − f(v) 6 〈v̄, v

∗〉V,V∗ − f(v̄).

Hence, inserting arbitraryw∗ ∈ V∗ into (1.6) and subtracting (1.7) for v∗ ∈ ∂f(v) yields

〈v,w∗ − v∗〉V,V∗ 6 (f(v) + f∗(w∗)) − (f(v) + f∗(v∗)) = f∗(w∗) − f∗(v∗)

for everyw∗ ∈ V∗, i.e., v ∈ ∂f∗(v∗). If f is in addition lower semicontinuous, we can apply
the Fenchel–Moreau–Rockafellar theorem to also obtain the converse, and thus

(1.8) v∗ ∈ ∂f(v) ⇔ v ∈ ∂f∗(v∗),

see [Schirotzek 2007, Proposition 4.4.4]. ¿is relation allows passing from a subdi�erential
that is di�cult to characterize to one that is more tractable.

¿e Fenchel duality theorem combines in a particularly elegant way the relation (1.8), the
sum rule (1.3), and the chain rule (1.4) to obtain existence of and optimality conditions for
a solution to a convex optimization problem. Let V and Y be Banach spaces, f : V → R,
g : Y → R be convex, proper, lower semicontinuous functions and T : V → Y be a continuous
linear operator. If there exists a v0 ∈ V such that f(v0) <∞,g(Tv0) <∞, and g is continuous
at Tv0, then

(1.9) inf
v∈V

f(v) + g(Tv) = sup
y∗∈Y∗

−f∗(T∗y∗) − g∗(−y∗),

and the optimization problem on the right hand side (referred to as the dual problem) has
at least one solution; see, e.g., [Ekeland and Témam 1999, ¿eorem III.4.1]. (Existence of a
solution to the problem on the le hand side – the primal problem – follows directly from
the assumptions on f, g, and Λ by standard arguments.) Furthermore, the equality in (1.9) is
attained at (v̄, ȳ∗) if and only if the extremality relations{

T∗ȳ∗ ∈ ∂f(v̄),
−ȳ∗ ∈ ∂g(Tv̄),
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1 convex analysis

hold; see, e.g., [Ekeland and Témam 1999, Proposition III.4.1]. Depending on the context, one
or both of these relations can be reformulated in terms of f∗ and g∗ using the equivalence
(1.8). ¿e conditions and consequences of the Fenchel duality theorem should be compared
with classical regular point conditions (e.g., [Maurer and Zowe 1979; Ito and Kunisch 2008])
for the existence of Lagrange multipliers in constrained optimization.

We illustrate the above by applying Fenchel duality to derive optimality conditions for a
classical optimal control problem with state constraints:{

min
y,u

1

2
‖y− z‖2L2(Ω) +

α

2
‖u‖2L2(Ω) s. t. Ay = u, y(x) > 0 for all x ∈ Ω,

where z ∈ L2(Ω) is given and the elliptic partial di�erential operator is such that the state
y is continuous. Introducing the control-to-state mapping T : L2(Ω) → C0(Ω), u 7→ y,
and the convex set B := {v ∈ C0(Ω) : v(x) > 0 for all x ∈ Ω}, we can formulate the reduced
problem

min
u∈L2(Ω)

1

2
‖Tu− z‖2L2(Ω) +

α

2
‖u‖2L2(Ω) + δB(Tu).

To apply Fenchel duality, we set

f : L2(Ω)→ R, f(v) =
α

2
‖v‖2L2(Ω) ,

g : C(Ω)→ R, g(v) =
1

2
‖v− z‖2L2 + δB(v).

Clearly, f and g are convex, proper (take v = 0) and lower semicontinuous. We further assume
that there exists a u0 ∈ L2(Ω) such that Tu0 is in the interior ofB, and hence δB is continuous
at Tu0 (this is the usual regular point condition). ¿en the Fenchel duality theorem yields
the existence of a q̄ ∈M(Ω) such that{

T∗q̄ ∈ ∂f(ū) = {αū},

−q̄ ∈ ∂g(Tū) = {Tū− z}+ ∂δB(Tū),

where we have used that the sum rule holds due to the assumptions on u0. Introducing now
the optimal state ȳ = Tū, the adjoint state p̄ = −T∗q̄ ∈ L2(Ω) (i.e., A∗p̄ = −q̄), and the
subgradient λ̄ ∈ ∂δB(Tū) ⊂M(Ω), we arrive at the usual optimality system

Aȳ = ū,

A∗p̄ = ȳ− z+ λ̄,

αū = −p̄,〈
y− ȳ, λ̄

〉
C0,M

6 0 for all y ∈ B.

