
Optimal control and inverse problems

Christian Clason1 and Barbara Kaltenbacher2
1 Faculty of Mathematics, University of Duisburg-Essen, 45117 Essen, Germany
2 Institute of Mathematics, Alpen-Adria Universität Klagenfurt, Universitätsstrasse 65–67,
9020 Klagenfurt, Austria

E-mail: barbara.kaltenbacher@aau.at

Optimal control of differential equations is concerned with finding “controls” (i.e., inputs such
as right-hand sides, boundary conditions, coefficients, or domains) to differential equations
such that their solution or “state” best approximates a given desired state by minimising a
suitable functional, possibly under constraints on the control and/or the state. In general,
such functionals can be split into a “tracking term” measuring the discrepancy of the optimal
state to the desired state and “control costs” penalising the optimal control, linked through
the (partial) differential equation as an equality constraint. (For this reason, such problems
are also known as “(P)DE-constrained optimisation problems”.) Typical questions, for a given
functional and differential equation, are on the existence of minimisers, their stability with
respect to perturbations of the data, the differentiability of the functional with respect to
the control, and numerical methods for the (approximate) computation of optimal controls.
For details, we refer to the seminal textbook [1] as well as to [2, 3] in particular regarding
numerical methods and concrete applications.

Hence there are clear parallels with variational Tikhonov-, Morozov-, or Ivanov-
regularisation of parameter identification problems for differential equations, both regarding
well-posedness and, in particular, numerical methods. Both fields rely for this on an infinite-
dimensional functional-analytic framework as guidance for accurate and efficient finite-
dimensional numerical algorithms. (It should be mentioned, however, that for optimal control
problems, the penalty parameter for the control costs is usually assumed to be part of the
problem specification and given, while its appropriate choice depending on the measurement
error is of course a critical part of regularisation.) Conversely, optimal control problems can
themselves be ill-posed (e.g., so-called “bang-bang” control problems), and regularisation
theory can be a valuable guide for deriving robust algorithms and optimal convergence rates
for approximations.

The papers collected in this special issue present topics at the current forefront of
research in optimal control of differential equations and illustrate their relation to inverse
problems. In the following, we put these contributions into context.

In recent years, an increasingly important focus area for research in optimal control
was on non-smooth problems. Here as well, the study of non-differentiable functionals was
motivated by sparse controls, which are functions whose support is of negligible Lebesgue
measure; such controls are studied in [4]. A related topic is the use of the total variation as
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control costs, leading to piecewise constant controls [5, 6, 7, 8]. Current research is focused
on optimization of variational inequalities, where the relation between control and state is
itself not differentiable. Such problems are challenging also due to their non-convexity and
require adapted tools for their study; see [9] in this issue.

Another emerging topic in optimal control is concerned with nonlocal models given by
(time or space) fractional differential equations. Here [10] studies space-fractional elliptic
partial differential equations, where the control enters into a generalized boundary condition,
which for these models have to be specified on (a subset of) the exterior of the domain.

Strongly related to optimal control is the field of shape optimisation, where the sought-for
control is not a function but the domain on which the partial differential equation is defined.
Such problems can be formulated as optimal control problems either using level set methods
[11], characteristic functions [12], or mappings to a reference domain [13]. In the latter case,
the question of differentiability of the functional with respect to this mapping is of particular
importance. Of interest are also appropriate geometric penalty terms for such functionals,
where again the total variation is appealing [5, 6].

An important issue is the design of proper discretisations that respect the functional-
analytic structure of optimal control problems and allow their efficient numerical solution.
In the context of inverse problems, a crucial aspect here is robustness with respect to the
penalty parameter, and this question is studied in [14]. A similar issue also arises in the
numerical solution, and in particular the preconditioning, of the discretised linear systems,
which is studied in [15]. For efficiency, a useful tool is adaptive discretisation using a posteriori
estimators, where the numerical solution on a coarse discretisation is used to locally estimate
the discretisation error and refine the discretisation accordingly, allowing to reach a desired
accuracy with a comparatively small number of degrees of freedom [8]. Here again, a
particular focus is on total variation, where a consistent discretisation is more challenging
than for typical Sobolev-space penalties; in this issue, this is treated in [7, 8, 6].

Optimisation methods for computing optimal controls have historically mostly taken
the form of classical gradient or (quasi-)Newton methods; however, recently interest has
grown in methods known from inverse problems and mathematical imaging such as inertially
accelerated gradient methods [16] and stochastic or Kaczmarz-type methods [11].

Regarding applications, prominent models considered in the optimal control context are
related to biomedical imaging using acoustic [15, 12], elastic [17], or electromagnetic [11]
waves, to optical diffusive imaging [16], or to electrical impedance tomography [8]. Another
application with a long history in optimal control is data assimilation, where the sought-after
control is the initial condition in a diffusive time-dependent equation. The classical context
is of course weather prediction, but similar questions also arise in financial models [18]; it is
also strongly related to the prototypical ill-posed problem of the backward heat equation [19].
Another challenging application tackled in [13] is of fluid-structure interactions described by
a coupled system of Navier–Stokes and Lamé equations.

Finally, ill-posed optimisation problems in the form of non-coercive saddle-point
problems (arising as optimality conditions of energy functionals) are treated in [17].
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