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Abstract

We define the calibrations in families for minimal Steiner networks and we explain
through an example its convenience with respect to the “classical” notions of calibrations
for the Steiner Problem.

The Steiner Problem in its classical formulation reads as follow: given a finite collection S =
{p1 . . . , pm} of points in the plane find a connected set with minimal length that contains S. It
is well known that minimizers are finite union of segments that meet in triple junctions forming
angles of 120 degrees. Finding explicitly a solution, it is however much more challenging
(even numerically). In 1995 Brakke [3] and more recently Amato, Bellettini and Paolini [1]
introduced an alternative approach to the Steiner problem rephrasing it in a covering space
setting: minimizing the perimeter among constrained sets in a suitable covering space of
R2 \S is equivalent to minimize the length among all connected planar networks that contain
the given m points. The covering, here denoted by Y , can be constructed by a cut and paste
procedure that we sketchy describe here (see [1] for details). Consider a network in the plane
that contains S and another Lipschitz curve Σ that connects the points and does not intersect
the network. The union of these two (the network and the curve) creates a partition in m
regions of the plane. Consider m copies of R2 \ S and lift each of these regions to one of
the copies. Moreover introduce an equivalence relation that identifies the points along the
curve of the different copies in such a way that the m regions can be seen as one set E in the
covering space Y (given by the union of the copies together with the equivalence relation).
Then the perimeter of the set in Y is twice the length of the network. The set E has some
special features: it is a set of finite perimeter in Y such that for almost every x in the base
space there exists exactly one point y of E such that p(y) = x, where p is the projection
onto the base space R2 \ S. We denote by Pconstr(Y ) the space of all sets in Y satisfying the
previous properties. Then we look for

inf {P (E) : E ∈ Pconstr(Y )} . (0.1)

We underline that this quantity is independent on the choice of the curve Σ in the construction
of Y .
Our first goal in [5] was to introduce a theory of calibrations for Problem (0.1).

Definition 0.1. Given E ∈ Pconstr(Y ) a calibration for E is a (sufficiently regular) vector
field Φ : Y → R2 such that
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i) divΦ = 0,

ii) |Φi − Φj | ≤ 2 for every i, j = 1, . . .m,

iii)
∫
Y Φ ·DχE = P (E),

where with Φi we denote the restriction of Φ on the i-th sheet of the covering Y .

The main purpose of searching for a calibration is to show easily the minimality of a certain
candidate. Indeed we have the following:

Theorem 0.2. If Φ : Y → R2 is a calibration for E ∈ Pconstr(Y ), then E is a minimizer
among all sets in Pconstr(Y ).

Finding a calibration is not easy. In [5] we exhibit a calibration only in the case S is composed
of 3 and 4 points, but for general configuration of points it seems to be an hard task. In
particular it is a long standing open problem to find a calibration when S is composed of
points lying at the vertices of a regular polygon [4]. Indeed, even if different notions of
calibrations are present in the literature (see for instance [7, 8]) and despite the effort of more
than one author, this problem has never been addressed. This leads to a more basic question:
does a calibration always exist?
In [6] we prove that if Φ : Y → R2 is a calibration for E ∈ Pconstr, then E is a minimizer not
only among all (constrained) finite perimeter sets, but also in the larger class of finite linear
combinations of characteristic functions of (constrained) finite perimeter sets. Then if there
exists an element of this larger class with strictly less energy of the minimizer of Problem (0.1),
a calibration for such a minimizer cannot exist. This is the case when S = {p1, . . . , p5} with
pi the vertices of a regular pentagon (see Figure 1).

S1 S2 S3 S4 S5
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Figure 1: Let S = {p1, . . . , p5} be the set of the vertices of a regular pentagon in R2. We
represent in the first row the set E ∈ Pconstr minimizing (0.1) (to be precise its characteristic
function u). In the second row it is depicted a BV function w, a linear combinations of
characteristic functions of constrained finite perimeter sets, whose total variation is strictly
less than the total variation of u. White corresponds to the value 0, light green to 1/2 and
dark green to 1. This counterexample has been found by Bonafini [2] in the framework of
rank one tensor valued measures and we have “translated” it in our setting.
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This example clearly highlights a critical issue of the theory of calibrations. Is it then pos-
sible to slightly change the definition to overcome the problem? In [5] we introduce the
notion of calibration in families: the strategy is to divide the set of competitors in a suit-
able way, defining an appropriate (and weaker) notion of calibration. Then calibrating the
candidate minimizers in each family and comparing their perimeter one finds the minimizers
of Problem (0.1). Thanks to this procedure in [5] we prove the minimality of the Steiner
configurations spanning the vertices of a regular hexagon and pentagon.
We give now a more detailed explanation of the division in families. The competitors that
belong to the same class share a property related to the projection of their essential boundary
onto the base set R2 \ S. In particular we define a family as

F(J ) := {E ∈ Pconstr(Y ) : H1(Ei,j) 6= 0 for every {i, j} ∈ J } ,

where J ⊂ {1, . . . ,m} × {1, . . . ,m} and Ei,j := ∂∗Ei ∩ ∂∗Ej and Ei is the restriction of
E to the sheet i. In the easier case in which the set S consists of m points located on the
boundary of a convex set Ω, Problem (0.1) is equivalent to a minimal partition problem. Any
competitor E ∈ Pconstr(Y ) induces a partition {A1, . . . , Am} of Ω where Ai are the so–called
phases. Our classification in families depends on the topology of the complementary of the
network as we define a family simply prescribing which phases Ai “touch” each other (see [5,
Lemma 4.8] and [6] for the generalization to any configuration of the points of S). Then in
each family F(J ) we can weaken the notion of calibrations requiring that |Φi(x)−Φj(x)| ≤ 2
for every i, j = 1, . . .m such that {i, j} ∈ J . If there exists a calibration Φk for Ek in F(J k),
then Ek is a minimizer in F(J k). Suppose moreover that there exist J1, . . . ,JN such that
Pconstr =

⋃N
k=1F(J k) then the solution of Problem (0.1) is the Ek with less energy among

the minimizers in all different F(J k).
What is the advantage of calibrations in families? We consider again as example S =
{p1, . . . , p5} with pi the vertices of a regular pentagon. In this case we cover the whole
space Pconstr(Y ) with five families (in particular we get a family requiring that the phase A1

touches A3 and A4 and we obtain the other four families with a cyclical permutation of the
indices). We are then able to find a calibration in each of this family (see Figure 2). Beyond
this single successful example, in the general case when the division in families is the finest
possible one, it classifies the competitors relying on their topological type. Moreover as the
minimizer is unique in each family by the convexity of the distance within any combinatorial
type, it is possible to prove that a calibration in such a family always exists.

S1 S2 S3 S4 S5

Figure 2: A calibration for the five vertices of a regular pentagon in a fixed family.
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