Control constraints can be treated in a similar way.
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2

SEMISMOOTH NEWTON METHODS

It remains to formulate a numerical method that can solve nonsmooth equations of the form
(1.2) in an e�cientmanner. Just as the convex subdi�erential proved to be suitable replacement
for the Fréchet derivative in the context of optimality conditions, we need to consider a
generalized derivative that can replace the Fréchet derivative in a Newton-type method and
still allow superlinear convergence. In addition, it needs to provide a su�ciently rich calculus
and the possibility for explicit characterization to be implementable in a numerical algorithm.
¿ese requirements lead to semismooth Newton methods.

Tomotivate the de�nitions, it will be instructive to �rst consider the convergence of an abstract
generalized Newton method. Let Banach spaces U,V , a mapping F : U → V , and u∗ ∈ U
with F(u∗) = 0 be given. A generalized Newton method to compute an approximation of u∗
can be described as follows:
1: Choose u0 ∈ U
2: for k = 0, 1, . . . do
3: Choose an invertible linear operatorM(xk) ∈ L(U,V)

4: Set uk+1 = uk −M(uk)
−1F(uk)

We can now ask ourselves when convergence of the iterates uk → u∗ holds, and in particular
when it is superlinear, i.e.,

(2.1) lim
k→∞

∥∥uk+1 − u∗∥∥
U

‖uk − u∗‖U
= 0.

Set dk = uk − u∗. ¿en we can use the de�nition of the Newton step and the fact that
F(u∗) = 0 to obtain∥∥uk+1 − u∗∥∥

U
=

∥∥uk −M(uk)
−1F(uk) − u∗

∥∥
U

=
∥∥M(uk)

−1
[
F(uk) − F(u∗) −M(uk)(u

k − u∗)
]∥∥
U

=
∥∥M(uk)

−1
[
F(uk) − F(u∗) −M(xk)d

k
]∥∥
U

6
∥∥M(uk)

−1
∥∥
L(V,U)

∥∥F(u∗ + dk) − F(u∗) −M(uk)dk
∥∥
V

Hence, (2.1) holds if both a

9



2 semismooth newton methods

• uniform regularity condition: there exists a C > 0 such that∥∥M(uk)
−1

∥∥
L(V,U)

6 C

for all k, and an

• approximation condition:

lim
‖dk‖U→0

∥∥F(u∗ + dk) − F(u∗) −M(u∗ + dk)dk
∥∥
V

‖dk‖U
= 0,

hold. In this case, there exists a neighborhoodN(u∗) of u∗ such that

∥∥uk+1 − u∗∥∥
U
<
1

2

∥∥uk − u∗∥∥
U

for an uk ∈ N(u∗), which by induction implies dk → 0 and hence the desired (local)
superlinear convergence.

If F is continuously Fréchet di�erentiable, the approximation condition holds by de�nition
for the Fréchet derivativeMk = F ′(uk), and we arrive at the classical Newton method. For
nonsmooth F, we simply take a linear operator which satis�es the uniform regularity and
approximation conditions. Naturally, the choiceMk ∈ ∂F(uk) for an appropriate generalized
derivative suggests itself.

2.1 semismooth newton methods in finite dimensions

If U and V are �nite-dimensional, an appropriate choice is the Clarke subdi�erential. Recall
that by Rademacher’s theorem, every Lipschitz function F : Rn → Rm is di�erentiable
almost everywhere; see, e.g. [Ziemer 1989, ¿eorem 2.2.1]. We can then de�ne the Clarke
subdi�erential at x ∈ Rn as

∂CF(x) = co
{
lim
n→∞ F ′(xn) : {xn}n∈N with xn → x, F di�erentiable at xn

}
,

where co denotes the convex hull. To use an element of the Clarke subdi�erential as linear
operator in our Newton method, we need to ensure in particular that the approximation
condition holds. In fact, we will require a slightly stronger condition. A function F : Rn → Rm
is called semismooth at x ∈ Rn if

(i) F is Lipschitz continuous near x,

(ii) F is directionally di�erentiable at x,

(iii) lim
‖h‖→0

sup
M∈∂CF(x+h)

‖F(x+ h) − F(x) −Mh‖
‖h‖

= 0.
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2 semismooth newton methods

Note that we take the subgradient not in the linearization point but in a neighborhood, so we
avoid evaluating ∂CF at the points where F is not di�erentiable. ¿is de�nition is equivalent
to the original one of [Mi�in 1977] (for real-valued functions) and [Qi and Sun 1993] (for
vector-valued functions); see [Ulbrich 2011, Proposition 2.7].

For a locally Lipschitz continuous function, this leads to the semismooth Newton method
1: Choose x0 ∈ U
2: for k = 0, 1, . . . do
3: ChooseM(xk) ∈ ∂CF(xk)
4: Set xk+1 = xk −M(xk)

−1Fxk)

If f is semismooth at x∗ with f(x∗) = 0 and allM(xk) satisfy the uniform regularity condition,
this iteration converges (locally) superlinearly to x∗; see, e.g., [Ulbrich 2011, Proposition
2.12]. A similar abstract framework for the superlinear convergence of Newton methods was
proposed in [Kummer 1988].

We close this section with some relevant examples. Clearly, if F is continuously di�erentiable
at x, then F is semismooth at x with ∂CF(x) = {F ′(x)}. ¿is can be extended to continuous
piecewise di�erentiable functions. Let F1, . . . , FN ∈ C1(Rn;Rm) be given. A function F :

Rn → Rm is called piecewise di�erentiable if

F(x) ∈ {F1(x), . . . , FN(x)} for all x ∈ Rn.

¿en, F is semismooth, and

∂CF(x) = co {F ′i(x) : F(x) = Fi(x) and x ∈ cl int {y : F(y) = Fi(y)}} ;

see, e.g., [Ulbrich 2011, Proposition 2.26]. ¿is means that we can di�erentiate piecewise, and
where pieces overlap, take the convex hull of all possible values at x excluding those that are
only attained on a null set containing x. As a concrete example, the function F : R → R,
F(x) = max(0, x) is semismooth, and

∂CF(x) =


{0} if x < 0,
{1} if x > 0,
[0, 1] if x = 0.

Finally, a vector-valued function is semismooth if and only if all its component functions are
semismooth; see [Ulbrich 2011, Proposition 2.10]. ¿is implies semismoothness of (1.2) in
�nite dimensions.

2.2 semismooth newton methods in infinite dimensions

In in�nite dimensions,Rademacher’s theorem is not available, and thus the construction above
cannot be carried out. Instead of starting from Lipschitz continuous functions, we directly

11



2 semismooth newton methods

demand the approximation condition to hold. We call F : U → V Newton di�erentiable at
u ∈ U if there exists a neighborhoodN(u) and a mapping G : N(u)→ L(U,V) with

(2.2) lim
‖h‖U→0

‖F(u+ h) − F(u) −G(u+ h)h‖V
‖h‖U

= 0.

AnyDNF ∈ {G(s) : s ∈ N(u)} is then a Newton derivative at u. Note that Newton derivatives
are in general not unique, and need not be elements of any generalized subdi�erential. If F is
Newton di�erentiable at u and

lim
t→0+

G(u+ th)h

exists uniformly in ‖h‖U = 1, then F is called semismooth at u. ¿is approach to semis-
moothness in Banach spaces was proposed in [Hintermüller, Ito, and Kunisch 2002], based
on the similar (but stronger) notion of slant di�erentiability introduced in [Chen, Nashed,
and Qi 2000]. Related approaches to nonsmooth Newton methods in Banach spaces based
on set-valued generalized derivatives were treated in [Kummer 2000] and [Ulbrich 2002].
¿e exposition here is adapted from [Ito and Kunisch 2008].

For Newton di�erentiable F, this de�nition leads to the semismooth Newton method
1: Choose u0 ∈ U
2: for k = 0, 1, . . . do
3: Choose Newton derivativeDNF(uk)
4: Set uk+1 = uk −DNF(uk)−1F(uk)

If F is Newton di�erentiable (in particular, if F is semismooth) at u∗ with F(u∗) = 0 and all
DNF(u) ∈ {G(u) : u ∈ N(u∗)} satisfy the uniform regularity condition ‖DNF(u)‖L(V,U) 6
C, this iteration converges (locally) superlinearly to u∗; see, e.g., [Ito and Kunisch 2008,
¿eorem 8.16].

If we wish to apply a semismooth Newton method to a concrete function F such as the one in
(1.2), we need to decide whether it is semismooth and give an explicit and computable Newton
derivative. Clearly, if F is continuously Fréchet di�erentiable near u, then F is semismooth at
u, and its Fréchet derivative F ′(u) is a Newton derivative (albeit not the only one). However,
this cannot be extended directly to “piecewise di�erentiable” functions such as the pointwise
max operator acting on functions in Lp(Ω). It is instructive to consider a concrete example.
Take F : Lp(Ω)→ Lp(Ω), F(u) = max(0, u). A candidate for its Newton derivative is de�ned
by its action on h ∈ Lp(Ω) as

[G(u)h](x) =


0 u(x) < 0

h(x) u(x) > 0

δh(x) u(x) = 0

for almost all x ∈ Ω and arbitrary δ ∈ R. (Since the Newton derivative coincides with the
Fréchet derivative where F is continuously di�erentiable, we only have the freedom to choose

12



2 semismooth newton methods

its value where u(x) = 0.) To show that the approximation condition (2.2) is violated at
u(x) = −|x| onΩ = (−1, 1) for any 1 6 p <∞, we take the sequence

hn(x) =

{
1
n

if |x| < 1
n
,

0 otherwise,

with ‖hn‖pLp = 2
np+1

. ¿en, since [F(u)](x) = max(0,−|x|) = 0 almost everywhere, we
have

[F(u+ hn) − F(u) −G(u+ hn)hn](x) =


−|x| if |x| < 1

n
,

0 if |x| > 1
n
,

− δ
n

if |x| = 1
n

and thus

‖F(u+ hn) − F(u) −G(u+ hn)hn‖pLp =
∫ 1
n

− 1
n

|x|p dx =
2

p+ 1

(
1

n

)p+1
.

¿is implies

lim
n→∞

‖F(u+ hn) − F(u) −G(u+ hn)hn‖Lp
‖hn‖Lp

=

(
1

p+ 1

) 1
p

6= 0

and hence that F is not semismooth from Lp(Ω) to Lp(Ω). A similar example can be con-
structed for p =∞; see, e.g., [Ito and Kunisch 2008, Example 8.14].
On the other hand, if we consider F : Lq(Ω) → Lp(Ω) with q > p, the terms involving
n−1 do not cancel and the approximation condition holds (at least for this choice of hn). In
fact, for arbitrary h ∈ Lq(Ω) one can use Hölder’s inequality to create a term involving the
Lebesgue measure of the support of the set where the “wrong” linearization is taken (i.e.,
where max(u(x) +h(x)) 6= max(u(x)) +G(u(x) +h(x))h(x)), which can be shown to go to
zero as h→ 0; see [Hintermüller, Ito, and Kunisch 2002, Proposition 4.1]. Semismoothness
in function spaces hence fundamentally requires a norm gap, which is why approximation
may be necessary to apply a semismooth Newton method to equations of type (1.2).

¿e above holds for any pointwise de�ned operator. If ψ : R → R is semismooth, the
correspondingNemytskii operator Ψ : Lq(Ω)→ Lp(Ω), de�ned pointwise almost everywhere
as

[Ψ(u)](x) := ψ(u(x)),

is semismooth if and only if 1 6 p < q 6∞, and a Newton derivative of Ψ at x, acting on h,
can be taken as

[DN(Ψ(u))h](x) ∈ ∂C(ψ(u(x)))h(x),

13



2 semismooth newton methods

see, e.g., [Ito and Kunisch 2008, Example 8.12]. ¿is connection was �rst investigated sys-
tematically in [Ulbrich 2002]; an alternative approach which parallels the theory of Fréchet
di�erentiability is followed in [Schiela 2008]. In particular, F(u) = max(0, u) is semismooth
from Lq(Ω) to Lp(Ω) for any q > p, with Newton derivative

[DNF(u)h](x) =

{
0 u(x) 6 0

h(x) u(x) > 0.

¿is can be conveniently expressed with the help of the characteristic function χA of the active
set A := {x ∈ Ω : u(x) > 0} (i.e., the function taking the value 1 at x ∈ A and 0 otherwise)
asDNF(u) = χA.

¿ere is a useful calculus for Newton derivatives. It is straightforward to verify that the sum
of two semismooth functions F1 and F2 is semismooth, and

DN(F1 + F2)(u) := DNF1(u) +DNF2(u)

is a Newton derivative for any choice of Newton derivativesDNF1 andDNF2. We also have a
chain rule: If F : U → V is continuously Fréchet di�erentiable at u ∈ U and G : V → Z is
Newton di�erentiable at F(u), then H := G ◦ F is Newton di�erentiable at u with Newton
derivative

DNH(u+ h) = DNG(F(u+ h))F ′(u+ h)

for any h ∈ U su�ciently small; see [Ito and Kunisch 2008, Lemma 8.15].
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